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Abstract

In this article we give a general criterion for some dependent Gaussian models to

belong to maximal domain of attraction of Gumbel, following an application of the

Stein-Chen method studied in Arratia et al. (1989). We also show the convergence of

the associated point process. As an application, we show the conditions are satisfied

by some of the well-known supercritical Gaussian interface models, namely, membrane

model, massive and massless discrete Gaussian free field, fractional Gaussian free field.

1 lntroduction

The main aim of this article is to study the fluctuations of the extremal process associated to

a class of random interface models including the discrete Gaussian free field (DGFF) and the

membrane model (MM). These models have gained prominence in recent years due to links

to other theories of statistical mechanics and probability such as the branching random walk,

the branching Brownian motion, and the Schramm-Loewner evolution, just to name a few.

It is known that in terms of infinite volume Gibbs measures these models undergo a phase

transition: for instance, the DGFF exhibits a phase transition in dimension two, that is, in d ≥ 3

the associated infinite volume measure exists. After Bolthausen et al. (2001) determined the

leading order of the maximum and Daviaud (2006) investigated the high points in d = 2, the

extremal process for the DGFF was studied at the critical dimension by Biskup and Louidor

(2013), Bramson et al. (2013) and in the supercritical case it was handled recently in Chiarini

et al. (2015a,b). It was shown that the ideas used in critical DGFF can be extended to

encapsulate many log-correlated models (see Ding et al. (2015, Theorem 1.3)) so it is natural

to ask similar questions for the supercritical case. The main aim of this article is to extend

the ideas introduced in Chiarini et al. (2015a) to derive a general criterion for Gaussian fields

to belong to the maximal domain of attraction of the Gumbel distribution. We also check

that these conditions hold for some known fields. We point out that the examples we consider

crucially require the existence of the infinite volume Gibbs measure.

The main result of this article is Theorem 1, which gives some conditions on the field that

are relatively easy to check for the models we consider below. We use the Stein-Chen method

for Poisson approximation and in particular interesting results from Arratia et al. (1989).

While the DGFF case was dealt in Chiarini et al. (2015a), the massive DGFF in d ≥ 1 is

new and follows relatively easily. The model which is slightly more difficult to analyse (for

various reasons which we will point out later) is the membrane model. The membrane model

undergoes a phase transition in d = 4. Its extremal process has not been extensively studied

yet. The first order behavior of the maxima in the critical dimension was determined in Kurt

(2009) and the high points were studied in Cipriani (2013). The fluctuations of the maxima
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are still an open question in any dimension. In this article we study the maxima and also the

extremal point process in the supercritical dimensions (that is, in d ≥ 5). We also study the

fractional discrete Gaussian free field, namely the centered Gaussian field whose covariance is

given by the Green’s function of an isotropic random walk. In this case it is known that there

are long-range interactions for the random walk in contrast to what happens for the DGFF,

which has nearest-neighbour interactions. The entropic repulsion for this model was studied

by Bolthausen et al. (1995); see also Caputo (2000) for further results on large deviations of

the Gibbs measure.

Outline of the article. In Section 1.1 we state our main conditions and the results. In

Theorem 1 we deal with maxima and give conditions for the scaling limit to be Gumbel. We

show that the argument for maxima can be extended to prove that the extremal point processes

converge to a Poisson random measure in Theorem 3. In Section 2 we give a brief introduction

to the models which satisfy the conditions of Theorem 1. The rest of the article is devoted to

the proofs. In Section 3 we prove Theorem 1 and Theorem 3. In Section 4 we show that the

models satisfy the assumptions of the main theorems.

1.1 Extremes of Gaussian fields

Denote by VN := [0, n − 1]d ∩ Zd, n ∈ N, the centered box of side-length n and volume

N = nd, and given δ > 0, which we fix now for the rest of the paper, let us denote by V δ
N to

be the bulk of VN , namely

V δ
N :=

{
α ∈ VN : ‖α− γ‖ > δN1/d, for all γ ∈ Zd \ VN

}
.

Let PN and P be two (any) centered Gaussian probability measures on RZd . Let (ϕα)α∈Zd be

the canonical coordinate process for either PN or P. Suppose also that ϕα = 0 PN -a. s. for

α /∈ VN (clearly we should think of PN as the finite volume measure). We indicate with gN(·, ·)
resp. g(·, ·) the covariance matrices for PN resp. P. We use the notation gN(α) := gN(α, α)

and, for a stationary field with covariance matrix g, we indicate with a slight abuse of notation

g(α) := g(0, α).

In the following theorem P is either PN or P.

Theorem 1. Let us define the centering and scaling by

bN :=
√
g(0)

[√
2 logN − log logN + log(4π)

2
√

2 logN

]
, aN :=

g(0)

bN
. (1.1)

Assume that

(A1) limN→+∞PN = P in the weak topology of probability measures.

(A2) Let the measure P be stationary and g(0) ∈ (0, +∞). Assume further that lim‖α‖→+∞ g(α) =

0.

(A3) g(α, β) + o ((logN)−1) ≤ gN(α, β) ≤ g(α, β) for all α, β ∈ V δ
N , and the error term is

uniform in α, β.
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(A4) Define κ := 1 − supα∈Zd g(α)/g(0). For all α ∈ VN , let Bα := B (α, sN)a, with

sN satisfying sN = o
(
N

κ
d(2−κ)

)
. Let K := VN \ Bα. Define µα = E[ϕα|FK ] where

FK = σ(ϕβ : β ∈ K). We have that

lim
N→∞

sup
α∈V δN

Var [µα] (logN)2+θ = 0 for some θ > 0.

Then with the scaling of (1.1)

lim
N→+∞

P
(

maxα∈VN ϕα − bN
aN

< z

)
= exp(−e−z)

uniformly for all z ∈ R.

Remark 2. 1 In Condition (A4) it not clear a priori that κ is strictly greater than 0; as a

part of the proof we will show that κ ∈ (0, 1] under Assumptions (A1)-(A2).

2 Condition (A3) is only needed in the finite volume case, that is, for the convergence of

the maximum under PN .

3 In most of the examples we will deal with later, sN in Condition (A4) will be of order

(logN)T for some T > 0 and hence sN = o
(
N

κ
d(2−κ)

)
will be automatically satisfied.

Our next result extends the convergence of the maximum to point process convergence. It is

well-known that from the point process convergence one can derive the maximum, however

we would still like to study the latter alone at first, as the estimates used in the proof are

easier to present and can easily be implemented in the convergence of point processes. Let

E = [0, 1]× (−∞,+∞] and VN as in the beginning of this Subsection. Let εx(·), x ∈ E, be

the point measure that gives mass one to a set containing x and zero otherwise.

Theorem 3. Let (ϕα)α∈Zd be a centered Gaussian field as in Theorem 1 satisfying Assumptions

(A1)–(A4); then if aN and bN are as in (1.1),

ηn(·) :=
∑
α∈VN

ε“α
n
,
ϕα−bN
aN

”(·) d→ η (1.2)

where η is a Poisson random measure on E with intensity measure given by dt ⊗ (e−zdz),

dt⊗ dz is the Lebesgue measure on E and
d→ is the convergence in distribution on Mp(E)b.

Remark 4. For the membrane model, the correct state space is in fact E = [−1/2, 1/2] ×
(−∞, +∞] due to the choice of VN . The computations can be carried through without any

issue.

The main idea of the proof is

♠ to reduce ourselves to show convergence in the bulk of VN , that is, sufficiently inside

the box so as to neglect possible effects of the boundary;

aB(α, t) :=
{
β ∈ Zd : ‖α− β‖ ≤ t

}
and ‖ · ‖ denotes the `∞-norm.

bMp(E) denotes the set of (Radon) point measures on E endowed with the topology of vague convergence.
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♠ secondly, we will use a convergence-of-types theorem to show that “forgetting” the ran-

dom variables close to the boundary does not affect the scaling limit;

♠ finally, the core of the proof consists in applying a version of the Stein-Chen method that

will allow us to control the total variation distance between the law of the maximum

and the Gumbel distribution.

2 Examples

In this section we give some examples which satisfy the conditions of Theorem 1. We will

handle

♠ the membrane model in d ≥ 5,

♠ the massive Gaussian free field in d ≥ 1,

♠ the discrete Fractional free field with index s, s ∈ (0, min {2, d}),

♠ the discrete Gaussian free field in d ≥ 3.

For convenience we are going to recall some of the basic properties of these models which will

be helpful for proving Assumption (A1)–(A4). Note that the last case was treated in Chiarini

et al. (2015a) and since this work extends it, the supercritical DGFF meets these conditions.

We do not discuss this model in further details here.

2.1 The membrane model

In this section we briefly recall the definition of the membrane model (see also Kurt (2008),

Sakagawa (2003)). Let VN := [−n/2, n/2]d∩Zd. The membrane model is the random interface

with zero boundary conditions outside VN whose distribution is given by

PN(dϕ) =
1

ZN
exp

(
−1

2

∑
α∈Zd

(∆ϕα)2

) ∏
α∈VN

dϕα
∏
α∈V c

N

δ0(dϕα), (2.1)

where ∆ is the discrete Laplacian. Here ZN is the normalizing constant. Note that by re-

summation, the law PN of the field is the law of the centered Gaussian field on VN with

covariance matrix

GN(α, β) = GVN (α, β) := Cov [ϕα, ϕβ] =
(
∆2
N

)−1
(α, β).

Here, ∆2
N(α, β) = ∆2(α, β)1{α, β∈VN} is the Bilaplacian with 0-boundary conditions outside

VN . It can also be seen as a Gaussian field on VN whose covariance matrix GN satisfies, for

α ∈ VN ,c {
∆2GN(α, β) = δ(α, β), β ∈ VN
GN(α, β) = 0, β ∈ ∂2VN .

cδ(α, β) is the Dirac delta mass, i. e. δ(α, β) = 1 ⇐⇒ α = β.
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Here we denote ∂2VN := {β ∈ V c
N : ∃γ ∈ VN : ‖β−γ‖ ≤ 2}. It is known that in d ≥ 5 there

exists P on RZd such that PN → P in the weak topology of probability measures (Kurt (2008,

Proposition 1.2.3)). Under P, the canonical coordinates (ϕα)α∈Zd form a centered Gaussian

process with covariance given by

G(α, β) = ∆−2(α, β) =
∑
γ∈Zd

∆−1(α, γ)∆−1(γ, β) =
∑
γ∈Zd

Γ(α, γ)Γ(γ, β),

where Γ denotes the covariance of the DGFF. Γ has an easy representation in terms of the

simple random walk (Sn)n≥0 on Zd given by

Γ(α, β) =
∑
m≥0

Pα[Sm = β]

(Pα is the law of S starting at α). This entails that

G(α, β) =
∑
m≥0

(m+ 1)Pα[Sm = β] = Eα,β

[
+∞∑
`,m=0

1{Sm=S̃`}

]
(2.2)

where S and S̃ are two independent simple random walks started at α and β respectively.

First one can note from this representation that G(·, ·) is translation invariant. Hence we shall

write G(α, β) = G(α − β, 0) = G(α − β) with a slight abuse of notation, and the variance

will be denoted by G(0). The existence of the infinite volume measure in d ≥ 5 gives that

G(0) < +∞. Using the above one can derive the following property of the covariance:

Lemma 5 (Sakagawa (2003, Lemma 5.1)).

lim
‖α‖→+∞

G(α)

‖α‖4−d = η2 (2.3)

where

η2 = (2π)−d
∫ +∞

0

∫
Rd

exp

(
ι〈ζ, θ〉 − ‖θ‖

4t

4π2

)
dθdt

for any ζ ∈ Sd−1.

Just as the DGFF enjoys the spatial Markov property, the membrane model does too. In the

finite volume case it was shown in Cipriani (2013). The results extend easily by the DLR

formalism to the infinite volume measure:

Proposition 6 (Markov property). Let (ψα)α∈Zd and (ϕα)α∈Zd be the finite and infinite volume

membrane model under the measures PN and P respectively.

(a) Finite volume (Cipriani (2013, Lemma 2.2)): let B ⊆ VN . Let FB := σ(ψγ, γ ∈ VN \B).

Then

{ψα}α∈B
d
= {EN [ψα|FB] + ψ′α}α∈B (2.4)

where“
d
=”indicates equality in distribution. In particular, under PN(·), ψ′α is independent

of FB. Also {ψ′α}α∈B is distributed as the membrane model with 0-boundary conditions

outside B.
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(b) Infinite volume: let K b Zd d, U := Kc and for α ∈ Zd define µα := E[ϕα|FK ] where

FK := σ(ϕγ : γ ∈ K). Also define ψα := ϕα−µα. Then µα is FK-measurable, moreover

under P we have that ψα is independent of µα and distributed as PU , that is,

E[ψαψβ] = GU(α, β).

The spatial Markov property is a crucial tool in the analysis of Gaussian models. For the DGFF

it has been widely been applied for example to show properties in the percolation of level sets,

see Drewitz and Rodriguez (2015), Rodriguez and Sznitman (2013), Sznitman (2012). We

should stress that our proof of Proposition 6 (b) follows the ideas of Rodriguez and Sznitman

(2013, Lemma 1.2), although due to the lack of random walk representation for GU some

more effort is required to achieve the result. In fact, we highlight the main challenges one

encounters in handling the membrane model in contrast to the DGFF:

♠ the covariance of the finite volume measure lacks a random walk representation and

hence many estimates rely on discrete potential theory as introduced in Kurt (2009,

2007).

♠ The finite volume Gaussian field can be negatively correlated and hence applications of

the FKG inequality are not possible.

2.2 Massive free field

The second model we consider is the massive free field. For detailed properties of this model

one may refer to Funaki (2005) or to the recent article by Rodriguez (2015).

Let ϑ ∈ (0, 1) be fixed. We consider the graph Zd ∪ {∗} where {∗} is a cemetery state. On

this state space we define a Markov chain Sn with transition probabilities as follows:

px,y =
1

2d
(1− ϑ)1{α∼β}, pα,∗ = ϑ, p∗,∗ = 1.

Let the canonical law of the chain starting at α ∈ Zd be denoted by Pαϑ and its expectation

by Eαϑ. Given U ⊂ Zd, Pαϑ,U indicates the law of the chain starting at α ∈ Zd either killed

uniformly at rate ϑ or when first entering U . When U = ∅, we denote Pαϑ,∅ = Pαϑ. The Green’s

function gϑ,U of this walk is

gϑ,U(α, β) =
∑
n≥0

Pαϑ,U [Sn = β] =
∑
n≥0

(1− ϑ)nPα0 [Sn = β, n < HU ]

where HU = inf{n ≥ 0 : Sn ∈ U}. When U = ∅, one writes gϑ(α, β) = gϑ(α − β, 0) =

gϑ(α− β). Take U ⊂ Zd and K ⊆ U c, then by the strong Markov property one has

gϑ,U(α, β) = gϑ,U∪K(α, β) +
∑
γ∈K

Pαϑ,U [HK < +∞, XHK = γ]gϑ,U(γ, β). (2.5)

db denotes the relation “finite subset”.
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Let us consider Zd with d ≥ 1 and ϑ ∈ (0, 1). First we consider the massive free field on Zd,

that is with U = ∅. For ϑ ∈ (0, 1) we denote by Pϑ the law on RZd of the massive free field,

under which ϕ = (ϕx)x∈Zd are distributed as a centered Gaussian field with covariance

Eϑ[ϕxϕy] = gϑ(x, y).

A consequence of (2.5) is that Proposition 6 holds for the massive Gaussian free field, see for

example Rodriguez (2015, Lemma 1.1).

2.3 Fractional fields

In this subsection we describe the fractional fields arising out of the Green’s function which

are local times of an isotropic stable law. The entropic repulsion for such a model was first

undertaken in Bolthausen et al. (1995) and also further properties were studied in Caputo

(2000). Let d ≥ 1 and qs be the density of the symmetric isotropic stable law on Rd for some

0 < s < min {2, d}. This means that the characteristic function of qs is given by∫
Rd

eι〈t, x〉qs(x)dx = e−ρ‖t‖
s

for t ∈ Rd and some ρ > 0. Let Q(α, β) for α, β ∈ Zd be the transition matrix of an isotropic

α-stable random walk, that is,

Q(α, β) =

∫
V

qs(x+ (α− β)+)dx (2.6)

where V = [−1/2, 1/2]d and for α = (α1, . . . , αd) ∈ Zd, we denote by (α)+ = (|α1|, . . . , |α|d).

The Green’s function corresponding to the above random walk is given by

Gs(α, β) =
+∞∑
m=0

Qm(α, β) = (1−Q)−1(α, β).

We consider the Gaussian interface model whose law on Λ b Zd is given by

Ps,Λ(dϕ) =
1

ZΛ

exp(−HΛ(ϕ))
∏
α∈Λ

dϕα
∏
α/∈Λ

δ0(ϕα)

where the Hamiltonian is given by

HΛ(ϕ) =
1

2

∑
α,β∈Λ

ϕα(I −Q)Λ(α, β)ϕβ

and (I−Q)Λ = (δ(α, β)−Q(α, β))α,β∈Λ. Let Gs,Λ denote the corresponding Green’s function

for the killed random walk, that is,

Gs,Λ(α, β) = Eα

[
τΛ−1∑
m=0

1{Sm=β}

]
. (2.7)

Here P denotes the law of an isotropic random walk and τΛ denotes its corresponding exit

time from Λ. It follows by calculations similar to Lemma 5 of Zeitouni (2015) that (I−Q)Λ is
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symmetric and positive definite and hence the Gibbs measure exists by Georgii (1988, Propo-

sition 13.13) and moreover it is a centered Gaussian field on RΛ with covariance EΛ[ϕαϕβ] =

Gs,Λ(α, β). Note that using the characteristic function of qs and the fact that s < d it follows

that Ps,Λ → P as Λ ↑ Zd. In this case the finite volume Gibbs measure also satisfies the DLR

equation. A consequence of the Markov property of the field is that one can write, for K ⊂ Zd

and U = Kc,

Gs(α, β) = Gs,U(α, β) +
∑
γ∈K

Pα[τU < +∞, SτU = γ]Gs(γ, β). (2.8)

Note that using the above decomposition for K and letting FK = σ(ϕβ : β ∈ K), one has

from Lemma A.2 of Caputo (2000),

µα = E[ϕα|FK ] =
∑
β∈K

Pα (HK < +∞, SHK = β)ϕβ, α ∈ Zd. (2.9)

Recall HK := inf {n ≥ 0 : Sn ∈ K} and Sn is the law of the isotropic random walk defined

above.

It is known from Bolthausen et al. (1995) that

Gs(α, β)

ωs,d‖α− β‖s−d
→ 1 as ‖α− β‖ → +∞ (2.10)

where there exists cs > 0 such that

ω(s, d) =

∫
Rd k(x)‖x‖−sdx

(2π)dcs
∫

Rd(1− k(x))‖x‖−1−sdx
< +∞

and k(x) = 1
d

∑d
i=1 cosxi. Note that since s < d we have the Gs(α, β) → 0 as ‖α − β‖ →

+∞.

3 Proofs of the result of Section 1.1

3.1 Reminder on the Stein-Chen method

For the reader’s convenience in this subsection we recall the results from Arratia et al. (1989)

which we use crucially in our proofs, and also in order to fix the notations for the subsequent

Sections.

Let A be an arbitrary index set and (Xα)α∈A be a sequence of (possibly dependent) Bernoulli

random variables of parameter pα. Let W :=
∑

α∈AXα and λ := E[W ]. Now for each α we

define a subset Bα ⊆ A which we consider a “neighborhood” of dependence for the variable

Xα, such that Xα is nearly independent from Xβ if β ∈ A \Bα. Set

b1 :=
∑
α∈A

∑
β∈Bα

pαpβ,

b2 :=
∑
α∈A

∑
α 6=β∈Bα

E [XαXβ] ,

8



b3 :=
∑
α∈A

E [|E [Xα − pα | H1]|]

where

H1 := σ (Xβ : β ∈ A \Bα) .

Theorem 7 (Theorem 1, Arratia et al. (1989)). Let Z be a Poisson random variable with

E[Z] = λ and let ‖ · ‖TV be the total variation distance between probability measures. Then

‖L(W )− L(Z)‖TV ≤ 2(b1 + b2 + b3)

and ∣∣P (W = 0)− e−λ
∣∣ < min

{
1, λ−1

}
(b1 + b2 + b3).

The “point process” version of the Poisson approximation Theorem reads as follows:

Theorem 8 (Arratia et al. (1989, Theorem 2)). Let A be an index set. Partition the index

set A into disjoint non-empty sets A1, . . . , Ak. For any α ∈ A, let (Xα)α∈A be a dependent

Bernoulli process with parameter pα. Let (Yα)α∈A be independent Poisson random variables

with intensity pα. Also let

Wj :=
∑
α∈Aj

Xα and Zj :=
∑
α∈Aj

Yα and λj := E[Wj] = E[Zj].

Then

‖L(W1, . . . ,Wk)−L(Z1, . . . , Zk)‖TV ≤ 2 min
{

1, 1.4 (minλj)
−1/2

}
(2b1 + 2b2 + b3) (3.1)

where L(W1, . . . ,Wk) denotes the joint law of these random variables.

3.2 Proof of Theorem 1

3.2.1 Reduction to the bulk

We begin by noticing that convergence is required only “well inside” VN . More precisely, set

uN(z) := bN + aNz. Recall that in this Subsection ϕα denotes the coordinate process under

P and G(α) denotes the variance.

Lemma 9. Let us denote by LN = maxα∈V δN ϕα and JN = maxα∈VN\V δN ϕα. Assume that

lim
N→+∞

P (LN ≤ aNz + bN) = exp
(
−e−z+d log(1−2δ)

)
. (3.2)

Then it follows that

lim
N→+∞

P
(

max
α∈VN

ϕα ≤ aNz + bN

)
= exp(−e−z).
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Proof. First note that P(maxα∈VN ϕα ≤ uN(z)) = P(max{LN , JN} ≤ uN(z)). This implies

that P(maxα∈VN ϕα ≤ uN(z)) ≤ P(LN ≤ uN(z))→ exp
(
−e−z+d log(1−2δ)

)
by (3.2). Now as

δ → 0 this gives an upper bound. For a lower bound, using P (A ∩ B) ≥ P (A) − P (Bc) we

have

P
(

max
α∈VN

ϕα ≤ uN(z)

)
≥ P (LN ≤ uN(z))− P (JN > uN(z)) .

Using the Mills ratio inequality(
1− 1

t2

)
e−t

2/2

√
2πt
≤ P (N (0, 1) > t) ≤ e−t

2/2

√
2πt

, t > 0, (3.3)

we have

P(JN > uN(z)) ≤
∑

α∈VN\V δN

P(ϕα > uN(z)) ≤
∑

α∈VN\V δN

exp
(
−uN (z)2

2G(α)

)
√

2πuN(z)

√
G(α)

≤
∣∣VN \ V δ

N

∣∣ exp
(
−uN (z)2

2g(0)

)
√

2πuN(z)

√
g(0) ≤ C

(
1− (1− 2δ)d

)
→ 0

as δ → 0, where in the third inequality we have used Assumption (A3) in the case P = PN .

Combining this with (3.2) and then letting δ → 0, one obtains the lower bound.

Now we have to take care of the convergence on the bulk. The cardinality of the set we are

working with will be slightly less than that of the original set and we need to be careful with

it. More concretely, if we have mN := |V δ
N | ≈ (1− 2δ)dN random variables, the next Lemma

will allow us to derive the convergence of the maximum in VN on the scale uN(z) from that

on umN (z). The following lemma is a consequence of Resnick (1987, Proposition 0.2) and for

a detailed proof we refer to Chiarini et al. (2015a, Lemma 8).

Lemma 10. Let N ≥ 1, FN be a distribution function, and mN := |V δ
N |. Let aN and bN be

as in (1.1). If limN→+∞ FN(amN z + bmN ) = exp(−e−z), then

lim
N→+∞

FN(aNz + bN) = exp
(
−e−z+d log(1−2δ)

)
.

3.2.2 Proof of Theorem 1

We start with the proof of convergence in the bulk. Define, for all α ∈ V δ
N , pα := P (ϕα >

umN (z)), and

Xα = 1{ϕα>umN (z)} ∼ Be(pα).

We furthermore introduce W :=
∑N

α=1 Xα. Of course W is closely related to the maximum

since
{

maxα∈V δN ϕα ≤ umN (z)
}

= {W = 0}. We will now fix z ∈ R and λ := e−z. Our main

idea is to apply Theorem 7. To this scope we define Bα as in the assumptions of Theorem 1

and show that b1, b2 and b3 as per Theorem 7 converge to zero.

i. b1 =
∑

α∈V δN

∑
β∈Bα pαpβ. Exploiting the fact that for a fixed z one can choose N large

enough so that uN(z) > 0, it follows that

pα
(3.3)

≤ e−
umN

(z)2

2g(0)

√
2πumN (z)

√
g(0)

10



where in the case P = PN we have used Assumption (A3). By the equality |V δ
N | = mN we

get that

b1 ≤ mNs
d
N

 e−
umN

(z)2

2g(0)

√
2πumN (z)

√
g(0)

2

≤ cm−1
N sdNe−2z (A4)

= o (1) .

Note that in the last line we have used the weaker assumption sN = o
(
m

1/d
N

)
compared to

the Assumption (A4) on sN .

ii. b2 =
∑

α∈A
∑

α 6=β∈Bα E [XαXβ]. First we need to estimate the joint probability

P (ϕα > umN (z), ϕβ > umN (z)) .

To do so, we will prove it suffices to treat the case where P = P, and then see that the same

term with PN is “almost” the same when N is large. Denote the covariance matrix of the

vector (ϕα, ϕβ) by

Σ2 =

[
G(α) G(α, β)

G(α, β) G(β)

]
for G the covariance matrix of P (so it can be either g or gN). Note that, for w ∈ R2, one has

wTΣ−1
2 w =

G(α)w2
2 + G(β)w2

1 − 2G(α, β)w1w2

G(α)G(β)−G(α, β)2
.

Using 1 := (1, 1)T we denote by

∆i := umN (z)
(
1TΣ−1

2

)
i
, i = 1, 2.

For P = P, one can see immediately that for i = 1, 2

∆i =
umN (z)(g(0)− g(α, β))

g(0)2 − g(α, β)2
. (3.4)

On the other hand, for PN , using the lower bound given in Assumption (A3),

∆1 = umN (z)
G(β)−G(α, β)

G(α)G(β)−G(α, β)2
≥ umN (z)

(g(0)− g(α, β)) + o ((logN)−1)

g(0)2 − g(α, β)2 + o ((logN)−1)

= umN (z)
g(0)− g(α, β)

g(0)2 − g(α, β)2
+ o (1) , (3.5)

with the same estimate holding for ∆2. Observe that the same argumentation shows also that

umN (z)2 1TΣ−1
2 1 = umN (z)2 2(g(0)− g(α, β))

g(0)2 − g(α, β)2
+ o (1) (3.6)

in the PN case. Exploiting an easy upper bound on bivariate Gaussian tails (see Savage (1962)),

we consider first the P case and obtain

11



P(ϕα > umN (z), ϕβ > umN (z)) ≤ 1

2π

1

| det Σ2|1/2∆1∆2

exp

(
−umN (z)2

2
1TΣ−1

2 1

)
(3.4)
=

1

2π

(g(0) + g(α− β))2

(g(0)2 − g(α− β)2)1/2umN (z)2
exp

(
−umN (z)2

2

2(g(0)− g(α− β))

g(0)2 − g(α− β)2

)

≤ 1

4π logmN

(
1 + g(α−β)

g(0)

)3/2

(
1− g(α−β)

g(0)

)1/2
mN

− 2g(0)
g(0)+g(α−β) (4π logmN)

g(0)
g(0)+g(α−β) e−

2g(0)z
g(0)+g(α−β)

+o(1)

≤

(
1 + g(α−β)

g(0)

)3/2

(
1− g(α−β)

g(0)

)1/2
mN

− 2g(0)
g(0)+g(α−β) e−

2g(0)z
g(0)+g(α−β)

+o(1) (3.7)

where in the second-to-last inequality we used umN (z)2 = b2
mN

+ 2g(0)z + g(0)2z2/b2
mN

and

the bound of b2
mN

g(0)(2 logmN − log logmN − log 4π) ≤ b2
mN
≤ 2g(0) logmN .

Note that in the second line, when dealing with P = PN , we can use (3.5) so that a multiplica-

tive factor (1 + o (1)) would appear in the fraction and an additive o (1) would appear in the

exponential due to the error terms in (3.5), (3.6), but we can drop them without influencing

the asymptotic. Hence (3.7) is valid under P. We make now the following claim on the variance

of the measure P (which we will prove in a moment):

Claim 11.

sup
α∈Zd\{0}

g(α)

g(0)
< 1.

Now assuming it, we have that 1− κ := supα∈Zd\{0} g(α)/g(0) ∈ [0, 1). From this we derive

g(0)

g(0) + g(α− β)
≥ 1

2− κ
and

g(α− β)

g(0) + g(α− β)
≤ 1− κ. (3.8)

We obtain thus

P (ϕα > umN (z), ϕβ > umN (z))

(3.7), (3.8)

≤ (2− κ)3/2

κ1/2
mN

− 2
(2−κ) max

(
e−2z

1{z≤0}, e−2z/(2−κ)
1{z>0}

)
.

We get finally for some constants c, c′ > 0 depending only on d, δ and κ

b2 ≤ cmNs
d
N

(2− κ)3/2

κ1/2
mN

− 2
(2−κ) max

(
e−2z

1{z≤0}, e−2z/(2−κ)
1{z>0}

)
≤ c′mN

− κ
(2−κ) sdN max

(
e−2z

1{z≤0}, e−2z/(2−κ)
1{z>0}

)
.

Since κ/(2 − κ) > 0 and Assumption (A4) holds, we have that b2 = o (1). What is left to

conclude is to show Claim 11.
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Proof of Claim 11. The fact that g(α) ≤ g(0) follows from the Cauchy-Schwarz inequality;

equality holds if and only if ϕα = Aϕ0 + B P-a. s. for some A, B. By E [ϕα] = 0 we have

B = 0 and by E [ϕ2
α] = E [ϕ2

0] we obtain A = 1, in other words ϕα = ϕ0 a.-s. Since the field

is stationary, we know

E [ϕ0ϕ2α]
assumption

= E [ϕαϕ2α] = E [ϕ0ϕα]
assumption

= g(0).

This implies that for k ∈ N, g(kα) is a strictly positive constant, which contradicts the fact that

lim‖α‖→+∞ g(α) = 0. For ‖α‖ large, by the asymptotics of g(α) we have sup‖α‖>R g(α)/g(0) <

1/2 for some R = R(1/2). Then let us consider the ball B(0, R). There we cannot have that

there exists an α0 with g(α0)/g(0) = 1, otherwise, as we have just seen, g(kα0) would be

constant for all k ∈ N, so maxα∈B(0,R) g(α)/g(0) < 1. We can take then

sup
α∈Zd\{0}

g(α)

g(0)
≤ max

{
1

2
, max
α∈B(0,R)

g(α)

g(0)

}
< 1.

iii. b3 =
∑

α∈V δN
E [|E [Xα − pα | H1]|]. It will be convenient to introduce another σ-algebra

which strictly contains H1 = σ
(
Xβ : β ∈ V δ

N \Bα

)
, namely

H2 := σ (ϕβ : β ∈ VN \Bα) .

Using the tower property of the conditional expectation and Jensen’s inequality

E [|E [Xα − pα | H1]|] = E [|E [E [Xα − pα | H2] | H1]|]
≤ E [E [|E [Xα − pα | H2]| | H1]] = E [|E [Xα − pα | H2]|] .

We now use the following Lemma which follows from Zeitouni (2015, Lemma 4) and Janson

(1997, Theorem 9.9).

Lemma 12 (Conditional laws). Let K := VN \Bα where α ∈ V δ
N . Define ψα := ϕα−µα, α ∈

Zd, then it follows that ψα and µα are independent. Also the following properties hold:

(i) The law of (µα)α∈Zd is that of a centered Gaussian with covariance matrix given by(∑
ξ∈K

T (α, ξ)G(β, ξ)

)
α, β∈Zd

for some deterministic T .

(ii) The law of ψα under P(· | FK) is that of a centered Gaussian such that ψα = 0 a. s. if

α ∈ K, and with variance Var [ϕα]− Var [µα] (in particular it is deterministic and does

not depend on the values (ϕα)α∈K).

Proof. (i) It follows from Zeitouni (2015, Lemma 4) that

µα := E [ϕα|FK ] =
∑
γ∈K

T (α, γ)ϕγ,
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where T (α, γ) =
∑

ξ∈K G(α, ξ)G−1
K (ξ, γ). Note that for α ∈ K we have that T (α, γ) =

δ(α, γ). A relevant observation is that ψα and µα are independent: indeed for a L1-random

variable ϕα and a sub-sigma-field FK , one has that ϕα − E[ϕα|FK ] is independent of any

FK-measurable Y (Friedli and Velenik, 2015, Lemma A.55). Now µα =
∑

γ∈K T (α, γ)ϕγ is

FK-measurable and hence is independent of ψα = ϕα − E[ϕα|FK ].

(ii) The proof can be found in Janson (1997, Theorem 9.9).

It is worth noticing that in some cases (for example the DGFF or in the MM) the law of ψα has

a more explicit representation, and it is indeed that of a DGFF or MM with Dirichlet boundary

conditions outside Bα.

We will now prove a claim that will be of key importance in estimating the convergence of b3.

Lemma 13. It holds that

lim
N→+∞

sup
α∈V δN

(
g(0)

Var [ψα]
− 1

)
umN (z)2 = 0.

Proof. With the help of Lemma 12 (ii) and Assumption (A3) we have

0 ≤ g(0)

Var [ψα]
− 1 ≤ Var [µα] + o (1)

g(0)− Var [µα] + o (1)
.

Using Assumption (A4) it follows that (logN)Var [µα] = o (1) uniformly over all α ∈ V δ
N and

hence the claim follows since umN (z)2 = logN + o (logN).

We proceed by showing b3 = o (1) . Let us call PK the law of ϕ under the conditioning of H2.

Noting that µ is H2-measurable, we see that (ψα)α∈Zd\K under PK has covariance structure

which was explicitly stated in Lemma 12 (ii). We write

E[|E[Xα − pα|H2]|] = E
[∣∣∣EK

[
1{ψα+µα≥umN (z)} −pα

]∣∣∣]
= E

[∣∣∣EK

[
1{ψα+µα≥umN (z)} −pα

]∣∣∣1
µα>(umN (z))

−(1+θ)
ff
]

+ E

[∣∣∣EK

[
1{ψα+µα≥umN (z)} −pα

]∣∣∣1
µα≤(umN (z))

−(1+θ)
ff
]

=: T1 + T2,

with θ as in Assumption (A4). Let us handle T1 first. Using the estimate P (|N (0, 1)| > a) ≤
e−a

2/2 for a > 0, we get that

P
(
|µα| > (umN (z))−1−θ

)
≤ e−(umN (z))−2(1+θ)/(2Var[µα]). (3.9)

Hence note that, using Assumption (A4), we have, for some constants C, C1 > 0,

∑
α∈V δN

P
(
|µα| > (umN (z))−1−θ

)
≤ C exp

− logmN

C1

(
(logmN)2+θ sup

α∈V δN

Var [µα]

)−1

− 1



14



where we have used that uN(z) ∼ bN and bN ∼ C
√

2 logN . Hence we have
∑

α∈V δN
T1 is

going to zero. Note that T2 can be tackled using calculations similar to b3 in Chiarini et al.

(2015a) and Lemma 13. For completeness we provide a few details:

E
[
|PK(ψα + µα > umN (z))− pα|1n|µα|≤(umN (z))

−1−θo
]

= E
[
(PK(ψα + µα > umN (z))− pα)1n

|µα|≤(umN (z))
−1−θo 1{pα<PK(ψα+µα>umN (z))}

]
+ E

[
(pα − PK(ψα + µα > umN (z)))1n

|µα|≤(umN (z))
−1−θo 1{pα≥PK(ψα+µα>umN (z))}

]
=: T2,1 + T2,2. (3.10)

We treat first T2, 2. Under the event
{
|µα| ≤ (umN (z))−1−θ

}
one obtains

pα − PK(ψα + µα > umN (z))

(3.3), (A3)

≤
√
g(0)e−

umN
(z)2

2g(0)

√
2πumN (z)

−

1−

( √
Var [ψα]

umN (z)− µα

)2
√Var [ψα]e−

(umN
(z)−µα)2

2Var[ψα]

√
2π(umN (z)− µα)

≤
√
g(0)e−

umN
(z)2

2g(0)

√
2πumN (z)

1− (1 + o (1))

√
Var [ψα]umN (z)e

“
1− g(0)

Var[ψα]

”
umN

(z)2

2g(0)
+
µαumN

(z)

Var[ψα]
− µ2

α
2Var[ψα]√

g(0)(umN (z)− µα)


=

√
g(0)e−

umN
(z)2

2g(0)

√
2πumN (z)

1− (1 + o (1))

√
Var [ψα]uN (z)e

“
1− g(0)

Var[ψα]

”
umN

(z)2

2g(0)
+o(1)√

g(0)umN (z)(1− umN (z)−2−θ)

 . (3.11)

In the last line we used the fact that |µα| ≤ (umN (z))−1−θ. By bounding the indicator

functions by 1,

E
[
(pα − PK(ψα + µα > umN (z)))1n

|µα|≤(umN (z))
−1−θo 1{pα≥PK(ψα+µα≤umN (z))}

]
≤ (3.11).

Now

b3 ≤
∑
α∈V δN

(T1 + T2)
(3.9)

≤
∑
α∈V δN

T1 + o (1) =
∑
α∈V δN

T2,1 +
∑
α∈V δN

T2,2 + o (1) . (3.12)

By (3.11) and Lemma 13,

∑
α∈V δN

T2,2 ≤ mN

√
g(0)e−

umN
(z)2

2g(0)

√
2πumN (z)

o (1) = e−z+o(1)o (1) . (3.13)

Analogously,
∑

α∈V δN
T2, 1 = o (1). Plugging (3.13) in (3.12), one obtains b3 = o (1). The

argument to obtain uniform convergence is an immediate application of Pólya’s continuity

Theorem (Pólya, 1920, Satz I), since the limiting distribution function exp(−e−z) is continuous.
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3.3 Proof of Theorem 3

Proof. The proof follows ideas similar to Chiarini et al. (2015b) and hence we shall only briefly

sketch the steps.

Step 1: reduction to bulk. For δ > 0, recall that the bulk is denoted by V δ
N . Let us denote

by

ηδn(·) =
∑
α∈V δN

ε“α
n
,
ϕα−bN
aN

”(·).
It is well-known thatMp(E) is a complete, separable metric space endowed with a metric dp.

First we show that for any ε > 0,

lim
δ→0

lim sup
n→+∞

P
[
dp
(
ηn, η

δ
n

)
> ε
]

= 0. (3.14)

To prove (3.14) it is enough to show that, for any continuous, positive, compactly supported

function f on E we have

lim
δ→0

lim sup
n→+∞

P
[∣∣ηn(f)− ηδn(f)

∣∣ > ε
]

= 0.

Since f is compactly supported we can choose z0 ∈ R such that the support of f is contained

in [0, 1]× (z0, +∞). Therefore

E
[∣∣ηn(f)− ηδn(f)

∣∣] = E

∣∣∣∣∣∣
∑

α∈VN\V δN

f

(
α

n
,
ϕα − bN
aN

)
1nϕα−bN

aN
>z0

o
∣∣∣∣∣∣


≤ sup
z∈E
|f(z)|

∑
α∈VN\V δN

P [ϕα > aNz0 + bN ]

(3.3)

≤ C(1− (1− 2δ)d)e−z0

Hence (3.14) follows by taking δ → 0.

Step 2: convergence together. Let us denote by ηδ a Poisson random measure with intensity

dt|
[δ,1−δ]d

⊗(e−xdx) on E. Then it follows from the proof of Theorem 2 of Chiarini et al. (2015b)

that ηδ
d→ η. By Resnick (2007, Theorem 3.5) to complete the proof of Theorem 3 it is enough

to show that for any fixed δ > 0, ηδn
d→ ηδ as n→ +∞.

Step 3: Kallenberg’s conditions. To show the convergence of ηδn to ηδ, it is enough to show

the following two conditions due to Kallenberg (Kallenberg, 1983, Theorem 4.7).

i) For any A bounded rectangle in [0, 1]d and R = (x, y] ⊂ (−∞,+∞]

E[ηδn(A× (x, y])]→ E[ηδ(A× (x, y])] =
∣∣A ∩ [δ, 1− δ]d

∣∣ (e−x − e−y).

We adopt the convention e−∞ = 0 and the notation |A| for the Lebesgue measure of

A.
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ii) For all k ≥ 1, A1, A2, . . . , Ak disjoint rectangles in [0, 1]d and R1, R2, . . . , Rk, each

of which is a finite union of disjoint intervals of the type (x, y] ⊂ (−∞,+∞],

P
(
ηδn(A1 ×R1) = 0, . . . , ηδn(Ak ×Rk) = 0

)
→ P

(
ηδ(A1 ×R1) = 0, . . . , ηδ(Ak ×Rk) = 0

)
= exp

(
−

k∑
j=1

|Aj ∩ [δ, 1− δ]d|ω (Rj)

)
(3.15)

where ω(dz) := e−zdz.

Note that the first condition follows from (3.3) and the expansion of (aNz+ bN)2, z ∈ R. For

the second condition we use Theorem 8. To apply the result, let us denote by Ij := nAj ∩V δ
N

and I = I1 ∪ · · · ∪ Ik. We are setting Bα := B (α, sN)∩I where sN is as in Condition (A4).

Let Xα = 1nϕα−bN
aN

∈Rj
o if α ∈ Ij and pα = P

[
ϕα−bN
aN

∈ Rj

]
. Let Wj =

∑
α∈Ij Xα and Zj

be as in Theorem 8. Then the left hand side of (3.15) is given by P [W1 = 0, . . . , Wk = 0]

and the limit on the right side is P [Z1 = 0, . . . , Zk = 0]. Hence to show (3.15) we only need

to show that b1, b2 and b3 go to zero. Since the proof of this fact is similar to the proof of

Theorem 1 we leave out the details to avoid repetitions.

4 Proof of Assumptions for examples in Section 2

4.1 Proofs of basic properties of membrane model

We introduce some well-known notations of stopping times for the simple random walk Sm
which will be used throughout this section. Let K be a subset of Zd. Let us recall HK :=

inf{m ≥ 0 : Sm ∈ K} and τK := inf{m ≥ 0 : Sm /∈ K} to be the first entrance time and

first exit time for the walk. In this section we show that the MM satisfies the properties of

Theorem 1. The following lemma shows monotonicity of the variance which becomes crucial

in the proof of Assumption (A4).

Lemma 14 (Monotonicity of variances). Let A ⊆ B b Zd. Then for all α ∈ A

GA(α, α) ≤ GB(α, α).

Proof. We recall (2.4), that is, for a MM ψ under PB

{ψα}α∈A
d
=
{
EB

[
ψα|FB\A

]
+ ψ′α

}
α∈A

where ψ′ has the law of a MM on A with zero boundary conditions in B \ A. Therefore

GB(α, α)−GA(α, α) = EB

[
(EB

[
ψα|FB\A

]
)2
]
≥ 0.

The next lemma shows the Markov decomposition of the covariance function in terms of

random walks.
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Proposition 15. Let A ⊂ Zd, Ac := Zd \ A. The equality

G(α, β) = GA(α, β) + Eα

(
G(SHAc , β)1{HAc<+∞}

)
+ Eα

(
1{HAc<+∞}HAcΓ(SHAc , β)

)
holds for all α, β ∈ Zd. Here we denote GA(α, β) =

∑+∞
k=0(k + 1)Pα (Sk = β, k < τA) and

Γ(α, β) =
∑+∞

k=0 Pα(Sk = β).

Proof. Let Θn be the canonical time shift on the space of nearest neighbor trajectories. Then

we see that one can write, by Fubini’s theorem,

G(α, β) = Eα

(
+∞∑
k=0

(k + 1)1{Sk=β}

)

= Eα

(
τA−1∑
k=0

(k + 1)1{Sk=β}

)
+ Eα

(
∞∑

k=τA

(k + 1)1{Sk=β} 1{τA<+∞}

)

=
+∞∑
k=0

(k + 1)Pα(Sk = β, k < τA) + Eα

(
1{τA<+∞}

∞∑
k=0

(k + τA + 1)1{Sk+τA
=β}

)

= GA(α, β) + Eα

(
1{τA<+∞}

(
+∞∑
k=0

(k + 1)1{Sk=β}

)
◦ΘτA

)
+

+ Eα

(
τA 1{τA<+∞}

(
+∞∑
k=0

1{Sk=β}

)
◦ΘτA

)

= GA(α, β) + Eα

(
1{τA<+∞} ESτA

(
+∞∑
k=0

(k + 1)1{Sk=β}

))
+

+ Eα

(
τA 1{τA<+∞} ESτA

(
+∞∑
k=0

1{Sk=β}

))
= GA(α, β) + Eα

(
1{τA<+∞}G(SτA , β)

)
+ Eα

(
τA 1{τA<+∞} Γ(SτA , β)

)
.

Now use HAc = τA to complete the proof.

It now becomes important to understand how GVN and GVN =: GN differ. The non-trivial

answer to this query says that essentially in the bulk they turn out to be close. This was derived

in the following

Theorem 16 (Kurt (2008, Corollary 2.5.5)). For d ≥ 4 and 0 < δ < 1, there exists a constant

cd = cd(δ) such that

sup
α, β∈V δN

∣∣GN(α, β)−GN(α, β)
∣∣ ≤ cdN

4−d
d .

4.2 Proofs of Assumptions for the membrane model

We are now ready to prove the results for the MM by showing that the assumptions of

Theorem 1 hold. For the membrane model we take sN = (logN)T with T > (2 + θ)/(d− 4)

for some θ > 0.
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Proof of Assumptions in Theorem 1. Conditions (A1) and (A2) follow immediately from dis-

cussions in Subsection 2.1 and Lemma 5.

Condition (A3): Observe that from the proof of Kurt (2008, Proposition 2.1.1) it follows that

GN(α, α) ≤ GN+1(α, α). By the representation GN+1(α, α) =
∑

β∈VN+1
ΓN+1(α, β)ΓN+1(β, α)

and the fact that ΓN(α, β) ≤ Γ(α, β), the upper bound follows. Now we show that there exists

a constant C = C(d, δ) such that for α, β ∈ V δ
N ,

GN(α, β) ≥ G(α, β)− CN
4−d
d .

Let us write GN(α, β) = G(α, β)−R(α, β) where R(α, β) := G(α, β)−GN(α, y). First we

look at the error R(α, β). Note that

R(α, β) = (G(α, β)−GN(α, β)) + (GN(α, β)−GN(α, β)). (4.1)

The second summand in (4.1), thanks to Theorem 16, is bounded by c(d, δ)N
4−d
d . To tackle

the first term we use Proposition 15:

G(α, β)−GN(α, β)

=
∑
γ∈∂VN

Pα

[
HZd\VN < +∞, SHZd\VN

= γ
]
G(γ, β)

+
∑
γ∈∂VN

Eα

[
HZd\VN 1{HZd\VN

<+∞} 1

SHZd\VN

=γ

ff
]

Γ(γ, β). (4.2)

Note that since α, β ∈ V δ
N we have from Lemma 5 that, if N is large enough,∑

γ∈∂VN

Pα

[
HZd\VN <∞, SHZd\VN

= γ
]
G(γ, β) ≤ 2η2 sup

γ∈∂VN
‖γ − β‖4−d ≤ C

(
δN1/d

)4−d
.

For the other term in (4.2) first note that Mn := ‖Sn‖2 − n is a martingale (Lawler, 1991,

Exercise 1.4.3) and that HZd\VN = τVN =: τN under Pα. Following the idea of Lawler (1991)

before Equation (1.21), we apply the optional sampling theorem which yields

Eα

[
‖SτN‖2

]
− Eα [τN ] = Eα [MτN ] = Eα [M0] = ‖α‖2

so that

Eα

[
HZd\VN 1

n
HZd\VN

<+∞
o] ≤ Eα [τN ] = Eα

[
‖SτN‖2

]
− ‖α‖2.

Since SτN ∈ ∂VN
Eα

[
‖SτN‖2

]
− ‖α‖2 ≤ c(d, δ)N2/d. (4.3)

Using this we have∑
γ∈∂VN

Eα

[
HZd\VN 1

n
HZd\VN

<+∞
o 1

SHZd\VN
=γ

ff
]

Γ(γ, β)

≤ sup
γ∈∂VN

Γ(γ, β)Eα

[
HZd\VN 1

n
HZd\VN

<+∞
o]

≤ C(d, δ)N
2−d
d N2/d ≤ C(d, δ)N

4−d
d .
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Combining these inequalities we have that for α ∈ V δ
N , β ∈ V δ

N , R(α, β) ≤ C(δ, d)N
4−d
d and

hence Condition (A3) is proved.

Condition (A4) under P: fix K := VN \B(α, sN), U := Zd \K = (Zd \ VN) ∪B(α, sN).

Note that in the decomposition in Lemma 6 we have that µα and ψα are independent. Also

we know that ψα is distributed as PU by Proposition 6. Hence we have

Var [µα] = Var [ϕα]− Var [ψα] (4.4)

= G(0)−GU(α, α)

=
(
G(0)−GU(α, α)

)
+
(
GU(α, α)−GU(α, α)

)
=: E1 + E2 (4.5)

where GU(α, α) =
∑

k≥0(k + 1)Pα[Sk = α, k < HK ]. First we deal with E1 using Proposi-

tion 15:

G(0)−GU(α, α) =

=
∑
γ∈K

Pα[HK < +∞, SHK = γ]G(γ, α) +
∑
γ∈K

Eα

[
HK 1{HK<+∞} 1{SHK=γ}

]
Γ(γ, α).

One notes that

E1 ≤ sup
γ∈K

G(γ, α) + sup
γ∈K

Γ(γ, α)Eα

[
HK 1{HK<+∞}

]
. (4.6)

Since the SRW is transient in d ≥ 5 we have τBα < +∞ Pα-almost surely. Using the same

idea which led to (4.3) we get

Eα

[
HK 1{HK<+∞}

]
= Eα

[
τBα 1{τBα<+∞}

]
≤ C(d, δ)s2

N .

Hence plugging this estimate in (4.6) one gets that

E1 ≤ C
(
s4−d
N + s2−d

N s2
N

)
= Cs4−d

N .

Note that this gives a bound on E1 and hence we are left with E2 =
(
GU(α, α)−GU(α, α)

)
.

Note that Bα ( U = (Zd \ VN) ∪B(α, sN). Since we know that variances increase as shown

in Lemma 14 the inequality GBα(α, α) ≤ GU(α, α) holds. Actually it follows that for α ∈ V δ
N ,

we have GU(α, α) = GBα(α, α). Indeed, using the fact that B(α, sN) ( VN (that is, for a

walk starting at α, τU = τBα) we have

GU(α, α) = GBα(α, α) =
∑
n≥0

(n+ 1)Pα [Sn = α, n < τBα ]

We need to now look at GBα(α, α)−GBα(α, α). Let us denote the bulk of Bα as

B(α, sN)δ := {β ∈ B(α, sN) : ‖β − γ‖ ≥ δsN , for all γ ∈ B(α, sN)c}.

Observe that α ∈ B(α, sN)δ. Hence using Theorem 16,

E2 = GU(α, α)−GU(α, α)

≤ GBα(α, α)−GBα(α, α) ≤ sup
γ∈B(α,sN )δ

∣∣GB(α,sN )(α, γ)−GB(α,sN )(α, γ)
∣∣

= sup
γ∈B(0, sN )δ

∣∣GB(0, sN )(0, γ)−GB(0, sN )(0, γ)
∣∣ ≤ C(d, δ)s4−d

N .
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Recalling (4.5) we have just proved that Var [µα] ≤ C(d, δ)s4−d
N . Since sN = (logN)T with

T > (2 + θ)/(d− 4), Condition (A4) follows.

Condition (A4) under PN : the proof is very similar to the argument under P and hence

we briefly sketch it. Note that Var [µα] = GN(α, α)−GBα(α, α). As before from Theorem 16

it follows that
∣∣GN(α, α)−GN(α, α)

∣∣ ≤ cdN
4−d and

∣∣GBα(α, α)−GBα(α, α)
∣∣ ≤ cds

4−d
N ,

therefore it is enough to bound
∣∣GN(α, α)−GBα(α, α)

∣∣. Note that τBα ≤ τVN , Pα-almost

surely. Hence we have that∣∣GN(α, α)−GBα(α, α)
∣∣ =

∣∣∣∣∣∑
m≥0

(m+ 1)Pα[Sm = α,m < τVN ]−
∑
m≥0

(m+ 1)P[Sm = α, m < τBα ]

∣∣∣∣∣
=
∑
m≥0

(m+ 1)Pα[Sm = α, τBα ≤ m < τVN ]

= Eα

[(
+∞∑
m=0

(m+ τBα + 1)1{Sm=α,m<τVN}

)
◦ΘτBα

]
MP
=

∑
γ∈∂Bα

Pα[SτBα = γ]GN(γ, α) +
∑
γ∈∂Bα

Eα

[
τBα 1{SτBα=γ}

]
ΓN(γ, α)

≤ sup
γ∈∂Bα

GN(γ, α) + sup
γ∈∂Bα

Γ(γ, α)Eα [τBα ]

≤ Cds
4−d
N .

In the last line we have used previous estimates to conclude that Eα[τBα ] ≤ cs2
N .

Proof of Proposition 6 (b). Recall K = VN \ Bα, U = Zd \K in what follows. First observe

that as in proof of Theorem 1 it follows that µα is FK-measurable and hence is independent

of ψα = ϕα − E[ϕα|FK ].

To show the next part of the lemma, we follow the proof of Lemma 1.2 of Rodriguez and

Sznitman (2013) and hence we need to show that

E [1A((ψα)α∈U)] = EU [1A((ϕα)α∈U)] ∀A ∈ AU (4.7)

where AU is the canonical σ-algebra on RU . Let (αi)0≤i≤n ∈ U and V be a finite set such

that K ∪{α0, . . . , αk} ⊂ V ⊂ Zd. Now by Dynkin’s π−λ theorem it suffices to assume that

for A of the form

A = Aα0 × · · · × Aαn × RU\{α0, ..., αn}

where k ≥ 0 and Aαi ∈ B(R), i = 0, 1, . . . , k. Consider on RV the law of the finite membrane

model, that is, the centered Gaussian field with covariance GV (α, β). We indicate the law by

PV and its canonical process by
{
ϕVx
}
x∈V . Now we define µVα = E

[
ϕVα |FVK

]
where FVK =

σ(ϕVβ : β ∈ K) and also denote ψVα = ϕVα − µVα . Finally, we claim (4.7) holds because of the

following statement:

Claim 17 (DLR equation for an infinite set). As V ↑ Zd we have

EV \K [1AV ((ϕα)α∈V \K)]→ EU [1A((ϕα)α∈U)] (4.8)

and

EV

[
1AV

((
ψVα
)
α∈V \K

)]
→ E [1A((ψα)α∈U)] (4.9)

where AV = Aα0 × · · · × Aαn × RV \K∪{α0, ..., αn}. In particular, the limiting law PU exists.
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Before we embark on showing the Claim, let us clarify its meaning and why it implies (4.7)

(which is nothing but the DLR equation for an infinite set U , see Friedli and Velenik (2015,

Section 6.2.1)). Since U is infinite, this is, a priori, a non-trivial statement. Recall that, due

to Proposition 6 (a), for a finite volume V

EV \K [1AV ((ϕα)α∈V \K)] = EV

[
1AV

((
ψVα
)
α∈V \K

)]
. (4.10)

We are now letting V ↑ Zd on both sides of (4.10), so that:

EV \K [1AV ((ϕα)α∈V \K)] EV

[
1AV

((
ψVα
)
α∈V \K

)]

EU [1A((ϕα)α∈U)] E [1A((ψα)α∈U)]

(4.8)

(4.10)
=

(4.7)
=
!

(4.9)

(where “!” indicates the equality we must still show). This completes the proof of (4.7) and

hence the proof of Proposition 6 (b).

Proof of Claim 17. We discuss only (4.8), since (4.9) follows similarly. We use Giacomin (2010,

Proposition 2.1) and the uniform bound on GV \K(α, α), α ∈ Zd to obtain that the measures

{PV \K}VbZd are tight. Therefore it suffices to show that GV \K converges pointwise to a

bounded limit. An application of Georgii (1988, Theorems 13.24, 13.26) yields that

GU(α, β) := lim
V ↑Zd

GV \K(α, β)

exists. One sees that GU satisfies the following boundary value problem: for α ∈ U{
∆2GU(α, β) = δ(α, β), β ∈ U
GN(α, β) = 0, β ∈ ∂2U.

This shows that the centered Gaussian random measure with covariance GU exists and is the

weak limit of PV \K as V ↑ Zd. In particular (4.8) holds true.

4.3 Proof of assumptions for massive DGFF

We introduced the massive discrete Gaussian free field in Subsection 2.2. Here we briefly point

out the how the assumptions of Theorem 1 are satisfied for this model. We denote by Pϑ,N the

law of the massive free field with zero boundary conditions outside VN , namely ϕ = (ϕα)α∈Zd

under Pϑ,N is the centered Gaussian field with covariance structure

Eϑ,N [ϕαϕβ] = gϑ,V c
N

(α, β)

where recall gϑ,V c
N

(α, β) =
∑

m≥0(1 − ϑ)mPα0
[
Sm = β, m < HV c

N

]
. Hence using the repre-

sentation it follows that gϑ,V c
N

(α, β) → gϑ(α, β) as VN ↑ Zd. Consequently Pϑ,N → Pϑ and

hence Assumption (A1) follows. For detailed proofs of the above facts see Friedli and Velenik

(2015, Section 7.5).

For the next assumptions the decay of the covariance is needed.
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Lemma 18 (Friedli and Velenik (2015, Theorem 7.48)). There exists a constant c(ϑ) > 0

such that for α 6= β ∈ Zd,

exp (−c(ϑ)‖α− β‖) ≤ gϑ(α, β) ≤ 1

ϑ
exp (−c(ϑ)‖α− β‖) .

Note that this implies that the covariance decays exponentially to 0 and hence Assumption (A2)

follows. To show the next assumption we take α, β ∈ V δ
N . We observe that by (2.5) and

Lemma 18 we have

gϑ,V c
N

(α, β) = gϑ(α, β)−
∑
γ∈∂VN

Pα
ϑ

[
HV c

N
< +∞, SHV c

N
= γ

]
gϑ(γ, β)

≥ gϑ(α, β)− sup
γ∈∂VN

gϑ(γ, β) ≥ gϑ(α, β)− 1

ϑ
exp

(
−c(ϑ, δ)N1/d

)
. (4.11)

Hence Assumption (A3) immediately follows. Let K = VN \Bα as in Assumption (A4). First

note that by the Green’s function decomposition we have for β ∈ K

gϑ(α, β) = gϑ,K(α, β) +
∑
γ∈K

Pα
ϑ[HK < +∞, SHK = γ]gϑ(γ, β)

=
∑
γ∈K

Pα
ϑ[HK < +∞, SHK = γ]gϑ(γ, β)

where we have used the fact that α /∈ K and β ∈ K implies gϑ,K(α, β) = 0. Using the above

identity we have

Var [µα] =
∑
β,γ∈K

Pα
ϑ[HK < +∞, SHK = β]Pα

ϑ[HK <∞, SHK = γ]gϑ(β, γ)

=
∑
β∈K

Pα
ϑ[HK < +∞, SHK = β]gϑ(α, β)

≤ sup
β∈K

gϑ(α, β) ≤ sup
β∈K

1

ϑ
e−c(ϑ)‖α−β‖ ≤ Ce−c(ϑ)sN . (4.12)

Now note that taking sN = logN we have (logN)2+θVar [µα] ≤ (logN)2+θN−c(ϑ) → 0 for

any θ > 0 and uniformly for all α ∈ V δ
N . Hence Assumption (A4) follows.

4.4 Proof of assumptions for fractional fields

In this subsection we point out how the fractional field described in Subsection 2.3 satisfies

the assumptions in Theorem 1. Note that due to the transience of the walk Assumption (A1)

follows. More precisely, looking at the representation in (2.7) it follows that Gs,VN (α, β) →
Gs(α, β) and hence Ps,N → Ps. Also note that Assumption (A2) follows from (2.10). Let us

prove Assumption (A3). Since we have a lot of freedom in tuning parameters for the model,

assume sN = (logN)
ξ
d−s , ξ > 2, to fix ideas. We can then take N large enough so that for

all β ∈ Zd and γ such that ‖β − γ‖ ≥ sN , (2.10) yields

1

2
ws, d‖β − γ‖s−d ≤ Gs(β, γ) ≤ 3

2
ws, d‖β − γ‖s−d. (4.13)
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With this choice, since sN is much smaller than δN , for all β ∈ V δ
N and γ ∈ ∂VN the

inequalities hold. Observe that by the decomposition of the Green’s function (2.8) we have,

for α, β ∈ V δ
N ,

Gs,VN (α, β) = Gs(α, β)−
∑

γ∈Zd\VN

Pα
[
τVN < +∞, SτVN = γ

]
Gs(γ, β).

Therefore analogous computations to (4.11) (with the appropriate changes due to the repre-

sentation (2.8)) yield

Gs,VN (α, β) ≥ Gs(α, β)− sup
γ∈Zd\VN

Gs(γ, β) ≥ Gs(α, β)− c(δ)N
s−d
d .

Moreover as in (4.12) one can see that

Var [µα] ≤ sup
β∈K

Gs(α, β) ≤ 3

2
sup
β∈K

ws, d‖β − α‖s−d ≤
3

2
ws, ds

s−d
N =

3

2
ws, d(logN)−ξ.

Any θ < ξ − 2 allows to say that limN→+∞(logN)2+θVar [µα] = 0 uniformly for α ∈ V δ
N .

Hence the above arguments show that the fractional fields satisfy Assumptions (A3) and (A4).
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