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Abstract

Depending on whether a mathematical program with equilibrium constraints
(MPEC) is considered in its original or its enhanced (via KKT conditions) form, the assumed con-
straint qualifications (CQs) as well as the derived necessary optimality conditions may differ signif-
icantly. In this paper, we study this issue when imposing one of the weakest possible CQs, namely
the calmness of the perturbation mapping associated with the respective generalized equations
in both forms of the MPEC. It is well known that the calmness property allows one to derive so-
called M-stationarity conditions. The strength of assumptions and conclusions in the two forms of
the MPEC is strongly related with the CQs on the ’lower level’ imposed on the set whose normal
cone appears in the generalized equation. For instance, under just the Mangasarian-Fromovitz
CQ (a minimum assumption required for this set), the calmness properties of the original and
the enhanced perturbation mapping are drastically different. They become identical in the case
of a polyhedral set or when adding the Full Rank CQ. On the other hand, the resulting optimality
conditions are affected too. If the considered set even satisfies the Linear Independence CQ, both
the calmness assumption and the derived optimality conditions are fully equivalent for the original
and the enhanced form of the MPEC. A compilation of practically relevant consequences of our
analysis in the derivation of necessary optimality conditions is provided in the main Theorem 4.3.
The obtained results are finally applied to MPECs with structured equilibria.

1 Introduction

Starting with [22], efficient necessary optimality conditions for various types of mathematical programs
with equilibrium constraints (MPECs) have been developed on the basis of the generalized differential
calculus of Mordukhovich, e.g. [13, 15, 16, 21]. Following [19], we speak about M-stationarity condi-
tions. Let us consider an MPEC of the form

minimize
x,y

ϕ(x,y)

subject to 0 ∈ F(x,y)+ N̂Γ(y),
x ∈ ω,

(1)

where x ∈ Rn is the control variable, y ∈ Rm is the state variable, ϕ : Rn×Rm→ R is the objective,
ω ⊂Rn is the (closed) set of admissible controls, F : Rn×Rm→Rm is a continuously differentiable
mapping, and the constraint set Γ⊂ Rm is given by inequalities, i.e.,

Γ = {y ∈ Rm | qi(y)≤ 0, i = 1, . . . ,s} (2)

with a twice continuously differentiable mapping q : Rm → Rs. Further, N̂Γ refers to the regular
(Fréchet) normal cone (see Definition 2.1).

Let (x̄, ȳ) be a (local) solution of (1). Throughout this paper, we shall assume that Γ satisfies the
Mangasarian-Fromovitz Constraint Qualification (MFCQ) at ȳ (see Definition 2.4). As a consequence,
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one has the representation

N̂Γ(y) = NΓ(ȳ) = (∇q(y))>NRs
−(q(y))

on a neighborhood of ȳ so that the following equivalence holds true for the generalized equation (GE)
in (1):

0 ∈ F(x,y)+NΓ(y)⇔∃λ : 0 ∈ H(x,y,λ )+NRm×Rs
+
(y,λ ), (3)

provided y is close to ȳ and H(x,y,λ ) := (F(x,y)+(∇q(y))>λ ,−q(y)). This relation suggests also
to consider the enhanced MPEC

minimize
x,y,λ

ϕ(x,y)

subject to 0 ∈ H(x,y,λ )+NRm×Rs
+
(y,λ ),

x ∈ ω

(4)

in variables (x,y,λ ). The GE in (4) has a substantially simpler constraint set than the GE in (1). As
the price for it, one has to do with an additional variable λ , not arising in the objective. Let us introduce
the multifunction Λ : Rm×Rn×Rm ⇒ Rs by

Λ(p,x,y) :=
{

λ ∈ Rs
∣∣∣ p ∈ F(x,y)+(∇q(y))>λ , q(y) ∈ NRs

+
(λ )
}

so that Λ(p,x,y) is the set of Lagrange multipliers associated with a pair (x,y), feasible with respect
to the canonically perturbed GE from (1). It is well-known (and easy to prove) that under the posed
constraint qualification we have that Λ(0, x̄, ȳ) 6= /0 and (x̄, ȳ) is a local solution to problems (1) if and
only if (x̄, ȳ.λ ) is a local solution to (4) for all λ ∈ Λ(0, x̄, ȳ). Likewise, it is known that for a local
solution (x̄, ȳ, λ̄ ) of (4) the pair (x̄, ȳ) need not be a local solution of (1), see [2] in the context of bilevel
programming. It follows that numerical methods computing M-stationary points of (4) may terminate
at points which are not M-stationary with respect to the original (1). A complete analysis of this issue
requires, however, to compare also the qualification conditions imposed in the course of derivation
of the M-stationarity conditions for (1) and (4), respectively. As in [22] or [15], we will make use of
the so-called calmness qualification conditions [10] which ensure a certain Lipschitzian behavior of
the canonically perturbed constraint maps in (1) and (4), cf. Definition 2.3 and formulas (6) and (7). It
turns out that, very often, the calmness qualification condition related to (1) is satisfied, whereas the
qualification condition of (4) is for certain multipliers λ not fulfilled. The main aim of this paper is thus a
thorough analysis of both these qualification conditions and their mutual relationship. Not surprisingly,
in the achieved results an important role is played by the constraint qualifications (CQs) which Γ fulfills
at ȳ. The choice between M-stationarity conditions of (1) and (4) depends, however, also on some
other circumstances. In the first line it is the question of workable criteria for the considered calmness
qualification conditions which are typically somewhat simpler in the case of (4). Further, one has to
take into account also the possibility to express M-stationarity conditions of (1) in terms of problem
data because otherwise the results do not have a practical value.

In the paper, all these aspects will be considered. To state our aims rigorously, one needs some basic
notions from modern variational analysis. They are introduced at the beginning of the next section
(Section 2.1). Section 2.2 is then devoted to a proper problem setting whereas in the last part (Section
2.3) we present several auxiliary results needed in the sequel.

Our notation is standard. For f : R→R by f ′ we understand its derivative. For a vector x ∈Rn and a
set C⊂Rn, by ‖x‖ we understand the (Euclidean) norm of x and by d(x,C) the distance of x from C.

By o(h) we understand any function such that limh↘0
o(h)
‖h‖ = 0. Finally, by #S we mean the cardinality

of a set S.
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2 Problem setting and preliminaries

Throughout the whole paper we consider equilibria governed by the generalized equation (GE) from
(1), where Γ is given in (2). With minor modifications, however, the whole theory applies also to the
case when Γ is given by inequalities and equalities. For the sake of brevity we assume (without any
loss of generality) that, at the considered point ȳ, all inequality constraints are active, i.e,

qi(ȳ) = 0, i = 1, . . . ,s.

2.1 Background from variational analysis

Definition 2.1 For closed set A ⊂ Rn and x̄ ∈ A we define the Fréchet and limiting (Mordukhovich)
normal cone to A at x̄ by

N̂A(x̄) = {x∗ | 〈x∗,x− x̄〉 ≤ o(‖x− x̄‖) for all x ∈ A}
NA(x̄) = Limsup

x→x̄
N̂A(x) :=

{
x∗
∣∣ ∃(xk,x∗k) : x∗k ∈ N̂A(xk), xk→ x̄, x∗k → x∗

}
.

If A happens to be convex, both normal cones coincide and are equal to the normal cone in the sense
of convex analysis

N̂A(x̄) = NA(x̄) = {x∗| 〈x∗,x− x̄〉 ≤ 0 for all x ∈ A}.

In such a case, we prefer to use notation NA(x̄).

It follows from [18, Exercise 10.26(d)] that under the standing assumptions N̂Γ(y) = NΓ(y) for all y
from a neighborhood of ȳ and therefore one can replace the regular normal cone in the GE (1) by the
limiting one, having a better calculus.

Definition 2.2 For a multifunction M : Rn ⇒ Rm and for any ȳ ∈ M(x̄) we define the (limiting)
coderivative D∗M(x̄, ȳ) : Rm ⇒ Rn at this point as

D∗M(x̄, ȳ)(y∗) =
{

x∗
∣∣ (x∗,−y∗) ∈ NgphM(x̄, ȳ)

}
,

where gphM stands for the graph of M.

If M is single-valued, we write only D∗M(x̄)(y∗) instead of D∗M(x̄,M(x̄))(y∗).

Definition 2.3 We say that a multifunction M : Rn ⇒ Rm has the Aubin property at (x̄, ȳ) ∈ gphM if
there exist a nonnegative modulus L and neighborhoods U of x̄ and V of ȳ such that for all x,x′ ∈U
the following inclusion holds true

M(x)∩V ⊂M(x′)+L‖x− x′‖B,

where B ⊂ Rm stands for the unit ball. Similarly, we say that M is calm at at (x̄, ȳ) ∈ gphM if there
exist a nonnegative modulus L and neighborhoods U of x̄ and V of ȳ such that for all x ∈ U the
following inclusion holds true

M(x)∩V ⊂M(x̄)+L‖x− x̄‖B.
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Note that the calmness may be significantly weaker than the Aubin property. For example any poly-
hedral mapping (mapping whose graph is a finite union of convex polyhedra) satisfies the calmness
property at any point of its graph but may fail to have the Aubin property at the same time.

In our analysis we make use of some basic CQs from nonlinear programming. For the reader’s conve-
nience, we recall them in the next definition, where I(y) denotes the set of active constraints, i.e.,

I(y) := {i ∈ {1, . . . ,S}| qi(y) = 0}.

Definition 2.4 Consider a set Γ defined by inequalities (2) and some point ȳ ∈ Γ. We say that Γ

satisfies LICQ (linear independence constraint qualification) at ȳ if the gradients corresponding to all
active constraints are linearly independent, hence

∑
i∈I(ȳ)

µi∇qi(ȳ) = 0 =⇒ µi = 0 for all i ∈ I(ȳ).

Similarly, we say that Γ satisfies MFCQ (Mangasarian-Fromovitz constraint qualification) at ȳ if the
gradients corresponding to all active constraints are positively linearly independent, hence

∑
i∈I(ȳ)

µi∇qi(ȳ) = 0, µi ≥ 0 =⇒ µi = 0 for all i ∈ I(ȳ).

Next, Γ satisfies CRCQ (constant rank constraint qualification) at ȳ if there is a neighborhood Y of ȳ
such that for all subsets I of active indices I(ȳ) we have that rank{∇qi(y)| i ∈ I} is a constant value
for all y∈Y . Finally, Γ satisfies FRCQ (full rank constraint qualification) at ȳ if for all subsets I of active
indices I(ȳ) we have that

rank{∇qi(y)| i ∈ I}= min{#I,m}.

The relationship among the above constraint qualifications is given by the implications

MFCQ ⇐= LICQ =⇒ FRCQ =⇒ CRCQ (5)

which can be easily verified. Note that neither of these implications can be reversed in general.

2.2 Problem setting

The above defined notions enable us to state the investigated problem rigorously. The perturbation
mappings associated with MPECs (1) and (4) attain the form

M(z) := {(x,y) | x ∈ ω, z ∈ F(x,y)+NΓ(y)} , (6)

M̃(z1,z2) :=
{

(x,y,λ )
∣∣∣ x ∈ ω, (z1,z2) ∈ H(x,y,λ )+NRm×Rs

+
(y,λ )

}
(7)

=
{

(x,y,λ )
∣∣∣ x ∈ ω, z1 = F(x,y)+(∇q(y))>λ , z2 ∈ −q(y)+NRs

+
(λ )
}

,

respectively. By virtue of [22, Theorem 3.2] the M-stationarity conditions for (1) can be formulated as
follows.
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Theorem 2.1 ([22], Theorem 3.2) Let (x̄, ȳ) be a local solution to (1). If M is calm at (0, x̄, ȳ), then
there exists an MPEC multiplier v ∈ Rm such that

0 = ∇xϕ(x̄, ȳ)+ [∇xF(x̄, ȳ)]> v+Nω(x̄) (8a)

0 ∈ ∇yϕ(x̄, ȳ)+ [∇yF(x̄, ȳ)]> v+D∗NΓ (ȳ,−F(x̄, ȳ))(v). (8b)

Since MPEC (4) has exactly the same structure as MPEC (1), the respective M-stationarity condition
can be derived in the same way and one arrives at

Theorem 2.2 Let (x̄, ȳ, λ̄ ) be a local solution to (4). If M̃ is calm at
(
0,0, x̄, ȳ, λ̄

)
, then there exist

some multipliers v ∈ Rm and w ∈ Rs such that

0 = ∇xϕ(x̄, ȳ)+ [∇xF(x̄, ȳ)]> v+Nω(x̄)

0 = ∇yϕ(x̄, ȳ)+ [∇yF(x̄, ȳ)]> v+
s

∑
i=1

λ̄i∇
2qi(ȳ)v− [∇q(ȳ)]>w

0 = ∇qi(ȳ)v ∀i : λ̄i > 0
0 = wi ∀i : qi(ȳ) < 0

0≥ wi,0≤ ∇qi(ȳ)v or 0 = wi or 0 = ∇qi(ȳ)v ∀i : λ̄i = qi(ȳ) = 0.

(9)

Theorem 2.2 can be interpreted as a variant of Theorem 2.1 in a different disguise addressing the
same topic of MPEC (1) with differing assumptions and differing stationarity conditions. By taking into
account the relationships between local solutions to (1) and (4) mentioned above, the combination of
both theorems immediately leads to the following result.

Corollary 2.1 Let (x̄, ȳ) be a local solution to (1). Then there exist multipliers v and w such that (9)
holds true for those λ̄ ∈ Λ(0, x̄, ȳ) for which M̃ is calm at

(
0,0, x̄, ȳ, λ̄

)
.

We observe first that Theorem 2.1 requires the computation of a coderivative while Theorem 2.2
provides fully explicit stationarity conditions. Precise formulas for this coderivative in terms of the
problem data are available provided that Γ is polyhedral ([9, Theorem 3.2]), under LICQ at ȳ ([7,
Theorem 3.1]) or under a relaxation of MFCQ combined with the so-called 2-regularity ([5, Theorem
3]). An upper estimate has been derived in [7, Theorem 3.3] and further worked out in the Section 3.2
(Corollary 3.2).

Corollary 2.1 enables us to circumvent the difficulties associated with the coderivative in (8b) and to
benefit from the explicit stationary conditions (9). This gain in convenience is bought by the need to
check a calmness condition for M̃ which may be much more restrictive than the calmness condition for
M imposed in Theorem 2.1. Indeed, Example .2 in the Appendix shows that even under MFCQ at ȳ, M
may be calm while M̃ fails to be so at any λ̄ ∈ Λ(0, x̄, ȳ). Given the impact of constraint qualifications
for Γ on the coderivative calculus discussed above, we are naturally led also to investigate the relation
between calmness of M and M̃ under these constraint qualifications (MFCQ, MFCQ+FRCQ, LICQ, Γ

polyhedral). This will be the topic of Section 3. Another important issue is to find qualification condi-
tions, i.e., verifiable algebraic relations in terms of the initial data of the problem ensuring the calmness
of M or M̃. Section 4 then compiles the main results of this paper in a concise form illustrating the
information we gained about the relations and combinations of Theorems 2.1 and 2.2. Finally Section
5 illustrates the application of our results to a structured family of MPECs or bilevel problems.
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2.3 Auxiliary results

At several places of the paper we will make use of the following statement from [11] which ensures the
calmness of the intersection of two independently perturbed multifunctions.

Theorem 2.3 ([11], Theorem 3.6) Consider the following multifunctions S1 : Rn1 ⇒ Rm and S2 :
Rn2 ⇒ Rm and a point ū ∈ S1(0)∩ S2(0). Then S1 ∩ S2 is calm at (0,0, ū) provided the following
conditions are satisfied:

1 S1 is calm at (0, ū)

2 S2 is calm at (0, ū)

3 S−1
1 has the Aubin property at (ū,0)

4 S1∩S2(0) is calm at (0, ū).

If S1 is the inverse of a single-valued function f : Rn → Rm then, to ensure the validity of the first
condition of Theorem 2.3, we will often use the following result.

Lemma 2.1 Let f : Rn → Rm be a differentiable function. Then f−1 is calm at ( f (x̄), x̄) if at least
one of the following conditions holds:

1 f is piecewise linear

2 ∇ f (x̄) has full row rank

3 ∇ f (x̄) has full column rank

Proof. Denote ȳ := f (x̄). The first case is the classical result of Robinson [17, Proposition 1]. The sec-
ond one implies the Aubin property by standard calculus rule and the third one the isolated calmness
property of f−1 at (ȳ, x̄) by [3, Corollary 3I.11]. Since both these properties imply calmness, the proof
is complete. �

In the text, we will several times make use of the following consequence of Theorem 2.3.

Lemma 2.2 Consider u = (u1,u2) ∈ Rn1 ×Rn2 = Rn, continuously differentiable mappings H1 :
Rn→ Rm, H2 : Rn→ Rn2 , closed sets ∆⊂ Rn, Ω⊂ Rn2 and the following multifunctions

S1(z1) := {u|H1(u)− z1 = 0}
S2(z2) := {u ∈ ∆|H2(u)− z2 ∈ NΩ(u2)}.

(10)

Consider further a point ū ∈ S1(0)∩ S2(0) with the following properties: S1 is calm at (0, ū), S2 is
calm at (0, ū) and the following qualification condition holds:

(∇H1(ū))>µ ∈
(

0 ∇u1H2(ū)>

I ∇u2H2(ū)>

)
NgphNΩ

(ū2,H2(ū))+N∆(ū) =⇒ µ = 0. (11)

Then Σ(z1,z2) := S1(z1)∩S2(z2) is calm at (0,0, ū).
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Proof. Imitating the proof of [20, Proposition 5.2], it can be shown that Σ is calm at (0,0, ū) if and only
if S1∩ S̃2 is calm at (0,0,0, ū) with

S̃2(z2,z3) :=
{

u ∈ ∆

∣∣∣∣( u2− z3
H2(u)− z2

)
∈ gphNΩ

}
.

To finish the proof, we will now apply Theorem 2.3 to S1 and S̃2, hence we need to verify that our as-
sumptions ensure properties 1 - 4 from this theorem. Again, due to [20, Proposition 5.2] the calmness
of S̃2 at (0,0, ū) is equivalent to the calmness of S2 at (0, ū), which is satisfied by our assumptions.
The multifunction S−1

1 = H1 is single-valued and locally Lipschitz continuous, and thus satisfies the
Aubin property everywhere. Calmness of S1 at (0, ū) is satisfied due to the assumptions.

To show that G(z) := S1(z)∩ S̃2(0,0) is calm at (0, ū), we claim that (11) implies even the Aubin
property of G around (0, ū). Indeed, by virtue of the Mordukhovich criterion [18, Theorem 9.40] this is
equivalent to the implication (

µ

0

)
∈ NgphG(0, ū) =⇒ µ = 0,

which due to [18, Theorem 6.14] and simple calculus is implied by

(∇H1(ū))>µ ∈ NS̃2(0,0)(ū) =⇒ µ = 0. (12)

Since S̃2 is calm at (0,0, z̄), we may use [6, Theorem 4.1] to deduce

NS̃2(0,0)(ū)⊂
(

0 I
∇u1H2(ū) ∇u2H2(ū)

)>
NgphNΩ

(ũ2,H2(ū))+N∆(ū). (13)

However, due to (13), it is clear that (11) implies (12) and hence G has the Aubin property around
(0, ū), which means that Σ is indeed calm at (0,0, ū). �

The following auxiliary lemma will be used on several places in the text.

Lemma 2.3 Consider a multifunction φ : Rn×Rm ⇒ Rp×Rt with the separable structure

φ(u,v) = φ1(u)×φ2(v),

and assume that (w̄, z̄) ∈ φ1(ū)×φ2(v̄), whereby φ1 is calm at (ū, w̄) and φ2 is calm at (v̄, z̄). Then
φ is calm at ((ū, v̄),(w̄, z̄)).

Proof. Let us equip the Cartesian product Rp×Rt with the sum norm. Then one has for all w ∈ φ1(u)
and z ∈ φ1(v) that

d((w,z),φ(ū, v̄)) = d(w,φ1(ū))+d(z,φ2(v̄))≤ l1‖u− ū‖+ l2‖v− v̄‖ (14)

whenever (u,v) and (w,z) are sufficiently close to (ū, v̄) and (w̄, z̄), respectively. In (14), l1 and l2
signify the calmness moduli of φ1 and φ2 at (ū, w̄) and (v̄, z̄), respectively. If we now endow the
Cartesian product of Rn×Rm with the sum norm as well, we immediately conclude that φ is calm at
the respective point with modulus L = max{l1, l2} and we are done. �
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3 Relations of calmness properties of M and M̃

This section is devoted to a study of the general relationship between the calmness properties of M
and M̃ defined in (6) and (7), respectively. Since we do not make use of any result from second-order
variational analysis, we may relax our original assumption and for this section require functions qi to
be only C 1. It turns out (see Example .2 in the Appendix) that under these circumstances M can be
calm at (0, x̄, ȳ) whereas M̃ is not calm at (0,0, x̄, ȳ,λ ) for any λ ∈ Λ(0, x̄, ȳ).

3.1 Calmness under MFCQ

Before proving first result concerning the relation between the calmness properties of M and M̃, we
will need the following auxiliary lemma.

Lemma 3.1 Fix any (x̄, ȳ)∈M(0) and assume that MFCQ holds at ȳ∈Γ. Then there exist a constant
L and a neighborhood U of (0,0, x̄, ȳ) such that ‖λ‖ ≤ L for all (z1,z2,x,y) ∈ U and (x,y,λ ) ∈
M̃(z1,z2).

Proof. If the statement was not true, then there would exist some sequences (xk,yk,zk1,zk2) →
(x̄, ȳ,0,0) and λk with ‖λk‖→ ∞ such that x ∈ ω and

zk1 = F(xk,yk)+(∇q(yk))>λk, λk ∈ NRs
−(q(yk)− zk2).

Since normal cone is a cone by definition, we obtain

(∇q(yk))>
λk

‖λk‖
→ 0,

λk

‖λk‖
∈ NRs

−(q(yk)− zk2).

By using the outer semicontinuity of the normal cone mapping and passing to a subsequence if
necessary, we might then conclude that there is a vector µ ∈ NRs

−(q(ȳ)) with ‖µ‖ = 1 such that

(∇q(ȳ))>µ = 0, which contradicts MFCQ at ȳ. �

Proposition 3.1 Let MFCQ hold at ȳ ∈ Γ. Then the calmness of M̃ at (0,0, x̄, ȳ, λ̄ ) for all λ̄ ∈
Λ(0, x̄, ȳ) implies the calmness of M at (0, x̄, ȳ).

Proof. Assume by contradiction that M is not calm at (0, x̄, ȳ), which means that there exist sequences
xk→ x̄, yk→ ȳ and pk→ 0 with xk ∈ ω such that

pk ∈ F(xk,yk)+NΓ(yk), (15)

d((xk,yk),M(0)) > k‖pk‖. (16)

Since for k sufficiently large MFCQ holds at yk, it follows from (15) and [18, Theorem 6.14] the ex-
istence of λk such that (xk,yk,λk) ∈ M̃(pk,0). From Lemma 3.1 we obtain that the sequence {λk}
is bounded and thus we may assume, by taking a subsequence if necessary, that {λk} converges to
some λ̄ ∈Λ(0, x̄, ȳ). Since M(0) is the canonical projection of M̃(0,0) onto the space of the first two
variables, one obtains from (16) and (xk,yk,λk) ∈ M̃(pk,0) that

d((xk,yk,λk),M̃(0,0))≥ d((xk,yk),M(0)) > k‖pk‖
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and hence M̃ is not calm at (0,0, x̄, ȳ, λ̄ ). �

We emphasize that the reverse implication of Proposition 3.1 cannot be expected to hold true as shown
in the following example.

Example 3.1 Consider the following data for (1) and (2)

q(y1,y2) :=
(

y2
1− y2
−y2

)
, F(x,y1,y2) :=

(
x
1

)
, (x̄, ȳ1, ȳ2) := (0,0,0)

and ω = R. Note that MFCQ is satisfied for Γ. Some elementary calculus shows that, locally around
(0,0), we have

M(p1, p2) =

{
(x,y1,y2)

∣∣∣∣∣y1 =
p1− x

2(1− p2)
, y2 =

(p1− x)2

4(1− p2)
2

}
.

Since we can write M(p1, p2) = {(x,y1,y2)| G(p1, p2,x,y1,y2) = 0} for a certain smooth mapping
G with ∇x,y1,y2G(0,0) having full row rank, we obtain that M has the Aubin property at (0,0,0,0,0)
due to [13, Corollary 4.42] and, hence, is calm there.

It can be easily computed that Λ(0, x̄, ȳ) = {λ ≥ 0|λ1 +λ2 = 1}. For k ∈ N we define

(zk1,zk2,zk3,zk4,xk,yk1,yk2,λk1,λk2) := (0,0,−k−2,0,0,k−1,0,0,1)

and observe that
(xk,yk1,yk2,λk1,λk2) ∈ M̃(zk1,zk2,zk3,zk4).

Now, let (x̃, ỹ1, ỹ2, λ̃1, λ̃2) ∈ M̃(0,0,0,0) be arbitrarily given, where (λ̃1, λ̃2) is close to (0,1). By
construction of the example, one has that x̃ = ỹ1 = ỹ2 = 0. Consequently, one arrives at

d((xk,yk1,yk2,λk1,λk2),M̃(0,0,0,0)) = ‖(0,−k−1,0,0,1)− (0,0,0,0,1)‖
= k−1 = k‖(zk1,zk2,zk3,zk4)‖,

which implies that M̃ is not calm at (0,0,0,0, x̄, ȳ1, ȳ2, λ̄1, λ̄2) with λ̄ = (0,1). 4

One may easily check that in the previous example calmness of M̃ does hold true for the specific
multiplier λ̃ = (1,0). From here, one may be tempted to deduce that calmness of M implies calmness
of M̃ for at least some multiplier. However, in Example .2 we present a situation, for which M is calm
at (0, x̄, ȳ) while M̃ is not calm at (0,0, x̄, ȳ,λ ) for any λ ∈ Λ(0, x̄, ȳ). Since the construction of this
counterexample is rather difficult, we have postponed it to the Appendix.

3.2 Calmness of perturbed complementarity constraints

In this section we collect auxiliary results that are important both for Section 3.3 devoted to the re-
version of Proposition 3.1 as well as for our main results stated in Section 4. Moreover, estimate
(24) represents an important amendment to the coderivative formulas from [14] and [7] and could be
valuable also in a different context.

Define now the multifunction T : Rm ⇒ Rm×Rs by

T (p) :=
{

(y,λ ) |q(y)− p ∈ NRs
+
(λ )
}

. (17)

Moreover, for each arbitrary index set I ⊂ {1, . . . ,s} define the multifunction TI : Rs ⇒ Rm by

TI(p) := {y|qi(y) = pi (i ∈ I) , qi(y)≤ pi (i ∈ Ic)} . (18)
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Lemma 3.2 Let I ⊂ {1, . . . ,s} and ȳ ∈ q−1 (0) be arbitrary. Then, TI is calm at (0, ȳ) if and only if T
is calm at any

(
0, ȳ, λ̄

)
∈ gphT such that λ̄i > 0 for i ∈ I and λ̄i = 0 for i ∈ Ic.

Proof. Assume first, that TI is calm at (0, ȳ) for any fixed I ⊂ {1, . . . ,s}. This means that there are
L > 0 and neighborhoods V and W of ȳ and 0 such that for all p ∈W and y ∈ T (p)∩V we have

d(y,TI(0))≤ L‖p‖. (19)

Let λ̄ be arbitrary such that (ȳ, λ̄ ) ∈ T (0) and λ̄i > 0 for i ∈ I and λ̄i = 0 for i ∈ Ic. In order to verify
the calmness of T at (0, ȳ, λ̄ ), let first be X a neighborhood of λ̄ such that for all λ ∈X one has
that λi > 0 for i ∈ I. Finally choose a neighborhood U of (0, ȳ, λ̄ ) such that for all (p,y,λ ) ∈U one
has y ∈ V and λ ∈X .

Select an arbitrary triple (p,y,λ ) ∈U such that (y,λ ) ∈ T (p). Since λi > 0 for i ∈ I, it follows that
qi(y)− pi = 0 for i ∈ I and qi(y)− pi ≤ 0 for i ∈ Ic. In other words, y ∈ TI(p), so that (19) yields
d(y,TI(0))≤ L‖p‖. Next, choose some ỹ∈ TI(0) such that d(y,TI(0)) = ‖y− ỹ‖. Then, by definition
of TI(0), we have that qi(ỹ) = 0 for i ∈ I and qi(y) ≤ 0 for i ∈ Ic. This entails that (ỹ,λ ) ∈ T (0).
Summarizing,

d((y,λ ),T (0))≤ ‖y− ỹ‖= d(y,TI(0))≤ L‖p‖
for all (p,y,λ ) ∈U such that (y,λ ) ∈ T (p). This implies the calmness of T at (0, ȳ, λ̄ ).

Conversely, assume that TI fails to be calm at (0, ȳ) for a fixed I ⊂{1, . . . ,s}. Accordingly, there exists
a sequence (pk,yk)→ (0, ȳ) such that for all k

qi(yk) = (pk)i (i ∈ I), qi(yk)≤ (pk)i (i ∈ Ic) (20)

and
d(yk,TI(0)) > k‖pk‖. (21)

Let λ̄ be arbitrary such that (ȳ, λ̄ ) ∈ T (0) and λ̄i > 0 for i ∈ I and λ̄i = 0 for i ∈ Ic. Our aim is to
show that T fails to be calm at (0, ȳ, λ̄ ). We claim that, for k large enough, we have

d((yk, λ̄ ),T (0)) = d((yk, λ̄ ),T (0)∩{(y,λ )|λi > 0 (i ∈ I)}). (22)

Indeed, if this relation did not hold, then there would exist some (ỹk, λ̃k) ∈ T (0) such that

‖(yk, λ̄ )− (ỹk, λ̃k)‖= d((yk, λ̄ ),T (0)) < d((yk, λ̄ ),T (0)∩{(y,λ )|λi > 0 (i ∈ I)}),

which implies that (λ̃k) j = 0 for some j ∈ I. On the other hand, λ̄ j > 0 by assumption. Consequently,
due to (yk, λ̄ )→ (ȳ, λ̄ ) ∈ T (0), we end up at the contradiction

0 < λ̄ j = |λ̄ j− (λ̃k) j| ≤ ‖(yk, λ̄ )− (ỹk, λ̃k)‖= d((yk, λ̄ ),T (0))→ 0.

By (22), there exists some (ỹ, λ̃ ) ∈ T (0) such that λ̃i > 0 for all i ∈ I and

d((yk, λ̄ ),T (0)) = ‖(yk, λ̄ )− (ỹ, λ̃ )‖. (23)

Since q(ỹ) ∈ NRs
+
(λ̃ ), it follows that qi(ỹ) = 0 for all i ∈ I and qi(ỹ)≤ 0 for all i ∈ Ic. In other words,

ỹ ∈ TI(0). Now, (21) implies that ‖yk− ỹ‖> k‖pk‖. Combining this with (23) yields that

d((yk, λ̄ ),T (0)) > k‖pk‖.

Moreover, we know that (pk,yk, λ̄ )→ (0, ȳ, λ̄ ). Finally, (20) along with λ̄i > 0 for i ∈ I implies that
(yk, λ̄ ) ∈ T (pk). Altogether, we have shown that T fails to be calm at (0, ȳ, λ̄ ) as well. �

Exploiting the above lemma for all index subsets I ⊂ {1, . . . ,s}, we arrive at the following criterion for
the calmness of T .
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Corollary 3.1 Let ȳ ∈ q−1(0) be arbitrary. Then, T is calm at any (0, ȳ, λ̄ ) ∈ gphT if and only if for
all I ⊂ {1, . . . ,s}, TI is calm at (0, ȳ). This holds in particular if CRCQ is satisfied at ȳ.

Proof. The first part of the proof follows immediately from Lemma 3.2. To prove the second part, recall
from [20, Proposition 5.2] that T is calm at (0, ȳ,λ ) provided the following mapping

T̃ (p,r) :=
{

(y,λ )
∣∣∣q(y)− p ∈ NRs

+
(λ + r)

}
is calm at (0,0, ȳ,λ ). But from [7, Propositions 3.1 and 3.2] we obtain that this property holds provided
for all index sets I ⊂ {1, . . . ,s} the associated mappings MI : R|I|⇒ Rm, defined by

MI(p) := {y|qi(y) = pi (i ∈ I)},

are calm at (0, ȳ). However, as shown in [12, Theorem 1], the calmness of a perturbed system of
equalities and inequalities is implied by CRCQ at the respective point. Due to its definition, the imposed
CRCQ is valid also for all subsystems generating the maps MI , and so T is indeed calm at (0, ȳ, λ̄ )
for all (ȳ, λ̄ ) ∈ T (0). �

In [7, 14] the authors computed (an upper estimate of) coderivative D∗NΓ(ȳ,−F(x̄, ȳ)) under MFCQ
at ȳ and under the assumption that T is calm at (0, ȳ,λ ) for all λ ∈ Λ(0, x̄, ȳ). By combining [7,
Theorem 3.3] and Corollary 3.1, one arrives directly at the next statement.

Corollary 3.2 Assume that q ∈ C 2 and both MFCQ as well as CRCQ are fulfilled at ȳ. Then one has
with y∗ :=−F(x̄, ȳ) for all v∗ ∈ Rm the estimate

D∗NΓ(ȳ,y∗)(v∗)⊂
⋃

λ∈Λ(0,x̄,ȳ)

{(
s

∑
i=1

λi∇
2qi(ȳ)

)
v∗+(∇q(ȳ))>D∗NRs

−(0,λ )(∇q(ȳ)v∗)

}
. (24)

3.3 Calmness under MFCQ and FRCQ

The main result of this section concerns the reversion of Proposition 3.1. This is already everything
but evident even in the case when LICQ is fulfilled at ȳ. Much less it is clear under a weaker constraint
qualification. The respective statement (Theorem 3.1), the proof of which requires a considerable ef-
fort, will play an important role in Section 4, where we compare and combine the optimality conditions
stated in Theorems 2.1 and 2.2. Unfortunately, we have succeeded to prove this reverse implication
only when, instead of q ∈ C 1, one assumes that q ∈ C 1,1 meaning that ∇q is also Lipschitz continu-
ous around ȳ.

For the main theorem, we will define two auxiliary multifunctions which will be of use when partitioning
M̃

S1(z1) := {(x,y,λ ) ∈ Rn×Rm×Rs|F(x,y)+(∇q(y))>λ − z1 = 0}

S2(z2) :=
{

(x,y,λ ) ∈ ω×Rm×Rs
∣∣∣∣( λ

q(y)− z2

)
∈ gphNRs

+

}
.

(25)

Further we consider the following family of mappings parameterized by y ∈ Rm

Wy(p1, p2) :=
{

λ

∣∣∣ (∇q(y))>λ = p1, p2 ∈ NRs
+
(λ )
}

. (26)

Theorem 3.1 Let q be of class C 1,1, i.e., q is differentiable with locally Lipschitz continuous gradient.
Fix any (x̄, ȳ) and assume at least one of the following two conditions:
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1 MFCQ is satisfied at ȳ and q is affine linear;

2 MFCQ and FRCQ are satisfied at ȳ.

Then the calmness of M at (0, x̄, ȳ) is equivalent to the calmness of M̃ at (0,0, x̄, ȳ, λ̄ ) for any λ̄ ∈
Λ(0, x̄, ȳ).

Proof. One implication follows directly from Proposition 3.1. Hence, it suffices to show that the calm-
ness of M at (0, x̄, ȳ) implies the calmness of M̃ at (0,0, x̄, ȳ, λ̄ ) for any λ̄ ∈ Λ(0, x̄, ȳ). To this aim
fix an arbitrary such λ̄ . We will show that under each of the two required assumptions, there are
constants κ ≥ 0 and ε1 > 0 such that for all (z1,z2,x′,y′,λ ′) ∈ gphM̃∩Bε1(0,0, x̄, ȳ, λ̄ ) we have

d((x′,y′,λ ′),M̃(0,0))≤ κ‖(z1,z2)‖. (27)

Without loss of generality, we will work with the maximum norm throughout this proof. First we collect
all information that is at our disposal in the following relations, where ε,L > 0 are certain positive
constants which may be assumed to have common values in all of these relations:

‖F (x1,y1)−F (x2,y2)‖ ≤ L‖(x1,y1)− (x2,y2)‖ ∀(x1,y1) ,(x2,y2) ∈ Bε((x̄, ȳ)) (28a)

‖F(x,y)‖ ≤ L ∀(x,y) ∈ Bε((x̄, ȳ)) (28b)

‖q(y1)−q(y2)‖ ≤ L‖y1− y2‖ ∀y1,y2 ∈ Bε(ȳ) (28c)

‖∇q(y1)−∇q(y2)‖ ≤ L‖y1− y2‖ ∀y1,y2 ∈ Bε(ȳ) (28d)

‖∇q(y)‖ ≤ L ∀y ∈ Bε(ȳ) (28e)

d((x,y),M(0)) ≤ L‖z‖ ∀(x,y,z) ∈ Bε(x̄, ȳ,0) : (x,y) ∈M(z) (28f)

d((x,y,λ ),S2(0)) ≤ L‖z‖ ∀(x,y,λ ,z) ∈ Bε(x̄, ȳ, λ̄ ,0) : (x,y,λ ) ∈ S2(z). (28g)

‖λ‖ ≤ L ∀λ ∀(x,y,z1,z2) ∈ Bε(x̄, ȳ,0,0) : (x,y,λ ) ∈ M̃(z1,z2) (28h)

Here, (28a)-(28e) follow from the differentiability assumptions we have made, (28f) corresponds to
the assumed calmness of M at (0, x̄, ȳ). (28g) means the calmness at

(
0, x̄, ȳ, λ̄

)
of the mapping

S2 defined in (10). This follows from Corollary 3.1 and Lemma 2.3 upon observing that both our
assumptions imply MFCQ and CRCQ: indeed, CRCQ is always satisfied for affine linear inequality
systems and it follows from FRCQ via (5). Formula (28h) is a consequence of Lemma 3.1.

Now, in order to verify the asserted calmness of M̃ at (0,0, x̄, ȳ, λ̄ ), define

ε1 := min
{

ε

2
,

ε

2L
,

ε

1+2L2 +L3 ,
ε

1+2L+2L3 +L4

}
(29)

and consider an arbitrary triple (x′,y′,λ ′) ∈ M̃(z1,z2) with (z1,z2,x′,y′,λ ′) ∈ Bε1

(
0,0, x̄, ȳ, λ̄

)
.

Since M̃(z1,z2) = S1(z1)∩ S2(z2), we may use (28g) to obtain the existence of some (x̃, ỹ, λ̃ ) ∈
S2(0) such that

max
{
‖x′− x̃‖,‖y′− ỹ‖,‖λ ′− λ̃‖

}
≤ L‖z2‖. (30)

By definition of S2, relation (x̃, ỹ, λ̃ ) ∈ S2(0) implies that q(ỹ) ∈ NRs
+
(λ̃ ), which further means that

(x̃, ỹ, λ̃ ) ∈ M̃(a,0) and thus (x̃, ỹ) ∈M(a) with

a = F(x̃, ỹ)+ [∇q(ỹ)]> λ̃ . (31)
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Moreover, since (x′,y′,λ ′) ∈ S1(z1), we obtain

‖a‖= ‖F(x̃, ỹ)+ [∇q(ỹ)]> λ̃ + z1−F(x′,y′)− [∇q(y′)]>λ
′]‖

≤ ‖z1‖+‖F(x̃, ỹ)−F(x′,y′)‖+‖ [∇q(ỹ)]> λ̃ −
[
∇q(y′)

]>
λ
′‖

≤ ‖z1‖+
∥∥F(x̃, ỹ)−F(x′,y′)

∥∥+
∥∥λ
′∥∥∥∥∇q(ỹ)−∇q(y′)

∥∥+‖λ ′− λ̃‖‖∇q(ỹ)‖ .

(32)

Next, the relation (x′,y′,λ ′) ∈ Bε1(x̄, ȳ, λ̄ ) and (29, first case) imply that

(x′,y′,λ ′) ∈ Bε/2(x̄, ȳ, λ̄ ).

Combining (30) with (29, second case) and recalling that z2 ∈ Bε1 (0) yields

(x̃, ỹ, λ̃ ) ∈ BL‖z2‖
(
x′,y′,λ ′

)
⊂ Bε/2

(
x′,y′,λ ′

)
⊂ Bε(x̄, ȳ, λ̄ ). (33)

Now, relations (28a), (28d), (28e), (28h), and (29, third case) together with (30) allow us to continue
our estimation from (32) and to obtain

‖a‖ ≤ ‖z1‖+L2 ‖z2‖+
∥∥λ
′∥∥L2 ‖z2‖+L2 ‖z2‖ ≤ ‖z1‖+

(
2L2 +L3)‖z2‖

≤
(
1+2L2 +L3)‖(z1,z2)‖ ≤ ε.

(34)

Therefore, we are now allowed to apply (28f) and make use of the fact that (x̃, ỹ) ∈M(a) implies the
existence of some (x∗,y∗) ∈M(0) such that

max{‖x∗− x̃‖ ,‖y∗− ỹ‖} ≤ L‖a‖ . (35)

Note that (35) along with (34), (30), (29, fourth case) and the initial assumption (x′,y′,z1,z2) ∈
Bε1 (x̄, ȳ,0,0) leads to

max{‖x∗− x̃‖ ,‖y∗− ỹ‖} ≤ L
(
1+2L2 +L3)‖(z1,z2)‖ (36a)

max{
∥∥x∗− x′

∥∥ ,
∥∥y∗− y′

∥∥} ≤ L
(
2+2L2 +L3)‖(z1,z2)‖ (36b)

max{‖x∗− x̄‖ ,‖y∗− ȳ‖} ≤
(
1+2L+2L3 +L4)

ε1 ≤ ε. (36c)

Referring back to the definition (26), (x∗,y∗) ∈M(0) implies that Wy∗(−F(x∗,y∗),q(y∗)) 6= /0. Simi-
larly, (x̃, ỹ, λ̃ ) ∈ S2(0), yields

λ̃ ∈Wy∗
(
[∇q(y∗)]> λ̃ ,q(ỹ)

)
.

Assumptions 1 and 2 of this theorem allow us to apply the respective estimates (58) and (59) from the
Appendix. Putting

y := y∗, p̄1 :=−F(x∗,y∗), p̄2 := q(y∗), p1 := [∇q(y∗)]> λ̃ , p2 := q(ỹ), λ := λ̃ ,

we derive in both cases the existence of some λ ∗ ∈Wy∗ (−F(x∗,y∗),q(y∗)) such that

‖λ ∗− λ̃‖ ≤ L′max
{
‖ [∇q(y∗)]> λ̃ +F (x∗,y∗)‖,‖q(ỹ)−q(y∗)‖

}
. (37)

for some L′ > 0. To estimate both terms on the right-hand side of (37), we realize first that (33) and
(36c) allow us to use estimates (28) for all terms on the right-hand side of (37). For estimation of the
first norm on the right-hand side of (37), we use (31), (34), (28h) coupled with (x̃, ỹ, λ̃ ) ∈ M̃(a,0),
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(28d), (28a) and (36a) while for the second one we use (28c) and (36a) to obtain some constant c1
such that∥∥∥[∇q(y∗)]> λ̃ +F (x∗,y∗)

∥∥∥=
∥∥∥a+

(
[∇q(y∗)]>− [∇q(ỹ)]>

)
λ̃ +F (x∗,y∗)−F (x̃, ỹ)

∥∥∥
≤ ‖a‖+‖λ̃‖‖[∇q(y∗)]− [∇q(ỹ)]‖+‖F (x∗,y∗)−F (x̃, ỹ)‖
≤ c1‖(z1,z2)‖,

‖q(ỹ)−q(y∗)‖ ≤ L‖ỹ− y∗‖ ≤ c1‖(z1,z2)‖.

(38)

Estimates (30), (37) and (38) yield

‖λ ∗−λ
′‖ ≤ ‖λ ∗− λ̃‖+‖λ̃ −λ

′‖ ≤ L′c1 ‖(z1,z2)‖+L‖z2‖.

Adding this to (36b), we arrive at existence of some c such that∥∥(x′,y′,λ ′)− (x∗,y∗,λ ∗)
∥∥≤ c‖(z1,z2)‖ (39)

On the other hand, the already obtained relation λ ∗ ∈Wy∗ (−F(x∗,y∗),q(y∗)) amounts, by definition,
to (x∗,y∗,λ ∗) ∈ M̃(0,0) and thus we have shown (27) with κ = c. This finishes the proof. �

Corollary 3.3 In the setting of Theorem 3.1, let LICQ be satisfied at ȳ. Then the calmness of M at
(0, x̄, ȳ) is equivalent to the calmness of M̃ at (0,0, x̄, ȳ, λ̄ ) for the unique λ̄ ∈ Λ(0, x̄, ȳ).

Proof. By (5), assumption 2 of Theorem 3.1 is satisfied. �

In the next example we present an instance, where FRCQ and MFCQ hold true but LICQ is violated.
Note that none of the inequalities is redundant and that the mapping q is not affine. This means that
assumption 2 of Theorem 3.1 is not only strictly weaker than LICQ but also independent of assumption
1 of the same theorem.

Example 3.2 Define ȳ := (0,0,0) and

q1(y) := y1 + y2
1− y3, q2(y) :=−y1 + y2

1− y3, q3(y) := y2 + y2
2− y3, q4(y) :=−y2 + y2

2− y3.

Then it is not difficult to show that these data satisfy the properties stated above. 4

To conclude this section, we show that Theorem 3.1 does not hold if we assume only q ∈ C 1.

Example 3.3 Consider function q : R→ R defined as

q(y) =
{

y+ y3/2 if y≥ 0
y−|y|3/2 if y < 0.

Further define F(x,y) = −1, ω = R and consider the reference point (x̄, ȳ, λ̄ ) = (0,0,1). Since
q′(0) = 1, LICQ is satisfied around ȳ. Moreover, it is clear that Γ = (−∞,0] and that q′ is continuous
at 0 but it is not Lipschitz continuous there. For all p close to 0 it holds true that

M(p) := {(x,y) | p+1 ∈ NΓ(y)}= R×{0}
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and thus M is calm at (0, x̄, ȳ). Since λ̄ = 1, we may find a neighborhood of the reference point such
that

M̃(z1,z2) := {(x,y,λ )|z1 +1 = q′(y)λ , q(y) =−z2}

and thus, due to Lemma 2.3, the calmness of M̃ at (0,0, x̄, ȳ, λ̄ ) is equivalent to the calmness of M̂
at (0,0, ȳ, λ̄ ) with

M̂(z1,z2) := {(y,λ )|z1 +1 = q′(y)λ , q(y) =−z2}.

Since q is continuously differentiable and q′(0) 6= 0, we may use the inverse function theorem to
obtain there there exists a continuously differentiable function h with such that on some neighborhood
of 0, relation −q(y) = z2 is equivalent to h(z2) = y. Further we have

h′(z2) =−1/q′(h(z2)).

Plugging this into the first first equation defining M̂ and performing simple algebraic operations, we
obtain the following system of equations

λ =−h′(z2)(z1 +1), y = h(z2).

This means that M̂ is single-valued and to show that M̂ is not calm at (0,0, ȳ, λ̄ ) it is sufficient to show
that p 7→ h′(p) is not calm at 0. Since h′ is continuous, we do not have to consider a neighborhood in
the range from the definition of calmness. It is simple to see that

|h′(p)−h′(0)|
|p−0|

=
1

|q′(h(p))q′(h(0))|
|q′(h(0))−q′(h(p))|

|p−0|
≥ |q

′(h(0))−q′(h(p))|
2|h(p)−h(0)|

p→0→ ∞

because q′ is not calm at 0. In the inequality we have used the estimate

1
|q′(h(p))q′(h(0))|

|h(p)−h(0)|
|p−0|

≥ 1
2
,

for all p sufficiently close to zero as q′(0) = 1 and h′(0) = −1/q′(0) = −1 and both q and h are
continuously differentiable at 0. Thus, we have managed to find and example, in which LICQ holds, M
is calm at (0, x̄, ȳ) but M̃ is not calm at (0,0, x̄, ȳ, λ̄ ). 4

4 Main results

In the first part of this section we address the question how the calmness property of M and M̃ can
be ensured by suitable pointbased conditions. Concerning the calmness of M, we present here only
a standard result in which one enforces in fact even the (substantially more restrictive) Aubin property.
In [18] and [13], exclusively this type of qualification conditions is used. We are aware about the
possibility to employ to this purpose some less restrictive calmness criteria from, e.g., [4, 10] but this
goes beyond the aim of this paper. Throughout this section it is assumed that q ∈ C 2.

Theorem 4.1 Assume that the implication

(∇xF(x̄, ȳ))>a ∈ −Nω(x̄)

−(∇yF(x̄, ȳ))>a ∈ D∗NΓ(ȳ,−F(x̄, ȳ))(a)

}
=⇒ a = 0 (40)

is fulfilled. Then M has the Aubin property around (0, x̄, ȳ) and hence it is also calm at this point.
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Proof. The assertion follows immediately from the Mordukhovich criterion and the standard first-order
calculus. �

For the verification of the calmness of M̃, however, we present here a new condition based on Lemma
3.2. To this aim, we define the Lagrangian as

L (x,y,λ ) := F(x,y)+(∇q(y))>λ . (41)

Note that in the statement of the theorem, TI is automatically calm at (0, ȳ) if CRCQ is satisfied at ȳ.
This follows directly from Corollary 3.1.

Theorem 4.2 Assume that (x̄, ȳ, λ̄ ) ∈ M̃(0,0) and that the implication

(∇xF(x̄, ȳ))>a ∈ −Nω(x̄)

(∇yL (x̄, ȳ, λ̄ ))>a+(∇q(ȳ))>c = 0

0 = ∇qi(ȳ)a ∀i : λ̄i > 0
0 = ci ∀i : qi(ȳ) < 0

0≤ ci,0≤ ∇qi(ȳ)a or 0 = ci or 0 = ∇qi(ȳ)a ∀i : λ̄i = qi(ȳ) = 0.


=⇒ a = 0.

(42)
holds true. Define I := {i| λ̄i > 0} and assume that the mapping TI : Rs → Rm defined by (18) is
calm at (0, ȳ). Then M̃ is calm at (0,0, x̄, ȳ, λ̄ ).

Proof. Taking into account that M̃(z1,z2) = S1(z1)∩S2(z2) with S1 and S2 defined in (25), to obtain the
calmness of M̃ at (0,0, x̄, ȳ, λ̄ ) it suffices to verify the assumptions of Lemma 2.2 for the following data:
u1 = (x,y), u2 = λ , H1(u) = L (x,y,λ ), H2(u) = q(y), ∆ = ω×Rm×Rs, µ = a and Ω = Rs

+. It
is not difficult to show that condition (11) takes form (42) and so it remains to show that S1 and S2 are
calm at (0, x̄, ȳ, λ̄ ).

To show that S1 has this property, we will apply Lemma 2.1 according to which it is sufficient to show
that ∇L (x̄, ȳ, λ̄ ) has full row rank. Hence consider any a such that ∇L (x̄, ȳ, λ̄ )>a = 0. But then
(a,0) satisfies the relations on the left-hand side of (42) and thus a = 0, implying that S1 is indeed
calm at (0, x̄, ȳ, λ̄ ). But since by Lemma 3.2 the calmness of S2 at (0, x̄, ȳ, λ̄ ) is equivalent with the
calmness of TI at (0, ȳ), the remaining assumption is ensured by our assumptions due to Lemma 2.3.
The last three lines of (42) provide an equivalent representation of the resulting coderivative. �

Note that if ω is a convex set, then Nω is the standard normal cone in the sense of convex analysis.
Moreover, if ω = Rn, then Nω(x̄) = {0} and the inclusion reduces to an equality.

In the MPEC literature, one finds under various names (GMFCQ, NNAMCQ) a qualification condition
similar to (42) with the difference that a = c = 0 is required instead of only a = 0. Clearly, under LICQ
at ȳ, both these conditions coincide. However, if we impose only MFCQ and CRCQ at ȳ, (42) is strictly
better (less restrictive) than GMFCQ.

The next example illustrates the possible applications and limitations of Theorem 4.2.

Example 4.1 We consider the data of Example 3.1 with the only exception that now F(x,y1,y2) :=
(0,1)>. Similar to Example 3.1, locally around (0,0), we have

M(p1, p2) =

{
(x,y1,y2)

∣∣∣∣∣y1 =
p1

2(1− p2)
, y2 =

p2
1

4(1− p2)
2

}
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and that M has the Aubin property at (0,0,0,0,0) and, hence, is calm there. Moreover, the multiplier
set still has the description

Λ(0, x̄, ȳ) = {λ ≥ 0|λ1 +λ2 = 1}.

Now we want to check calmness of M̃ for different multipliers λ .

Case 1: λ̄ = (1,0). It is easy to see that the associated mapping T{1} is calm at (0,0, ȳ). Now we
check system (42). Since

L (x,y,λ ) =
(

2y1λ1
1−λ1−λ2

)
,

the second equation implies a1 = 0. Since λ̄2 > 0, we obtain 0 = ∇q2(ȳ)a = −a2. Hence, all as-
sumptions of Theorem 4.2 has been verified for λ̄ = (1,0) and hence M̃ is calm at (0,0, x̄, ȳ, λ̄ ).

Case 2: λ̄ = (0,1): In this case M̃ is not calm at (0,0, x̄, ȳ, λ̄ ), which can be verified in exactly the
same way as in Example 3.1. This naturally implies that the assumptions of Theorem 4.2 are not
satisfied.

Case 3: λ̄1 > 0, λ̄2 > 0: Finally consider any λ̄ ∈Λ(0, x̄, ȳ) with λ̄1, λ̄2 > 0 and choose any sequence

(xk,yk1,yk2,λk1,λk2) ∈ M̃(zk1,zk2,zk3,zk4).

Since we are interested in a local property, we can consider purely λk1 ≥ ε for some ε > 0, which
implies |yk1| ≤ 1

2ε
|zk1|. Then we have

d((xk,yk1,yk2,λk1,λk2),M̃(0,0,0,0))≤ |yk1|+ |yk2|+ |1−λk1−λk2| ≤
1

2ε
|zk1|+ |zk4|+ |zk2|

and hence M̃ is calm at (0,0, x̄, ȳ, λ̄ ). Note that this holds true even though the assumptions of
Theorem 4.2 are not satisfied because T{1,2} is not calm at (0, ȳ). 4

In the remainder of this section we will state the main result of the paper. It comprises in a concise
form the information which we have gained in the course of our analysis about the relationship be-
tween Theorems 2.1 and 2.2. It leads to several useful conclusions important in deriving workable
M-stationarity conditions for MPEC (1).

Theorem 4.3 Let (x̄, ȳ) be a local solution to (1) and assume that MFCQ holds at ȳ ∈ Γ.

1 If CRCQ holds at ȳ, then for those λ ∈Λ(0, x̄, ȳ) satisfying the qualification condition (42), there
exist v and w fulfilling the stationarity conditions (9).

2 If CRCQ holds at ȳ and M is calm at (0, x̄, ȳ), then there exist λ ∈ Λ(0, x̄, ȳ), v and w fulfilling
the stationarity conditions (9).

3 Let M be calm at (0, x̄, ȳ). If FRCQ holds at ȳ or q is affine linear, then, for all λ ∈ Λ(0, x̄, ȳ)
there exist v and w fulfilling the stationarity conditions (9).

4 If even LICQ holds at ȳ, then Theorems 2.1 and 2.2 are completely equivalent in their assump-
tions and their results. In particular, if (42) is satisfied for the unique λ ∈ Λ(0, x̄, ȳ), then there
exist v and w fulfilling the stationarity conditions (9) with this λ .
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Before proving this Theorem, we include some comments on the statements 1-3. The big progress
of statement 1 over Theorems 2.1 and 2.2 or Corollary 2.1 is that under MFCQ and CRCQ it com-
pletely frees us from the necessity of checking any calmness condition or computing the complicated
coderivative D∗NΓ(ȳ,−F(x̄, ȳ)). It just relies on checking the explicit qualification condition (42) and
provides explicit stationarity conditions (9). For instance, in order to exclude (x̄, ȳ) from being a local
solution to (1), it will be sufficient to find some λ ∈ Λ(0, x̄, ȳ) satisfying (42) and violating (9) for any v
and w. Unfortunately, it is not excluded that the set of λ ∈ Λ(0, x̄, ȳ) satisfying (42) is empty so that
statement 1 cannot be applied. But even then, one might be successful in checking calmness of M and
thus apply statement 2. Excluding (x̄, ȳ) from being a local solution to (1) would then amount to veri-
fying that (9) is violated for any λ ∈ Λ(0, x̄, ȳ) and any v and w. Statement 3 provides two instances
under which we do not have to care about specific λ ∈Λ(0, x̄, ȳ). This facilitates the task of excluding
(x̄, ȳ) from being a local solution to (1) in the sense that we just have to find some λ ∈Λ(0, x̄, ȳ) such
that (9) is violated for any v and w. Proof. [of Theorem 4.3] First recall that under the joint assumptions
(x̄, ȳ,λ ) is a local solution of MPEC (4) for all λ ∈ Λ(0, x̄, ȳ). Concerning statement 1, observe that
under CRCQ at ȳ we have that M̃ is calm at all points (0,0, x̄, ȳ,λ ) with λ ∈ Λ(0, x̄, ȳ) satisfying (42)
by virtue of Theorem 4.2 and Corollary 3.1. Statement 1 thus follows from Theorem 2.2.

Statement 2 is a direct consequence of Theorem 2.1 and inclusion (24), where one needs just to
express the coderivative D∗NR+−s(q(ȳ),λ ) in terms of q(ȳ) and λ . To prove statement 3, it suffices
to combine Theorem 2.2 with Theorem 3.1, according to which under the posed assumptions the
calmness of (0, x̄, ȳ) implies the calmness of M̃ at (0,0, x̄, ȳ,λ ) for all λ ∈ Λ(0, x̄, ȳ). Finally, in
statement 4, the equivalence of Theorems 2.1 and 2.2 follows from Theorem 3.1 and [7, Theorem
3.1]. The second assertion follows from the fact that under LICQ at ȳ, condition (24) ensures both the
calmness of M at (0, x̄, ȳ) as well as the calmness of M̃ at (0, x̄, ȳ), where λ̄ is the unique multipliers
from Λ(0, x̄, ȳ). �

5 MPECs with structured equilibria

Some of the tools and/or results from the preceding part of the paper can be utilized in deriving sta-
tionarity conditions for MPECs with equilibria governed by GEs having a special structure. In Section
5.1 we illustrate this fact by such an equilibrium with a polyhedral constraint set. In Section 5.2 we
then apply a result from Section 5.1 to a class of bilevel programming problems arising in models of
electricity spot markets.

5.1 Structured equilibria with polyhedral constraint sets

Let us consider a generalized equation of the considered type where

F(x,y) =
(

F1(x,y)
F2(x,y)

)
, q(y) = Ay−b (43)

with F1 : Rn×Rm→Rm1 , F2 : Rn×Rm→Rm2 , A = (A1,A2) and y = (y1,y2) ∈Rm1×Rm2 . Even
though there is no structural difference between F1 and F2 yet, we will impose different assumptions
on them later in the text. Structure (43) with F2(x,y) ≡ F2(y) arises typically in a hierarchical bilevel
multileader game where one looks for a Nash equilibrium on the upper level. In this case we obtain a
finite number of MPECs in which the equilibria on the lower level are governed by generalized equation
having the special structure (43), see e.g. [8].
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In this case it may be reasonable to define the mappings S1, S2, employed in Section 3, in a different
way, namely

S1(z1) :=
{

(x,y,λ ) ∈ Rn×Rm×Rs
∣∣∣z1 = F1(x,y)+A>1 λ

}
S2(z2,z3) :=

{
(x,y,λ ) ∈ ω×Rm×Rs

∣∣∣z2 = F2(x,y)+A>2 λ , q(y)− z3 ∈ NRs
+
(λ )
}

.
(44)

Theorem 5.1 In the setting of (43) fix some (x̄, ȳ) ∈M(0) and λ̄ ∈Λ(0, x̄, ȳ). Assume that ω = Rn,
F2(x,y)≡ F2(y) is affine linear and that ∇xF1(x̄, ȳ) is surjective. Then M̃ is calm at (z̄1, z̄2, z̄3, x̄, ȳ,λ )
for (z̄1, z̄2, z̄3) = (0,0,0) and all λ ∈ Λ(0, x̄, ȳ). If in addition Γ has nonempty interior, then M is calm
at (0, x̄, ȳ).

Proof. Clearly M̃(z1,z2,z3) = S1(z1)∩S2(z2,z3). We will apply Lemma 2.2. Due to Lemma 2.1 and
the assumed surjectivity of ∇xF1(x̄, ȳ) we obtain that S1 is calm at (0, x̄, ȳ, λ̄ ). As S2 is generated by
affine linear functions, it is calm at every point of its graph and it remains to verify condition (11), which
takes the form

(∇xF1(x̄, ȳ))>a ∈ −Nω(x̄)

(∇yF1(x̄, ȳ))>a+(∇yF2(ȳ))>d +A>c = 0

−A1a−A2d ∈ D∗NRs
+
(λ̄ ,Aȳ−b)(−c)

 =⇒ a = 0.

However, we easily conclude that this condition is fulfilled by virtue of ω = Rn and the surjectivity of
∇xF1(x̄, ȳ). The last statement follows directly from Proposition 3.1 and the equivalence of nonempty
interior and MFCQ for polyhedral sets. �

By relaxing the assumptions imposed on F2, we obtain the following weaker statement.

Theorem 5.2 In the setting of (43) fix some (x̄, ȳ) ∈ M(0) and λ̄ ∈ Λ(0, x̄, ȳ). Assume first that
function

(x,y,λ ) 7→ F1(x,y)+A>1 λ (45)

satisfies the assumptions of Lemma 2.1 and that the following system is satisfied

(∇xF1(x̄, ȳ))>a+(∇xF2(x̄, ȳ))>d ∈ −Nω(x̄)

(∇yF1(x̄, ȳ))>a+(∇yF2(x̄, ȳ))>d +A>c = 0

−A1a−A2d ∈ D∗NRs
+
(λ̄ ,Aȳ−b)(−c)

 =⇒ a = 0. (46)

Moreover, assume that at least one of the three following assumptions is satisfied:

1 F2 is affine linear;

2 ∇xF2(x̄, ȳ) has full row rank;

3 MFCQ holds at ȳ and denoting

G :=
{

c ∈ Rm2
∣∣∣(∇xF2(x̄, ȳ))>c = 0

}
, (47)

then for all c ∈ G\{0} we have

c>∇y2F2(x̄, ȳ)c > 0. (48)
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Then M̃ is calm at (0,0,0, x̄, ȳ, λ̄ ).

Proof. Again we will employ Lemma 2.2 with the same partition of M̃ into S1 and S2 as in Theorem 5.1.
Since (11) takes form (46), to finish the proof it remain to verify the calmness of S2 at (0,0, x̄, ȳ, λ̄ ). It
is simple to see that this property holds provided F2 is affine or ∇xF2(x̄, ȳ) has full row rank. Hence,
we assume that (48) holds. First, we will pass to a different mapping Ŝ2 whose calmness ensures the
calmness of S2 and then we will verify even the Aubin property of Ŝ2. This will then finish the whole
proof.

Define the following mapping

S̃2(z1,z2,z3) :=
{

(x,y,λ ,v)
∣∣∣∣(z1

z2

)
=
(

v
F2(x,y)

)
+
(

A>1
A>2

)
λ , q(y)− z3 ∈ NRs

+
(λ )
}

and show that if S̃2 is calm at (0,0,0, x̄, ȳ, λ̄ ,−A>1 λ̄ ), then S2 is calm at (0,0, x̄, ȳ, λ̄ ). Indeed,
consider any (x,y,λ ) ∈ S2(z2,z3) close to (x̄, ȳ, λ̄ ) and (0,0), respectively. Then we have
(x,y,λ ,−A>1 λ ) ∈ S̃2(0,z2,z3) and due to the calmness of S̃2 we obtain

d((x,y,λ ,−A>1 λ ), S̃2(0,0,0))≤ L‖(z2,z3)‖. (49)

Find any (x̃, ỹ, λ̃ , ṽ) ∈ S̃2(0,0,0) minimizing the distance on the left-hand side of (49). Then we have

d((x,y,λ ,−A>1 λ ), S̃2(0,0,0)) = ‖(x,y,λ ,−A>1 λ )− (x̃, ỹ, λ̃ , ṽ)‖
≥ ‖(x,y,λ )− (x̃, ỹ, λ̃ )‖ ≥ d((x,y,λ ),S2(0,0))

(50)

because (x̃, ỹ, λ̃ ) ∈ S2(0,0). Combining (49) and (50) yields that the calmness of S̃2 implies the
calmness of S2.

If we apply Theorem 3.1 to S̃2, where we consider the partition of (x,y,v) into (x,v) and y, then we
obtain that the desired calmness of S̃2 at (0,0,0, x̄, ȳ, λ̄ ,−A>1 λ̄ ) is equivalent to the calmness of

Ŝ2(z1,z2) :=
{

(x,y,v)
∣∣∣∣(z1

z2

)
=
(

v
F2(x,y)

)
+NΓ(y)

}
at (0,0, x̄, ȳ,−A1λ̄ ) = (0,0, x̄, ȳ,F1(x̄, ȳ)). The Aubin property of Ŝ2 around this point is due to the
Mordukhovich criterion equivalent to the following implication

(∇xF2(x̄, ȳ))>c = 0(∇yF2(x̄, ȳ))>c
0
c

 ∈ NgphNΓ
(ȳ,−F1(x̄, ȳ),−F2(x̄, ȳ))

 =⇒ c = 0. (51)

If c satisfies the left-hand side of (51), then [9, Proposition 3.2] tells us that

0≥ c>∇yF2(x̄, ȳ)
(

0
c

)
= c>(∇y1F2(x̄, ȳ),∇y2F2(x̄, ȳ))

(
0
c

)
= c>∇y2F2(x̄, ȳ)c.

Due to the third assumption this implies that c = 0. Thus, formula (51) indeed holds and the statement
has been proved. �

We are aware that by using [9, Proposition 3.2], we could obtain the same result even for a smaller
set G, thus weakening the assumptions of the theorem. However, for the presentational simplicity, we
prefer to keep it in the current form.

20



5.2 Application to a class of bilevel programming problems

As an application of the results from the previous section we introduce a special class of bilevel pro-
gramming problems automatically satisfying the calmness conditions required for deriving necessary
optimality conditions according to Theorem 2.1:

min
x,y
{ϕ(x,y)|y ∈ argmin{ f (x,z)|z ∈ Γ}} (52)

with f (x,z) := 〈xa,za〉+ δ (xb,za) + 〈zb,Czb〉+ 〈c,zb〉. Here, x =
(
xa,xb), z =

(
za,zb), C is a

positive semi-definite matrix of appropriate size, Γ is a polyhedron described by the linear inequality
system Γ := {z| Az≤ b} with nonempty interior, ϕ is continuously differentiable and δ is twice contin-
uously differentiable and convex in the second variable. Before deriving the corresponding necessary
optimality conditions, we provide an example for this class of problems:

Example 5.1 A special instance of (52) occurs in Equilibrium Problems with Equilibrium Constraints
(EPECs) as they arise in certain electricity spot markets (see, e.g., [1, 8]). In this model, each player
(power producer) optimizes his own decision while fixing the decisions of his competitors. More pre-
cisely, each player i ∈ {1, . . . ,N} solves the bilevel problem

min
αi,βi

{
αigi +2βig2

i |(g, t) ∈ argmin
{
∑

N
j=1 α jg̃ j +β jg̃2

j | g̃+At̃ ≥ d
}}

, (53)

where
(
α j,β j

)
is the decision vector of player j (representing 2 coefficients of a quadratic bidding

curve), (g̃, t̃) is the vector of power produced at the nodes and transmitted along the arcs of some
network and the linear inequality system describes the satisfaction of a given demand vector d in the
network using its incidence matrix A. In this MPEC, the decisions of competitors j 6= i are supposed
to be fixed. Putting

xa := αi, xb := βi, za := g̃i, zb := (g̃−i, t̃) ,

where the lower index −i refers to the subvector in which index i is omitted, the lower level objective
function in (53) can be rewritten as

xaza + xb (za)2 + 〈α−i, g̃−i〉+ 〈g̃−i, [diagβ−i] g̃−i〉.

Here, [diagβ−i] refers to the diagonal matrix built up from the (fixed) vector β−i. Now, (53) can be
recast in the form of (52) with

δ (xb,za) := xb (za)2 , c := (α−i,0) , C :=
(

[diagβ−i] 0
0 0

)
, Γ := {z|Bz≥ d} , B :=

(
A 0
0 I

)
.

Since all quadratic bidding coefficients β j in the problem are required to be nonnegative, it follows that
C is positive semidefinite. 4

Theorem 5.3 Let (x̄, ȳ) be a solution to (52). Under the assumptions made (without any further
constraint qualification), there exist multipliers v∗, u∗ = (u∗1,u

∗
2) such that:

0 = ∇yaϕ(x̄, ȳ)−∇
2
yayaδ (x̄b, ȳa)∇xaϕ(x̄, ȳ)+u∗1

0 = ∇ybϕ(x̄, ȳ)+(C +CT )v∗+u∗2
0 = ∇xbϕ(x̄, ȳ)−∇

2
ya,xbδ (x̄b, ȳa)∇xaϕ(x̄, ȳ)

u∗ ∈ D∗NΓ(ȳ,−F(x̄, ȳ))(−∇xaϕ(x̄, ȳ),v∗).
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Proof. Thanks to our assumptions, the lower level problem min{ f (x,z)|z ∈ Γ} is convex. Hence (52)
can be equivalently rewritten as the MPEC

min{ϕ(x,y)|0 ∈ ∇y f (x,y)+NΓ(y)}. (54)

Observing that

∇y f (x,y) =
(

xa +∇yaδ (xb,ya),(C +CT )yb + c
)

=: F(x,y),

(54) fits to the setting (43) with F1(x,y) := xa +∇yaδ (xb,ya) and F2(y) := (C +CT )yb + c. Clearly,

∇xF1(x̄, ȳ) =
(

I|∇2
ya,xbδ (x̄b, ȳa)

)
is surjective and F2 is affine linear. Finally, due to the assumption

of Γ having nonempty interior, MFCQ is satisfied for the description Γ := {z|Az≤ b}. This allows us
to apply Theorem 5.1 and to derive the calmness of M at (0, x̄, ȳ) via Proposition 3.1. Now, Theorem
2.1 yields in our special setting the existence of some multiplier v = (v1,v2) such that

0 = ∇xaϕ(x̄, ȳ)+ v1

0 = ∇xbϕ(x̄, ȳ)+
[
∇

2
xb,yaδ (x̄b, ȳa)

]T
v1

u∗ ∈ D∗NΓ(ȳ,−F(x̄, ȳ))(v1,v2) ,

where u∗ :=−∇yϕ(x̄, ȳ)− [∇yF(x̄, ȳ)]T v. In particular, u∗ = (u∗1,u
∗
2), where

u∗1 = −∇yaϕ(x̄, ȳ)−∇
2
ya,yaδ (x̄b, ȳa)v1

u∗2 = −∇ybϕ(x̄, ȳ)− (C +CT )v2.

Combining all the obtained relations upon substituting for v1 and setting v∗ := v2, one arrives at the
necessary conditions asserted in the theorem. �
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Appendix

Example .2 In this example we construct a set Γ satisfying MFCQ at given ȳ and a function F such
that M is calm at (0, x̄, ȳ) while M̃ is not calm at (0,0, x̄, ȳ,λ ) for any λ ∈ Λ(0, x̄, ȳ).

Define first ϕ1,ϕ2 : [−1,1]→ R and q1,q2 : [−1,1]×R→ R as

ϕ1(t) :=

{
(−1)k

(
t− 1

k

)3(
t− 1

k+1

)3
for t ∈

[ 1
k+1 , 1

k

]
, k ∈ N

0 for t ≤ 0

ϕ2(t) :=

{
(−1)k

(
t− 1

k

)5(
t− 1

k+1

)5
for t ∈

[ 1
k+1 , 1

k

]
, k ∈ N

0 for t ≤ 0

q1(y) := ϕ1(y1)− y2

q2(y) := ϕ2(y1)− y2,

put ω = R and as the reference point take (x̄, ȳ1, ȳ2) = (0,0,0). These functions are depicted in
Figure 1. Note first that MFCQ is indeed satisfied for Γ. Moreover, it is easy to verify that ϕ1 and ϕ2

'1

'2

Figure 1: Segments of graphs ϕ1 and 2.3·109ϕ2. The constant in front of ϕ2 is used for graphical
purposes.

are twice continuously differentiable. Define further

φ(t) := max{ϕ1(t),ϕ2(t)}.

The twice continuous differentiability of φ is obvious apart from 0. At 0 we compute

|φ ′(0)|= lim
t→0

t−1|φ(t)−φ(0)|= lim
t→0

t−1|ϕ1(t)|= |ϕ ′1(0)|= 0

and similarly we obtain φ ′′(0) = 0 and hence φ is twice continuously differentiable. Finally, we define
F(x,y) := (−φ ′(y1), 1). By construction of φ , we obtain that F is continuously differentiable. Since
Γ = epiφ we have that

M(0) =
{

(x,y)
∣∣∣∣(φ ′(y1)
−1

)
∈ NΓ(y)

}
= R×gphφ .

As M(p) ⊂M(0) for all p small enough, we obtain that M is calm at (0, x̄, ȳ). It is easy to see that
Λ(0, x̄, ȳ) = {λ ≥ 0|λ1 + λ2 = 1}. We will show now that M̃ is not calm at (0,0, x̄, ȳ,λ ) for any
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λ ∈ Λ(0, x̄, ȳ). Define

Ω1 := {t ∈ [0,1]|ϕ1(t) = ϕ2(t)}
Ω2 := {t ∈ [0,1]|ϕ1(t) 6= ϕ2(t), ϕ

′
1(t) = ϕ

′
2(t)}

Ω3 := [0,1]\ (Ω1∪Ω2)

and note that for all t ∈Ω2∪Ω3 small enough it holds that |ϕ2(t)|< |ϕ1(t)| and for all t ∈Ω3 small
enough we have |ϕ ′2(t)|< |ϕ ′1(t)|.
We will show first that T{1} defined in (18) is not calm at (0, ȳ). From the definition we see that

T{1}(p) = {y|ϕ1(y1) = y2 + p1,ϕ2(y1)≤ y2 + p2}.

and thus
T{1}(0) = {y|ϕ1(y1) = y2,ϕ2(y1)≤ y2}= {(y1,ϕ1(y1))|ϕ1(y1)≥ 0}.

Now pick any sequence yk1 > 0, yk1→ 0 such that yk1 ∈Ω2 and ϕ1(yk1) < 0 and define pk1 := 0,
yk2 := ϕ1(yk1) and pk2 := ϕ2(yk1)− yk2. Then yk ∈ T{1}(pk). Moreover, as ϕ1 and ϕ2 have the
same signs

0 < pk2 = ϕ2(yk1)− yk2 = ϕ2(yk1)−ϕ1(yk1)≤ |ϕ1(yk1)|.

Consider now a point ỹk1 ∈Ω1 at which d(yk1,Ω1) is realized. Then we obtain

|d(yk,T{1}(0))|
|pk|

≥ |d(yk1,Ω1)|
|ϕ1(yk1)|

=
|yk1− ỹk1|

|ϕ1(yk1)−ϕ1(ỹk1)|
=

1
ϕ ′1(ξk)

,

where in the last equality we have used the mean value theorem to find some ξk which lies in the
line segment connecting yk1 and ỹk1. Since ϕ1 is twice continuously differentiable with ϕ ′1(0) = 0, we
have proved that T{1} is not calm at (0, ȳ). For T{2} we proceed with a similar construction. In this
case we have

T{2}(0) = {y|ϕ1(y1)≤ y2,ϕ2(y1) = y2}= {(y1,ϕ2(y1))|ϕ1(y1)≤ 0}

and for the contradicting sequence we choose some yk1 > 0, yk1 → 0 such that yk1 ∈ Ω2 and
ϕ1(yk1) > 0 and define again pk1 := 0, yk2 := ϕ1(yk1) and pk2 := ϕ2(yk1)− yk2 and perform the
estimates as in the previous case. Since for T{1,2} we have

T{1,2}(0) = {y|ϕ1(y1) = y2,ϕ2(y1) = y2}= {(y1,ϕ1(y1))|ϕ1(y1) = 0}

either of the previous contradicting sequences can be chosen.

Fix now any λ̄ ∈ Λ(0, x̄, ȳ) and consider the corresponding index set I = {i| λ̄i > 0}. In the previous
several paragraphs we have shown that TI is not calm at (0, ȳ) and found a sequence (p̃k, ỹk) violating
the calmness property. By virtue of Lemma 3.2 we obtain that T is not calm at (0, ȳ, λ̄ ). Moreover,
from the proof of this lemma we see that the sequence (pk,yk,λk), which violates the calmness of T
at (0, ȳ, λ̄ ), can be taken in such a way that pk = p̃k, yk = ỹk and λk = λ̄ with (ỹk, λ̄ ) ∈ T (p̃k) and

d((ỹk, λ̄ ),T (0)) > k‖p̃k‖. (55)

Furthermore, in all the previous cases we have chosen ỹk in such a way that ỹk1 ∈Ω2.

We will show that M̃ is not calm at (0,0, x̄, ȳ, λ̄ ). Consider sequence

(0,0, p̃k1, p̃k2, x̄, ỹk1, ỹk2, λ̄1, λ̄2)→ (0,0,0,0, x̄,0,0, λ̄1, λ̄2) (56)
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and show first that (x̄, ỹk1, ỹk2, λ̄1, λ̄2) ∈ M̃(0,0, p̃k1, p̃k2), which amounts to showing(
0
0

)
=
(
−φ ′(ỹk1)

1

)
+
(

ϕ ′1(ỹk1) ϕ ′2(ỹk1)
−1 −1

)(
λ̄1
λ̄2

)
q(ỹk)− p̃k ∈ NR2

+
(λ̄ ).

We know that (ỹk, λ̄ ) ∈ T (p̃k) and hence the inclusion is satisfied. Moreover, as ỹk1 ∈ Ω2 by con-
struction of this sequence and as λ̄1 + λ̄2 = 1, we indeed obtain

(x̄, ỹk1, ỹk2, λ̄1, λ̄2) ∈ M̃(0,0, p̃k1, p̃k2). (57)

Because the relations defining M̃ do not depend on x and one of them defines also T , we infer that
M̃(z1,z2,z3,z4)⊂ Rn×T (z3,z4) and consequently due to (55) we obtain

d((x̄, ỹk1, ỹk2, λ̄1, λ̄2),M̃(0,0,0,0))≥ d((ỹk1, ỹk2, λ̄1, λ̄2),T (0,0)) > k‖ p̃k‖.

This together with (56) and (57) implies that M̃ is indeed not calm at (0,0, x̄, ȳ, λ̄ ). Since λ̄ was
chosen arbitrarily from Λ(0, x̄, ȳ), the construction has been completed. 4

Lemma .1 If FRCQ is satisfied at some ȳ with q(ȳ) ≤ 0, then there is an ε > 0 such that #I(y) ≤
m−1 for all y ∈ Bε(ȳ)\{ȳ}.

Proof. Otherwise, there is a sequence yk → ȳ with yk 6= ȳ and #I
(
yk) ≥ m. Upon passing to a

subsequence, we may assume without loss of generality that I
(
yk)≡ I for some I ⊂ {1, . . . ,s} and

that #I ≥ m. From qi
(
yk)= 0 for all i ∈ I and all k ∈ N it follows that qi(ȳ) = 0 for all i ∈ I, whence

I ⊂ I(ȳ). Now, FRCQ implies that rank {∇qi(ȳ)}i∈I = m. By the classical inverse function theorem,
ȳ is the locally unique solution of the equation qi(y) = 0 (i ∈ I). This, however, contradicts the fact
that qi

(
yk)= 0 (i ∈ I) for a sequence yk→ ȳ with yk 6= ȳ. �

For the following lemma recall that Wy has been defined in (26).

Lemma .2 Let ȳ with q(ȳ) = 0 be given. If q is affine linear, then, there exist L > 0 such that for all
y ∈Rm, for all (p1, p2, p̄1, p̄2) with Wy(p̄1, p̄2) 6= /0 and for all λ ∈Wy(p1, p2) the following estimate
holds true:

d (λ ,Wy(p̄1, p̄2))≤ Lmax{‖p1− p̄1‖ ,‖p2− p̄2‖} . (58)

Alternatively, if FRCQ is satisfied at ȳ, then there exist ε,L > 0 such that for all y ∈ Bε (ȳ), for all
(p1, p2, p̄1) with Wy(p̄1,q(y)) 6= /0 and for all λ ∈Wy(p1, p2) the following estimate holds true:

d (λ ,Wy(p̄1,q(y)))≤ L‖p1− p̄1‖ . (59)

Proof. Assume first, that q is affine linear, i.e., q(y) = Ay+b. Then, for each fixed y ∈ Rm,

gphWy =
{

(p1, p2,λ ) |A>λ = p1, (λ , p2) ∈ gphNRs
+

}
= H−1

(
{0}×gphNRs

+

)
,

where H (p1, p2,λ ) =
(
A>λ − p1,λ , p2

)
. Observe, that gphWy does actually not depend on y.

Since {0}×gphNRs
+

is a finite union of polyhedra, the same holds true for its preimage gphWy under
the linear mapping H. Hence Wy is a polyhedral mapping (not depending on y) and, by Robinson’s
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Theorem [3, Theorem 3D.1], there exists some L > 0 such that for all y ∈ Rm, for all (p1, p2, p̄1, p̄2)
with Wy(p̄1, p̄2) 6= /0 and for all λ ∈Wy(p1, p2) estimate (58) holds true.

For proving (59) assume that FRCQ is satisfied at ȳ and define for any p1 set

K (p1) :=
{

λ |(∇q(ȳ))>λ = p1, λ ≥ 0
}

.

By Hoffman’s Lemma, there is some L1 such that for any p̄1 with K (p̄1) 6= /0 and any p1 one has the
estimate

d (λ ,K(p̄1))≤ L1 ‖p1− p̄1‖ ∀λ ∈ K (p1) . (60)

Assume now that y = ȳ. Then, since q(ȳ) = 0, we have that Wȳ(p̄1,q(ȳ)) = K(p̄1). Moreover, λ ∈
Wy(p1, p2) = Wȳ(p1, p2) implies that λ ∈ K (p1). Therefore, (60) yields

d (λ ,Wy(p̄1,q(y))) = d (λ ,Wȳ(p̄1,q(ȳ))) = d (λ ,K(p̄1))≤ L1 ‖p1− p̄1‖

for any λ ∈Wy(p1, p2).

For the rest of the proof, assume that y 6= ȳ. Since FRCQ is satisfied at ȳ, we obtain that ∇qI(ȳ) is a
surjective matrix for all I ⊂ I(ȳ) with #I ≤ m, where qI stands for restriction of q on components I. In
particular, the pseudo-inverse matrices to ∇q(ȳ)>

AI(y) :=
(

∇qI(y)(∇qI(y))>
)−1

∇qI(y) (I ⊂ I (ȳ) : #I ≤ m) , (61)

exist and are continuous on some neighborhood Y of ȳ. Let ε > 0 be such that Bε(ȳ) ⊂ Y and
I(y) ⊂ I(ȳ) for all y ∈ Bε(ȳ). Observing that the family of index sets I ⊂ I (ȳ) with #I ≤ m is finite,
the following quantity is well-defined and finite:

L2 := max{‖AI(y)‖|y ∈ Bε(ȳ), I ⊂ I(ȳ) : #I ≤ m}.

Consider an arbitrary y ∈ Bε(ȳ) with y 6= ȳ and arbitrary (p1, p2). Then, I(y) ⊂ I(ȳ) by definition of
ε and #I (y) ≤ m− 1 by Lemma .1. Now, (61) yields that λ = AI(y)(y)p1 for any λ ∈Wy(p1, p2).
Summarizing, we have that

Wy(p1, p2) = {AI(y)(y)p1} (62)

for any y∈Bε(ȳ) with y 6= ȳ and any (p1, p2) with Wy(p1, p2) 6= /0. From (62) it follows that Wy(p̄1,q(y))=
{AI(y)(y)p̄1} which, together with (62), yields

d (λ ,Wy(p̄1,q(y))) =
∥∥AI(y)(y)(p1− p̄1)

∥∥≤ L2 ‖p1− p̄1‖ .

By taking L := max{L1,L2}, the proof is complete. �
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