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Abstract

Gradient plasticity at large strains with kinematic hardening is analyzed as qua-
sistatic rate-independent evolution. The energy functional with a frame-indifferent
polyconvex energy density and the dissipation are approximated numerically by
finite elements and implicit time discretization, such that a computationally imple-
mentable scheme is obtained. The non-selfpenetration as well as a possible friction-
less unilateral contact is considered and approximated numerically by a suitable
penalization method which keeps polyconvexity and simultaneously by-passes the
Lavrentiev phenomenon. The main result concerns the convergence of the numerical
scheme towards energetic solutions.

In the case of incompressible plasticity and of nonsimple materials, where the
energy depends on the second derivative of the deformation, we derive an explicit
stability criterion for convergence relating the spatial discretization and the penal-
izations.

1 Introduction

The theory of elastostatics at finite strains has seen a rapid development within the last
decades. The fundamental work on polyconvex materials developed in [Bal77] provided a
powerful basis for a general theory that allows for the treatment of geometric nonlinearities
as well as physically necessary singularities. In particular, a stored-energy density W :
Rd×d×Rm → R∞

def
= R ∪ {∞} as a function of the deformation gradient F and internal

parameters z specified later has to satisfy:

objectivity: W (QF, z) = W (F, z) for Q∈SO(d),F∈Rd×d, (1.1a)

local non-selfpenetration: W (F, z)→∞ for det F→ 0+, and

W (F, z) =∞ for det F ≤ 0. (1.1b)

Hence, the proper domain of the mapping F 7→ W (F, z) is the general linear group

GL+(d)
def
= {F ∈ Rd×d; det F > 0}, which already highlights an underlying Lie group

structure.
Approximately at the same time the theory of elastoplasticity obtained a sound math-

ematical basis starting from [Mor74], see also [Alb98,HaR99,Tem85] for surveys on further
developments. However, this theory is restricted to the case of small strains and the so-
called additive split e(u) = 1

2
∇u + 1

2
(∇u)T = Eel + Epl, as it fundamentally depends on

the methods of convex analysis in Hilbert spaces.
A major advance in the mathematical approach to finite-strain elastoplasticity was the

observation in [OrR99, OrS99] that the time-incremental problems in rate-independent
and in the viscoplastic case can be written as a minimization problem for the sum of
the increments in the stored energy and in the dissipated energy. This idea opened up
the rich toolbox of the direct methods in the calculus of variations. A general existence
theory for the time-continuous problem, which in the classical setting consists of the
elastic equilibrium equation and the plastic flow rule, was developed in [MaM09] by using
a formulation that allows us to use functional analytical tools that are compatible with
the strong nonlinearities generated by the Lie group structures resulting from GL+(d) and
SL(d). In particular, it relies on the theory of energetic solutions (also called quasistatic
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evolutions in [DDM06,DaL10]) for rate independent systems as initiated in [MTL02] and
further developed in [Mie05,FrM06,MiR15]. In particular, the abstract metric formulation
on general topological spaces developed in [MaM05, Mie11, MiR15] is ideally suited for
finite-strain elastoplasticity, see [MaM09, DaL10, MiR15]. Hardening mechanisms and
regularizing gradient terms for the plastic strain and the possible parameters have to
be included to allow for a rigorous analysis. Otherwise the localization phenomena like
shearbands may occur (cf. [Mie03,DDM06,BMR12], or the formation of microstructures
(cf. [OrR99,CHM02,HHM12]).

Meanwhile, these models are widely used in engineering and are quite successful in
predicting macroscopic deformation processes like deep drawing and other forming pro-
cesses, see e.g. [SiH98,SiO85,MiS92,NeW03]. In particular, also efficient numerical meth-
ods have been developed and sucessfully implemented. Sometimes also a global non-
penetration or unilateral (self)contact condition is considered and treated by a penaliza-
tion [GPU04,Stu01].

Yet, to our best knowledge, neither of these numerical schemes has been supported by
rigorous convergence analysis. The goal of this article is to use recent advances in abstract
numerical approaches in rate-independent processes [MiR09, MiR15] to devise specific
finite-element numerical schemes for gradient plasticity at large strains with a guaranteed
convergence. Of course, we will use physically relevant models, i.e. with frame-indifferent
energies. The particular difficulties are related with the local non-selfpenetration (1.1b).
In addition, we also consider the global non-selfpenetration as formulated rigorously in
[CiN87] and suggested in this context already in [MaM09, Sect.6]. Rather as a side effect,
we will also consider a possible frictionless unilateral contact on the boundary. In contrast
to a so-called three-field formulation used often in plasticity, cf. e.g. [SiH98], we do not
use any other field beside deformation and plastic strain, which is the minimal scenario
and the simplest option to implement computationally.

The model will be formulated in Section 2. For notational simplicity only, we confine
ourselves to homogeneous materials (i.e. no explicit x-dependence of the energy density W
and of the dissipation potential R below) and to kinematic hardening without additional
hardening parameters. The case of hardening with additional hardening parameters z
(like isotropic hardening) was considered in [MaM09] and can be handled by our numeri-
cal considerations, too. Our numerical approximation uses an implicit time discretization
via incremental minimization problems, a finite-element method in for space discretiza-
tion, and suitable regularization of the stored energy as well as a penalization of the non-
penetration condition, see Section 3. The convergence is proved in Section 4 provided
the spatial discretization converges much faster than the penalization. Section 5 provides
a more applicable approximation strategy in the case of 2nd-grade nonsimple materials,
i.e. W depends on ∇2y. We derive a quite explicit sufficient stability criterion guar-
anteeing convergence simultaneously in time-space discretization and penalization. All
convergence results rely on the general theory of evolutionary Γ-convergence as developed
in [MRS08], where in the present context the main task lies in showing the Γ-convergence
for (ε, h)→ (0, 0) of the penalized and spatially discretrized energies Eεh to the limit E of
the continuous model.

In our static Γ-convergence of Eεh, we have to avoid the occurrence of a possible
Lavrentiev phenomenon [Lav27], which may occur when approximating deformations with
determinant constraint by Lipschitz functions. Our approach relies on approximating W
monotonously from below by functions Wε that have suitable (ε-dependent) upper growth
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bounds. The relaxation of the global interpenetration condition of Ciarlet-Nečas is done by
using a new result concering the weak continuity of the “volume map” y 7→ measd

(
y(Ω)

)

on W 1,p(Ω), see Proposition 4.3.
In particular, when plasticity is omitted, as a “side product” our theory devises

a regularization and a finite-element approximation for the static elasticity problem
(with possibly a unilateral contact) respecting global non-penetrability, showing the
Γ-convergence (or even Mosco convergence) of the regularized and approximate elas-
tic energy, cf. Remark 5.5, thus avoiding effectively the Lavrentiev phenomenon. In
comparison with the approaches in literature, which either (i) use a regularization of
the discrete problem not having a direct counterpart in the continuous setting (cf.
[BaL06,BaL07,Li95,Li96,Neg90,XuH11]) or (ii) introduce auxiliary variables η approxi-
mating ∇y, cof∇y, or det∇y via a penalization term (cf. [BaK87,CaO10]), we treat the
full nonconvex potentials modified in a way that allows for clear physical interpretation
on the level of continuous problems.

For the readers’ convenience, we summarize the basic notation:

d dimension of the problem,
Ω ⊂ Rd a reference domain,
y : Ω→ Rd deformation,
Π : Ω→ P ⊂ Rd×d plastic strain,
F a placeholder for the deformation

gradient ∇y,
P a placeholder for

the plastic strain Π,
A a placeholder for the gradient

of plastic strain ∇Π,
Fel = FP−1 elastic strain,
Ms(F) minors of the order s

of a matrix F,
Ks(F) a generalized cofactor matrix,
E overall stored energy,
W specific stored energy,
Wel the elastic part of W , viz. (2.19),

Ŵ el = Ŵ el(Fel) the elastic part
of W in invariant form,

R dissipation metric, viz. (2.21b),
R̂ dissipation metric in invariant form,
D dissipation distance induced by R,
D overall dissipation distance,
pdf the exponent of coercivity in F,
pel the exponent of coercivity in Fel,
ppl the exponent of coercivity in P,
pgr the exponent of coercivity in A,
psg the exponent of coercivity in ∇2y,
gDir : ΓDir → Rd prescribed

time-dependent boundary displacement,
` outer loading (given by fvol and fsurf),
κ > 0 hardening coefficient of plasticity,
κ > 0 coefficient of the gradient of plasticity,
χ > 0 coefficient of the 2nd-gradient of y.

Table 1: Main notation used in this paper.

Moreover, we use the standard notation for the function spaces on Ω: namely, C(Ω)
denotes the Banach space of continous functions on the closure of Ω, and Lp(Ω) denotes
the Lebesgue space of measurable functions whose p-power is integrable, while W k,p(Ω)
is the Sobolev space of functions which are together with all their kth-order derivatives
in Lp(Ω). Moreover, we abbreviate W k,2(Ω) by Hk(Ω), as usual. For vector or matrix-
valued cases, we write e.g. Lp(Ω; Rn) or Lp(Ω; Rn×m) etc. By p∗ we will denote the Sobolev
exponent pd/(d−p) if 1 < p < d while p∗ = ∞ for p > d and 1 < p∗ < ∞ is arbitrary
if p = d, such that we have the embedding W 1,p(Ω) ⊂ Lp

∗
(Ω). Moreover, we use the

Bochner spaces of Banach-space-valued functions on the time interval [0, T ], denoted by
Lp([0, T ];X). By B([0, T ];X) we denote the space of bounded everywhere defined X-
valued functions on [0, T ], while C([0, T ];X) or C1([0, T ];X) are the spaces of X-valued
continuous or continuously differentiable functions [0, T ]→ X, respectively. In the proofs,
we abbreviate ‖ · ‖Lp(Ω) by ‖ · ‖Lp or ‖ · ‖Wk,p(Ω) by ‖ · ‖Wk,p etc.
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2 The quasistatic gradient plasticity

We introduce some notations. We consider a reference domain Ω bounded and Lipschitz
in Rd, and ΓDir a part of its boundary where (possibly time-dependent) hard-device load
is considered, i.e. we presribe the Dirichlet condition y|ΓDir

= gDir = gDir(t). The state
of the body will be prescribed by the deformation y : Ω → Rd and the plastic tensor
Π : Ω→ P with P ⊂ Rd×d a closed subset to be specified for a concrete model. We will
use also the gradient ∇Π, which will be essential to provide compactness and prevent
localization and formation of microstructures. Then z = (P,A) in (1.1), where P ∈ Rd×d

is the placeholder for Π and A ∈ Rd×d×d is the placeholder for ∇Π. We also consider a
unilateral frictionless contact that the deformed configuration y(Ω) is always away of some
open set C ⊂ Rd; of course, choosing C = ∅ makes this constraint never active. Then,
condering also a global constraint preventing folding of the deformation, we assume that
the stored-energy functional takes the form

Ẽ(t, y,Π) =





∫

Ω

W (∇y(x), Π(x),∇Π(x)) dx

−
〈
`(t), y

〉
if

∫

Ω

det(∇y) dx ≤ measd(y(Ω)),

y(Ω) ∩ C = ∅, and y|ΓDir
= gDir(t),

∞ otherwise. (2.1)

Note that, if Ẽ <∞, due to (1.1b), it holds simultaneously

det(∇y(x)) > 0 for a.a. x∈Ω and

∫

Ω

det(∇y) dx ≤ measd(y(Ω)), (2.2)

which is just what is called the Ciarlet-Nečas condition [CiN87] guaranteeing non-
selfpenetration. An example for an external loading ` is

〈
`(t), y

〉
=

∫

Ω

fvol(t, x)·y(x) dx+

∫

∂Ω\ΓDir

fsurf(t, x)·y(x) dS, (2.3)

considering the bulk force fvol and the surface load fsurf .
Forgetting, for a moment, the global constraints involved in (2.1) related with non-

selfpenetration and a possible contact, in our quasistatic setting, we will consider the
problem that, in its classical formulation, can be written as

div
(
∂FW (∇y,Π,∇Π)

)
+ fvol = 0 in Ω (2.4a)

while evolution of Π is governed by the thermodynamical-force balance

∂ .
P
R(Π,

.
Π) + ∂PW (∇y,Π,∇Π)− div

(
∂AW (∇y,Π,∇Π)

)
3 0 (2.4b)

where “ ∂ ” stands for a partial Fréchet subdifferetial; this might be the standard Gâteaux
derivative in the smooth case (as ∂FW , ∂PW , and ∂AW ) or the standard convex subdifer-
ential in the convex but nonsmooth case (as ∂ .

P
). Actually, in the engineering literature,

the thermodynamical-force balance (2.4b) is written rather in the explicit form in terms

of
.
Π as the plastic-flow rule:

.
Π ∈

[
∂ .

P
R(Π, ·)

]−1
(

div
(
∂AW (∇y,Π,∇Π)

)
− ∂PW (∇y,Π,∇Π)

)
,
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where the inverse to ∂ .
P
R(Π, ·) can further be expressed as the subdifferential of the convex

conjugate to R(Π, ·). To be more specific, let us recall the definition of the subdifferential,
which in our case means

∂ .
P
R(Π,

.
Π) =

{
S∈Rd×d; ∀V ∈Rd×d : R(Π,V ) ≥ R(Π,

.
Π) + S:(V−

.
Π)
}
. (2.5)

The thermodynamical-force balance (2.4b) involves a potential R of dissipative force such

that the functional
.
P 7→ R(P,

.
P) is convex on the tangent space. This thermodynamical-

force balance is rate independent if
.
P 7→ R(P,

.
P) is positively homogeneous of degree 1,

i.e., R(P, λ
.
P) = λR(P,

.
P) for any λ ≥ 0. As a consequence the set-valued subdifferential.

P 7→ ∂ .
P
R(P,

.
P) is positively homogeneous of degree 0, i.e., it depends on the direction of

the rate
.
P but not on its norm. Thus, if (y,Π) solves (2.4) for the loading `, then for all

λ > 0 the process t 7→ (y(λt), Π(λt)) solves (2.4) for the loading t 7→ `(λt).
Of course, (2.4) is to be completed by suitable boundary conditions, namely with

Dirichlet boundary conditions on ΓDir and, in accordance with (2.3), the prescribed stress
and natural homogeneous conditions for the gradient part on ∂Ω \ ΓDir:

y|ΓDir
= gDir(t, ·) on ΓDir, (2.6a)

∂FW (∇y,Π,∇Π)ν = fsurf on ∂Ω\ΓDir, (2.6b)

∂AW (∇y,Π,∇Π)ν = 0 on ∂Ω. (2.6c)

In fact, instead of the boundary-value problem (2.6a,b) for the Euler-Lagrange equa-
tion (2.4a), we will consider the underlying variational principle,

y(t) minimizes ỹ 7→ Ẽ(t, ỹ, Π(t)) over all ỹ with ỹ|ΓDir
= gDir(t). (2.7)

This formulation is more natural than (2.4a) as it excludes, e.g., unstable critical points
which would never be realized in real systems. Moreover, it allows for giving a rigorous
mathematical sense in a simpler way even if one makes transformations as (2.10) below or
if one considers global contraints of non-selfpenetration and a possible unilateral contact,
which would be very technical in terms of the Euler-Lagrange equation, cf. [Bal02] and
also [BaM85, FHM03] and [HaS06, Thm.4.1]. This just documents the advantage of the
energetic formulation of the problem we will use later. On the other hand, it should be
mentioned that (2.7) excludes local minimizers which real systems may recognized.

As solutions of rate-independent systems are usually not continuous, we need a weak
form of the thermodynamical-force balance (2.4b). To this end, the dissipation metric R
is replaced by the associated dissipation distance D defined as

D(P0,P1) = inf
{∫ 1

0

R(P(s),
.
P(s)) ds; P∈W 1,1(0, 1; Rd×d),

P(s) ∈ P ∀s ∈ [0, 1], P(0) = P0, P(1) = P1

}
(2.8)

with P ⊂ Rd×d as above. The dissipation functional

D(P0,P1) =

∫

Ω

D(P0(x),P1(x)) dx (2.9)
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measures the minimal amount of energy dissipated when going from the state P0 to
P1. An important fact is that D satisfies the (unsymmetric) triangle inequality, i.e.
D(P1,P3) ≤ D(P1,P2) + D(P2,P3), cf. also (4.5c) below.

Some aspects of the geometric nonlinearities arising through the Lie group structures
of finite strains and the multiplicative decomposition were already treated in [FrM06]
and [MiM06], respectively. Here we combine and generalize these results in a unified
setting. The first nontrivial ingredient is the treatment of time-dependent boundary
conditions gDir as in [MaM05]. For this, we seek for ỹ(t, ·) in the form

ỹ(t, x) = gDir(t, y(t, x)) with y(t, x) = x for x∈ΓDir, (2.10)

i.e. ỹ(t) = gDir(t, ·)◦y(t) : Ω→ Rd at each time t, and set

E(t, y,Π) = Ẽ(t, gDir(t, ·)◦y,Π). (2.11)

Assuming that the Dirichlet loading is realized away from the obstacle C, one can assume
that gDir|C is constant in time, for example the identity, i.e.

gDir(t, x)|C = x for x∈C, (2.12)

and the original condition ỹ(Ω) ∩ C = ∅ transforms simply into y(Ω) ∩ C = ∅. Also the
Ciarlet-Nečas condition keeps its form in term of y equally as in terms of ỹ. Note also
that ∇ỹ = ∂ygDir(t, y)∇y, which motivates calling (2.10) a multiplicative decomposition.
Altogether, this means

E(t, y,Π) =





∫

Ω

W (∂ygDir(t, y)∇y,Π,∇Π) dx

−
〈
`(t), gDir(t, y)

〉
if

∫

Ω

det(∇y) dx ≤ measd(y(Ω))

and y(Ω) ∩ C = ∅,
∞ otherwise, (2.13)

while the (transformed time-constant) Dirichlet conditions are involved in the fixed set of
admissible states defined by

Q
def
=
{

(y,Π) ∈ W 1,pel(Ω; Rd)×W 1,pgr(Ω; Rd×d); y|ΓDir
= identity

}
. (2.14)

We emphasize that the set of all constraints in (2.13) is now constant in time, while
time dependence is exclusively moved into the integrand that was time independent origi-
nally. This gives a rigorous sense to ∂tE(t, q) under suitable data qualifications. Here and
subsequently we use q as a placeholder for the state q = (y,Π).

To allow for finite-strain elasticity complying with (1.1), we assume that W is
polyconvex in F. More specifically, denoting the function M : Rd×d → Rµd with

µd =
∑d

s=1

(
d
s

)2
=
(

2d
d

)
−1 maps a matrix to all its minors (subdeterminants) and us-

ing A as a placeholder for ∇Π ∈ Rd×d×d, we assume

∃W : Rµd×P×Rm×Rd×d×d → R∞ :
(i) W is lower semicontinuous,
(ii) ∀ (F,P,A) : W (F,P,A) = W(M(F),P,A),
(iii) ∀P ∈ P : (M,A) 7→W(M,P,A): Rµd×P×Rd×d×d → R∞ is convex.

(2.15)
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Thus, (2.15) implies that the function F 7→ W (F,P,A) is polyconvex in the sense [Bal77]
for any (P,A). For the weak lower semicontinuity, we use that the minors Ms(∇y) of
order s ∈ {1, ..., d} of the term in (2.23) are weakly continuous, cf. [Bal77, Res67], and
further the strong convergence of Π, which is obtained by compact-embedding from the
coercivity of W in A.

The second nontrivial ingredient that is induced by the multiplicative structure of
GL+(d) is the control of the power of the external forces ∂tE(t, q), which will allow us to
replace P in (4.2) below by ∂tE(t, q(t)). The crucial assumption is an energy control of
the Kirchhoff stress

∣∣∂FW (F,P,A)FT
∣∣ ≤ cW1

(
W (F,P,A) + cW0

)
, (2.16)

which was introduced in [Bal84] and popularized in [Bal02]. The Lie group structure of
GL+(d) implies that the Kirchhoff stress ∂FW (F)FT lies in gl(d) = TIGL+(d) and hence
is more intrinsic than other stress measures. We obtain the formula

∂tE(t, q) =

∫

Ω

∂FW (F, Π,∇Π)FT:V dx

with F = F(x) = ∂ygDir(t, y(x))∇y(x)

and V=V(t, x)=∂ygDir(t, y(x))−1∂y
.
gDir(t, y(x)), (2.17)

cf. [FrM06, Lemma 5.5]. Under suitable assumptions on gDir this allows us to derive an
estimate for ∂tE(t, q) in terms of E(t, q) and to deduce further helpful continuity properties
of ∂tE.

Elastoplasticity at finite strains is usually based on the Lee-Liu multiplicative decom-
position

∇y = F = FelFpl, (2.18)

introduced in [LeL67]. This decomposition reflects the Lie group structure of GL+(d),
where the elastic part Fel will contribute to the energy storage whereas the plastic tensor
Fpl = P is simply chosen to evolve according to a plastic flow rule. The plastic tensor
maps the material frame (crystallographic lattice) onto itself and is usually assumed to

lie in the special linear group SL(d)
def
= {P ∈ Rd×d; det P = 1}. In this case we choose

P = SL(d). Nevertheless, sometimes also volume plastification is involved in the model
and then one considers rather P = GL+(d). Here, we consider more specifically the elastic
and the hardening contribution as

W (F,P,A) = Wel(F,P) +Whard(P) +
κ
pgr

|A|pgr . (2.19)

Following [Mie03], beside the objectivity (1.1a), we assume that Wel and R in (2.4b) is
invariant under previous plastic strain P̃ in the sense

Wel(FP̃,PP̃) = Wel(F,P)

R(PP̃,
.
PP̃) = R(P,

.
P)

}
for all P̃ ∈ P. (2.20)

which have to hold for all F ∈ GL+(d) and P ∈ P. Note that (2.20) postulates this plastic
invariance only for Wel and not for the hardening part in (2.19) since hardening is exactly
the mechanism that destroys plastic indifference. The conditions (2.20) imply a special
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form of W and R, namely, in view of (2.19), one can consider Wel(F,P) = Ŵ el(FP−1) and
Whard(P) = κ

ppl
|P|ppl so that altogether one has

W (F,P,A) = Ŵ el(FP−1) +
κ

ppl

|P|ppl +
κ
pgr

|A|pgr (2.21a)

for some Ŵ el with κ,κ > 0, and

R(P,
.
P) = R̂(

.
PP−1) (2.21b)

for some R̂. Note that the polyconvexity (2.15), i.e. the convexity of W(·,P, ·), here

means the conventional polyconvexity of Ŵ el : Rd×d → R. Also note that, due to the
assumed rate independence, R̂ is homogeneous of degree 1. Note that (2.21b) implies

∂ .
P
R(P,

.
P) = ∂R̂(

.
PP−1)P−T, cf. [MaM09]. In view of the ansatz (2.21), instead of (2.4)

we have now:

div
(
∂FŴ el(Fel)Π

−T
)

+ fvol = 0 with Π−T def
= (Π−1)T, and (2.22a)

∂R̂(
.
ΠΠ−1)Π−T − FT

el∂FŴ el(Fel)Π
−T

+ κ|Π|ppl−2Π − div
(
κ|∇Π|pgr−2∇Π

)
3 0. (2.22b)

After the transformation (2.10), the integrand W (Fel,P,A) of E depends on the product

Fel = (∇ỹ)Π−1 = ∂ygDir(t, y(x))∇y(x)Π(x)−1. (2.23)

The Cauchy-Binet relations Ms(GF) = Ms(G) Ms(F), see e.g. [BrW89, Sect.4.6]), give

Ms(GFP−1) = Ms(G) Ms(F) Ms(P
−1) =

1

det P
Ms(G) Ms(F) KT

d−s(P), (2.24)

where the generalized cofactor matrix Ks is defined as Ks(P) = (det P)MT
d−s(P

−1), and in
(2.17), in place of F, one uses Fel from (2.23). For the dissipation density D we choose
any left-invariant distance on the Lie group SL(d), viz.,

D(P0,P1) = dSL(P1P
−1
0 ) with dSL : SL(d)→ [0,∞[ ,

where dSL is generated by a norm R̂ on the Lie algebra sl(d)
def
= TISL(d) via

dSL(P1) = inf
{∫ 1

0

R̂(
.
P(s)P(s)−1) ds; P∈C1([0, 1], SL(d)), P(0) = I, P(1) = P1

}
.

Clearly this D satisfies the plastic indifference condition D(P0P̃,P1P̃) = D(P0,P1). Ac-
cording to [Mie02], the mapping dSL is continuous, is strictly positive for P 6= I, satisfies
the multiplicative triangle inequality dSL(P1P0) ≤ dSL(P0) + dSL(P1), and allows for the
bounds

δ|Σ| ≤ R̂(Σ) ≤ dSL(Q eΣ) ≤ C + R̂(Σ) for Σ = ΣT and Q∈SO(d), (2.25)

with δ, C > 0, see [HMM03,Mie02]. Thus, conditions (4.5) below are fulfilled.
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Example 2.1 (Ogden-type material) The simplest coercive material that also simul-
taneously captures polyconvexity property and local non-selfpenetration takes the elastic
part in (2.21a) in the form

Ŵ el(Fel) =

{
c1|Fel|pel+c2/(det Fel)

γ for det Fel > 0,
∞ otherwise,

with c1, c2, γ > 0. (2.26)

Note that (2.26) is an example of the Ogden-type material ; in general, Ogden materials
may involve still a contribution from | cof(Fel)|. The Kirchhoff stress tensor K(F) =
∂FW (F)FT in (2.16) only depends on F and takes the simple form

K(F) =




c1pel|F|pel−2F FT − c2γ

(det F)γ
I if det F > 0

not defined otherwise.

Hence, (4.4c) below immediately holds with cW0 = 0 and cW1 = max{pel, γ
√
d}. Moreover,

also condition (4.4d) holds, since K can be differentiated once again giving |∂K(F)[HF]| ≤
CW (F)|H|, see [FrM06] for details.

Remark 2.2 (Isotropic hardening) The internal variable P may have a more com-
plicated structure, e.g. from Rd×d × R and that additional scalar variable may act as a
hardening parameter to model isotropic hardening, which may or need not be combined
with the kinematic hardening considered in this paper.

3 Numerical approximation

As said already above, we use a placeholder q = (y,Π). We further use the finite-element
method (FEM) for space discretization of q with a mesh parameter h > 0. We assume
a polyhedral Ω for simplicity, and consider its triangulation Th with the simplicial mesh
with the mesh-parameter h, i.e. h

def
= max4∈Th

diam(4). By Nh we denote the set of
corresponding nodal points. It gives rise to the finite-dimensional subset Vh := Vdf,h×Vpl,h

with

Vdf,h :=
{
y∈W 1,∞(Ω; Rd); ∀4∈Th : y|4 affine

}
, (3.1a)

Vpl,h :=
{
Π∈W 1,∞(Ω; Rd×d); ∀4∈Th:Π|4 affine, ∀x∈Nh:Π(x)∈P

}
. (3.1b)

It should be emphasized that the constraint Π(·) ∈ P is satisfied on Ω only approximately
for Π ∈ Vpl,h, cf. Lemma 4.5 below.

In fact, Vdf,h ⊂ W 1,∞(Ω; Rd) and also Vpl,h ⊂ W 1,∞(Ω; Rd×d). It is well known that the
so-called Lavrentiev phenomenon [Lav27] may occur in nonlinear elasticity, i.e. mimiz-
ing energy on W 1,∞(Ω; Rd) may yield a strictly bigger infimum (and thus false solu-
tions or minimizing sequences) than mimizing on a “correct” W 1,pdf -space, as pointed
out in [Bal87, Bal02, BaM85, FHM03], following the old observation in [Lav27]. In par-
ticular, one cannot hope for convergence of conformal polynomial finite elements as far
as discretization of y concerns, which are always only subspaces of W 1,∞(Ω; Rd), which
was already well recognized for static problems e.g. in [BaL06, CaO10, Li95, Li96]. For
quasistatic rate-independent problems as considered here, this difficulty is still present.
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We will overcome this problem by making a penalization/regularization of the con-
straints involved in E. The interaction of discretization with such a penalization needs
usually a sufficiently fast refinement of the discretization with respect to penalization,
subjected to some (usually rather implicit) convergence criterion, as observed on the ab-
stract level for the static case in [Rou91] and for the quasistatic rate-independent one
in [MiR09]. Usually, one cannot hope for unconditional convergence because of the men-
tioned Lavrentiev phenomenon.

Thus we make a penalization/regularization by a parameter ε > 0 of the stored energy
similarly as in [CaO10] and also of the global constraints by considering

Eεh(t, y,Π)
def
=





∫

Ω

Wε(∂ygDir(t, y)∇y,Π,∇Π) +
1

ε
dC(y)r1 dx−

〈
`(t), gDir(t, y)

〉

+
1

ε

(∫

Ω

det(∇y) dx−measd(y(Ω))
)r0

if y∈Vdf,h, Π∈Vpl,h,

∞ otherwise (3.2)

with some r0, r1 ≥ 1, where Wε denotes a suitable approximation of W and dC(y) =
distance of y from Rd\C. Without restricting substantially the possible applicability, we

consider again the ansatz (2.21a) with Ŵ el in the additive form

Ŵ el(Fel) = W1

(
M1(Fel), ...,Md−1(Fel)

)
+ W0(det Fel); (3.3)

recall that Md = det. In other words, we assume that (2.15) has a special structure

W(M(F),P,A) = W1

(
M1(FP−1), ...,Md−1(FP−1

)
)

+ W0

(
det(FP−1)

)
+

κ

ppl

|P|ppl +
κ
pgr

|A|pgr

= W1

(
M1(F)M1(P−1), ...,Md−1(F)Md−1(P−1)

)

+ W0

(det F

det P

)
+

κ

ppl

|P|ppl +
κ
pgr

|A|pgr (3.4)

for some W1 : Rµd−1 → R and W0 : R → R ∪ {∞} convex. Note that, in (3.4), we used
the Cauchy-Binet relation Ms(GF) = Ms(G) Ms(F) to show that it complies with (2.15).
It is important that W1 is finite with an upper bound (see (4.22b) below) in contrast to
W0 which blows up for det Fel ↘ 0 and equals ∞ for det Fel ≤ 0. Thus, upon replacing
W0 by a suitable regularization Wε, we will obtain Wε with a controlled growth, cf. (4.19)

below. The mentioned regularization can consist in replacing Ŵ el in (3.3) by

Ŵ el,ε(Fel) := W1

(
M1(Fel), ...,Md−1(Fel)

)
+ Wε(det Fel)

with Wε(δ) := min
δ̃∈R

(
W0(δ̃) +

1

2ε
|δ̃−δ|2

)
. (3.5)

The convex function Wε : R→ R, being called the Yosida approximation of W0, is always
smooth, has at most quadratic growth, and converges to W0 pointwise from below. By
replacing Ŵ el in (2.21a) with Ŵ el,ε, we obtain the following approximation Wε of W :

Wε(F,P,A) := Ŵ el,ε(FP−1) +
κ

ppl

|P|ppl +
κ
pgr

|A|pgr

= W1

(
M1(FP−1), ...,Md−1(FP−1)

)
+Wε

(
det(FP−1)

)
+
κ|P|ppl

ppl

+
κ|A|pgr
pgr

. (3.6)
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The important attribute of such an approximation is that Wε again satisfies our
polyconvex-type structural assumption (2.15). Let us emphasize that this would not
be clear if we made the Yosida approximation directly of W (·,P, ·), not speaking that
such an approximation might destroy the coercivity of W we need later, cf. (4.4a). The
mentioned coercivity estimate is also crucial for weak continuity of Ms(F).

For the time discretization, we use an equidistant partition of the time interval [0, T ]
with the time step τ > 0, and use the fully-implicit backward-Euler formula leading to
incremental minimization: For an initial state q0

ετh = q0, we take qkετh as a solution to the
recursive problem

Minimize q 7→ Eεh(t
k
τ , q) + D(qk−1

ετh , q) subject to q∈Vh := Vdf,h×Vpl,h (3.7)

to be solved for k = 1, ..., T/τ ; here D is from (2.9) with D from (2.8). One should note

that such D is rather implicit unless the dissipation metric R = R(P,
.
P) were independent

of P. These minimization problems are close to the ones used in the engineering papers
mentioned above, the difference being that we use the (rather implicit) dissipation distance
D whereas most other works approximate this using R and some explicit predictors. In
particular, the triangle inequality is essential to derive a priori bounds and to employ a
generalized version of Helly’s selection principle, cf. [FrM06,MaM05].

It is convenient to introduce the notation of piece-wise constant interpolants qτ and
q
τ
, defined by

qετh(t) := qkετh for t ∈
(
(k−1)τ, kτ

]
, (3.8a)

q
ετh

(t) := qk−1
ετh for t ∈

[
(k−1)τ, kτ

)
. (3.8b)

Beside, we define

Eετh(t, q) := Eεh(kτ, q) for t ∈
(
(k−1)τ, kτ

]
. (3.8c)

The rate independence yields the discrete stability :

∀q̃ ∈ Q : Eετh(t, qετh(t)) ≤ Eετh(t, q̃) + D(qετh(t), q̃) (3.9)

which holds for any t ∈ [0, T ], and the following two-sided energy inequality :

∫ s

0

[Eεh]
′
t

(
t, qετh(t)

)
dt ≤ Eετh

(
s, qετh(s)

)
+ DissD

(
qετh, [0, s]

)

− Eετh(0, u0, z0) ≤
∫ s

0

[Eεh]
′
t

(
t, q

ετh
(t)
)

dt (3.10)

which holds for any s = kτ ∈ [0, T ], k ∈ N, where (cf. e.g. [Mie05,MiR09])

DissD(q; [r, s]) = sup
{ N∑

j=1

D(P(tj−1),P(tj));

all partitions r ≤ t1 < t2 < ... < tN ≤ s
}
. (3.11)

Unfortunately, in the engineering studies, energetics is usually ignored. Beside its
physical importance itself, sometimes it may be advantageously exploited as a certain
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a-posteriori information to improve or correct the calculations, not speaking about de-
tection of coding mistakes in already seemingly well functioning computer codes. This
particularly concerns the evolutionary rate-independent situation at large strains when
one has the two-sided estimate (3.10) available and essentially no other mathematically
justified concepts of solutions are at disposal, in contrast to small-strains models, cf. the
discussion in [MiR15, Chap. 1] or also e.g. [Rou15]. This improvement or correction may
be considered if (3.10) has big differences in lower and upper bounds or is even not satisfied
e.g. because of a failure of a specific optimization routine used for the global-optimization
problem (3.7); cf. [Ben11,MRZ10].

Example 3.1 (Ogden-type material revisited) Instead of the general but rather im-
plicit formula (3.6), more explicit formulas can be used in concrete models. E.g. in the
particular case (2.26) one can take the explicit regularization

Ŵ el,ε(Fel) = c1|Fel|pel +





c2

(det Fel + ε)γ
if det Fel ≥ 0,

c2

ε

(
| det Fel|2 −

γ

εγ
det Fel +

ε

εγ

)
if det Fel < 0.

(3.12)

This Ŵ el,ε is a C1-function which is piecewise C2 and polyconvex in the usual sense

[Bal77] and has a max(pel, 2d) polynomial growth. Note that Wε(F,P,A) := Ŵ el,ε(FP−1)+
κ
ppl
|P|ppl + κ

pgr
|A|pgr , which is a regularized analog of W from of (2.21a), is compatible with

the polyconvexity (2.15).

4 Convergence towards energetic solutions

The energetic formulation of rate-independent systems provides a certain weak form of
system (2.4). For this, in general, we choose a state space Q for q = (y,Π) by identifying
suitable weakly closed subsets of Sobolev spaces over Ω, here Q from (2.14). A mapping
q = (y,Π) : [0, T ] → Q with Q from (2.14) is called an energetic solution to the rate-
independent system determined by the functionals E and D, abbreviated as RIS (Q,E,D),
if for all t ∈ [0, T ] the stability condition (S) and the energy balance (E) hold:

(S) E(t, q(t)) ≤ E(t, q̂) + D(q(t), q̂) for all q̂ ∈ Q, (4.1a)

(E) E(t, q(t)) + DissD(q; [0, t]) = E(0, q(0)) +

∫ t

0

P(s) ds, (4.1b)

where DissD(q; [r, s]) is as in (3.11) and P : [0, T ] → R is the “complementary” power of
the external loadings:

P(t) := −
〈.
`(t), gDir(t, y(x))

〉
−
∫

ΓDir

σ(t, x) · .gDir(t, y(x)) dx, (4.2)

with ` from (2.3) and σ being the traction stress ∂FWν on the boundary ΓDir. The adjec-
tive “complementary” wants to distinguish (4.2) from the conventional power 〈`(t), .

y(t)〉
related to the Helmholtz-type stored energy. In contrast the latter, P from (4.2) does
not involve the time derivative of the solution, which is more desirable because

.
q is not

well controlled in rate-independent systems. Actually, in the case of the Dirichlet loading,
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this last term in (4.1b) should be reformulated in a more complicated form (2.17), since
boundary traces ∂FWν are not well defined.

The concept of energetic solutions can be seen as a weak version of the classical plas-
ticity formulation, see [MaM09, Mie03] for discussing the mechanical modeling of elasto-
plasticity and detailed explanation. The major advantage of (S) and (E) is that it avoids
derivatives and is based solely on the functionals E and D, which need not be smooth
or even continuous. This is particularly convenient definition for models at large strains
where no reference configuration and no linear structure are apriori given and therefore
the notion of a time derivative itself occurring formally in the classical formulation (2.4)
is not defined.

Our RIS (Q,E,D) is now defined via Q from (2.14), E from (2.13), and D from (2.9),
and we will consider an initial-value problem requiring still

y(0) = y0 and Π(0) = Π0. (4.3)

We specify rigorous conditions onD andW that guarantee existence of energetic solutions,
the conditions on W being quite involved. In particular, we introduce a set N ⊂ GL+(d)
that contains P and will be used for numerical approximations of plastic strains taking
values in P, cf. Lemma 4.5 below. In addition to the polyconvexity (2.15), these conditions
include coercivity and continuity, assuming that, for some P ⊂ N ⊂ GL+(d), the following
qualification of W holds:

∃ c > 0, pel, ppl, pgr, plp > 1 ∀ (F,P,A)∈domW :
P∈N ⇒ W (F,P,A) ≥ c

(
|F|pdf + |P|ppl + |A|pgr

)
,

(4.4a)

∃ cW > 0, δ > 0, and a modulus of continuity ω : ]0, δ[→ ]0,∞[

∀ (F,P,A) ∈ domW, P∈N ∀N ∈Rd×d, |N−I| < δ :

W (·,P,A) is differentiable on GL+(d) and (4.4b)∣∣∂FW (F,P,A)FT
∣∣ ≤ cW

(
1 +W (F,P,A)

)
(4.4c)∣∣∂FW (F,P,A)FT− ∂FW (NF,P,A)(NF)T

∣∣ ≤ ω
(
|N−I|

)(
1+W (F,P,A)

)
. (4.4d)

For the extended quasi-distance D, we impose the conditions

D : N×N→ R is continuous; (4.5a)

∀P1,P2 ∈ N : D(P1,P2) = 0 ⇐⇒ P1 = P2; (4.5b)

∀P1,P2,P3 ∈ N : D(P1,P3) ≤ D(P1,P2) +D(P2,P3), (4.5c)

∃C > 0, p1 ∈ [1, ppl[ : |D(P1,P2)| ≤ C
(
1 + |P1|p1+|P2|p1

)
. (4.5d)

Proposition 4.1 (Existence of energetic solutions, [MaM09]) Let (2.15), (4.4)
and (4.5) hold for N = P ⊂ GL+(d) and for

1

pel

+
1

ppl

=
1

pdf

<
1

d
, and pgr > 1. (4.6)

Let further the Dirichlet loading gDir ∈C1([0, T ];W 1,∞(Ω; Rd)) satisfy also (2.12) and be
uniformly invertible, satisfying

∃CDir > 0 ∀ (t, y)∈ [0, T ]×Rd :
∣∣∂ygDir(t, y)

∣∣+
∣∣[∂ygDir(t, y)]−1

∣∣ ≤ CDir. (4.7)
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Moreover, let the initial condition q0 = (y0, Π0) ∈ Q be stable, i.e.

∀ q̂∈Q : E(0, q0) ≤ E(0, q̂) + D(q0, q̂), (4.8)

and let fvol ∈ C1([0, T ];W 1,∞(Ω; Rd)) and fsurf ∈ C1([0, T ];W 1,∞(∂Ω\ΓDir; Rd)). Then
there are energetic solutions q = (y,Π) according to the definition (4.1) with

y ∈ B([0, T ];W 1,pdf (Ω; Rd)), (4.9a)

Π ∈ B([0, T ];W 1,pgr(Ω; Rd×d)), DissD(q; [0, T ]) <∞. (4.9b)

The proof of this assertion can essentially be found in [MaM09]; here we only generalize
to a more general P with the corresponding coercivity (4.4a), thus admitting also models
with det P 6= 1. We also included the unilateral constraint but the modification of the
proof from [MaM09] is self-evident, if the Dirichlet loading is away from C so that (2.12)
can be assumed. We omit this proof here also because Proposition 4.1 will follow as
a by-product of the convergence of our numerical approximation with a bit stronger
assumptions or with the same assumptions if only the time (but not space) discretization
is considered.

The most essential ingredience for the limit passage from the discrete stability (3.9)
to the “continuous” stability (4.1a) is an explicit construction of some, so-called mutual
recovery sequence. In a full generality, it was designed in [MRS08]. Here, where the
dissipation distance is weakly continuous, it suffices to formulate a little easier condition:
for all sequences (tj, qj)j∈N which are stable with respect to a sequence of functionals
(Eεjhj

,D)j∈N in the sense

sup
j∈N

Eεjhj
(tj, qj) <∞ and ∀q∈Q : Eεjhj

(tj, qj) ≤ Eεjhj
(tj, q)+D(qj, q), (4.10)

we require the following:

∀ (tj, qj)j∈N from (4.10) with (tj, qj) ⇀ (t∗, q∗) ∀ q̂ ∈ Q ∃ (q̂j)j∈N :

lim sup
j→∞

(
Eεjhj

(tj, q̂j) + D(qj, q̂j)
)
≤ E(t∗, q̂) + D(q∗, q̂). (4.11)

Such a sequence (q̂j)j∈N is called a mutual recovery sequence, since it recovers the stored
and the dissipation energies mutually. Even more simply, usually (and, in particular here
too), one has weak Γ-liminf convergence of the sequence of {Eεjhj

}j∈N and one can consider
q̂j ⇀ q̂ and then, counting that D is weakly continuous, (4.11) reduces rather to a weak
Γ-convergence of the sequence of {Eεjhj

}j∈N, i.e.

∀ (t, q) ∀ tj → t, ∀ qj ⇀ q : lim inf
j→∞

Eεjhj
(tj, qj) ≥ E(t, q), (4.12a)

∀ (t, q̂) ∀ tj → t, ∃ q̂j ⇀ q̂ : lim sup
j→∞

Eεjhj
(tj, q̂j) ≤ E(t, q̂). (4.12b)

Enforcing q̂j → q̂ strongly, one has the stronger concept of the so-called Mosco convergence
of {Eεjhj

}j∈N, cf. also [MiR15, Sect. 2.1.5].
Without spatial discretization and penalization of the constraints, i.e. Eεh ≡ E, the

construction of mutual recovery sequences is rather simple in this special problem, and it
has been shown in [MaM09] that it suffices to take q̂j = q̂. The variant of (4.10)-(4.11)
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that only deals with penalization without discretization is also relatively simple, and again
the constant sequence q̂j = q̂ can serve as a mutual recovery sequence.

Involving finite-dimensional numerical approximation, it is important to ensure con-
tinuity of Eε ≡ Eε0 with Eε0 defined again by (3.2) but with Vdf,0 = W 1,pel(Ω; Rd) and
Vpl,0 = W 1,pgr(Ω; Rd×d), i.e.

Eε(t, y,Π) =

∫

Ω

Wε(∂ygDir(t, y)∇y,Π,∇Π) +
dC(y)r1

ε
dx

−
〈
`(t), gDir(t, y)

〉
+

1

ε

(∫

Ω

det(∇y) dx−measd(y(Ω))
)r0

. (4.13)

For this we need to strengthen (4.4a) by assuming pgr > d; note that then formally one has
“ppl =∞” so that simply pel = pdf , cf. also (4.6). In fact, the condition (4.6) from [MaM09]
should be read rather as

1

pel

+
1

max(ppl, p∗gr)
=

1

pdf

<
1

d
, (4.14)

and, if pgr > d, we have p∗gr = ∞. Note that if pel > pdf were allowed, the growth
condition |Wε(F,P,A)| ≤ Cε(|P|

)(
1 + |F|pel + |A|pgr) naturally corresponding e.g. to the

Ogden material (2.26) or (3.12) would not be compatible with the coercivity (4.4a). So,
from now on, we will use pel also in place of pdf .

As we already mentioned in Section 3, the natural choice (3.1b) does not guarantee
that Π ∈ Vpl,h is valued in P. Also here, for approximation purpose, we must consider a
neighbourhood of P in Rd×d, let us denote it by N.

Of course, the mentioned formal choice ppl =∞ obviously does not allow us to consider
ppl = ∞ directly in (4.4a) but one should exploit the embedding W 1,pgr(Ω) ⊂ L∞(Ω) in
the following way:

Lemma 4.2 (Coercivity of Eε) Let (4.4a) hold for Wε with pgr > d instead of W and
with a neighbourhood N of P, and let the Dirichlet loading ∂ygDir(t, y) be regular in the
sense (4.7). Then Eε(t, ·, ·) is coercive on the set {(y,Π)∈Q; Π(x)∈N for all x∈Ω}.

Proof. Considering (2.21a) and using the coercivity Ŵ el,ε(Fel) ≥ c0|Fel|pel , we can estimate

Eε(t, y,Π) ≥
∫

Ω

Wε(∂ygDir(t, y)∇y,Π,∇Π) dx

=

∫

Ω

Ŵ el,ε(∂ygDir(t, y)∇yΠ−1) +
κ

ppl

|Π|ppl +
κ
pgr

|∇Π|pgr dx

≥ c0‖∂ygDir(t, y)∇yΠ−1‖pelLpel + c1‖Π‖min(ppl,pgr)
L∞ +

κ
2pgr

‖∇Π‖pgrLpgr −
1

c1

≥ c0
‖∇y‖pelLpel

‖[∂ygDir(t, y)]−1‖pelL∞‖Π‖pelL∞
+ c1‖Π‖min(ppl,pgr)

L∞ +
κ

2pgr

‖∇Π‖pgrLpgr −
1

c1

≥ c0

Cpel
Dir

‖∇y‖pelLpel

‖Π‖pelL∞
+
c1

2
‖Π‖min(ppl,pgr)

L∞ +
κ

2pgr

‖∇Π‖pgrLpgr −
1

c1

≥ q‖∇y‖pel/qLpel + cq‖Π‖min(ppl,pgr)
L∞ +

κ
2pgr

‖∇Π‖pgrLpgr − Cq (4.15)
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with some q > 1 sufficiently large, and with c1, cq > 0 depending also on the norm of the
embedding W 1,pgr(Ω) ⊂ L∞(Ω) and with some Cq sufficiently large. For the last inequality
in (4.15), we used the Young inequality in the form

εqaq ≥ qab− (q−1)bq
′

εq′
with a =

‖∇y‖pel/qLpel

‖Π‖pel/qL∞
and b = ‖Π‖pel/qL∞

so that, for ε = (c0/C
pel
Dir)

1/q, we have

c0

Cpel
Dir

‖∇y‖pelLpel

‖Π‖pelL∞
≥ q‖∇y‖pel/qLpel −

(q−1)C
1/(q−1)
Dir

c
1/(q−1)
0

‖Π‖pel/(q−1)
L∞ . (4.16)

The strategy is now to choose q > 1 so big that pel/(q−1) < min(ppl, pgr) so that the term
c1
2
‖Π‖min(ppl,pgr)

L∞ will dominate the last term in (4.16) for large Π, which eventually yields
the last estimate in (4.15) with some cq > 0. This choice of q is always possible. Taking
also the Dirichlet conditions for y on ΓDir into account, from (4.15) we obtain the desired
coercivity. �

Since the regularized functionals Eε in (4.13) contain the term measd(y(Ω)) we need
some continuity result of this term in y. To the best of our knowledge the following
result is new, where Step 2 in the proof is due to [Mal16]. In the proof of Lemma 5.1 we
will derive even Lipschitz continuity of measd(y(Ω)) for maps in W 2,p(Ω; Rd) with det∇y
bounded from below by a positive constant, see (5.11).

Proposition 4.3 Assume that p > d and that Ω ⊂ Rd is an bounded, open set with
Lipschitz boundary ∂Ω. Then,

yn ⇀ y in W 1,p(Ω; Rd) =⇒ measd(yn)→ measd(y). (4.17)

Proof. We will rely on Rellich’s embedding theorem giving ‖yn − y‖C0(Ω) → 0, where we
use p > d, the boundedness of Ω and that ∂Ω is Lipschitz. Moreover, again using p > d,
we have the Marcus-Mizel estimate [MaM73, Thm. 1]

measd(y(A)) ≤ C(p, d)
( ∫

A
|∇y(x)|p dx

)d/p
measd(A)1−d/p (4.18)

for all y ∈ W 1,p(Ω) and all measurable A ⊂ Ω. In particular, all y ∈ W 1,p(Ω) satisfy
Lusin’s poperty (N), i.e. if measd(A) = 0 then also measd(y(A)) = 0.

Step 1: Upper semicontinuity lim supn→∞measd(yn(Ω)) ≤ measd(y(Ω)):
Since measd(∂Ω) = 0 and Ω = Ω ∪ ∂Ω, Lusin’s property (N) gives measd(y(Ω)) =

measd(y(Ω)). Since y is continuous and Ω compact, so is K
def
= y(Ω). Hence for all ε > 0

we can find an open set Oε ⊃ K such that measd(Oε \K) < ε. With ‖yn − y‖C0(Ω) → 0
we find Nε such that yn(Ω) ⊂ Oε for n ≥ Nε and conclude

lim sup
n→∞

measd(yn(Ω)) ≤ measd(Oε) ≤ measd(K) + ε = measd(y(Ω)) + ε,

which is the desired result since ε > 0 was arbitrary.

Step 2: Lower semicontinuity lim infn→∞measd(yn(Ω)) ≥ measd(y(Ω)):
Again using Lusin’s property (N), [MaZ92, Thm. 3.10] implies that almost all points z ∈
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y(Ω) are stable. We denote by S ⊂ y(Ω) the set of all stable points z, i.e. there exists
a δz > 0 such for all u ∈ C(Ω) with ‖u−y‖C0 < δz one also has z ∈ u(Ω). Defining the
increasing family Bk =

⋂∞
n=k yn(Ω) and using yn → y uniformly, we see that for all z ∈ S

there exists κz such that z ∈ Bk for k ≥ κz. We conclude S ⊂ ⋃∞k=1Bk and obtain

measd
(
y(Ω)

)
= measd(S) = measd

(⋃∞
k=1

Bk

)
= lim

k→∞
measd

(
Bk

)

= measd
(⋂∞

n=k
yn(Ω)

)
≤ lim inf

n→∞
yn(Ω),

which is the desired lower semicontinuity result. �
We are now ready to establish the continuity result for Eε.

Lemma 4.4 (Continuity of Eε) Let the assumptions (4.4b-d) hold for Wε with pgr > d
instead of W and for a neighbourhood N of P, let det(·) stay above some positive constant
on N, let the approximation Wε satisfy the growth condition

|Wε(F,P,A)| ≤ Cε
(
|P|
)(

1 + |F|pel + |A|pgr
)

provided P∈N (4.19)

for some Cε : R→ R continuous, and assume pel > d. Then the functional Eε is continu-
ous on W 1,pel(Ω; Rd)× {Π∈W 1,pgr(Ω; Rd×d); Π(x)∈N for all x∈Ω}.

Proof. Take converging sequences yk → y inW 1,pel(Ω; Rd) andΠk → Π inW 1,pgr(Ω; Rd×d).
As pgr > d, we have also Πk → Π in C(Ω; Rd×d). Then also the minors M(Πk) converge
to M(Π) in C(Ω; Rµd). Using the well-known algebraic formula P−1 = KT

d−1(P)/ det P, cf.
(2.24) for G = F = I and s = d−1, we have

Π−1
k =

KT
d−1(Πk)

detΠk

→ KT
d−1(Π)

detΠ
= Π−1 in C(Ω; Rd×d). (4.20)

Here we used continuity of Π 7→ 1/ detΠ on the set N. Since pel > d, the mapping y 7→
det(∇y) maps W 1,pel(Ω; Rd) into L1(Ω). Altogether, using also (4.17), we can see that the
functional Eε is continuous on the set {(y,Π) ∈ W 1,pel(Ω; Rd)×W 1,pgr(Ω; Rd×d); detΠ∈
N}. �

Now, together with the implicit time discretization with a time step τ > 0, we con-
sider a conventional P1-finite element approximation both for y and for Π with a mesh
parameter h > 0, cf. (3.1). Recall that Π∈Vpl,h satisfy the prescribed constraint Π(x)∈P

at nodal points of the triangulation Th but not necessarily at other points of Ω. We will
rely on:

Lemma 4.5 (Approximation of the constraint Π(x)∈P.) Let pgr > d, and C ≥ 0
and a neighbourhood N of P be given. Then, for Vpl,h from (3.1b), the following holds:

∃h∗ > 0 ∀h∈(0, h∗]:
Π ∈ Vpl,h and
‖Π‖

W 1,pgr (Ω;Rd×d)
≤ C

}
⇒ ∀x∈Ω: Π(x)∈N. (4.21)

Proof. We use the continuous embedding W 1,pgr(Ω) ⊂ C0,1−d/pgr(Ω). Counting that,
by the definition of the mesh parameter h, it holds maxx∈Ω dist(x,Nh) ≤ h, we have
minex∈Nh

|Π(x)−Π(x̃)| ≤ HCh
1−d/pgr with the Hölder-continuity constant HC dependent

on ‖Π‖W 1,pgr , i.e. on C from (4.21). Also, we have |Π(x)| ≤ CN with N the norm of

17



the embedding W 1,pgr(Ω)→ L∞(Ω), which ensures existence of some δ > 0 such that the
δ-neighbourhood of {P ∈P; |P| ≤ CN} is still contained in N. Altogether, we get the
desired assertion with h∗ = (δ/HC)pgr/(pgr−d). �

Let us denote by qετh the piecewise-constant approximate solution obtained by this
way, i.e. using the global-minimization concept to the incremental problems, cf. (3.7). We
can expect at least a certain conditional subsequent-limit convergence:

Proposition 4.6 (Numerical approximation, convergence) Let us consider the
model with P so that det(·) stays above some positive constant on P and let the as-
sumptions of Proposition 4.1 be fulfilled with (4.4) using pgr > d and that

W0 : R→ [0,∞] is convex, lower semicontinuous, and proper, (4.22a)

∃pel ≥ 2d, c > 0 : c|Fel|pel ≤W1(M1(Fel), ...,Md−1(Fel)) ≤ C
(
1+|Fel|pel

)
,

W1 is convex and continuous (4.22b)

hold, and let, for simplicity, the initial value q0 be stable with respect to Eε and D for all
ε > 0. Then:
(i) Fixing ε > 0, the numerical approximations qετh = (yετh, Πετh) converge (in terms

of subsequences) for (τ, h)→(0, 0) towards energetic solutions of the regularized RIS
(Q,Eε,D) with the initial value q0 ∈ Q := W 1,pel(Ω; Rd)×W 1,pgr(Ω; Rd×d) and with Eε
from (4.13) and D from (2.9). More specifically, for a subsequence and some (yε, Πε),
we have

∀ t ∈ [0, T ] : Πετh(t) ⇀ Πε(t) in W 1,pgr(Ω; Rd×d), (4.23a)

∀ t ∈ [0, T ] : Eε
(
t, yετh(t), Πετh(t)

)
→ Eε

(
t, yε(t), Πε(t)

)
, (4.23b)

∀ t ∈ [0, T ] : DissD

(
Πετh, [0, t]

)
→ DissD

(
Πε, [0, t]

)
, (4.23c)

∀a.a. t∈ [0, T ] : ∂tEε
(
t, yετh(t), Πετh(t)

)
→ ∂tEε

(
t, yε(t), Πε(t)

)
(4.23d)

and, for all t ∈ [0, T ], there is a further subsequence
(
qετ t

nh
t
n
(t)
)
n∈N such that

∀t ∈ [0, T ] : yετ t
nh

t
n
(t) ⇀ yε(t) in W 1,pel(Ω; Rd), (4.23e)

and any (yε, Πε) obtained by this way is an energetic solution to the regularized RIS
(Q,Eε,D).

(ii) Denoting an energetic solution (yε, Πε) obtained in the point (i), there is a converging
subsequence for ε→ 0 in the mode like (4.23) to some (y,Π) and any couple obtained
by this way is an energetic solution to the original RIS (Q,E,D).

(iii) For a fixed (ε, τ), we can converge with h→ 0 in the mode like in (4.23) to (yετ , Πετ )
which solves the time-discrete problem corresponding to the regularized (but not dis-
cretized) RIS (Q,Eε,D). Then, converging (ε, τ) → (0, 0), one obtains energetic
solutions to the original RIS (Q,E,D).

Sketch of the proof. For fixed ε > 0, let us realize the continuity and coercivity of Eε
on Q = W 1,pel(Ω; Rd)×W 1,pgr(Ω; Rd×d) just by using the growth conditions in (4.22) and
the continuity of the Nemytskĭı operators. Here, an important fact is also that we have
a uniform estimate of Πετh in L∞(0, T ;W 1,pgr(Ω; Rd×d)) so that, in view of Lemma 4.5,
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for a sufficiently small h > 0, the mapping Π 7→ Π−1 : W 1,pgr(Ω; Rd×d)→ L∞(Ω; Rd×d) is
continuous, using Π−1 = KT

d−1(Π)/ detΠ. A further ingredient is the standard approx-

imation property of the P1-FE discretization, namely that every (ŷ, Π̂) is attainable by

a sequence {(ŷh, Π̂h)}h>0 with (ŷh, Π̂h) ∈ Vdf,h × Vpl,h converging to (ŷ, Π̂) in the norm
topology of W 1,pel(Ω; Rd)×W 1,pgr(Ω; Rd×d).

We emphasize that Ŵ ε from (3.6) is polyconvex in the sense of (2.15) because the
Yosida approximation Wε of W0 from (3.6) is convex. Hence Eε is also weakly lower
semicontinuous on W 1,pel(Ω; Rd)×W 1,pgr(Ω; Rd×d). Also, it is important that, due to the
∇Π-term and the compact embedding W 1,pgr(Ω; Rd×d) ⊂ L∞(Ω; Rd×d), the dissipation
distance D from (2.9) is weakly continuous; hence the mutual-recovery sequences (in the
sense of [MRS08]) can simply be taken constant.

As to (ii), the convergence of solutions of the RIS (Q,Eε,D) towards solutions of the
RIS (Q,E,D) with the initial condition q0 is relatively standard when exploiting the ab-
stract Γ-convergence results, cf. [MiR15, MRS08]; here one can rely on the obvious facts
that Eε ≤ E and Eε → E pointwise. One important fact is the uniform coercivity of Eε,
stated in Lemma 4.2. Another important fact is the weak continuity of ∂tEε(t, ·, ·), which
is rather technical and actually needs [MiR15, Prop. 2.1.17] generalized for sequences
of energies, exploiting also convergence of energies along stable sequences and uniform
approximation of ∂tEε(t, ·, ·) by the time-difference quotients holding as a simple conse-
quence of the C1 time dependence of the loading `(·) and gDir(·), cf. the assumptions in
Proposition 4.1.

As to (iii), one can use abstract results about time-discretized problems whose data
Γ-converges in a suitable sense, cf. [MRS08] or also [MiR15, Chap. 2]. Here the standard
Γ-convergence Eε → E suffices because D is continuous. �

Corollary 4.7 (Implicit convergence criterion) There exists H : R+ → R+ decaying
sufficiently fast to zero so that the joint convergence of the numerical approximations
qετh = (yετh, Πετh) converge in terms of subsequences and in the mode as in (4.23) for
(ε, τ, h) → (0, 0, 0) towards energetic solutions of the original RIS (Q,E,D) subject to a
“convergence criterion” h ≤ H(ε) holds.

In general, only existence of such H can be proved by rather nonconstructive topo-
logical arguments, cf. [KMR05, Prop. 5.6] or [MiR15, Prop. 2.4.6]. Such an unspecified,
very implicit criterion has not much practical importance, however, which is a particular
motivation for the following section.

5 Improved convergence coping with the Lavrentiev

phenomenon in case of incompressible plasticity in

nonsimple materials

In this section we confine ourselves to the case Md(Π) = detΠ = 1, which reflects
the phenomenon that plastification is microscopically related with a slip of particular
atomic layers due to dislocation movement without substantial change of volume, i.e.
incompressiblity of the plastic strain. We thus consider

P =
{
P∈Rd×d; det P = 1

}
and N =

{
P∈Rd×d;

1

2
≤ det P

}
. (5.1)
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This will facilitate or at least simplify some mathematical aspects; in particular it allows
for modification of (3.6) to obtain an approximation of W0 that the continuity of P 7→
Wel,ε(F,P) is uniform with respect to ε, cf. (5.8b) below.

It should be noted that all variants in Proposition 4.6 concern only the cases that
the spatial discretization controlled by h > 0 converges first. In reality, we rather refine
the discretization together with decreasing ε. Convergence of such a scenario would need
the Γ-convergence of the collection {Eεh}ε>0,h>0, possibly respecting some convergence
criterion of the type h ≤ H(ε). We however hardly can expect an explicit H because of
the mentioned Lavrentiev phenomenon, cf. Corollary 4.7.

Anyhow, to have a chance for some explicit convergence criterion, we modify the
model in the spirit of the theory of so-called second-grade nonsimple materials (also called
multipolar solids), cf. e.g. [Pod02, Šil85], alternatively also called the concept of hyper-

or couple-stresses [PoV10, Tou62]. It consists in augmenting Ŵ el by a convex higher-

order term Ŵ SG
el (∇Fel) = χ

psg
|∇Fel|psgwith χ > 0. and psg > d. This term could easily

be replaced by a more physically motivated functional which is convex and satisfies the
bounds c0|∇Fel|psg ≤ Ŵ SG

el (∇Fel) ≤ C0(1+|∇Fel|psg).
Taking into account Fel = ∂ygDir(t, y)∇yΠ−1, cf. (2.23), together with Π−1 =

KT
d−1(Π)/detΠ with detΠ = 1, the augmented Eε from (4.13) results to the second-grade

stored energy

ESG

ε (t, y,Π) := Eε(t, y,Π) +

∫

Ω

χ

psg

∣∣∇(∂ygDir(t, y)∇yKT
d−1(Π))

∣∣psg dx (5.2)

defined on W 2,psg(Ω; Rd) × W 1,pgr(Ω; Rd×d). Note that always W 2,psg(Ω; Rd) ⊂
W 1,pel(Ω; Rd) due to psg > d. We modify analogously also Eεh from (3.2), namely

ESG

εh(t, y,Π) := Eεh(t, y,Π) +

∫

Ω

χ

psg

∣∣∇(∂ygDir(t, y)∇yKT
d−1(Π))

∣∣psg dx (5.3)

but, of course, we now cannot use P1-elements for Vdf,h from (3.1a) and, counting now
also the special choice of P, we choose now:

Vdf,h :=
{
y ∈ W 2,∞(Ω; Rd); y|4 2nd-degree polynomal ∀4∈Th

}
, (5.4a)

Vpl,h :=
{
Π∈W 1,∞(Ω; Rd×d); Π|4 1st-degree polynomal ∀4∈Th,

detΠ(x) = 1 ∀x∈Nh

}
. (5.4b)

Note that requiring detΠ(x) = 1 for all x instead of only for all x∈Nh used in (5.4b) would
make it difficult to construct a projector from {Π ∈W 1,∞(Ω; Rd×d); detΠ = 1 on Ω} on
such a subspace.

For further purpose, without going into technical details behind the theory of the finite-
element method, we denote by P

(k)
h some projector from W k,p(Ω) into the Pk-finite element

space on the triangulation Th. We rely on the (standard) approximation properties

∀ v∈W k,p(Ω) : lim
h→0

∥∥v−P
(k)
h v
∥∥
Wk,p(Ω)

= 0, and (5.5a)
∥∥v−P

(k)
h v
∥∥
W l,p(Ω)

≤ Ck,l,ph
k−l∥∥v

∥∥
Wk,p(Ω)

for l = 0, ..., k (5.5b)

with some Ck,l,p independent of h and v, cf. e.g. [BrS08, Thm. 4.4.20]. We will use (5.5)
component-wise for vector- or matrix-valued functions only for k = 1 or 2.
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We again assume W in the form (2.21a). As we now use the concept of nonsimple
materials, we have “compactness of deformation gradients” and we can relax the poly-
convexity (2.15) by requiring convexity of W (F,P,A) only in terms of A. Also the ansatz
(3.3) and the assumption (4.22) can then be relaxed to require

Ŵ el(Fel) = Ŵ el,1(Fel) + W0(det Fel) with Ŵ el,1 continuous, satisfying (5.6a)

∃ pel ≥ 2d, c > 0 : c|Fel|pel ≤ Ŵ el,1(Fel) ≤ C
(
1+|Fel|pel

)
, and (5.6b)

W0 : R→ [0,∞] lower semicontinous and proper. (5.6c)

If W0 is not convex, the construction (3.5) of Wε is then called the Moreau-Yosida approx-

imation instead of mere Yosida approximation. Altogether, Wε(F,P,A) = Ŵ el,1(FP−1) +
Wε(det(FP−1)) + κ

ppl
|P|ppl + κ

pgr
|A|pgr . Yet, we now use det P = 1 so that, using also the

relation P−1 = KT
d−1(P)/ det P = KT

d−1(P), we obtain eventually

Wε(F,P,A) =Wel,ε(F,P) +
κ

ppl

|P|ppl +
κ
pgr

|A|pgr with

Wel,ε(F,P) = Ŵ el,1(FKT
d−1(P)) + Wε(det F). (5.7)

It is realistic to assume that Wel,ε is locally Lipschitz continuous in a specific way respect-
ing not only P but even its neighbouhood N from (5.1), namely

∃L : R+ → R+ increasing ∀F, F̃∈Rd×d, P, P̃∈N :
∣∣Wel,ε(F,P)−Wel,ε(F̃,P)

∣∣ ≤ L(|P|)ε−1
∣∣F−F̃

∣∣(1+|F|pel−1+|F̃|pel−1
)
, (5.8a)

∣∣Wel,ε(F,P)−Wel,ε(F, P̃)
∣∣ ≤ L

(
|P|+|P̃|

)∣∣P−P̃
∣∣(1+|F|pel

)
. (5.8b)

Let us remark that we could consider a general negative exponent in ε−1 in (5.8b) different
from −1 but this special choice is fitted to the chosen scaling in (3.2). Recall that in this
section, we confine ourselves to detΠ = 1 and thus Wε coincides with the regularization
used in (3.6) on P but is, in general, different on its neighborhood N. Further, we
strengthen the qualification on gDir(t, ·) by requiring, beside (4.7), also that

∃CDir ∈ R ∀ (t, y, ỹ)∈ [0, T ]×Rd×Rd :
∣∣∂2
ygDir(t, y)

∣∣ ≤ CDir. (5.9)

Then we can show that the perturbed functional Eε from (5.2) is Lipschitz continuous on
bounded sets.

Lemma 5.1 (Lipschitz continuity of ESG
ε ) Let the assumptions (4.4b-d) and (4.19)

hold for N from (5.1). Moreover, let (5.8) and (5.9) hold. Then, there is ε0 > 0 such
that, for any 0 < ε ≤ ε0, the functionals ESG

ε : W 2,psg(Ω; Rd) ×W 1,pgr(Ω; Rd×d) → R are
Lipschitz continuous on bounded sets; more specifically, for all ρ ∈ [0,∞) there is some
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`ρ∈ [0,∞) such that it holds

∀ t∈ [0, T ] ∀ (y,Π), (ỹ, Π̃)∈W 2,psg(Ω; Rd)×W 1,pgr(Ω; Rd×d) :

ESG
ε (t, y,Π) ≤ %,
‖y‖

W 2,psg (Ω;Rd)
+ ‖Π‖

W 1,pgr (Ω;Rd×d)
≤ ρ,

‖ỹ‖
W 2,psg (Ω;Rd)

+ ‖Π̃‖
W 1,pgr (Ω;Rd×d)

≤ ρ,

∀x∈Ω : Π(x), Π̃(x) ∈ N




⇒

∣∣ESG

ε (t, y,Π)−ESG

ε (t, ỹ, Π̃)
∣∣ ≤ `ρ

(1

ε

∥∥y−ỹ
∥∥
W 1,pel (Ω;Rd)

+
∥∥y−ỹ

∥∥
W 2,psg (Ω;Rd)

+
∥∥Π−Π̃

∥∥
W 1,pgr (Ω;Rd×d)

)
. (5.10)

Proof. We can first estimate the difference in the elastic part by

∣∣∣∣
∫

Ω

Wel,ε(∂ygDir(t, y)∇y,Π) dx

−
∫

Ω

Wel,ε(∂ygDir(t, ỹ)∇ỹ, Π̃) dx

∣∣∣∣ ≤
∫

Ω

I(1)
ε + I(2)

ε dx

with the splitting

∣∣Wel,ε(∂ygDir(t, y)∇y,Π)−Wel,ε(∂ygDir(t, ỹ)∇ỹ, Π̃)
∣∣

≤
∣∣Wel,ε(∂ygDir(t, y)∇y,Π)−Wel,ε(∂ygDir(t, ỹ)∇ỹ, Π)

∣∣
+
∣∣Wel,ε(∂ygDir(t, ỹ)∇ỹ, Π)−Wel,ε(∂ygDir(t, ỹ)∇ỹ, Π̃)

∣∣ =: I(1)
ε + I(2)

ε .

Then, using (5.8a) and the Hölder inequality we obtain

∫

Ω

I(1)
ε dx ≤

∫

Ω

L
(
|Π|
)
ε−1
∣∣∂ygDir(t, y)∇y − ∂ygDir(t, ỹ)∇ỹ

∣∣
(

1 + |∂ygDir(t, y)∇y|pel−1 + |∂ygDir(t, ỹ)∇ỹ|pel−1
)

dx

≤ L1

(
‖Π‖L∞

)
ε−1
(∥∥∂ygDir(t, y)−∂ygDir(t, ỹ)

∥∥
L∞

∥∥∇y
∥∥
Lpel

+
∥∥∇y−∇ỹ

∥∥
Lpel

∥∥∂ygDir(t, ỹ)
∥∥
L∞

)(
1 +

∥∥∇y
∥∥pel−1

Lpel
+
∥∥∇ỹ

∥∥pel−1

Lpel

)

with L1 : R+ → R+ increasing. We also used that ∂ygDir(t, y) is bounded by assumption

(4.7). The contribution to (5.10) coming from I
(1)
ε further relies on the Lipschitz continuity

|∂ygDir(t, y)−∂ygDir(t, ỹ)| ≤ CDir|y−ỹ| ensured by (5.9). Moreover, using (5.8b), we can
eventually estimate

I(2)
ε =

∣∣Wel,ε(∂ygDir(t, ỹ)∇ỹ, Π)−Wel,ε(∂ygDir(t, ỹ)∇ỹ, Π̃)
∣∣

≤ L
(
|Π|+|Π̃|

)∣∣Π−Π̃
∣∣(1+|∂ygDir(t, ỹ)∇ỹ|pel

)
,

where we used (5.8b). By the Hölder inequality, we can estimate this term as

∫

Ω

I(2)
ε dx ≤ L2

(
‖Π‖L∞+ ‖Π̃‖L∞

)∥∥Π−Π̃
∥∥
L∞

(
1 +

∥∥∇ỹ
∥∥pel
Lpel

)
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with some increasing L2 : R+ → R+. Thus the terms I
(1)
ε and I

(2)
ε contribute respectively

to the first and the third term in the right-hand side of (5.10).
Another contribution to the first right-hand side of (5.10) comes from the penalization

terms in Eε in (4.13), using their Lipschitz continuity controlled as ε−1. More in detail,
relying on Lipschitz continuity of the distance-functional dC(·), we can estimate

∣∣∣∣
1

ε

∫

Ω

dC(y)r1 dx− 1

ε

∫

Ω

dC(ỹ)r1 dx

∣∣∣∣ ≤
1

ε
L3

(
‖y‖r1−1

L∞ + ‖ỹ‖r1−1
L∞

)∥∥y−ỹ
∥∥
L∞

with some increasing L3 : R+ → R+ (depending on r1). Moreover,

∣∣∣∣
1

ε

(∫

Ω

det(∇y) dx−measd(y(Ω))
)r0
− 1

ε

(∫

Ω

det(∇ỹ) dx−measd(ỹ(Ω))
)r0∣∣∣∣

≤ 1

ε
C
∥∥∇y−∇ỹ

∥∥
Lpel

+
1

ε
C
∥∥y − ỹ

∥∥
L∞

with C dependent on the radius of a ball in W 1,pel(Ω; Rd) where y and ỹ live; actually,
C = O(1+‖y‖r0d−1

W 1,pel
+‖ỹ‖r0d−1

W 1,pel
). Here we used also that y and ỹ live also in a bounded

set in C1,1−d/psg(Ω; Rd) and thus y(Ω) and ỹ(Ω) are Lipschitz domains with boundaries
∂y(Ω) ⊂ y(∂Ω) and ∂ỹ(Ω) ⊂ ỹ(∂Ω) and

|measd(y(Ω))−measd(ỹ(Ω))|
≤ C

(
measd−1(ỹ(∂Ω)) + measd−1(y(∂Ω))

)
‖y−ỹ‖

C(Ω;Rd)
(5.11)

with a constant C depending on d and %. Here we can use that y and ỹ are locally
invertible for any 0 < ε ≤ ε0 with ε0 sufficiently small depending on %. This follows
from [HeK09, Thm. 3.1] which shows that any level set of ESG(t, ·, id) defined by (5.18)
below admits some δ > 0 such that any y from this level set exhibits det(∇y) ≥ δ. This
holds here possibly with a smaller δ also for ESG(t, ·, Π) with Π ranging over bounded sets
in W 1,pgr(Ω; Rd×d) valued in N from (5.1). This implies existence of some ε0 > 0 such
that the level sets ESG

ε (t, ·, ·) considered in (5.10) with any 0 < ε ≤ ε0 enjoy that any y
from any of these level sets exhibits det(∇y) ≥ δ/2 everywhere on Ω. This can be seen by
a contradiction argument, assuming that, for any δ > 0 there is some yδ and xδ ∈ Ω for
which det(∇yδ(xδ)) ≤ δ/2 and using compactness and continuity of (x, y) 7→ det(∇y(x)),
for δ → 0 we would get some y and x such that det(∇y(x)) ≤ 0, which would contradict
the mentioned result from [HeK09].

Further we need to estimate

∣∣∣
∫

Ω

|∇(∂ygDir(t, y)∇yKT
d−1(Π))|2 − |∇(∂ygDir(t, ỹ)∇ỹKT

d−1(Π̃))|2 dx
∣∣∣

≤ Cρ

(
‖y−ỹ‖W 2,psg + ‖Π−Π̃‖W 1,p

)
. (5.12)

To this goal, we fix t ∈ [0, T ] and use the notation

yDir = gDir(t, y), ỹDir = gDir(t, ỹ), and then

A = ∇yDir, Ã = ∇ỹDir, B = KT
d−1(Π), B̃ = KT

d−1(Π̃).
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By our assumptions we have A, Ã ∈ W 1,psg(Ω;Rd×d) (use pel > d here) and B, B̃ ∈
W 1,pel(Ω; Rd×d) with pel > d. Hence,

∣∣∣∣
∫

Ω

∣∣∇(AB)
∣∣psg−

∣∣∇(ÃB̃)
∣∣psg dx

∣∣∣∣

≤
(
‖∇(AB)‖psg−1

Lpsg + ‖∇(ÃB̃)‖psg−1
Lpsg

)
‖∇(AB−ÃB̃)‖Lpsg (5.13)

≤ C1

(
‖A−Ã‖W 1,psg‖B‖W 1,pel + ‖Ã‖W 1,psg‖B−B̃‖W 1,pel

)

≤ Cρ

(
‖A−Ã‖W 1,psg + ‖B−B̃‖W 1,pel

)
, (5.14)

where C1 = (‖A‖psg−1

W 1,psg +‖Ã‖psg−1

W 1,psg )(‖B‖psg−1

W 1,pel
+‖B̃‖psg−1

W 1,pel
) and Cρ depends only on ρ. Us-

ing pel > d (giving ‖Π‖L∞ , ‖Π̃‖L∞ ≤ Rρ) and the polynomial structure of Kd−1 we have

‖B−B̃‖W 1,pel ≤ Cρ‖Π−Π̃‖W 1,pel . If gDir = id, we are already done.
To treat the general case, let us denote

a(x) = ∂ygDir(t, y(x)), b = ∇y, ã(x) = ∂ygDir(t, ỹ(x)), b̃ = ∇ỹ,

such that ∇yDir = A = ab and ∇ỹDir = Ã = ã b̃. Obviously, we have

‖A−Ã‖Lpsg = ‖ab−ãb̃‖Lpsg ≤ C‖∂ygDir(t, ·)‖W 1,∞‖y−ỹ‖W 1.psg ≤ CDirC‖y−ỹ‖W 1,psg

where CDir is from (5.9). Thus, it remains to estimate ‖∇(ab)−∇(ãb̃)‖Lpsg . Here we

use a, ã ∈ W 1,pel(Ω) (taking into account pel > d and again (4.7) and (5.9)) and b, b̃ ∈
W 1,psg(Ω; Rd×d). Hence, we obtain

∥∥∇A−∇Ã
∥∥
Lpsg ≤

∥∥∂ygDir(t, y(·))− ∂ygDir(t, ỹ(·))
∥∥
W 1,pel

∥∥∇y
∥∥
W 1,psg

+
∥∥∂ygDir(t, ỹ(·))

∥∥
W 1,pel

∥∥∇y −∇ỹ
∥∥
W 1,psg

≤
∥∥∂ygDir(t, ·)

∥∥
W 1,∞

(∥∥y−ỹ
∥∥
W 1,pel

∥∥y
∥∥
W 2,psg +

∥∥ỹ
∥∥
W 1,pel

∥∥y−ỹ
∥∥
W 2,psg

)

≤ Cρ
∥∥y−ỹ

∥∥
W 2,psg . (5.15)

Merging (5.14)–(5.15) shows the desired estimate (5.12).
As to the last two terms in (2.21a), we can estimate

∣∣∣∣
∫

Ω

κ

ppl

|Π|ppl − κ

ppl

|Π̃|ppldx

∣∣∣∣ ≤ Cκ

∫

Ω

|Π−Π̃|
(
1+|Π|ppl−1+|Π̃|ppl−1

)
dx

≤ Cκ
∥∥Π−Π̃

∥∥
L

ppl (Ω;Rd×d)

(
1+
∥∥Π
∥∥ppl−1

L
ppl +

∥∥Π̃
∥∥ppl−1

L
ppl

)
(5.16)

and also
∣∣∣∣
∫

Ω

κ
pgr

|∇Π|pgr − κ
pgr

|∇Π̃|pgrdx
∣∣∣∣ ≤ Cκ

∫

Ω

|∇Π−∇Π̃|
(
1+|∇Π|pgr−1+|∇Π̃|pgr−1

)
dx

≤ Cκ
∥∥∇Π−∇Π̃

∥∥
Lpgr

(
1+
∥∥∇Π

∥∥pgr−1

Lpgr +
∥∥∇Π̃

∥∥pgr−1

Lpgr

)
. (5.17)

Both (5.16) and (5.17) contribute to the last term in (5.10). �
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Lemma 5.2 (Γ-convergence of ESG
εh) Let (4.4) and (5.6) and the assumptions of

Lemma 5.1 hold. and the loading (gDir, fvol, fsurf) satisfy the assumptions of Proposi-
tion 4.1. Then for tε → t the collection {ESG

εh(tε, ·, ·)}ε,h>0 Γ-converges to ESG(t, ·, ·) defined
as

ESG(t, y,Π) =





E(t, y,Π)

+

∫

Ω

χ

psg

∣∣∇(∂ygDir(t, y)∇yKT
d−1(Π))

∣∣psg dx if detΠ=1 on Ω,

∞ otherwise (5.18)

with E from (2.13) in the weak topology on bounded sets of W 2,psg(Ω; Rd)×W 1,pgr(Ω; Rd×d)
in the sense (4.12) provided the following stability criterion is satisfied:

hmin(1,psg/pel)

ε
→ 0. (5.19)

Proof. The liminf-condition (4.12a), i.e. lim inf ESG
εh(tε, yεh, Πεh) ≥ ESG(t, y,Π) for weakly

converging sequences yεh ⇀ y and Πεh ⇀ Π, holds unconditionally. This follows by
showing this convergence for some lower estimate of ESG

εh, namely for ESG
ε ≤ ESG

εh with ESG
ε

defined by (5.2). Actually, ESG
ε penalizes the constraints occurring in E defined by (2.13)

together with the constraint (1.1b) involved in W . The estimate then essentially follows
from the weak lower-semicontinuity of ESG(t, ·, ·).

The limsup-condition (4.12b), i.e. lim sup ESG
εh(tε, yεh, Πεh) ≤ ESG(t, y,Π) for any (y,Π)

and some weakly converging sequences yεh → y and Πεh → Π needs an explicit con-
struction of such recovery sequences and, in our case, holds only conditionally under the
stability criterion (5.19).

For (y,Π) given, the recovery sequence can be taken as

yεh = P
(2)
h y and Πεh = P

(1)
h Π (actually independent of ε) (5.20)

with P
(k)
h from (5.5). In view of (4.12b), we need to prove that

lim sup
(
ESG

εh(tε, yεh, Πεh)− ESG(t, y,Π)
)

= lim sup
(
ESG

ε (tε, y,Π)− ESG(t, y,Π)
)

+ lim
(
ESG

εh(tε, yεh, Πεh)− ESG

ε (tε, y,Π)
)
≤ 0. (5.21)

If ESG(t, y,Π) =∞, then (5.21) is trivial because its left-hand side is −∞. If ESG(t, y,Π) <
∞, then lim sup(ESG

ε (tε, y,Π) − ESG(t, y,Π)) ≤ 0 follows from ESG
ε ≤ ESG and from the

continuity of t 7→ ESG
ε (t, y,Π). Therefore, we only need to prove that the last term in

(5.21) is zero. More specifically, we can estimate
∣∣ESG

ε (tε, y,Π)−ESG

ε (tε, yεh, Πεh)
∣∣

≤ `ρ

(1

ε

∥∥y−yεh
∥∥
W 1,pel

+
∥∥y−yεh

∥∥
W 2,psg +

∥∥Π−Πεh

∥∥
W 1,pgr

)

≤ `ρ
ε

∥∥y−P
(2)
h y
∥∥
W 1,pel

+ `ρ
∥∥y−P

(2)
h y
∥∥
W 2,psg + `ρ

∥∥Π−P
(1)
h Π

∥∥
W 1,pgr

≤ `ρC
hmin(1,psg/pel)

ε
‖y‖W 2,psg + o(1) + o(1) for h→ 0, (5.22)

where we used (5.5a) with k = 2 and p = psg for y and with k = 1 and p = pgr for Π,

and also we used (5.5b) for k = 2, p = psg, and l = 1 or 2 to obtain ‖y−P
(2)
h y‖W 1,psg ≤
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C2,1,psgh‖y‖W 2,psg , which gives (5.22) provided psg ≥ pel > d, while for d < psg < pel we
have to use

‖y−P
(2)
h y‖W 1,∞ ≤ N‖y−P

(2)
h y‖W 2,psg ≤ NC2,2,psg‖y‖W 2,psg

with N denoting the norm of the embedding W 1,psg(Ω) ⊂ L∞(Ω), relying on psg > d.
These estimates can be further interpolated to obtain

∥∥y−P
(2)
h y
∥∥
W 1,pel

≤ Chpsg/pel‖y‖W 2,psg . �

Let us note that the recovery sequence (5.20) converges even strongly and therefore the
weak Γ-convergence proved in Lemma 5.2 is, in fact, even the so-called Mosco convergence.
In the main result of this section, we now do not need to assume the polyconvexity (2.15),
which allows for considering more general materials like the St. Venant-Kirchhoff material.

Proposition 5.3 (Convergence of the approximate evolution) Let all the as-
sumptions of Lemma 5.2 together with (4.5) hold and the initial condition (y0, Π0) be stable
and be approximated by (yεh,0, Πh,0) ∈ Vdf,h×Vpl,h so that (yεh,0, Πh,0)→ (y0, Π0) in Q and
Eε(0, yεh,0, Πh,0) → E(0, y,Π). Then, the numerical approximations qετh = (yετh, Πετh)
converge (in terms of subsequences) for (ε, τ, h)→(0, 0, 0) respecting the stability cri-
terion (5.19) towards energetic solutions of the RIS (QSG,ESG,D) with initial value

q0 ∈ QSG def
= W 2,psg(Ω; Rd)×W 1,pgr(Ω; Rd×d) and (ESG,D) from (5.18) and (2.9). Indeed,

for a subsequence and some (y,Π), we have

∀ t ∈ [0, T ] : Πετh(t) ⇀ Π(t) in W 1,pgr(Ω; Rd×d), (5.23a)

∀ t ∈ [0, T ] : ESG

ε

(
t, yετh(t), Πετh(t)

)
→ ESG

(
t, y(t), Π(t)

)
, (5.23b)

∀ t ∈ [0, T ] : DissD

(
Πετh, [0, t]

)
→ DissD

(
Π, [0, t]

)
, (5.23c)

∀a.a. t∈ [0, T ] : ∂tE
SG

ε

(
t, yετh(t), Πετh(t)

)
→ ∂tE

SG
(
t, y(t), Π(t)

)
(5.23d)

and, for all t ∈ [0, T ], there is a further subsequence (qετ t
nh

t
n
(t))n∈N such that

∀t ∈ [0, T ] : yετ t
nh

t
n
(t) ⇀ y(t) in W 2,psg(Ω; Rd). (5.23e)

Any (y,Π) obtained by this way is an energetic solution to the RIS (QSG,ESG,D).

Sketch of the proof. Using Lemma 4.2, in view of (5.2), we have the estimates

∥∥yετh
∥∥
B([0,T ];W 1,pel (Ω;Rd)

≤ C, (5.24a)
∥∥Πετh

∥∥
B([0,T ];W 1,pgr (Ω;Rd×d))

≤ C. (5.24b)

Then, using the second-gradient term, we obtain also

∥∥yετh
∥∥
B([0,T ];W 2,psg (Ω;Rd))

≤ C. (5.24c)

Indeed (5.24c) follows from
∫

Ω
χ
psg

∣∣∇(∂ygDir(t, yετh)∇yετhK−T
d−1(Πετh))

∣∣psg dx, cf. the last

term in (5.2). To this goal, recall the chain rule

∇x

(
gDir(t, ·) ◦ yετh

)
(x) = ∂ygDir(t, yετh(x))∇yετh(x),
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from which we estimate

Bετh := ∂ygDir(t, yετh)∇yετhKT
d−1(Πετh) in W 1,psg(Ω; Rd×d).

To estimate ∇yετh = [∂ygDir(t, yετh)]
−1BετhK−T

d−1(Πετh) in W 1,psg(Ω; Rd×d) we use that the
gradient of the inverse matrix x 7→ [∂ygDir(t, yετh(x))]−1 is given by

∇x

[
∂ygDir(t, yετh(x))

]−1

= −
[
∂ygDir(t, yετh(x))

]−1
(
∂2
ygDir(t, yετh)∇xyετh

)[
∂ygDir(t, yετh(x))

]−1
.

For [∂ygDir]
−1 and ∂2

ygDir(t, yετh), we need a-priori bounds, cf. the assumptions (4.7) and
(5.9); see already [FrM06, Eqn. (5.7)], and find

∥∥∇x[∂ygDir(t, yετh(x))]−1
∥∥
Lpel
≤
∥∥[∂ygDir]

−1
∥∥2

L∞

∥∥∂2
ygDir

∥∥2

L∞

∥∥yετh
∥∥
W 1,pel

≤ Cg
∥∥yετh

∥∥
W 1,pel

with some Cg depending on the qualification of gDir from (4.7) and (5.9). We find the
desired a priori estimate for ∇2yετh as follows

∥∥∇2yετh
∥∥
Lpsg ≤

∥∥∥∇x

(
[∂ygDir(t, yετh(·))]−1BετhK−T

d−1(Πετh)
)∥∥∥ Lpsg

≤
∥∥[∂ygDir(t, yετh(·))]−1BετhK−T

d−1(Πετh)
∥∥
W 1,psg

≤
∥∥[∂ygDir(t, yετh(·))]−1

∥∥
W 1,psg ‖Bετh‖W 1,psg

∥∥K−T
d−1(Πετh)

∥∥
W 1,psg

≤ Cg
∥∥yετh

∥∥
W 1,pel

C
∥∥Bετh

∥∥
W 1,psg

∥∥Πετh

∥∥
W 1,pgr ≤ Cρ

∥∥Bετh

∥∥
W 1,psg ,

where we used already (5.24a) and (5.24b).
The mutual recovery sequence for (4.11) with ESG

εh instead of Eεh can be taken as in the
proof of Lemma 5.2, cf. (5.20), relying on the weak continuity of the dissipation distance
due to the assumption (4.5). The rest follows from the abstract arguments, cf. [MRS08]
or [MiR15, Sect. 2.4]. �

Remark 5.4 Regularization (3.6) satisfies (5.8) if Ŵ el,1 from (5.6) also satisfies

∣∣Ŵ el,1(F)− Ŵ el,1(F̃)
∣∣ ≤ L

∣∣F−F̃
∣∣(1+|F|pel−1+|F̃|pel−1

)
(5.25)

Let us note that the Moreau-Yosida approximation Wε of W0 is Lipschitz continuous in
the sense |Wε(δ)−Wε(δ̃)| ≤ Cε−1|δ−δ̃|(1 + |δ|+ |δ̃|) so that Wε(F) := Wε(det F) satisfies

∣∣Wε(F)−Wε(F̃)
∣∣ ≤ Lε−1

∣∣F−F̃
∣∣(1+|F|pel−1+|F̃|pel−1

)
. (5.26)

In view of (5.25) with (5.26), we obtain (5.8) provided pel ≥ 2d, as already assumed in
(4.22b) and (5.6) anyhow.

Remark 5.5 (Convergence of static elastic problem) For purposes of possible ref-
erence, let us pronounce separately the Γ- (or rather Mosco) convergence of the numerical
approximation ESG

εh of the purely elastic problem without any plasticity. More specifically,
the functional ESG

εh(0, ·, I) converges towards E(0, ·, I) in the Mosco sense provided the sta-
bility criterion (5.19) holds. This is a simple consequence of Lemma 5.2 when fixing t
and Π(x) ≡ I. This result does not seem to be reported in the literature (which deals with
simple materials only).
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Remark 5.6 (Some generalizations) For C = C(t) time dependent in a reasonable
smooth way and remaining always away from ΓDir, it is quite straightforward that a
suitable definition of gDir can transform it to the time-independent case we considered up
to now. Also, considering Ω composed from several components possibly mutually in a
unilateral contact, each of them being fixed on some part by (possibly time-dependent)
Dirichlet condition, represents rather slight notational complication only.
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about computational aspects of large-strain plasticity and to Jan Malý for providing a full
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Matem. Pura Appl., 4(Tomo IV), 7–28, 1927.

29



[LeL67] E. H. Lee and D. T. Liu. Finite-strain elastic-plastic theory with application
to plain-wave analysis. J. Applied Phys., 38, 19–27, 1967.

[Li95] Z. Li. Element removal method for singular minimizers in problems of hyperelas-
ticity. Math. Models Meth. Appl. Sci. (M3AS), 5, 387–399, 1995.

[Li96] Z. Li. Numerical methods for mimizers and microstructures in nonlinear elasticity.
Math. Models Meth. Appl. Sci. (M3AS), 6, 957–975, 1996.
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[Rou91] T. Roub́ıček. A note on an interaction between penalization and discretization.
In A. Kurzhanski and I. Lasiecka, editors, Proceedings of IFIP-IIASA Conference
Modelling and Inverse Problems of Control for Distributed Parameter Systems, pages
145–150, Berlin, 1991. Springer.
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