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Abstract. We consider here a logistic equation, modeling processes of nonlocal character
both in the diffusion and proliferation terms.

More precisely, for populations that propagate according to a Lévy process and can reach
resources in a neighborhood of their position, we compare (and find explicit threshold for
survival) the local and nonlocal case.

As ambient space, we can consider:
• bounded domains,
• periodic environments,
• transition problems, where the environment consists of a block of infinitesimal diffusion

and an adjacent nonlocal one.
In each of these cases, we analyze the existence/nonexistence of solutions in terms of the
spectral properties of the domain. In particular, we give a detailed description of the fact
that nonlocal populations may better adapt to sparse resources and small environments.

1. Introduction

In this paper we study stationary solutions for a logistic equation. The solution u can be
interpreted, from the point of view of mathematical biology, as the density of a population
living in some environment Ω ⊆ Rn.

In the classical logistic equation (see e.g. [Ver45, MP12, PR20]), the population is sup-
posed to increase proportionally to the resource of the environment (the growing effect being
modeled by a nonnegative function σ) and to die when the resources get extinguished (the
dying effect being described by a nonnegative function µ). The population is also assumed
to diffuse randomly (the random diffusion being modeled by the Laplace operator). These
considerations lead to a detailed study of the evolution equation

∂tu = ∆u+ (σ − µu)u

and to the stationary case of equilibrium solution described by the elliptic equation

∆u+ (σ − µu)u = 0.

In this paper we will consider two variants of the latter equation, motivated by the nonlocal
features of the population.

First of all, the diffusion operator of the population is considered to be nonlocal, that
is, we replace the Gaussian diffusion by the one induced by Lévy flights. These types of
nonlocal dispersal strategy have been observed in nature and may be related to optimal
hunting strategies and adaptation to the environment stimulated by the natural selection,
see e.g. [VAB+96, HQD+10] for experimental results and [Alu14] for divulgative explanations
of these phenomena in popular magazines. From the mathematical point of view, taking into
account this kind of nonlocal diffusion translates in our setting into the analysis of logistic
equations driven by fractional Laplace operators.
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Moreover, we take into account the possibility that also the increasing rate of the species
has a nonlocal character. This feature is motivated in concrete cases by the fact that a
population takes advantage not only of the resources that are exactly in the area in which they
permanent settle, but also of the ones that are “at their reach” (say, a “giraffe’s neck” effect).
This nonlocal feature will be modeled for us by the convolution with an integrable kernel
(from the mathematical point of view, we remark that the two types of nonlocal operators
considered are very different, since the fractional Laplacian causes a loss of differentiability
on the function, while the convolution produces a regularizing effect).

The precise mathematical formulation that we consider is the following. Given s ∈ (0, 1),
we consider the fractional Laplacian

(−∆)su(x) := 2s (1− s)PV
∫

Rn

u(x)− u(y)

|x− y|n+2s
dy. (1)

The notation “PV ” denotes, as customary, the singular integral taken in the “principal
value” sense, that is

PV

∫

Rn

u(x)− u(y)

|x− y|n+2s
dy := lim

δ→0

∫

Rn\Bδ(x)

u(x)− u(y)

|x− y|n+2s
dy.

The constant s (1− s) in (1) is just a normalizing factor, to allow ourselves to consider the
case s = 1 as a limit. Indeed, with this choice,

lim
s→1

(−∆)su(x) = c?

n∑

i=1

∂2u

∂x2
i

(x) =: −∆u(x),

for a suitable normalizing constant c? > 0, only depending on n, for any u ∈ C2(Rn) ∩
L∞(Rn).

The stationary logistic equation that we study is then

−(−∆)su+ (σ − µu)u+ τ(J ∗ u) = 0,

where σ, µ and J are nonnegative functions, τ ≥ 0 is a constant and s ∈ (0, 1]. As usual,
J ∗ u denotes the convolution between two functions, that is, for any x ∈ Rn,

(J ∗ u)(x) :=

∫

Rn
J(x− y)u(y) dy.

We also assume that the convolution kernel is even and normalized with total mass 1, that
is ∫

Rn
J(x) dx = 1 (2)

and

J(−x) = J(x) for any x ∈ Rn. (3)

We consider two types of setting for our equation: the bounded domain with Dirichlet datum
(corresponding to a confined environment with hostile surrounding areas) and the periodic
case. These two cases will be discussed in detail in the forthcoming subsections.

For recent investigations of different nonlocal equations arising in biological contexts, see
e.g. [ABVV10, MPV13, NRRP13, HR14, MV15] and the references therein.
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1.1. Bounded domains with Dirichlet data. The environment with hostile borders is
modeled in our case by the following equation:





(−∆)su = (σ − µu)u+ τ(J ∗ u) in Ω,
u = 0 outside Ω,
u ≥ 0 in Rn.

(4)

We will present an existence theory for nontrivial solutions and we will compare local and
nonlocal behaviors of the population, analyzing their effectiveness in terms of the resource
and of the domain.

In further detail, we consider the (possibly fractional) critical Sobolev exponent 2∗s :=
2n/(n− 2s) and we state a general existence result as follows:

Theorem 1.1. Let Ω be a bounded Lipschitz domain. Assume that σ ∈ Lm(Ω), for some m ∈
(2∗s/(2

∗
s − 2),+∞], and that (σ + τ)3µ−2 ∈ L1(Ω). Then, there exists a solution of (4).

To study the solutions obtained by Theorem 1.1 it is useful to compare them to the domain
using a spectral analysis. For this, we denote by λs(Ω) the first Dirichlet eigenvalue for (−∆)s

in Ω, i.e.

λs(Ω) := inf s (1− s)
∫∫

QΩ

|u(x)− u(y)|2
|x− y|n+2s

dx dy,

where

QΩ := (Ω× Rn) ∪ ((Rn \ Ω)× Ω) (5)

and the infimum is taken under the conditions that ‖u‖L2(Rn) = 1 and u = 0 outside Ω,
if s ∈ (0, 1), and, as classical,

λ1(Ω) := c? inf
‖u‖

L2(Rn)
=1

u∈H1
0(Ω)

∫

Ω

|∇u|2 dx.

For a detailed study of these eigenvalues (also in the nonlocal case) see for instance Appen-
dix A in [SV13].

The existence of nontrivial solutions to (4) can be characterized in terms of these first
eigenvalues: roughly speaking, when the resource σ is too small, the only solution of (4)
is the one identically zero, i.e. all the population dies; viceversa, if the resource σ is large
enough, there exists a positive solution.

More precisely, we have the following:

Theorem 1.2. Let Ω be a bounded Lipschitz domain. Assume that σ ∈ Lm(Ω), for some m ∈
(2∗s/(2

∗
s − 2),+∞], and that (σ + τ)3µ−2 ∈ L1(Ω). Then:

• if supΩ σ + τ ≤ λs(Ω) then the only solution of (4) is the one identically zero;
• if infΩ σ ≥ λs(Ω) with strict inequality on a set of positive measure and µ ∈ L1(Ω),

then (4) possesses a solution u such that u > 0 in Ω.

A consequence of Theorem 1.2 is that nonlocal species can better adapt to sparse resources.
For instance, there exist examples of disjoint domains Ω1 and Ω2 such that the resource in
each single Ωi is not sufficient for the species to survive, but the combined resources in the
union of the domains can be used by a nonlocal population efficiently enough. A formal
statement goes as follows:
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Theorem 1.3. Let s ∈ (0, 1). Let Ω1 be a domain in Rn, and Ω2 be a domain congruent
to Ω1, with Ω1 ∩ Ω2 = ∅. Then, there exists σ ∈ (0,+∞) such that the only solution of





(−∆)su = (σ − µu)u in Ωi,
u = 0 outside Ωi,
u ≥ 0 in Rn

is the trivial one, for any i ∈ {1, 2}, but the equation




(−∆)su = (σ − µu)u in Ω1 ∪ Ω2,
u = 0 outside Ω1 ∪ Ω2,
u ≥ 0 in Rn

admits a positive solution in Ω1 ∪ Ω2.

Also, in light of Theorem 1.2 it is interesting to determine for which s positive solutions
of (4) may occur. Roughly speaking, when Ω is “small”, the strongly diffusive species cor-
responding to small values of s may be favored. Viceversa, when Ω is “large”, the species
corresponding to small s may be annihilated. As a prototype example we present the fol-
lowing two results:

Proposition 1.4. Let Ω be a bounded Lipschitz domain and set

Ωr := {rx, x ∈ Ω}.
Then the equation 




(−∆)su = (1− u)u+ τ (J ∗ u) in Ωr,
u = 0 outside Ωr,
u ≥ 0 in Rn

admits a nontrivial solution if and only if

r > (λs(Ω))
1
2s .

Theorem 1.5. Fix s, S ∈ (0, 1], with s < S. Let Ω be a bounded Lipschitz domain and set

Ωr := {rx, x ∈ Ω}.
Let also J be a nonnegative function satisfying (2) and (3).

Then there exist r > r > 0 such that

• if r ∈ (0, r), then there exist σr, τr ∈ (0,+∞) such that the equation




(−∆)su = (σr − u)u+ τr (J ∗ u) in Ωr,
u = 0 outside Ωr,
u ≥ 0 in Rn

(6)

admits a nontrivial solution while the equation



(−∆)Su = (σr − u)u+ τr (J ∗ u) in Ωr,
u = 0 outside Ωr,
u ≥ 0 in Rn

(7)

admits only the trivial solution;
• viceversa, if r ∈ (r,+∞) then there exist σr, τr ∈ (0,+∞) such that equation (6)

only admits the trivial solution, while equation (7) admits a nontrivial solution.
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The biological interpretation of Theorem 1.5 is that “large” environments are “more favor-
able” to “local” populations (namely, the population with faster diffusion related to (−∆)s

is extinguished, while the population with slower diffusion related to (−∆)S is still alive);
viceversa, “small” environments are “more favorable” to “nonlocal” populations (namely, in
this case it is the population with slower diffusion (−∆)S that is extinguished, while the
population with faster diffusion (−∆)s persists).

Another relevant question in this framework is whether or not the population fits the
resources. An easy observation is that, if τ = 0, the population never overcomes the maximal
available resource. This follows from the more general result:

Lemma 1.6. If σ ∈ L∞(Ω) and u is a solution of





(−∆)su = (σ − u)u+ τ(J ∗ u) in Ω,
u = 0 outside Ω,
u ≥ 0 in Rn,

then u ≤ ‖σ‖L∞(Ω) + τ .

It is conceivable to think that large resources in a given region favor, at least locally, large
density populations. We show indeed that there is a linear dependence on the largeness
of the resource and the population density (independently on how large the resource is),
according to the following result:

Theorem 1.7. Let R > r > 0. Let Ω be a bounded Lipschitz domain, with BR ⊂ Ω. Then,
there exist co ∈ (0, 1) only depending on n, s, R and r, and Mo > 0 only depending on n, s
and R, such that if M ≥Mo and σ ≥M in BR, then there exists a solution u of





(−∆)su = (σ − u)u+ τ (J ∗ u) in Ω,
u = 0 outside Ω,
u ≥ 0 in Rn,

such that u ≥ coM in Br.

Next result stresses the fact that nonlocal populations can efficiently plan their distribution
in order to consume and possibly beat the given resources in a given “strategic region” (up
to a small error). That is, fixing a region of interest, say the ball B1, one can find a solution
of a (slightly perturbed by an error ε) logistic equation in B1 which exhausts the resources
in B1 and which vanishes outside BRε , for some (possibly large) Rε > 1. The “strategic
plan” in this framework consists in the fact that, in order for the population to consume all
the given resource in B1, the distribution in BRε \ B1 must be appropriately adjusted (in
particular, the logistic equation is not satisfied in BRε \ B1, where the population needs to
be “artificially” settled from outside). The detailed statement of such result goes as follows:

Theorem 1.8. Let s ∈ (0, 1) and k ∈ N, with k ≥ 2. Assume that

inf
B2

µ > 0, inf
B2

σ > 0,
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and that σ, µ ∈ Ck(B2). Fix ε ∈ (0, 1). Then, there exist a nonnegative function uε, Rε > 2
and σε ∈ Ck(B1) such that

(−∆)suε = (σε − µuε)uε + τ(J ∗ uε) in B1, (8)

uε = 0 in Rn \BRε , (9)

‖σε − σ‖Ck(B1) ≤ ε (10)

and uε ≥ µ−1σε in B1. (11)

In light of Lemma 1.6 and Theorems 1.7 and 1.8, a relevant question is also whether or
not the population can beat the resource, i.e. whether or not the set {u > σ} is void. Notice
indeed that Lemma 1.6 says that, if τ = 0, this does not occur for constant resources σ.
Nevertheless, when the resource is oscillatory, then this phenomenon occurs, thanks to the
diffusive terms which allow the species to somewhat attains resources “from somewhere else”.
Namely we have the following result:

Theorem 1.9. Let R > r > 0 and Ω be a bounded Lipschitz domain satisfying the exterior
ball condition and such that BR ⊂ Ω. Let Mo be as in Theorem 1.7.

Let σ0 ∈ C(Ω) be such that σ0 ≥ Mo in BR. Assume also that there exists x0 ∈ Ω such
that σ0(x0) = 0, and, for any m ∈ [0, 1], set σm := σ + m. Then there exists m0 > 0 such
that for any m ∈ (0,m0) there exists a solution of




(−∆)su = (σm − u)u in Ω,
u = 0 outside Ω,
u ≥ 0 in Rn

(12)

for which {u > σm} is nonvoid.

1.2. Periodic environments. We now turn our attention to a periodic environment, i.e.
we suppose that σ and µ are periodic with respect to translations in Zn and we look for
periodic solutions. In this framework, the equation that we take into account is




(−∆)su = (σ − µu)u+ τ(J ∗ u) in Rn,
u(x+ k) = u(x) for any k ∈ Zn,

u > 0 in Rn,
(13)

We suppose here that σ and µ are bounded and periodic functions (with respect to the
lattice Zn), that µ is positive and bounded away from zero and that J is compactly supported.

In this setting, we obtain the following existence result for periodic solutions:

Theorem 1.10. Assume that

either σ is not identically zero or τ > 0. (14)

Then, there exists a solution of (13).

We remark that the solutions obtained in Theorem 1.10 are in general not constant (for
instance, when µ is constant and σ is not). But when both σ and µ are constant then the
periodic solutions need also to be constant, according to the following result:

Theorem 1.11. Let u be a positive solution of (−∆)su = (σ−µu)u+τ(J ∗u) in Rn. Assume
that u is periodic with respect to Zn and that σ ∈ (0,+∞), µ ∈ (0,+∞) and τ ∈ [0,+∞)
are all constant.

Then, u is also constant, and constantly equal to (σ + τ)/µ.
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1.3. A transmission problem. Now, inspired by the recent work in [Kri15], we consider a
transmission model in which the population is made of two species (or of one population that
adapts to two different environments), one with a local behavior in a domain Ω1, and one
with a nonlocal behavior in a domain Ω2, with Ω1∩Ω2 = ∅. The transmission problem occurs
between Ωi and its complement, for i ∈ {1, 2}, and it is modeled by positive parameters νi.

More precisely, we take two disjoint, bounded and Lipschitz domain Ω1 and Ω2 ⊂ Rn. We
define Ω := Ω1 ∪ Ω2 and

T (u) :=
1

2

∫

Ω1

|∇u|2 dx+
s (1− s)

2

∫∫

Ω2×Ω2

|u(x)− u(y)|2
|x− y|n+2s

dx dy

+
2∑

i=1

νi si (1− si)
2

∫∫

Ωi×(Rn\Ωi)

|u(x)− u(y)|2
|x− y|n+2si

dx dy +

∫

Ω

µ |u|3
3
− σ u2

2
dx.

(15)

Here, s, s1, s2 ∈ (0, 1), σ, µ ∈ L∞(Ω, [0,+∞)) with µ ≥ µo, for some µo > 0.
In this setting, we have the following existence result:

Theorem 1.12. The functional T attains its minimum among the functions u ∈ L2(Ω) for
which

1

2

∫

Ω1

|∇u|2 dx+
s (1− s)

2

∫∫

Ω2×Ω2

|u(x)− u(y)|2
|x− y|n+2s

dx dy

+
2∑

i=1

νi si (1− si)
2

∫∫

Ωi×(Rn\Ωi)

|u(x)− u(y)|2
|x− y|n+2si

dx dy < +∞,

and such that u = 0 a.e. outside Ω.
Also, such minimizer is nonnegative.

It is worth to point out that minimizers of T satisfy the equations

−∆u+
ν1 s1 (1− s1)

2

∫

Rn\Ω1

u(x)− u(y)

|x− y|n+2s1
dy

+
ν2 s1 (1− s2)

2

∫

Ω2

u(x)− u(y)

|x− y|n+2s2
dy = (σ − µu)u in Ω1

and 2s (1− s)PV
∫

Ω2

u(x)− u(y)

|x− y|n+2s
dy +

ν1 s1 (1− s1)

2

∫

Ω1

u(x)− u(y)

|x− y|n+2s1
dy

+
ν2 s1 (1− s2)

2

∫

Rn\Ω2

u(x)− u(y)

|x− y|n+2s2
dy = (σ − µu)u in Ω2,

(16)

in the weak sense (and also pointwise, by Theorem 5.5(3) in [Kri15] and Theorem 1 in [SV14]).
The biological interpretation of equation (16) is that the population has local behavior

in Ω1, with nonlocal interactions outside Ω1, and a nonlocal transmission between the do-
mains Ω1 and Ω2 takes place. See also [Kri15] for additional comments and motivations.

The existence/nonexistence of nontrivial solutions in dependence of the spectral analysis
of the domain will be addressed in the following result. To this end, we define λ?(Ω) the first
Dirichlet eigenvalue for the operator in (15). Namely, we set

λ?(Ω) := inf To(u), (17)
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where

To(u) :=

∫

Ω1

|∇u|2 dx+ s (1− s)
∫∫

Ω2×Ω2

|u(x)− u(y)|2
|x− y|n+2s

dx dy

+
2∑

i=1

νi si (1− si)
∫∫

Ωi×(Rn\Ωi)

|u(x)− u(y)|2
|x− y|n+2si

dx dy,

and the infimum in (17) is taken under the conditions that ‖u‖L2(Rn) = 1 and u = 0 a.e.
outside Ω. In this setting, we obtain a result similar to Theorem 1.2 for the transmission
problem in (15):

Theorem 1.13. In the setting above,

• if supΩ σ ≤ λ?(Ω) then the only solution of (16) is the one identically zero;
• if infΩ σ ≥ λ?(Ω) with strict inequality on a set of positive measure then (16) possesses

a solution u such that u > 0 in Ω1 ∪ Ω2.

1.4. Organization of the paper. The rest of the paper is organized as follows: in Section 2
we discuss the existence of a solution by energy minimization and we prove Theorem 1.1.

Then, in Section 3, we discuss the qualitative properties of the solution and we present a
proof of Theorem 1.2.

In Sections 4, 5 and 6 we discuss how the population adapts to the resources and we give
the proof of Theorem 1.3, Proposition 1.4, Theorem 1.5, Lemma 1.6 and Theorem 1.7.

The strongly nonlocal diffusive strategy is considered in Section 7, where we prove Theo-
rem 1.8.

The case in which the population actually beats the resource is discussed in Section 8,
where Theorem 1.9 is proved.

The existence/nonexistence of nontrivial periodic solutions in a periodic environment is
taken into account in Section 9 with the proofs of Theorems 1.10 and 1.11.

Then, in Section 10, we consider the transmission problem and we prove Theorems 1.12
and 1.13.

2. Existence theory and proof of Theorem 1.1

The proof of Theorem 1.1 is based on a minimization argument. More precisely, in order
to deal with problem (4), if s ∈ (0, 1), given u ∈ L1

loc(Rn) with u = 0 a.e. outside Ω, we
consider the energy functional

E(u) :=
s (1− s)

2

∫∫

QΩ

|u(x)− u(y)|2
|x− y|n+2s

dx dy +

∫

Ω

µ |u|3
3
− σ u2

2
− τ u (J ∗ u)

2
dx,

where QΩ is defined in (5).
When s = 1, instead we consider the standard energy functional

E(u) :=
c?
2

∫

Ω

|∇u|2
2

+
µ |u|3

3
− σ u2

2
− τ u (J ∗ u)

2
dx,

with condition u ∈ H1
0 (Ω).

It is worth to point out that solutions of (4) are strictly positive, unless they vanish
identically:

Lemma 2.1. Let u be a nonnegative solution of (−∆)su = (σ−µu)u+ τ(J ∗u) in Ω. Then
either u > 0 in Ω or it vanishes identically.
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Proof. Suppose that u(z) = 0 for some z ∈ Ω and, by contradiction, that u > 0 in a set of
positive measure. Then u(z + x)− u(z) = u(z + x) ≥ 0 for any x ∈ Rn, and in fact strictly
positive in a set of positive measure. Accordingly, (−∆)su(z) < 0. Nevertheless, from (4),
we have that

(−∆)su(z) = (σ(z)− µ(z)u(z))u(z) + τ(J ∗ u)(z) = τ(J ∗ u)(z) ≥ 0,

which is a contradiction. �
Equation (4) has a variational structure, according to the following observation:

Lemma 2.2. The Euler-Lagrange equation associated to the energy functional E at a non-
negative function u is (4).

Proof. We denote by

J (u) :=

∫

Ω

τ u (J ∗ u)

2
dx.

If φ ∈ C∞0 (Ω) and ε ∈ (−1, 1), we have that

J (u+ εφ)

=
τ

2

∫

Ω

(u+ εφ)(x)
(
J ∗ (u+ εφ)

)
(x) dx

=
τ

2

∫

Ω

u(x)(J ∗ u)(x) + ε
[
(u(x)(J ∗ φ)(x) + φ(x)(J ∗ u)(x)

]
+ ε2φ(x)(J ∗ φ)(x) dx.

As a consequence,

dJ
dε

(u+ εφ)
∣∣∣
ε=0

=
τ

2

∫

Ω

(u(x)(J ∗ φ)(x) + φ(x)(J ∗ u)(x)) dx. (18)

Now we recall that u and φ vanish outside Ω and we use (3) to see that
∫

Ω

u(x)(J ∗ φ)(x) dx =

∫

Rn
u(x)

(∫

Rn
J(x− y)φ(y) dy

)
dx

=

∫

Rn
φ(y)

(∫

Rn
J(x− y)u(x) dx

)
dy =

∫

Rn
φ(y)

(∫

Rn
J(y − x)u(x) dx

)
dy

=

∫

Rn
φ(y)(J ∗ u)(y) dy =

∫

Ω

φ(y)(J ∗ u)(y) dy.

Using this into (18) we obtain that

dJ
dε

(u+ εφ)
∣∣∣
ε=0

= τ

∫

Ω

φ(x)(J ∗ u)(x) dx.

With this, the case s = 1 is standard, so we consider the case s ∈ (0, 1). If φ ∈ C∞0 (Ω),
we have

∫∫

QΩ

(
u(x)− u(y)

)(
φ(x)− φ(y)

)

|x− y|n+2s
dx dy =

∫∫

R2n

(
u(x)− u(y)

)(
φ(x)− φ(y)

)

|x− y|n+2s
dx dy,

which gives the desired result. �
In the light of Lemma 2.2, to prove existence of solutions, it is useful to look at the

minimizing problem for E . We first show the following useful inequality:
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Lemma 2.3. Let v, w ∈ L2(Ω) with v = 0 = w a.e. outside Ω. Then
∫

Ω

v(x)(J ∗ w)(x) dx ≤ ‖v‖L2(Ω)‖w‖L2(Ω). (19)

Proof. By the Hölder Inequality with exponents equal to 2 and the Young Inequality for
convolutions with exponents 1 and 2, we have that

∫

Ω

v(x)(J ∗ w)(x) dx ≤ ‖v‖L2(Ω)‖J ∗ w‖L2(Rn)

≤ ‖v‖L2(Ω)‖J‖L1(Rn)‖w‖L2(Ω) = ‖v‖L2(Ω)‖w‖L2(Ω),

where (2) was also used. This shows (19). �

Then the following existence result holds:

Proposition 2.4. Let Ω be a bounded Lipschitz domain.
Assume that σ ∈ Lm(Ω), for some m ∈ (2∗s/(2

∗
s − 2),+∞], and that (σ + τ)3µ−2 ∈ L1(Ω).

Let also

p :=
2

1− 1
m

.

Then E attains its minimum among the functions u ∈ Lp(Ω) for which
∫∫

QΩ

|u(x)− u(y)|2
|x− y|n+2s

dx dy < +∞

and such that u = 0 a.e. outside Ω.
Moreover, there exists a nonnegative minimizer. Finally, if u is such minimizer, it is a

solution of (4).

Proof. We deal with the case s ∈ (0, 1), since the case s = 1 is similar, and simpler. The
proof is by direct methods. First, we notice that p ∈ [2, 2∗s) and

2

p
+

1

m
= 1. (20)

By (19) (used here with v := u and w := u) we have that
∫

Ω

τ u (J ∗ u)

2
dx ≤ τ

2

∫

Ω

|u|2 dx. (21)

Furthermore, we use the Young Inequality, with exponents 3/2 and 3, to see that

(σ + τ)u2

2
=
µ2/3|u|2

22/3
· σ + τ

21/3µ2/3
≤ µ |u|3

3
+

(σ + τ)3

6µ2
. (22)

As a consequence of this and (21),
∫

Ω

µ |u|3
3
− σ u2

2
− τ u (J ∗ u)

2
dx ≥ −

∫

Ω

(σ + τ)3

6µ2
dx.

This implies that

E(u) ≥ s (1− s)
2

∫∫

QΩ

|u(x)− u(y)|2
|x− y|n+2s

dx dy − κ,
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for κ := ‖(σ + τ)3µ−2‖L1(Ω)/6. So we can take a minimizing sequence uj. We may suppose
that

0 = E(0) ≥ E(uj) ≥
s (1− s)

2

∫∫

QΩ

|uj(x)− uj(y)|2
|x− y|n+2s

dx dy − κ.

So we set

‖uj‖ :=

√
s (1− s)

∫∫

QΩ

|uj(x)− uj(y)|2
|x− y|n+2s

dx dy.

We obtain that √
s (1− s)

∫∫

R2n

|uj(x)− uj(y)|2
|x− y|n+2s

dx dy = ‖uj‖ ≤
√

2κ.

Hence, by compactness, up to a subsequence uj converges to some u in Lp(Ω) and a.e. in Rn.
So we recall (20) and we find that

lim sup
j→+∞

∫

Ω

σ(u2
j − u2) dx = lim sup

j→+∞

∫

Ω

σ(uj + u)(uj − u) dx

≤ lim sup
j→+∞

‖σ‖Lm(Ω)‖uj + u‖Lp(Ω)‖uj − u‖Lp(Ω) = 0.

Furthermore,∫

Ω

(
uj (J ∗ uj)− u (J ∗ u)

)
dx =

∫

Ω

(uj − u) (J ∗ uj) dx+

∫

Ω

(J ∗ uj − J ∗ u)u dx. (23)

Now, by (19) with v := uj − u and w := uj we obtain

lim sup
j→+∞

∫

Ω

(uj − u) (J ∗ uj) dx ≤ lim sup
j→+∞

‖uj − u‖L2(Ω)‖uj‖L2(Ω) = 0. (24)

Moreover, making again use of (19) with v := u and w := uj − u, we have that

lim sup
j→+∞

∫

Ω

(J ∗ uj − J ∗ u)u dx = lim sup
j→+∞

∫

Ω

(
J ∗ (uj − u)

)
u dx

≤ lim sup
j→+∞

‖uj − u‖L2(Ω)‖u‖L2(Ω) = 0.
(25)

So, from (23), (24) and (25), we conclude that

lim sup
j→+∞

∫

Ω

(
uj (J ∗ uj)− u (J ∗ u)

)
dx

≤ lim sup
j→+∞

∫

Ω

(uj − u) (J ∗ uj) dx+ lim sup
j→+∞

∫

Ω

(J ∗ uj − J ∗ u)u dx = 0.

Also,

lim inf
j→+∞

∫∫

QΩ

|uj(x)− uj(y)|2
|x− y|n+2s

dx dy ≥
∫∫

QΩ

|u(x)− u(y)|2
|x− y|n+2s

dx dy,

and lim inf
j→+∞

∫

Ω

µ |uj|3
3

dx ≥
∫

Ω

µ |u|3
3

dx,

thanks to the Fatou Lemma. These inequalities imply that

lim inf
j→+∞

E(uj) ≥ E(u),
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hence u is the desired minimum.
Also, E(|u|) ≤ E(u), so we can suppose in addition that u is nonnegative. Furthermore, u

is a solution of (4) thanks to Lemma 2.2. �
The claim in Theorem 1.1 now follows directly from the one in Proposition 2.4.

3. Qualitative properties and proof of Theorem 1.2

The proof of Theorem 1.2 is based on energy arguments, by using the functional introduced
in Section 2. The details are the following:

Proof of Theorem 1.2. Assume that supΩ σ + τ ≤ λs(Ω). Suppose, by contradiction, that
there exists a nontrivial solution to (4). Then, by Lemma 2.1, we have that u > 0 in Ω.

We observe that
µ cannot vanish identically: (26)

otherwise, since (σ + τ)3µ−2 ∈ L1(Ω), we would have that both σ and τ vanish identically
as well, thus (−∆)su would vanish identically in Ω, which would imply that u vanishes
identically.

Therefore, using Lemma 2.3 (with v := u and w := u) and recalling (26), we see that∫

Ω

(σ − µu)u2 dx+

∫

Ω

τ(J ∗ u)u dx ≤
∫

Ω

(σ + τ − µu)u2 dx

≤ λs(Ω)

∫

Ω

u2 dx−
∫

Ω

µu3 dx < λs(Ω)

∫

Ω

u2 dx.

(27)

Now, we test (4) against u itself and we use (27) to see that

λs(Ω)‖u‖2
L2(Ω) ≤ s (1− s)

∫∫

R2n

|u(x)− u(y)|2
|x− y|n+2s

dx dy

=

∫

Ω

(σ − µu)u2 dx+

∫

Ω

τ(J ∗ u)u dx < λs(Ω)‖u‖2
L2(Ω).

This is a contradiction and it establishes the first claim in Theorem 1.2.
Now we show the second claim. For this, we suppose infΩ σ ≥ λs(Ω) with strict inequality

on a set of positive measure and we remark that it is enough to show that 0 is not a minimizer.
To this goal, we take e to be the first eigenfunction of (−∆)s with Dirichlet datum and ε > 0.
We recall that e > 0 in Ω and it is bounded. Then

E(εe)

=
ε2

2

[
s (1− s)

∫∫

R2n

|e(x)− e(y)|2
|x− y|n+2s

dx dy −
∫

Ω

σe2 dx−
∫

Ω

τ(J ∗ e)e dx
]

+
ε3

3

∫

Ω

µ |e|3 dx

≤ ε2

2

∫

Ω

(λs(Ω)− σ)e2 dx+
ε3

3

∫

Ω

µ |e|3 dx

≤ −c1ε
2 + c2ε

3,

where

c1 :=
1

2

∫

Ω

(σ − λs(Ω))e2 dx and c2 :=
1

3
‖µ‖L1(Ω)‖eo‖3

L∞(Ω).

Notice that c1 ∈ (0,+∞). So, if ε is small, E(εe) < 0 = E(0), showing that 0 is not a
minimizer, hence the minimizer of Proposition 2.4 is positive in Ω and it provides a positive
solution. �



13

4. Adaptation to sparse resources and proof of Theorem 1.3

The proof of Theorem 1.3 is based on a spectral analysis and on the use of Theorem 1.2.
The details are the following.

Proof of Theorem 1.3. Since the domains are congruent, we have that λs(Ω1) = λs(Ω2). We
claim that

λs(Ω1 ∪ Ω2) < λs(Ω1) = λs(Ω2). (28)

To prove this, we take ei to be the first eigenfunction of Ωi, for i ∈ {1, 2}, normalized in such
a way that ‖ei‖L2(Rn) = ‖ei‖L2(Ωi) = 1. Let e := e1 + e2. Then

‖e‖2
L2(Ω1∪Ω2) = ‖e‖2

L2(Rn) = ‖e1‖2
L2(Rn) + ‖e2‖2

L2(Rn) + 2

∫

Rn
e1(x) e2(x) dx = 2, (29)

since the supports of e1 and e2 are disjoint. On the other hand, we know that ei > 0 in Ωi

(see e.g. Corollary 8 in [SV14]), therefore
∫

Ω1

(∫

Ω2

e1(x) e2(y)

|x− y|n+2s
dy

)
dx > 0.

Also, since e vanishes outside Ω1 ∪ Ω2, we have that
∫∫

QΩ1∪Ω2

|e(x)− e(y)|2
|x− y|n+2s

dx dy =

∫∫

R2n

|e(x)− e(y)|2
|x− y|n+2s

dx dy

=

∫∫

R2n

|e1(x)− e1(y)|2 + |e2(x)− e2(y)|2 + 2(e1(x)− e1(y))(e2(x)− e2(y))

|x− y|n+2s
dx dy

=

∫∫

QΩ1

|e1(x)− e1(y)|2
|x− y|n+2s

dx dy +

∫∫

QΩ2

|e2(x)− e2(y)|2
|x− y|n+2s

dx dy

+2

∫∫

R2n

(e1(x)− e1(y))(e2(x)− e2(y))

|x− y|n+2s
dx dy

=
λs(Ω1) + λs(Ω2)

s (1− s) + 2

∫∫

(Ω1×Ω2)∪(Ω2×Ω1)

(e1(x)− e1(y))(e2(x)− e2(y))

|x− y|n+2s
dx dy.

Now we observe that∫∫

Ω1×Ω2

(e1(x)− e1(y))(e2(x)− e2(y))

|x− y|n+2s
dx dy = −

∫∫

Ω1×Ω2

e1(x)e2(y)

|x− y|n+2s
dx dy < 0.

Similarly,
∫∫

Ω2×Ω1

(e1(x)− e1(y))(e2(x)− e2(y))

|x− y|n+2s
dx dy = −

∫∫

Ω2×Ω1

e1(y)e2(x)

|x− y|n+2s
dx dy < 0.

So we obtain that∫∫

QΩ1∪Ω2

|e(x)− e(y)|2
|x− y|n+2s

dx dy <
λs(Ω1) + λs(Ω2)

s (1− s) =
2λs(Ω1)

s (1− s) .

This and (29) imply (28), as desired.
From (28), we can take

σ ∈
(
λs(Ω1 ∪ Ω2), λs(Ω1)

)
=
(
λs(Ω1 ∪ Ω2), λs(Ω2)

)
.

Then the claim in Theorem 1.3 follows from Theorem 1.2. �
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It is worth to notice that Theorem 1.3 relies on a purely nonlocal feature: indeed (28) fails
in the local case, since

λ1(Ω1 ∪ Ω2) = λ1(Ω1) = λ1(Ω2). (30)

Indeed, to prove (30), one may notice that e1 is an admissible competitor for λ1(Ω1 ∪ Ω2),
hence λ1(Ω1∪Ω2) ≤ λ1(Ω1). On the other hand if φ ∈ H1

0 (Ω1∪Ω2), then φi := φχΩi ∈ H1
0 (Ωi)

for any i ∈ {1, 2} and thus∫
Ω1∪Ω2

|∇φ(x)|2 dx∫
Ω1∪Ω2

φ2(x) dx
=

∫
Ω1
|∇φ1(x)|2 dx+

∫
Ω2
|∇φ2(x)|2 dx∫

Ω1
φ2

1(x) dx+
∫

Ω2
φ2

2(x) dx
.

Now we observe that if a1, a2, b1 and b2 are positive and such that a1

b1
≤ a2

b2
, then

a1 + a2

b1 + b2

=
b1(a1 + a2)

b1(b1 + b2)
≥ a1b1 + a1b2

b1(b1 + b2)
=
a1

b1

= min

{
a1

b1

,
a2

b2

}
.

As a consequence
∫

Ω1∪Ω2
|∇φ(x)|2 dx∫

Ω1∪Ω2
φ2(x) dx

≥ min

{∫
Ω1
|∇φ1(x)|2 dx∫
Ω1
φ2

1(x) dx
,

∫
Ω2
|∇φ2(x)|2 dx∫
Ω2
φ2

2(x) dx

}
≥ λ1(Ω),

which shows that λ1(Ω1 ∪ Ω2) ≥ λ1(Ω) and completes the proof of (30).

5. Scaling arguments and proof of Proposition 1.4 and Theorem 1.5

The proof of Proposition 1.4 follows by a simple scaling argument, which we present here
for the sake of completeness:

Proof of Proposition 1.4. By scaling, we have that

λs(Ωr) = r−2sλs(Ω). (31)

Also, by Theorem 1.2, a nontrivial solution exists if and only if 1 > λs(Ωr). These consider-
ations imply the desired claim. �

The proof of Theorem 1.5 combines scaling arguments and spectral analysis and it is
presented here below.

Proof of Theorem 1.5. Up to a translation, we may suppose that 0 ∈ Ω. More precisely, we
suppose that Ba1 ⊂ Ω ⊂ Ba2 , for some a2 > a1 > 0. Then λs(Ba2) ≤ λs(Ω) ≤ λs(Ba1), that
is,

c1λs(B1) ≤ λs(Ω) ≤ c2λs(B1),

for some c2 > c1 > 0. Furthermore,

inf
s∈(0,1]

λs(B1) ≥ c3

for some c3 > 0. This follows, for instance, from1 formulas (9) and (10) in [Dyd12]. Further-
more

sup
s∈(0,1]

λs(B1) ≤ c4.

1Regarding formula (9) of [Dyd12] we remark that the map (0, 1) 3 s 7→ γ(s) := (12n + 2s(16 − 2n)) is
monotone, therefore

γ(s) ≥ min{γ(0), γ(1)} = min{12n, 8n+ 32} > 0.
This and the continuity of the Γ-function in (0,+∞) imply that the quantity in (9) of [Dyd12] is bounded
from below uniformly in s ∈ (0, 1].
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This may be checked by fixing g ∈ C∞0 (Ba1) with ‖g‖L2(Rn) = 1, and using that

λs(Ω) ≤ s (1− s)
∫∫

QΩ

|g(x)− g(y)|2
|x− y|n+2s

dx dy ≤ c5‖g‖C2(Rn),

for some c5 > 0.
The above consideration and the scaling property (31) give that

c1 c3 r
−2s ≤ λs(Ωr) ≤ c2 c4 r

−2s,

for any s ∈ (0, 1].
Now we fix s < S ∈ (0, 1] and we set

r :=

(
c1 c3

c2 c4

) 1
2(S−s)

and r :=

(
c2 c4

c1 c3

) 1
2(S−s)

.

Then, if r ∈ (0, r) we have that

λS(Ωr)− λs(Ωr) ≥ c1 c3 r
−2S − c2 c4 r

−2s > 0,

thus we can find σr in the interval
(
λs(Ωr), λS(Ωr)

)
. Moreover, we can also find τr such that

λs(Ωr) < σr ≤ σr + τr < λS(Ωr).

From Theorem 1.2, we have that in this case equation (6) has a nontrivial solution, while (7)
only has the trivial solution.

Viceversa, if r ∈ (r,+∞) then λS(Ωr) − λs(Ωr) < 0, hence we can find σr in the inter-
val
(
λS(Ωr), λs(Ωr)

)
and τr such that

λS(Ωr) < σr ≤ σr + τr < λs(Ωr).

In this case, Theorem 1.2 gives that (7) has a nontrivial solution, while (6) has only the
trivial solution. �

6. Fitting the resources and proof of Lemma 1.6 and Theorem 1.7

The proof of Lemma 1.6 is a simple maximum principle, whose details are presented here
below for completeness:

Proof of Lemma 1.6. Suppose by contradiction that there exists xo ∈ Ω such that 0 <
maxRn u− ‖σ‖L∞(Ω) − τ = u(xo)− ‖σ‖L∞(Ω) − τ . Notice that, using (2),

(J ∗ u)(xo) =

∫

Rn
J(xo − y)u(y) dy ≤ u(xo)

∫

Rn
J(z) dz = u(xo).

Then

0 ≤ (−∆)su(xo) = (σ(xo)− u(xo))u(xo) + τ (J ∗ u)(xo) ≤ (σ(xo) + τ − u(xo))u(xo) < 0,

which is a contradiction. �
Now we show that u always fits the “abundant” resources (up to a multiplicative constant):

Proposition 6.1. Let R > r > 0. Let Ω be a bounded Lipschitz domain, with BR ⊂ Ω.
Let u be the minimal solution of




(−∆)su = (σ − u)u+ τ (J ∗ u) in Ω,
u = 0 outside Ω,
u ≥ 0 in Rn,
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according to Proposition 2.4.
Then, there exist co ∈ (0, 1) only depending on n, s, R and r, and Mo > 0 only depending

on n, s and R, such that if M ≥Mo and σ ≥M in BR, then E(u) < 0 and u ≥ coM in Br.

Proof. We take eo to be the first Dirichlet eigenfunction of BR. Then we have

E(eo) =
s (1− s)

2

∫∫

R2n

|eo(x)− eo(y)|2
|x− y|n+2s

dx dy +

∫

Ω

|eo|3
3
− σ e2

o

2
− τ eo (J ∗ eo)

2
dx

=
λs(BR)

2

∫

BR

e2
o dx+

∫

BR

|eo|3
3
− σ e2

o

2
− τ eo (J ∗ eo)

2
dx

≤ λs(BR)−M
2

∫

BR

e2
o dx+

|BR| ‖eo‖3
L∞(Rn)

3
−
∫

BR

τ eo (J ∗ eo)
2

dx

The latter quantity is negative if M ≥ Mo, for large values of Mo, therefore the energy of
the minimizer u is negative and u is not the trivial function.

Consequently, from Proposition 2.4 and Lemma 2.1, we can define

ι := inf
BR

u > 0.

In particular, if η ∈ (0, ι ‖eo‖−1
L∞(Rn)) we have that ηeo ≤ u. So we take the first η for which

a contact point in Ω occurs (of course, if ηeo ≤ u for all η > 0, we obtain the desired result
by taking η as large as we wish, hence we can assume that such contact point exists). That
is, we have that ηeo ≤ u and there exists x̄ ∈ Ω such that ηeo(x̄) = u(x̄). Since eo vanishes
outside BR, we have that x̄ ∈ BR. Therefore

0 ≥ (−∆)s(u− ηeo)(x̄) = (σ(x̄)− u(x̄))u(x̄) + τ (J ∗ u)(x̄)− ηλs(BR) eo(x̄)

≥ (σ(x̄)− u(x̄))u(x̄)− λs(BR)u(x̄).

Accordingly,

0 ≥Mu(x̄)− u2(x̄)− λs(BR)u(x̄) ≥ M

2
u(x̄)− u2(x̄),

as long as M ≥Mo and Mo is large enough. This says that

M

2
≤ u(x̄) = ηeo(x̄) ≤ η ‖eo‖L∞(Rn).

In particular η ≥M/(2 ‖eo‖L∞(Rn)) and therefore, for any x ∈ Br,

u(x) ≥ ηeo(x) ≥ infBr eo
2 ‖eo‖L∞(Rn)

M. �

Now, Theorem 1.7 follows plainly from Proposition 6.1.

7. Fitting the resources in a nonlocal setting and proof of Theorem 1.8

Now we prove Theorem 1.8, by exploiting a result in [DSV15], joined to a minimization
argument.

More precisely, we make use of Theorem 1.1 in [DSV15], which we state here for the
convenience of the reader:
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Theorem 7.1. Fix k ∈ N. Then, given any function f ∈ Ck(B2) and any ε > 0, we can
find Rε > 2 and a function uε ∈ Cs

0(BRε) such that

(−∆)suε = 0 in B2

and ‖uε − f‖Ck(B2) ≤ ε.

The details of the proof of Theorem 1.8 now go as follows:

Proof of Theorem 1.8. First of all, we use Theorem 7.1 to find a function wε and a ra-
dius Rε > 2 such that

(−∆)swε = 0 in B2,

wε = 0 in Rn \BRε ,

and ‖wε − µ−1σ‖Ck(B2) ≤ ε.

(32)

Let

Wε := |wε| and σε := µwε. (33)

Notice that

‖σε − σ‖Ck(B1) = ‖µ(wε − µ−1σ)‖Ck(B1) ≤ Ck ‖wε − µ−1σ‖Ck(B1) ≤ Ckε,

for some Ck > 0, possibly depending on ‖µ‖Ck(B1), and this proves (10) (up to renaming ε).

Moreover, if x ∈ B2,

wε ≥ µ−1σ − ‖wε − µ−1σ‖L∞(B2) ≥ inf
B2

µ−1σ − ε ≥ 0,

if we take ε > 0 small enough, therefore

Wε = wε in B2. (34)

Accordingly, for any x ∈ B1,
∫

Rn

Wε(x+ y) +Wε(x− y)− 2Wε(x)

|y|n+2s
dy ≥

∫

Rn

wε(x+ y) + wε(x− y)− 2Wε(x)

|y|n+2s
dy

=

∫

Rn

wε(x+ y) + wε(x− y)− 2wε(x)

|y|n+2s
dy

and thus

−(−∆)sWε(x) ≥ 0

for any x ∈ B1. As a consequence,

fε(x) := τ(J ∗Wε)(x)− (−∆)sWε(x) ≥ 0 (35)

for any x ∈ B1.
By (34), we get that (−∆)sWε ∈ L∞(B1), and consequently

fε ∈ L∞(B1). (36)

Now we introduce the energy functional

G(v) :=
s (1− s)

2

∫∫

R2n

|v(x)− v(y)|2
|x− y|n+2s

dx dy +

∫

B1

µ|v|3
3

+
σεv

2

2
− fε v −

τv (J ∗ v)

2
dx
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and we aim to minimize G among all the functions that vanish outside B1. For this, we
observe that G(0) = 0 and we take a minimizing sequence vj, namely

lim
j→+∞

G(vj) = inf G(v), (37)

where the infimum is taken among the functions v such that v = 0 in Rn \ B1. We observe
that, by (10), we know that

inf
B1

σε > 0.

Also, by Lemma 2.3, ∫

B1

vj(x)(J ∗ vj)(x) dx ≤ ‖vj‖2
L2(B1)

and, by (22) (used here with σ = 1),

(1 + τ) v2
j

2
≤ µ |vj|3

3
+

(1 + τ)3

6µ2
.

Using these considerations, we find that
∫

B1

fε vj +
τvj (J ∗ vj)

2
− µ|vj|3

3
dx ≤

∫

B1

f 2
ε + v2

j

2
+
τv2

j

2
− µ|vj|3

3
dx

≤
∫

B1

f 2
ε

2
+

(1 + τ)3

6µ2
dx ≤ Cε,

for some Cε > 0 that does not depend on j. As a consequence,

G(vj) ≥
s (1− s)

2

∫∫

R2n

|vj(x)− vj(y)|2
|x− y|n+2s

dx dy +

∫

B1

σεv
2
j

2
dx− Cε.

This gives that vj is precompact in L2(B1) (see e.g. Theorem 7.1 in [DNPV12]) and so we
may suppose, up to a subsequence, that it converges to some v? in L2(B1) and a.e. in Rn,
with v? = 0 outside B1.

Therefore, by Fatou Lemma,

lim inf
j→+∞

s (1− s)
2

∫∫

R2n

|vj(x)− vj(y)|2
|x− y|n+2s

dx dy +

∫

B1

µ|vj|3
3

+
σεv

2
j

2

≥ s (1− s)
2

∫∫

R2n

|v?(x)− v?(y)|2
|x− y|n+2s

dx dy +

∫

B1

µ|v?|3
3

+
σεv

2
?

2
.

(38)

Also, by weak convergence in L2(B1),

lim
j→+∞

∫

B1

fε vj dx =

∫

B1

fε v? dx. (39)

In addition, by Lemma 2.3,
∣∣∣∣
∫

B1

v?(J ∗ v?)− vj(J ∗ vj) dx
∣∣∣∣

≤
∫

B1

|v? − vj| |J ∗ v?| dx+

∫

B1

|vj| |J ∗ (v? − vj)| dx

≤ ‖v? − vj‖L2(B1) ‖v?‖L2(B1) + ‖v? − vj‖L2(B1) ‖vj‖L2(B1)
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that are infinitesimal as j → +∞. Using this, (37), (38) and (39), we obtain that v? is a
minimizer for G.

Since G(|v|) ≤ G(v), due to (35), we may also suppose that

v? is nonnegative. (40)

The minimization property of v? gives that

(−∆)sv? + µv2
? + σεv? − fε − τ(J ∗ v?) = 0

in B1. Hence, we define
uε := Wε + v?

and, recalling (35), we find that

− (−∆)suε + (σε − µuε)uε + τ(J ∗ uε)
= − (−∆)sWε + µv2

? + σεv? − fε − τ(J ∗ v?) + σεWε + σεv?

− µW 2
ε − µv2

? − 2µWεv? + τ(J ∗Wε) + τ(J ∗ v?)
= 2σεv? + σεWε − µW 2

ε − 2µWεv?.

(41)

in B1. Now we recall (33) and (34) and we find that, in B1,

Wε = wε = µ−1σε.

Hence we insert this identity into (41) and we conclude that

−(−∆)suε + (σε − µuε)uε + τ(J ∗ uε) = 2σεv? + µ−1σ2
ε − µµ−2σ2

ε − 2σεv? = 0

in B1, which establishes (8).
Also, by (32), we have that both Wε and v? vanish outside BRε , and this establishes (9).

Finally, by (33) and (40),
uε ≥ Wε ≥ wε = µ−1σε,

which proves (11). �

8. Beating the resources and proof of Theorem 1.9

The proof of Theorem 1.9 is based on a contradiction and limit argument.

Proof of Theorem 1.9. Let um be the solution of (12) provided by Proposition 2.4. If the
desired claim were false, we would have that um ≤ σm. Then

∣∣(−∆)sum
∣∣ = (σm − um)um ≤ σmum ≤ ‖σm‖L∞(Ω)‖um‖L∞(Ω).

Hence, using Lemma 1.6 with τ = 0,
∣∣(−∆)sum

∣∣ ≤ ‖σm‖2
L∞(Ω) ≤

(
‖σ0‖L∞(Ω) + 1

)2
.

Notice that the latter quantity does not depend on m. Thus, by fractional elliptic regularity
(see e.g. Proposition 1.1 in [ROS14] and Lemma 4.3 in [CS11]) we have that um converges
uniformly in Ω to some u0 as m→ 0, and u0 solves

(−∆)su0 = (σ0 − u0)u0

in Ω. By Theorem 1.7, we know that u0 > 0 in Br. In particular u0 is not the trivial solution,
and so u0 > 0, thanks to Lemma 2.1. Then we have

0 < u0(x0) = lim
m→0

um(x0) ≤ lim
m→0

σm(x0) = σ0(x0) = 0,
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which is a contradiction. �

9. Periodic solutions and proof of Theorems 1.10 and 1.11

To prove Theorem 1.10, we consider an auxiliary minimization problem. The functional
is tailored in order to be compatible with integer translations and produce solutions of (13)
via an Euler-Lagrange equation, tested against periodic test functions.

Here, we assume that J is supported in some ball Bρ and we let

Q :=

(
−1

2
,
1

2

]n
. (42)

We define the energy functional

F(v) :=
s (1− s)

2

∫∫

Rn×Q

|v(x)− v(y)|2
|x− y|n+2s

dx dy +

∫

Q

µ|v|3
3
− σv2

2
dx

−τ
2

∫∫

Rn×Q
J(x− y) v(x) v(y) dx dy.

Then we consider the space X of functions v ∈ L2(Q), with v(x+ k) = v(x) for any k ∈ Zn

and a.e. x ∈ Rn. We have that F attains a minimum in X, according to the following result:

Lemma 9.1. There exists v∗ ∈ X such that F(v∗) ≤ F(v) for every v ∈ X.

Proof. First of all, we notice that F(0) = 0, so we take a minimizing sequence vj ∈ X such
that

lim
j→+∞

F(vj) = inf
X
F (43)

and we may suppose that
F(vj) ≤ 0. (44)

Our goal is to obtain estimates that are uniform in j.
Letting wj := |vj|χBρ+√n and recalling Lemma 2.3, we see that

∣∣∣∣
∫∫

Rn×Q
J(x− y) vj(x) vj(y) dx dy

∣∣∣∣ ≤
∫∫

Bρ+
√
n×Q

J(x− y) |vj(x)| |vj(y)| dx dy

≤
∫∫

R2n

J(x− y)wj(x)wj(y) dx dy ≤ ‖wj‖2
L2(Bρ+

√
n) ≤ C ‖vj‖2

L2(Q),

for some C > 0, possibly depending on ρ and n. Hence,
∫

Q

µ|vj|3
3
− σv2

j

2
dx− τ

2

∫∫

Rn×Q
J(x− y) vj(x) vj(y) dx dy

≥
∫

Q

µ|vj|3
3
− σv2

j

2
dx− Cτ

2

∫

Q

v2
j dx.

(45)

Using this and (22) (with Cτ in the place of τ), we get
∫

Q

µ|vj|3
3
− σv2

j

2
dx− τ

2

∫∫

Rn×Q
J(x− y) vj(x) vj(y) dx dy

≥ −
∫

Q

(σ + Cτ)3

6µ2
dx =: −κ,
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where κ > 0 depends on σ, τ , µ, ρ and n. As a consequence of this and (44), we obtain

s (1− s)
2

∫∫

Rn×Q

|vj(x)− vj(y)|2
|x− y|n+2s

dx dy ≤ κ. (46)

In addition, utilizing (44) and (45), we have that
∫

Q

µ|vj|3
3
− σv2

j

2
dx− Cτ

2

∫

Q

v2
j dx ≤ 0,

and so, by Hölder Inequality,
∫

Q

µ|vj|3
3
≤ ‖σ‖L∞(Q) + Cτ

2

(∫

Q

v3
j dx

)2/3

.

Accordingly, ‖vj‖L3(Q) is bounded uniformly in j and therefore ‖vj‖L2(Q) is also bounded
uniformly in j.

From this and (46), it follows that vj is precompact in L2(Q) (see e.g. Theorem 7.1
in [DNPV12]). Thus, up to a subsequence, we may assume that vj → v∗ in L2(Q) and a.e.
in Q (and thus, by periodicity, a.e. in Rn), as j → +∞. Notice also that v∗ is periodic,
since so is vj. This gives that v∗ ∈ X. Furthermore, using the convergence of vj and Fatou
Lemma,

lim inf
j→+∞

s (1− s)
2

∫∫

Rn×Q

|vj(x)− vj(y)|2
|x− y|n+2s

dx dy ≥ s (1− s)
2

∫∫

Rn×Q

|v∗(x)− v∗(y)|2
|x− y|n+2s

dx dy,

lim inf
j→+∞

∫

Q

µ|vj|3
3

dx ≥
∫

Q

µ|v∗|3
3

dx

and lim
j→+∞

∫

Q

σv2
j

2
dx =

∫

Q

σv2
∗

2
dx.

Moreover,
∣∣∣∣
∫∫

Rn×Q
J(x− y) vj(x) vj(y) dx dy −

∫∫

Rn×Q
J(x− y) v∗(x) v∗(y) dx dy

∣∣∣∣

≤
∫∫

Bρ+
√
n×Q

J(x− y)
∣∣vj(x)

∣∣ ∣∣vj(y)− v∗(y)
∣∣ dx dy

+

∫∫

Bρ+
√
n×Q

J(x− y)
∣∣vj(x)− v∗(x)

∣∣ ∣∣v∗(y)
∣∣ dx dy

≤ C
(
‖vj‖L2(Q) ‖vj − v∗‖L2(Q) + ‖vj − v∗‖L2(Q) ‖v∗‖L2(Q)

)
,

thanks to Lemma 2.3, and the latter quantity is infinitesimal as j → +∞. These considera-
tions and (43) give that

F(v∗) = inf
X
F ,

so the desired result follows. �
Now we can complete the proof of Theorem 1.10 by considering the minimizer produced by

Lemma 9.1 and by checking that periodic perturbations indeed give (13) as Euler-Lagrange
equation.
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Proof of Theorem 1.10. Let v∗ be as in Lemma 9.1 and u := |v∗|. Then

F(u) ≤ F(v∗) ≤ F(v) for every v ∈ X. (47)

Now we take ψ ∈ C∞0 (Q) and we consider its periodic extension in Rn, that is

φ(x) :=
∑

k∈Zn
ψ(x+ k).

Using v := u+ εφ as test function in (47), we obtain that

s (1− s)
∫∫

Rn×Q

(
u(x)− u(y)

)(
φ(x)− φ(y)

)

|x− y|n+2s
dx dy +

∫

Q

µu2φ− σuφ dx

− τ

2

∫∫

Rn×Q
J(x− y)u(x)φ(y) dx dy − τ

2

∫∫

Rn×Q
J(x− y)φ(x)u(y) dx dy = 0.

(48)

Now we write

Rn =
⋃

k∈Zn
(Q+ k)

and thus, using the substitutions x̃ := x− k and ỹ := y − k,
∫∫

R2n

(
u(x)− u(y)

)(
ψ(x)− ψ(y)

)

|x− y|n+2s
dx dy

=
∑

k∈Zn

∫∫

Rn×(Q+k)

(
u(x)− u(y)

)(
ψ(x)− ψ(y)

)

|x− y|n+2s
dx dy

=
∑

k∈Zn

∫∫

Rn×Q

(
u(x̃+ k)− u(ỹ + k)

)(
ψ(x̃+ k)− ψ(ỹ + k)

)

|x̃− ỹ|n+2s
dx̃ dỹ

=
∑

k∈Zn

∫∫

Rn×Q

(
u(x̃)− u(ỹ)

)(
ψ(x̃+ k)− ψ(ỹ + k)

)

|x̃− ỹ|n+2s
dx̃ dỹ

=

∫∫

Rn×Q

(
u(x̃)− u(ỹ)

) ∑
k∈Zn

(
ψ(x̃+ k)− ψ(ỹ + k)

)

|x̃− ỹ|n+2s
dx̃ dỹ

=

∫∫

Rn×Q

(
u(x̃)− u(ỹ)

)(
φ(x̃)− φ(ỹ)

)

|x̃− ỹ|n+2s
dx̃ dỹ.

(49)

Similarly,
∫∫

R2n

J(x− y)ψ(x)u(y) dx dy =
∑

k∈Zn

∫∫

Rn×(Q+k)

J(x− y)ψ(x)u(y) dx dy

=
∑

k∈Zn

∫∫

Rn×Q
J(x̃− ỹ)ψ(x̃+ k)u(ỹ) dx dy =

∫∫

Rn×Q
J(x̃− ỹ)φ(x̃)u(ỹ) dx̃ dỹ.

(50)

So, we insert (49) and (50) into (48) and we obtain that

s (1− s)
∫∫

R2n

(
u(x)− u(y)

)(
ψ(x)− ψ(y)

)

|x− y|n+2s
dx dy +

∫

Rn
µu2ψ − σuψ dx

−τ
∫∫

R2n

J(x− y)u(x)ψ(y) dx dy = 0.
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This gives that u is a solution of the desired equation in Q (and thus in the whole of Rn, by
periodicity).

We also claim that
u > 0 in Rn. (51)

The proof is by contradiction: if there exists xo for which u(xo) = 0, then, by Lemma 2.1,
we see that u vanishes identically. In particular, by (47),

0 = F(0) = F(u) ≤ F(ε), (52)

where ε > 0 is a fixed constant. On the other hand,

F(ε) =
c1ε

3

3
− c2ε

2

2
− τε2

2
,

where

c1 :=

∫

Q

µ dx and c2 :=

∫

Q

σ dx.

Notice that c3 := c2
2

+ τ
2
> 0, thanks to (14), and thus F(ε) = c1ε3

3
−c3ε

2 < 0 for small ε. This
is in contradiction with (52) and so it proves (51). This completes the proof of Theorem 1.10.

�
Now we establish Theorem 1.11 via some algebraic and analytical identities.

Proof of Theorem 1.11. Let Q be as in (42). We define

m :=

∫

Q

u(x) dx and v(x) := u(x)−m. (53)

Notice that
m > 0, (54)

due to the sign of u, and ∫

Q

v(x) dx = 0. (55)

Also, since u is periodic, there exists a minimal point xo, that is

u(xo) = min
Q
u = min

Rn
u. (56)

Thus, since u and v differ by a constant, it follows that

v(xo) = min
Q
v = min

Rn
v.

This and (55) give that

0 =

∫

Q

v(x) dx ≥ v(xo). (57)

Now we point out that, for any y ∈ Rn,∫

Q

u(x+ y) dx = m, (58)

due to (53) and the periodicity of u. Therefore, if we fix δ > 0, we see that
∫

Q

[∫

Rn\Bδ

u(x+ y) + u(x− y)− 2u(x)

|y|n+2s
dy

]
dx =

∫

Rn\Bδ

m+m− 2m

|y|n+2s
dy = 0
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and so, by taking δ → 0, ∫

Q

(−∆)su(x) dx = 0. (59)

Moreover, using again (58), we find that
∫

Q

(J ∗ u)(x) dx =

∫

Q

[∫

Rn
J(y)u(x− y) dy

]
dx = m

∫

Rn
J(y) dy = m.

Using this, (55), (59) and the equation for u, we conclude that

0 =

∫

Q

(−∆)su(x) dx =

∫

Q

(
(σ − µu)u+ τ(J ∗ u)

)
dx = σm− µ

∫

Q

u2 dx+ τm

= σm− µ
∫

Q

(
v2 +m2 + 2mv

)
dx+ τm = σm− µ

∫

Q

v2 dx− µm2 + τm.

This says that

µ

∫

Q

v2 dx = m (σ + τ − µm). (60)

Now, we observe that,

(−∆)su(xo) ≤ 0,

thanks to (56).
In addition, from (56) we also deduce that

(J ∗ u)(x) =

∫

Rn
J(y)u(x− y) dy ≥

∫

Rn
J(y)u(xo) dy = u(xo),

for every x ∈ Rn. Hence, we compute the equation at xo and we find that

0 ≥ (−∆)su(xo) = (σ − µu(xo))u(xo) + τ(J ∗ u)(xo)

≥ (σ − µu(xo))u(xo) + τu(xo) = u(xo)
(
σ + τ − µu(xo)

)
.

Therefore, since u(xo) > 0, we conclude that

σ + τ − µu(xo) ≤ 0

and then

σ + τ − µm ≤ µ
(
u(xo)−m

)
= µ v(xo).

We insert this into (60) and we recall (54), in order to obtain that

µ

∫

Q

v2 dx = m (σ + τ − µm) ≤ mµv(xo).

Thus, by (57),

µ

∫

Q

v2 dx ≤ 0,

which implies that v vanishes identically. Accordingly, by (53), we obtain that u is constant
and constantly equal to m. We insert this information into the equation and we obtain that

0 = (σ − µm)m+ τ(J ∗m) = (σ − µm)m+ τm = (σ + τ − µm)m.

Recalling (54), we then obtain that σ + τ − µm = 0 and so m = (σ + τ)/µ, as desired. �
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10. A transmission problem and proof of Theorems 1.12 and 1.13

Now we consider the transmission problem introduced in (15) and we prove the existence
of minimizers.

Proof of Theorem 1.12. We let uj be a minimizing sequence. Using the Young Inequality

ab ≤ ap

p
+

(p− 1) b
p
p−1

p

with exponents p = 3/2, a = 4−
2
3µ

2
3u2 and b = 2

1
3µ−

2
3σ, we see that

σ u2

2
≤ µ |u|3

6
+

2σ3

3µ2
.

As a consequence,

0 = T (0) ≥ T (uj)

≥ 1

2

∫

Ω1

|∇uj|2 dx+
s (1− s)

2

∫∫

Ω2×Ω2

|uj(x)− uj(y)|2
|x− y|n+2s

dx dy

+
2∑

i=1

νi si (1− si)
2

∫∫

Ωi×(Rn\Ωi)

|uj(x)− uj(y)|2
|x− y|n+2si

dx dy +

∫

Ω

µ |uj|3
6
− co,

where

co :=

∫

Ω

2σ3

3µ2
dx.

In particular,
µo
6

∫

Ω

|uj|3 dx ≤ co,

which gives a uniform bound in j of ‖uj‖L2(Ω). Also,

1

2

∫

Ω1

|∇uj|2 dx+
s (1− s)

2

∫∫

Ω2×Ω2

|uj(x)− uj(y)|2
|x− y|n+2s

dx dy ≤ co,

therefore, by compactness (see e.g. Theorem 7.1 in [DNPV12]), we find that, up to a
subsequence, uj → u in L2(Ω) and a.e. in Ω1 ∪ Ω2, with ∇uj converging to ∇u weakly
in L2(Ω1), for some function u vanishing outside Ω. From this, the desired result follows. �

The following is a maximum principle related to the transmission problem (15):

Lemma 10.1. Let u be a nonnegative solution of (16). Then either u > 0 in Ω1 ∪ Ω2 or it
vanishes identically.

Proof. Assume that u vanishes somewhere in Ω1 ∪ Ω2. We claim that

if u vanishes somewhere in Ω2, then it vanishes identically in Ω1 ∪ (Rn \ Ω2). (61)

To prove this, we suppose that u(x̄) = 0, for some x̄ ∈ Ω2. Then x̄ minimizes u and so

PV

∫

Ω2

u(x̄)− u(y)

|x̄− y|n+2s
dy ≤ 0,

∫

Ω1

u(x̄)− u(y)

|x̄− y|n+2s1
dy ≤ 0 and

∫

Rn\Ω2

u(x̄)− u(y)

|x̄− y|n+2s2
dy ≤ 0.
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These inequalities and (16) imply that indeed
∫

Ω1

u(x̄)− u(y)

|x̄− y|n+2s1
dy = 0 and

∫

Rn\Ω2

u(x̄)− u(y)

|x̄− y|n+2s2
dy = 0,

and this says that u(y) = u(x̄) = 0 in the whole of Ω1 ∪ (Rn \ Ω2), thus proving (61).
Now we show that

if u vanishes somewhere in Ω1, then it vanishes identically in Ω2 ∪ (Rn \ Ω1). (62)

To this end, let xo ∈ Ω1 such that u(xo) = 0. In particular, xo minimizes u, there-
fore ∆u(xo) ≥ 0,

∫

Rn\Ω1

u(xo)− u(y)

|xo − y|n+2s1
dy ≤ 0 and

∫

Ω2

u(xo)− u(y)

|xo − y|n+2s2
dy ≤ 0.

These inequalities and (16) imply that
∫

Rn\Ω1

u(xo)− u(y)

|xo − y|n+2s1
dy = 0 and

∫

Ω2

u(xo)− u(y)

|xo − y|n+2s2
dy = 0.

In consequence of these equalities, we conclude that u(y) = u(xo) = 0 for any y ∈ (Rn \
Ω1) ∪ Ω2, and this establishes (62).

Now suppose that u vanishes somewhere in Ω1 (resp. Ω2). Then, by (62) (resp., (61)), we
know that u vanishes identically in Ω2∪(Rn\Ω1) (resp., in Ω1∪(Rn\Ω2)). Accordingly, by (61)
(resp., (62)), we obtain that u vanishes identically in Ω1∪ (Rn \Ω2) (resp., in Ω2∪ (Rn \Ω1)).
All in all, we find that u vanishes identically in Ω2 ∪ (Rn \ Ω1) ∪ Ω1 ∪ (Rn \ Ω2) = Rn, as
desired. �

Now we establish the results related to the spectral analysis of the transmission prob-
lem (15):

Proof of Theorem 1.13. We let e? be the first eigenfunction of the problem, i.e. the minimizer
which attains the infimum in (17). That such minimum is attained follows by a compactness
argument, as the one in the proof of Theorem 1.12. By construction,

∫

Ω1

∇e? · ∇φ dx+ s (1− s)
∫∫

Ω2×Ω2

(e?(x)− e?(y))(φ(x)− φ(y))

|x− y|n+2s
dx dy

+
2∑

i=1

νi si (1− si)
∫∫

Ωi×(Rn\Ωi)

(e?(x)− e?(y))(φ(x)− φ(y))

|x− y|n+2si
dx dy = λ?(Ω)

∫

Ω

e? φ dx

for any test function φ, and so
∫

Ω1

|∇e?|2 dx+ s (1− s)
∫∫

Ω2×Ω2

|e?(x)− e?(y)|2
|x− y|n+2s

dx dy

+
2∑

i=1

νi si (1− si)
∫∫

Ωi×(Rn\Ωi)

|e?(x)− e?(y)|2
|x− y|n+2si

dx dy = λ?(Ω)

∫

Ω

|e?|2 dx.
(63)

Also, we may assume that e? ≥ 0, since taking the absolute value of a candidate may only
decrease the energy, and in fact

e? > 0 in Ω1 ∪ Ω2, (64)

thanks to the maximum principle in Lemma 10.1.
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Given M > 0, we set

eM(x) :=

{
e?(x) if e?(x) < M,
M if e?(x) ≥M.

By the Fatou Lemma,

lim inf
M→+∞

∫

Ω

σ e2
M dx ≥

∫

Ω

σ e2
? dx,

and therefore

lim inf
M→+∞

∫

Ω

σ e2
M − λ?(Ω) e2

? dx ≥
∫

Ω

(σ − λ?(Ω)) e2
? dx =: c?. (65)

After these considerations, we proceed with the proof of Theorem 1.13.
First, we suppose that supΩ σ ≤ λ?(Ω). We aim to show that all solutions of (16) are

trivial. Assume, by contradiction, that there exists a nontrivial solution u. Then, by
Lemma 10.1, we know that u > 0 in Ω1 ∪ Ω2.

Now, we write the weak formulation of (16) as
∫

Ω1

∇u · ∇φ dx+ s (1− s)
∫∫

Ω2×Ω2

(u(x)− u(y))(φ(x)− φ(y))

|x− y|n+2s
dx dy

+
2∑

i=1

νi si (1− si)
∫∫

Ωi×(Rn\Ωi)

(u(x)− u(y))(φ(x)− φ(y))

|x− y|n+2si
dx dy

+

∫

Ω

µu2 φ− σ u2 dx = 0,

for any test function φ, and we choose φ := u. Hence, we find that
∫

Ω1

|∇u|2 dx+ s (1− s)
∫∫

Ω2×Ω2

|u(x)− u(y)|2
|x− y|n+2s

dx dy

+
2∑

i=1

νi si (1− si)
∫∫

Ωi×(Rn\Ωi)

|u(x)− u(y)|2
|x− y|n+2si

dx dy

+

∫

Ω

µ |u|3 − σ u2 dx = 0.

As a consequence,

λ?(Ω) ≤ ‖u‖−2
L2(Ω) To(u)

= ‖u‖−2
L2(Ω)

∫

Ω

σ u2 − µ |u|3 dx

< ‖u‖−2
L2(Ω)

∫

Ω

σ u2 dx

≤ ‖u‖−2
L2(Ω)

∫

Ω

λ?(Ω)u2 dx

= λ?(Ω),

which is a contradiction. This establishes the first claim in Theorem 1.13, so we can now
focus on the second claim. To this goal, we now assume that infΩ σ ≥ λ?(Ω) with strict
inequality on a set of positive measure. Therefore, recalling (64), we have that, in this case,

c? > 0
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and so, in light of (65), we can fix M? sufficiently large such that, for any M ≥M?,
∫

Ω

σ e2
M − λ?(Ω) e2

? dx ≥
c?
2
> 0.

So, from now on, we can fix M = M?, and the inequality above holds true. In consequence
of these observations and recalling (63), we have that

To(eM) ≤
∫

Ω1

|∇e?|2 dx+ s (1− s)
∫∫

Ω2×Ω2

|e?(x)− e?(y)|2
|x− y|n+2s

dx dy

+
2∑

i=1

νi si (1− si)
∫∫

Ωi×(Rn\Ωi)

|e?(x)− e?(y)|2
|x− y|n+2si

dx dy

= λ?(Ω)

∫

Ω

|e?|2 dx

≤ −c?
2

+

∫

Ω

σ e2
M dx.

Accordingly, for any ε > 0,

T (εeM) = ε2 To(eM) +

∫

Ω

ε3
µ |eM |3

3
− ε2 σ e

2
M

2
dx

≤ −c? ε
2

2
+ ε3

∫

Ω

µ |e?|3
3

,

which is negative if ε is suitably small. As a consequence, T (εeM) < 0 = T (0), which implies
that the trivial function is not a minimizer.

This says that the minimizer does not vanish identically, and so it is positive in Ω1 ∪ Ω2,
in light of Lemma 10.1. This completes the proof of Theorem 1.13. �
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