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Abstract

We study the infinite integrable nonlinear Schrödinger equation (NLSE) hierarchy be-
yond the Lakshmanan-Porsezian-Daniel equation which is a particular (fourth-order) case
of the hierarchy. In particular, we present the generalized Lax pair and generalized soliton
solutions, plane wave solutions, AB breathers, Kuznetsov-Ma breathers, periodic solutions
and rogue wave solutions for this infinite order hierarchy. We find that ’even’ order equa-
tions in the set affect phase and ’stretching factors’ in the solutions, while ’odd’ order equa-
tions affect the velocities. Hence ’odd’ order equation solutions can be real functions, while
’even’ order equation solutions are always complex.

1 Introduction

It is well-known that the 1-d fundamental nonlinear Schrödinger equation (NLSE) is integrable
[1]. This fact has allowed the achievement of significant progress in the analysis of nonlinear
optics, water waves, BECs and many other fields of nonlinear physics. The possibility to write
solutions of the NLSE in analytical form stimulated numerous experimental works in these areas.
Initial developments in soliton solutions has been strengthened recently by the advances in
breather solutions. Various families of solutions have been presented in [2].

Although the NLSE is one of the fundamental equations in physics, it is not the only one which
is integrable. In particular, various extensions of the NLSE are known. For example, Painlevé
analysis of deformed NLS and Hirota equations has been given in [3]. Kano [4] considered small
perturbations of the NLSE that allowed him to keep the modified equation nearly integrable.
Such extensions expand the areas of applicability of integrable equations and provide efficient
ways for application of evolution equations in practice. For example, they may help to clarify the
physics of wave blow-up and collapse phenomena [5], as higher intensities require higher-order
terms to be included.

In the present work, we provide an extension of the NLSE to infinite order equations that com-
prise the NLSE hierarchy. Namely, we consider extensions of the NLSE where additional terms
can have arbitrarily large coefficients. This extension creates the infinite hierarchy of equations
that are integrable with infinite number of arbitrary real coefficients. The additional terms in the
equation include higher-order dispersion of all orders and higher-order dispersion of nonlinear
terms. The arbitrariness of coefficients allow us to go well beyond simple NLSE. We define the
invariant integrands of the NLSE as:

pj+1 = ψ
∂

∂ t

(
pj
ψ

)
+

∑
j1+j2=j

(pj1pj2) , (1)
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where j = 1, 2, 3, · · · ,∞ and j1 and j2 are non-zero positive integers which add up to j,
noting that order is important. For example, if j = 1 there are no such integers and so the right
summation is zero, while for j = 4, we have (j1, j2) = (1, 3), (3, 1) and (2, 2), so that:∑

j1+j2=4

(pj1pj2) = 2p1p3 + p22.

We take p1 = |ψ|2 to start with. Hence, the first few functionals are:

p2 = ψψ∗t (2)

p3 = |ψ|4 + ψψ∗tt
p4 = ψ

[
ψt(ψ

∗)2 + 4ψ∗t |ψ|2 + ψ∗ttt
]
.

With this formulation, all signs are positive. Now, we define the jth operator in the NLS hierarchy
as

Kj(ψ, ψ
∗) = (−1)j δ

δ ψ∗
[

∫
pj+1dt] (3)

where we have taken the functional derivative of the invariant to get the higher order operator.
Again, all signs are positive in each Kj . For example, K2 = ψtt + 2ψ|ψ|2, which is easily
recognizable as an NLSE operator.

For higher orders, the jth operator (j ≥ 3) can be presented in the form:

Kj =
∂j ψ

∂ tj
+ 2j |ψ|2 ∂

j−2 ψ

∂ tj−2
+ [1 + (−1)j]ψ2 ∂

j−2 ψ∗

∂ tj−2

+j(j − 3)ψ ψ∗t
∂j−3 ψ

∂ tj−3
+ · · · (4)

There are only 2 terms when j = 3, as the last 2 terms reduce to zero: K3 = ψttt + 6|ψ|2ψt.
For j ≥ 4, the next term to be added is:

2[j − 1− (−1)j]ψψt
∂j−3 ψ∗

∂ tj−3
.

For j ≥ 5, the next term to be added is:

j(j − 1)ψt ψ
∗∂

j−3 ψ

∂ tj−3
.

Finally, the term with no derivative in Kj is

j!

[(j/2)!]2
ψ|ψ|j (5)

if j is even, j = 2, 4, 6, · · ·, and zero if j is odd.

The equation which includes the whole infinite hierarchy is:

F [ψ(x, t)] = iψx +
∞∑
j=1

(α2jK2j − i α2j+1K2j+1) = 0, (6)
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where each coefficient αj , j = 2, 3, 4, 5, · · · ,∞ is an arbitrary real number. In all expressions
here, x is the propagation variable and t is transverse variable (time in a moving frame), with
the function |ψ(x, t)| being the envelope of the waves.

In the book [2] and many papers, including [6], [7], [8], we have takenα2 =
1
2
. This normalization

has certain convenient features. For example, rogue wave triplets with this scaling are circular
rather than elliptical in the (x, t)-plane [9]. On the other hand, some authors, e.g. [1, 4], set
α2 = 1. Any value of α2 can be used in our present work [10–13], including zero. Hence, our
solutions cover equations like ψx − α3(ψttt + 6|ψ|2ψt) = 0, which do not involve the basic
NLSE operator at all. The latter is a significant advance over previous works.

Thus, the whole equation takes the form:

F [ψ(x, t)] = iψx

+ α2K2[ψ(x, t)]− iα3K3[ψ(x, t)]

+ α4K4[ψ(x, t)]− iα5K5[ψ(x, t)]

+ α6K6[ψ(x, t)]− iα7K7[ψ(x, t)]

+ α8K8[ψ(x, t)]− i α9K9[ψ(x, t)]

+ · · · = 0, (7)

where the combined operator F [ψ(x, t)] represents the whole hierarchy of integrable equa-
tions.

In the lowest, second order, we obtain the fundamental nonlinear Schrödinger equation:

iψx + α2K2 = iψx + α2(ψtt + 2ψ|ψ|2) = 0,

Keeping additionally the third order operator K3, we obtain the Hirota equation:

iψx + α2(ψtt + 2ψ|ψ|2)− iα3[ψttt + 6|ψ|2ψt] = 0.

In the next generalization, we keep K4 as the fourth order (j = 4) operator. It is known as the
LPD operator (starting with fourth order derivative):

K4[ψ(x, t)] = ψtttt + 8|ψ|2ψtt + 6ψ|ψ|4 + 4ψ|ψt|2

+ 6ψ2
tψ
∗ + 2ψ2ψ∗tt (8)

Continuing the process, we can keep K5 as the fifth order (j = 5), i.e. quintic operator (starting
with fifth order derivative):

K5[ψ(x, t)] = ψttttt + 10|ψ|2ψttt + 30|ψ|4ψt + 10ψψtψ
∗
tt

+ 10ψψ∗tψtt + 20ψ∗ψtψtt + 10ψ2
tψ
∗
t

This expression can be written in a shorter form:

K5[ψ(x, t)] = ψttttt + 10|ψ|2ψttt + 10(ψ |ψt|2)t
+ 20ψ∗ψtψtt + 30|ψ|4ψt (9)
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The quintic equation has been considered, in a different context, by Hoseini and Marchant [14].

Further, K6 is the sixth order (j = 6) , i.e. sextic, operator (starting with sixth order derivative):

K6[ψ(x, t)] = ψtttttt (10)

+
[
60ψ∗|ψt|2 + 50(ψ∗)2ψtt + 2ψ∗tttt

]
ψ2

+ ψ
[
12ψ∗ψtttt + 8ψtψ

∗
ttt + 22|ψtt|2

]
+ ψ

[
18ψtttψ

∗
t + 70(ψ∗)2ψ2

t

]
+ 20 (ψt)

2 ψ∗tt
+ 10ψt [5ψttψ

∗
t + 3ψ∗ψttt] + 20ψ∗ψ2

tt

+ 10ψ3
[
(ψ∗t )

2 + 2ψ∗ψ∗tt
]
+ 20ψ|ψ|6.

We present the heptic and octic operators in the Appendix.

We repeat, the coefficients αj are arbitrary real constants. They do not have to be small. This
allows us to go well beyond the simple extension of the NLSE with corrective and perturbative
terms. Particular case when only α3 is nonzero, the equation is known as Hirota equation [6,15].
Furthermore, when only α4 is nonzero, the equation is known as the ’Lakshmanan - Porsezian
- Daniel’ (LPD) equation [16–18]. In this case, the coefficients within the K4 operator (8) were
found using Painlevé analysis of the equation describing the Heisenberg spin chain. Thus, par-
ticular cases in the hierarchy have physical relevance. The equation when two coefficients α3

and α4 are arbitrary has been considered earlier in [7, 8]. In particular, soliton solutions of this
equation were given in [7], while rogue wave solutions were presented in [8]. In those papers,
α4 is denoted by γ. The KdV is studied in [19,20].

We believe that the sextic, heptic and octic operators of the NLS hierarchy are presented here for
the first time. Although we do not present here the ninth order operator K9[ψ], with coefficient
α9 to save space, the results we give for first-order solitons and rogue waves does include it
and all higher orders to infinity.

2 General observations

Scaling. If we have a solution ψ(x, t;α2, α3, α4, · · ·) of the full equation, then we can generate
a scaled solution by multiplying the function by an arbitrary real constant, c, multiplying t by c,
leaving x unchanged and multiplying each αj in the soltuion by cj . Hence the new solution is
c ψ(x, c t; c2α2, c

3α3, c
4α4, · · ·). If all αj = 0 for j ≥ 3, i.e we have the fundamental NLSE

only, then the scaling α2 → c2α2 is equivalent to scaling x by a factor of c2, thus agreeing with
the well-known scaling of NLSE solutions (e.g. see [21] and Eq. (2.3) of Ref. [2]). However, when
more operators are included in the equation, it is important to note that the αj ’s in the solution
are scaled, not the variable x. This will be clear from the solutions analyzed in this paper. This
scaling is not trivial, and so we retain the c factors throughout the solutions, for ease of use.

Odd-numbered equations. First, we make some general observations. If all even-labelled co-
efficients are zero, i.e. α2n = 0, n = 1, 2, 3, · · · ,∞ then we have

ψx =
∞∑
j=1

α2j+1K2j+1.
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These can have real-valued solutions. For example, the first such equation is: ψx = α3(ψttt +
6|ψ|2ψt). If we assume that ψ = f(y) is a real even function where y = t + x v3, then for a
localised solution (f(y) → 0 for y → ∞), we have v3f = α3 (f

′′ + 2f 3). For convenience,
we set f(0) = 1. This shows that v3 = α3 and f ′(y) = f

√
1− f 2. Hence f = sech(y) =

sech(t+ x v3).

Similarly, the j = 2 equation, with y = t + x v5 reduces to v5f ′ = α5 (f5y + 10f 2f3y +
30f 4f ′+40ff ′f2y+10f 3

y ). Then v5 = α5 and f = sech(t+x v5). This pattern will be seen
later with more complicated solutions. We will be able to plot ψ rather than just |ψ| for these
solutions.

Even-numbered equations. If all odd-labelled coefficients are zero, i.e. α2n+1 = 0, n =
1, 2, 3, · · · ,∞ then the equation becomes:

iψx +
∞∑
j=1

α2jK2j = 0.

Now the solutions take the form ψ = eiφxg(t). In the NLSE case, when j = 1, for the localised
solution which is even in t, we have α2(g

2
t +g

4) = φg. For covenience, we now take g(0) = 1.
This shows that φ = α2 and g′(t) = g

√
1− g2. Hence g = sech(t) and ψ = eiα2xsech(t).

Similarly, for the j = 2 equation, we have α4 (g4t + 8g2g2t + 6g5 + 10gg2t + 2g2g2t) = φg,
and solution ψ = eiα4xsech(t). Again, this structure will be seen for other types of solutions.

Plane wave solutions. In order to illustrate the usefulness of the approach, we start with the
simplest plane wave solution of the extended NLS equation. If a solution ψ is independent of t,
then we see from Eq.(5) that

iψx + ψ
∞∑
n=1

(
2n

n

)
α2n|ψ|2n = 0,

where
(
2n
n

)
is a binomial coefficient. So

iψx + 2α2ψ|ψ|2 + 6α4ψ|ψ|4 + 20α6ψ|ψ|6 + · · · = 0.

Thus, for the unit-background forward-propagating plane wave solution to Eq.(7),ψp = exp(iφ x),
we have (with j = 2n):

φ = 2α2 + 6α4 + 20α6 + · · · =
∞∑
n=1

(
2n

n

)
α2n =

∞∑
n=1

(2n)!

(n!)2
α2n

Thus, for an arbitrary background of the plane wave, we can write the solution as

ψp = c exp

(
ixc2

∞∑
n=1

(2n)!

(n!)2
α2nc

2n−2

)
= c exp [ixc2(2α2 + 6c2α4 + 20c4α6

+70c6α8 + 252c8α10 + · · ·)], (11)
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recalling that α2 does not have to be 1/2.

Here c is the arbitrary amplitude of the plane wave and the series in (4) contain even coefficients
of Eq.(7). The simple nature of the scaling is apparent, with arbitrary background level c causing
each coefficient α2n to be multiplied by c2n. The expression (4) represents the solution of the
equation (7) of any order up to infinite one. The presence of only even terms in this expression
is related to the fact that we deal with the forward propagating wave. Any skewness in the
(x, t)-plane would result in addition of odd terms. We do not present this case as this would go
beyond the simplicity of our illustrative example. In order to construct more complicated solutions
of Eq.(7), we have to find its Lax pair. These solutions can also be found for the equation with
an infinite number of terms.

First order soliton solutions. The first order soliton of Eq.(7), taking α2 and all other coeffi-
cients αj to be arbitrary, is

ψs = c exp(ixφs) sech(ct+ xvs) (12)

where the phase is:

φs =
∞∑
n=1

α2nc
2n (13)

= c2(α2 + c2α4 + c4α6 + c6α8 + c8α10 + · · ·),

and where the velocity is:

vs =
∞∑
n=1

α2n+1c
2n+1, (14)

= c3(α3 + c2α5 + c4α7 + c6α9 + · · ·).

The background level, c is arbitrary. It is clear from the expression that velocity depends on third,
fifth, seventh and ninth order coefficients, α2n+1, while the phase depends on the fourth, sixth
and eighth order coefficients α2n. Plainly, for unit background, each term has unit coefficient.
When only α3, α4 are nonzero, it reduces to a result in [7]. So this solution applies for infinitely
many orders in the original equation. It confirms and generalizes the brief derivations on odd
and even-numbered equations above.

3 Generalized rogue waves and related solutions

Again, we allow for all operator coefficients (αj, j = 3, 4, 5, · · · ,∞) to be arbitary. Then:

ψ(x, t) = c

[
4
1 + 2i Br x

D(x, t)
− 1

]
eiφr x (15)

where D(x, t) = 1 + 4B2
rx

2 + 4(ct+ vr x)
2, and

Br =
∞∑
n=1

n(2n)!

(n!)2
α2nc

2n (16)
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= 2c2(α2 + 6c2α4 + 30c4 α6 + 140c6 α8

+ 630c8α10 + · · ·).

Here c is the arbitrary background level. The coefficient φ in the exponential factor is then equal
to

φr = c2
∞∑
n=1

(2n)!

(n!)2
α2nc

2n−2 (17)

= 2c2(α2 + 3c2α4 + 10c4 α6 + 35c6 α8

+ 126c8α10 + · · · ).

Finally, the velocity is

vr =
∞∑
n=1

(2n+ 1)!

(n!)2
α2n+1c

2n+1 (18)

= 2c3(3α3 + 15c2 α5 + 70c4 α7

+ 315c6α9 + 1386c8 α11 + · · ·).

The velocity clearly depends only on the coefficients of odd-order operators: Hirota operator
with v = 6c3α3 when the other α′js are zero, the 5th order operator (quintic, with v = 30c5α5

when the other α′js are zero) , the 7th order operator (heptic, with v = 140c7α7 when the
other α′js are zero) , etc. We note that the exponential factor, φ, and stretching factor, Br, here
depend only on the coefficients of even-order operators. When αj = 0, for all j > 4, it reduces
to a result in [8].

If we have only even-numbered equations, then φr, Br are non-zero, and we obtain complex-
valued, zero-velocity, solutions resembling that of the NLSE (which is the α2 case). An example
is given in Fig.1.

Figure 1: Plot of the rogue wave, Eq.(15), solution of Eq.(7), with c = 1, α4 = 1
4
, and all other

αj ’s zero.

If we have only odd-numbered equations (see section 2), then φr = Br = 0, and we obtain the
real-valued solution

ψ(x, t) = c

[
4

4(ct+ vr x)2
− 1

]
.
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Then, along the diagonal line ct+vr x = 0, we have ψ(x, t) = 3c . So, this solution resembles
a moving soliton on a background (though the shape is different from the ’sech’ function), and
does not have the single peak which is a feature of solutions of the full equation which contains
at least one even-labelled term. An example is given in Fig.2. Earlier works, e.g. [6], included
both α2 and α3 terms, and hence found rogue waves with a single maximum.

Figure 2: Plot of the moving soliton on a background, Eq.(15), with c = 1, α5 = 1
16

, and all
other αj ’s zero.

If we have at least one even-numbered equation with at least one odd-numbered equation, the
resulting solution looks like an NLSE rogue wave [22], with the central part having a velocity
(see [6]). An example is given in Fig.3. We stress that this is a remarkably simple result for
an equation that can contain hundreds of terms, each with various derivatives. It could help
explain the appearance of rogue waves in a multitude of physical, biological, financial and social
situations, going well beyond the j = 3, 4 cases that have been previously analyzed.

Figure 3: Plot of the rogue wave, Eq.(15), with c = 1, α4 = 1/4, α5 = 1
16

, and all other αj ’s
zero.
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4 Generalized Akhmediev breathers and related solutions

The basic NLSE breather explains the evolution of modulation instability (e.g. see sect.3.7 of [2]).
Here, we consider all odd and even-order equations. The odd-order equations basically modify
the breather velocity when compared to the basic NLSE breather, as is already known for the
Hirota (α3 6= 0) case. On the other hand, the even-order equations basically modify the phase
of the basic NLSE breather and introduce a ’stretching factor’ in x in the non-phase part of the
solution. We take arbitrary background, i.e. any real c, while noting that the scaling is relatively
simple once the c = 1 case is known. Thus, the general breather on arbitrary background c is:

ψb = c eix φ

(
1 +

κ
[
κC(x) + i

√
4− κ2S(x)

]
√
4− κ2 cos [κ(ct+ vbx)]− 2C(x)

)
(19)

where

C(x) = cosh

(
Bb κ

√
1− κ2

4
x

)
,

S(x) = sinh

(
Bb κ

√
1− κ2

4
x

)
with κ being an arbitrary real frequency in the range of modulation instability, i.e. 0 < κ < 2.

Now, the velocity is:

vb =
∞∑
n=1

α2n+1c
2n+1 (2n+ 1)!

n!

(
n∑
r=0

(−1)rκ2rr!
(n− r)!(2r + 1)!

)
.

We now sum the series on the right, obtaining a closed form result:

vb =
∞∑
n=1

α2n+1 c
2n+1 (2n+ 1)!

(n!)2
2F1

(
1,−n; 3

2
;
κ2

4

)
, (20)

where 2F1 means hypergeometric function [23]. In our range, if κ is small, then this function can
be approximated:

2F1

(
1,−n; 3

2
;
κ2

4

)
≈ 1− n

6
κ2 +

n

60
(n− 1)κ4 + · · · (21)

In fact, for any κ in our range, 2F1

(
1,−n; 3

2
; κ

2

4

)
is exactly a polynomial in κ with n+1 terms,

with the highest power being κ2n. Thus:

vb = α3c
3
(
6− κ2

)
+ α5c

5
(
30− 10κ2 + κ4

)
+ α7c

7 (140− 70κ2 + 14κ4 − κ6) + α9c
9 (630

− 420κ2 + 126κ4 − 18κ6 + κ8) + α11c
11 (2772

− 2310κ2 + 924κ4 − 198κ6 + 22κ8 − κ10) + · · ·

9



For κ→ 0, from Eqs.(20) and (21), we have

vb =
∞∑
n=1

α2n+1 c
2n+1 (2n+ 1)!

(n!)2
= 6α3c

3 + 30α5c
5

+140α7c
7 + 630α9c

9 + 2772α11c
11 + · · ·

agreeing with rogue wave result Eq.(18). Thus, the velocity given by Eq.(18) is the low-frequency
(κ→ 0) limit (for any c) of Eq.(20).

Figure 4: Plot of the complex Akhmediev breather, Eq.(19), solution of Eq.(7), with κ = 1, c =
1, α4 = 1

4
, and all other αj ’s zero.

Similarly, the ’stretching factor’ is given by:

Bb = 2
∞∑
n=0

α2n+2c
2n+2 (2n+ 1)!

(n!)2
2F1

(
1,−n; 3

2
;
κ2

4

)

= 2 [α2c
2 + α4c

4
(
6− κ2

)
+ α6c

6
(
30− 10κ2 + κ4

)
+ α8c

8 (140− 70κ2 + 14κ4 − κ6) + α10c
10 (630

− 420κ2 + 126κ4 − 18κ6 + κ8) + α12c
12(2772

− 2310κ2 + 924κ4 − 198κ6 + 22κ8 − κ10) + · · · ]

The κ → 0 limit is

Bb(κ = 0) = 2
∞∑
n=0

α2n+2c
2n+2 (2n+ 1)!

(n!)2

agreeing with rogue wave result Eq.(16). The phase is:

φ =
∞∑
n=1

α2nc
2n (2n)!

(n!)2
= 2(α2c

2 + 3α4c
4 + 10α6c

6 + · · ·).

Note that the phase matches that of the plane wave solution, Eq.(13), and the rogue wave,
Eq.(17). Thus, the rogue wave Eq.(15) can also be obtained as the low-frequency (κ→ 0) limit
of the breather given by Eq.(19).
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Figure 5: Plot of the real-valued non-breathing solution related to the Akhmediev breathers,
Eq.(19). It is a solution of Eq.(7), with κ = 1, c = −1, α5 = 1

16
, and all other αj ’s zero.

We have |φ(0, 0)| = |c|(1+
√
4− κ2); this decreases from a maximum of 3|c| when κ = 0 to

a minimum of |c| when κ = 2. Again, if we have only even numbered equations, then vb = 0,
and the breather solution resembles that of the NLSE. An example is given in Fig.4.

If we have only odd numbered equations, then φb = Bb = 0, and the solution ψb(x, t) of Eq.
(19) becomes real-valued. An example is given in Fig.5. It does not ’breathe’ and so we can
describe it as a solution related to a breather. If at least one even and one odd coefficient are
nonzero, then φb, Bb, vb are all nonzero. The example of this solution is shown in Fig.6. It is
similar to the one in Fig.4 but has nonzero velocity.

Figure 6: Plot of the complex Akhmediev breather, Eq.(19), solution of Eq.(7), with κ = 1, c =
1, α4 = 1

4
, α5 = 1

5
, and all other αj ’s zero.

Beyond the NLSE solution, only the Hirota case [6] when vb = α3 (6− κ2) and 4-th order
case [24] were previously known. This new solution can provide a considerable extension of
applicability to problems of modulation instability in physics, chemistry, etc.
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5 Generalized Kuznetsov-Ma breathers and moving solitons

The NLSE Kuznetsov-Ma breather is given by Eq.(3.63) of [2]. The generalized Kuznetsov-Ma
breather can be written as:

ψm = c
√
2eix(φm)× (22)

2(1− a1)Cs(x)−
√
2
√
a1Cm(x, t) + 2i

√
1− 2a1Sm(x)√

2Cm(x, t)− 2
√
a1Cs(x)

where

Cm(x, t) = cosh
[
2
√
1− 2a1 (c t+ vm x)

]
,

Cs(x) = cos
(
2
√
1− 2a1Bm x

)
,

Sm(x) = sin
(
2
√
1− 2a1Bm x

)
,

with a1 being an arbitrary real number within the interval 0 < a1 <
1
2
. The velocity is:

vm =
∞∑
n=1

4nα2n+1c
2n+1

(
1 +

n∑
r=1

(2r − 1)!!ar1
r!

)
(23)

This can be written in closed form:

vm =
∞∑
n=1

4nα2n+1c
2n+1

[ 1√
1− 2a1

(24)

− an+1
1

(2n+ 1)!!

(n+ 1)!
2F1

(
1, n+

3

2
;n+ 2; 2a1

)]
Thus, we have:

vm = 4c3(a1 + 1)α3 + 8c5
(
3a21 + 2a1 + 2

)
α5

+ 32c7(5a31 + 3a21 + 2a1 + 2)α7 + 32c9(35a41
+ 20a31 + 12a21 + 8a1 + 8)α9 + 128c11(63a51
+ 35a41 + 20a31 + 12a21 + 8a1 + 8)α11 + · · ·

The result in Eq.(24) can also be expressed as:

vm =
∞∑
n=1

2n−1α2n+1c
2n+1

n!
√
1− 2a1

× (25)[
2n+1n!−

(
2n+ 1)!!B1/2(2a1, n+ 1)

) ]
,

where the incomplete beta function Bz(a, b) is defined as
∫ z
0
ta(1− t)b−1 dt.

For the upper point in the parameter range, i.e. for a1 → 1
2
, we have

lim
a1→ 1

2

vm =
∞∑
n=1

c2n+1 (2n+ 1)!α2n+1

(n!)2
(26)

= 6c3α3 + 30c5α5 + 140c7α7

+630c9α9 + 2772c11α11 + · · · ,
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again agreeing with rogue wave result Eq.(18).

The stretching factor, Bm is given by:

Bm = 2
∞∑
n=0

4nα2n+2c
2n+2

[ 1√
1− 2a1

(27)

−an+1
1

(2n+ 1)!!

(n+ 1)!
2F1

(
1, n+

3

2
;n+ 2; 2a1

)]
Further,

lim
a1→ 1

2

Bm = 2c2α2 + 12c4α4 + 60 c6α6

+ 280 c8α8 + 1260c10α10 + · · · ,

i.e. it is the rogue wave result of Eq.(16). The phase is:

φm =
∞∑
n=1

(2n)!

(n!)2
α2nc

2n(2a1)
n (28)

= 2a1(2c
2α2 + 12a1c

4α4 + 80a21 c
6α6

+560a31 c
8α8 + 4032a41c

10α10 + · · ·),

recalling that we usually set α2 =
1
2
. For the upper point in the parameter range

lim
a1→ 1

2

φm = 2c2α2 + 6c4α4 + 20 c6α6

+ 70c8 α8 + 252c10α10 + · · · .

i.e. it is the rogue wave result of Eq.(17).

Figure 7: Plot of the Kuznetsov-Ma breather solution given by Eq.(22). It is a solution of Eq.(7),
with a1 =

1
8
, c = 1, α4 = 1

4
, and all other αj ’s zero.

So if we only consider odd-order equations, ie. those with coefficients α3, α5, α7 etc., then only
the velocity changes, while the stretching factor, Bm and phase, φm, are zero. This makes ψm
of Eq.(22) real. If we only consider even-order equations, i.e. those with coefficients α2, α4, α6
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etc., then only the stretching factor, Bm and the phase, φm, change, while velocity remains
equal to zero. Thus, the rogue wave given by Eq.(15) can also be obtained as the upper param-
eter (a1 → 1/2) limit of the Kuznetsov-Ma breather of Eq.(22). Again here, if we have only even
numbered equations, then vm = 0, and the breather solution resembles that of the NLSE. An
example is given in Fig.7.

If we have only odd numbered equations, then φm = Bm = 0, and the solution ψm(x, t) of
Eq.(22) becomes real-valued. An example is given in Fig.8. In contrast to the odd-equations
Akhmediev breathers, these contain no trigonometric functions and hence do not feature peri-
odicity. We describe them as solutions related to the Kuznetsov-Ma breather. They resemble a
moving soliton on a background, like the rogue wave shown in Fig.2.

Figure 8: Plot of the non-breathing solution, Eq.(22). It is a solution of Eq.(7), with a1 =
1
8
, c =

−1, α5 = 1
5
, and all other αj ’s zero. The background level is 1

2
and the maximum value is 3

2
.

6 Periodic solutions

Elliptic dn solutions. The NLSE dn solution has been given in Eq.(3.65) of [2]. We are now in
a position to give periodic solutions of the full infinite equation, where we recall that α2 and all
other coefficients αj are arbitrary. It is given by:

ψs = c exp(ixφd) dn(ct+ xve,m), (29)

where dn is a Jacobi elliptic function [23], with real modulus m such that 0 < m < 1. For
definition of m, we have dn(y,m) = 1− 1

2
my2 + · · ·. The phase term is:

φd =
∞∑
n=1

α2nc
2n (2n)!

(n!)2
2F1 (−n,−n;−2n;m) . (30)

We find that this can be expressed in terms of Pn, the set of orthogonal Legendre polynomials
of the first kind:

φd =
∞∑
n=1

α2nc
2nmn Pn

(
2

m
− 1

)
(31)
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These well-known polynomials areP1(y) = y, P2(y) =
1
2
(3y2 − 1) , P3(y) =

1
2
y (5y2 − 3) , P4(y) =

1
8
(35y4 − 30y2 + 3) , P5(y) =

1
8
y (63y4 − 70y2 + 15), etc. Thus:

φd = (2−m)c2α2 +
(
6− 6m+m2

)
c4α4

+
(
20− 30m+ 12m2 −m3

)
c6α6 + (70− 140m

+ 90m2 − 20m3 +m4)c8α8 + (252− 630m

+ 560m2 − 210m3 + 30m4 −m5)c10α10 + · · ·

Further, the velocity is:

ve =
∞∑
n=1

α2n+1c
2n+1 (2n)!

(n!)2
2F1 (−n,−n;−2n;m) (32)

Similarly, this can be simplified to

ve =
∞∑
n=1

α2n+1c
2n+1mn Pn

(
2

m
− 1

)
(33)

where Pn is a member of the same set of orthogonal Legendre polynomials of the first kind. So

ve = (2−m)c3α3 +
(
6− 6m+m2

)
c5α5 + (20

− 30m+ 12m2 −m3)c7α7 + (70− 140m

+ 90m2 − 20m3 +m4)c9α9 + (252− 630m

+ 560m2 − 210m3 + 30m4 −m5)c11α11 + · · ·

As with most solutions, the even order equations affect the phase, while the odd order equations
affect the velocity. In this case, the solution functions have the same form, though the set of
coefficients (the αj ’s ) differ. If we have only odd-label equations, then φd = 0 and solution of
eq.(29) is real.

If m = 1 we have Pn (1) = 1, and

c eiφdxdn(c t+ vex, 1) = c eiφsx sech( t+ vsx),

since φd(m = 1) =
∑∞

n=1 α2n, agreeing with Eq.(13), and ve =
∑∞

n=1 α2n+1, agreeing with
Eq.(14). Thus, we have reproduced the fundamental ’sech’ soliton result covering all operators.

Elliptic cn solutions. The NLSE cn solution has been given by Eq.(3.66) of [2]. We now give
the elliptic cn solution of the full infinite equation. We can write it in a convenient way using
hyperbolic functions, as follows:

ψs =
c√
2
coth(ζ) eiφcx cn

[
ct+ xvc
sinh(ζ)

,
1

2
cosh2(ζ)

]
(34)

where cn is a Jacobi elliptic function [23], with ζ real. With our modulus definition, cn(y,m) =
1 − 1

2
y2 + 1

6
(1
4
+ m)y4 + · · ·. The phase term can be expressed in terms of Pn, the set of
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orthogonal Legendre polynomials of the first kind:

φc =
∞∑
n=1

α2nc
2n sinh−2n(ζ)Pn

(
sinh2(ζ)

)
(35)

= α2c
2 +

α4

2
c4
[
3 sinh4(ζ)− 1

]
csch4(ζ)

+
α6

2
c6
[
5 sinh6(ζ)− 3 sinh2(ζ)

]
csch6(ζ)

+
α8

8
c8
[
35 sinh8(ζ)− 30 sinh4(ζ) + 3

]
csch8(ζ)

+
α10

8
c10[63 sinh10(ζ)− 70 sinh6(ζ)

+15 sinh2(ζ)] csch10(ζ) + · · ·

This can be re-expressed in more compact form:

φc = α2c
2 +

α4

2
c4[3− csch4(ζ)] +

α6

2
c6[5− 3 csch4(ζ)]

+
α8

8
c8[35− 30 csch4(ζ) + 3 csch8(ζ)]

+
α10

8
c10[63− 70 csch4(ζ) + 15 csch8(ζ)] + · · ·

Similarly, the velocity is:

vc =
∞∑
n=1

α2n+1c
2n+1 sinh−2n(ζ)Pn

(
sinh2(ζ)

)
(36)

= α3c
3 +

α5

2
c5[3− csch4(ζ)] +

α7

2
c7[5− 3 csch4(ζ)]

+
α9

8
c9[35− 30 csch4(ζ) + 3 csch8(ζ)]

+
α11

8
c11[63− 70 csch4(ζ) + 15 csch8(ζ)] + · · ·

where Pn is a member of the same set of orthogonal Legendre polynomials.

On the other hand, the solution can be written without hyperbolic functions:

ψs =
c√
2

√
s+ 1 eiφcx cn[

√
s(ct+ xvc),

1

2
(1 + s−1)] (37)

Then

φc =
∞∑
n=1

α2nc
2nsn Pn

(
1

s

)
(38)

= c2α2 +
α4

2
c4(3− s2) +

α6

2
c6 (5− 3 s2)

+
α8

8
c8 (35− 30 s2 + 3 s4)

+
α10

8
c10 (63− 70 s2 + 15 s4) + · · ·
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and

vc =
∞∑
n=1

α2n+1c
2n+1sn Pn

(
1

s

)
(39)

= c3α3 +
α5

2
c5(3− s2) +

α7

2
c7 (5− 3 s2)

+
α9

8
c9 (35− 30 s2 + 3 s4)

+
α11

8
c11 (63− 70 s2 + 15 s4) + · · ·

Again, the even order equations affect the phase, while the odd order equations affect the ve-
locity. If we have only odd-label equations, then φc = 0 and solution of Eq.(34) is real. In this
case, the solutions have the same form, with the set of coefficients (the αj ’s) being different.
If s = 1 , i.e sinh(ζ) = 1, we have Pn (1) = 1, so the solution given in Eq.(37) reduces to
Eq.(12), viz. c eiφsx sech( t+ vsx), as was the case in section 6.

7 The case of x-dependent coefficients

Solitons. We have considered the coefficients to be constants, but we now allow them to vary
on propagation, so that αm = αm(x). In a fiber, this would correspond to different sections
possessing different physical and optical characteristics. For example, suppose that just one of
the coefficients, viz. α2j(x) in Eq.(6) is non-zero. Then

iψx + α2j(x)K2j(x, t) = 0,

for a particular j. We note that K2j(x, t) contains no derivatives with respect to x. We now
transform to a new variable, X , such that

dX

dx
= α2j(x) i.e.X =

∫
α2j(x) dx.

Then iψX + K2j(X, t) = 0. Here the coefficient is a constant, viz. unity, and we can use
the constant-coefficient solutions already found, simply by making the replacement: α2jx →∫
α2j(x) dx. The velocities, stretching factors and phases are modified in this way for all the

solutions given above. For example, if we take j = 1, we have the NLS only, K2 = ψtt +
2|ψ|2 ψ. The soliton solution is, from Eq.(12), ψ = exp[iα2x] sech(t). When α2 = α2(x), we
have ψ = exp[i

∫
α2(x) dx] sech(t).

We can generalize this by allowing all operator coefficients to be non-zero and to be functions
of x. Then the soliton solution of maximum amplitude c is

ψm = c exp [i
∞∑
n=1

c2n J2n(x)] (40)

×sech[t+
∞∑
n=1

c2n+1J2n+1(x)],

17



where Jm(x) =
∫
αm(x) dx. If each coefficient is constant, then Jm(x) = αmx, and

ψm = c exp[ix
∞∑
n=1

c2n α2n] sech[t+ x

∞∑
n=1

c2n+1α2n+1],

as in Eqs.(13) and (14).

Figure 9: Plot of soliton, Eq.(40), moving under the influence of operators with variable coeffi-
cients.

To plot an example, let us use Gaussian functions to switch the operators ’on’ and ’off’ during
soliton propagation. We set α2(x) = exp[−1

2
x2], α3(x) = − exp[−1

2
(x − 3)2], α4(x) =

exp[1
2
(x − 6)2] and α5(x) = 2 exp[−1

2
(x − 9)2]. Hence J2 =

√
π
2
erf( x√

2
), etc. We plot

the solution, from Eq.(40), in Fig.9. Clearly, the 3-rd order operator, mediated by α3 moves
the soliton towards the right, while the 5-th order operator, mediated by α5 moves the soliton
towards the left. The other 2 operators affect phase only, and not velocity. In parts where the
Gaussians are almost zero, the soliton propagates with unchanged velocity and phase.

Using Eq.(15), or varying α2(x), the NLS unit-background rogue wave becomes

ψ(x, t) =

[
4

1 + 4iJ2(x)

1 + 4t2 + 16J2
2 (x)

− 1

]
e2iJ2(x). (41)

Kuznetsov-Ma breathers. We now consider a Kuznetsov-Ma breather, but allow for variable
coefficients. We take

α2(x) = γ sech2

(
x− 10

8

)
, α3(x) = −

γ

4
sech2

(
x− 50

8

)
,

α4(x) =
γ

6
sech2

(
x− 90

8

)
We can still use the result of Eq.(22), again with each αnx with

∫
αn(x) dx. Here we take

a1 = 1/8. Thus vm of Eq.(24) is replaced by: vm = −9γ tanh
(
x−50
8

)
, Bm of Eq.(27) is

replaced by: Bm = 4γ
[
4 tanh

(
x−10
8

)
+ 3 tanh

(
x−90
8

)]
, while φm of Eq.(28) is replaced

by:

φm = 4γ tanh

(
x− 10

8

)
+
γ

2
tanh

(
x− 90

8

)
.
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This example, with γ = 1
2
, is shown in Fig.10. In this figure, the angled propagation (at around

x = 50) is due to non-zero velocity (vm) being introduced by the third-order operator, with
coefficient α3(x), as this operator differs strongly from zero only around x = 50. The breather
peaks, around x = 10 and x = 90, are due to the influence of coefficients α2(x) and α4(x),
respectively, as these coefficients differ substantially from zero only near these values of x.
Hence, as in Fig.7, peaks occur in these regions.

Figure 10: Plot of Kuznetsov-Ma breather in the case of variable coefficients. The pattern shows
the influence of 3 operators with coefficients which vary on propagation.

8 Conclusion

In conclusion, we have presented the infinite integrable NLSE hierarchy beyond the Lakshmanan-
Porsezian-Daniel equation, which is a particular fourth-order case of the hierarchy. Specifically,
we have presented explicit forms of the equations and given generalized soliton solutions, plane
wave solutions, Akhmediev breathers, Kuznetsov-Ma breathers, periodic and rogue wave solu-
tions for this infinite order hierarchy. We have found that ’even’ order equations in the set affect
phase and ’stretching factors’ in the solutions, while ’odd’ order equations affect the velocities.
Hence ’odd’ order equation solutions can be real functions, while ’even’ order equation solu-
tions are always complex. Of special interest is the possibility of using variable coefficients in
the hierarchy to influence evolution dynamics. Examples of such evolution are given.
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9 Appendix

Following eqn. (10), we now present K7, the seventh order (j = 7) , i.e. heptic, operator
(starting with seventh order derivative):

K7[ψ] = ψttttttt + 70ψ2
ttψ
∗
t + 112ψt|ψtt|2

+ 98|ψt|2ψttt + 70ψ2[ψt
[
(ψ∗t )

2 + 2ψ∗ψ∗tt
]

+ ψ∗ (2ψttψ
∗
t + ψtttψ

∗)] + 28ψ2
tψ
∗
ttt

+ 14ψ[ψ∗
(
20|ψt|2ψt + ψttttt

)
+ 3ψtttψ

∗
tt

+ 2ψttψ
∗
ttt + 2ψttttψ

∗
t + ψtψ

∗
tttt + 20ψtψtt(ψ

∗)2]

+ 140|ψ|6ψt + 70ψ3
t (ψ

∗)2

+ 14 (5ψttψttt + 3ψtψtttt)ψ
∗. (42)

There is an infinite number of higher-order operators. The highest one that we provide here is
K8, which is the eighth order (j = 8), i.e. octic, operator (starting with eighth order derivative):

K8[ψ] = ψtttttttt + 14ψ3[40|ψt|2(ψ∗)2 + 20ψtt(ψ
∗)3

+ 2ψ∗ttttψ
∗ + 3(ψ∗tt)

2 + 4ψ∗tψ
∗
ttt]

+ ψ2[28ψ∗(14ψttψ
∗
tt + 11ψtttψ

∗
t + 6ψtψ

∗
ttt)

+ 238ψtt(ψ
∗
t )

2 + 336|ψt|2ψ∗tt + 560ψ2
t (ψ

∗)3

+ 98ψtttt(ψ
∗)2 + 2ψ∗tttttt] + 2ψ{21ψ2

t [9(ψ
∗
t )

2

+ 14ψ∗ψ∗tt] + ψt[728ψttψ
∗
tψ
∗ + 238ψttt(ψ

∗)2

+ 6ψ∗ttttt] + 34|ψttt|2 + 36ψttttψ
∗
tt + 22ψttψ

∗
tttt

+ 20ψtttttψ
∗
t + 161ψ2

tt(ψ
∗)2 + 8ψttttttψ

∗}
+ 182ψtt|ψtt|2 + 308ψttψtttψ

∗
t + 252ψtψtttψ

∗
tt

+ 196ψtψttψ
∗
ttt + 168ψtψttttψ

∗
t + 42ψ2

tψ
∗
tttt

+ 14ψ∗(30ψ3
tψ
∗
t + 4ψtttttψt + 5ψ2

ttt + 8ψttψtttt)

+ 490ψ2
tψtt(ψ

∗)2

+ 140ψ4ψ∗[(ψ∗t )
2 + ψ∗ψ∗tt] + 70ψ|ψ|8. (43)
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