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Abstract

We establish large deviation principles (LDPs) for empirical measures associated with a se-
quence of Gibbs distributions on n-particle configurations, each of which is defined in terms of
an inverse temperature (3,, and an energy functional that is the sum of a (possibly singular) inter-
action and confining potential. Under fairly general assumptions on the potentials, we establish
LDPs both with speeds [3,,/n — oo, in which case the rate function is expressed in terms of a
functional involving the potentials, and with the speed (3,, = n, when the rate function contains an
additional entropic term. Such LDPs are motivated by questions arising in random matrix theory,
sampling and simulated annealing. Our approach, which uses the weak convergence methods
developed in [9], establishes large deviation principles with respect to stronger, Wasserstein-type
topologies, thus resolving an open question in [§]. It also provides a common framework for the
analysis of LDPs with all speeds, and includes cases not covered due to technical reasons in
previous works such as [3} [5].

1 Introduction

1.1 Description of problem

We consider configurations of a finite number of R%valued particles that are subject to an external
force consisting of a confining potential V' : R¢ — (—o00, +00] that acts on each particle and
a pairwise interaction potential W : R? x R? — (—o0, +00c]. For every n € N, we define a
Hamiltonian or energy functional H,, : R™ — (—o0, +00] corresponding to any configuration of n
particles, which is given by

H,(x") = H,(xq,...,X,)
= / V(X)Ln(X”;dXH%/W(X,y)Ln(X”;dX)Ln(X”;dy). (1)
R4 #

In (T) the symbol # indicates that the integral is over {(x,y) € R? x R? : x # y}, and L, (x", )
is the empirical measure associated with the n-particle configuration X" = (x1, Xa, . .., X, ):

RS
1=
where d, denotes the Dirac delta mass at y € RY. Given a separable metric space .5, let B(S)
denote the collection of Borel subsets of S, and let P(.S) denote the space of probability measures
on (S, B(S)). Note that for every x" € R%, L, (x", ) lies in P(R%), where R is equipped with the
usual Euclidean metric. Let {3} be a sequence of positive numbers diverging to infinity, which can
be interpreted as a sequence of inverse temperatures, and for each n € N, let P, € P(R™) be the
probability measure given by
- eXp (_Ban

P, (dxy,...,dx,) = Z(Xl’“"Xn»f(dxﬂ'”f(dxn)a (3)




where / is a non-atomic, o-finite measure on R? that acts as a reference measure, and Z,, is the
normalization constant (which is also referred to as the partition function) given by

Z‘/Rd /Rdexp B H (X1, - x0)) (1) - - - £(d%). @)

Also, let @), be the measure induced on P (R?) by P, under the mapping L, : R™ — P(R?)
defined in (2).

Measures of the form arise in a variety of contexts. For the case when ¢ is Lebesgue measure
on R?, it is well known that if W and V' are smooth enough, then P, is the invariant distribution of a
reversible Markov diffusion on R%" (with identity diffusion matrix and drift proportional to V H,,), which
can be viewed as describing the dynamics of n interacting Brownian particles in R? [10, Chapter 5].
On the other hand, for particular choices of d, V' and W, P, arises as the law of the spectrum of
various random matrix ensembles, including the so-called (3-ensemble as well as certain random
normal matrices (see Section 1.5.7 of [5] for details).

The aim of this paper is to establish large deviation principles (LDPs) for sequences {@,, } under gen-
eral conditions on V" and W that allow V' and W to be not only unbounded, but also highly irregular.
We apply the weak convergence methods developed in [9] to provide results for both cases where
B, = n,and lim,,_, % = 00. We establish these LDPs not only with respect to the weak topology,
but also with respect to a family of stronger topologies that include the p-Wasserstein topologies for
p > 1. Our results generalize those obtained in [5] and [3] and additionally, resolve an open question
raised in [5, Section 1.5.6]. In contrast to prior works, the LDPs for all speeds and topologies are
established using a common methodology. In Section|1.2] we recall basic definitions and notation and
in Section present the main results. In Section [1.4] we provide a detailed discussion of the as-
sumptions we use, and their relation to those used in prior work on this problem. Section [1.5contains

the outline of the rest of the paper.

1.2 Notation and definitions

We first recall the definition of a rate function on a separable metric space S.

Definition 1. Given a topological space .S, a function H : S — [0, oc] is said to be a rate function if
it is lower semicontinuous (Isc) and each level set {x : H(x) < M}, M € [0,00), is compact.

Note that a function that satisfies the properties in Definition[{]is sometimes referred to as a good rate
function in the literature, as a way to highlight the second property and to distinguish it from functions
that are only lower semicontinuous, but which can in some cases provide large deviation rates of
decay. When not in the context of LDPs, a function that has the properties stated in Definition[T]is also
called a tightness function; a term that will be used extensively in the sequel. In contrast to much of
the previous application of weak convergence methods in large deviations, here we do not assume S
is complete. This will be convenient when dealing with topologies other than the weak topology.

We now recall the definition of an LDP for a sequence of probability measures on (.S, B(SS)).

Definition 2. Let {R,} C P(5), let {c,} be a sequence of positive real numbers such that
lim, o, = 00, and let H : S — [0, 0] be a rate function. The sequence {R,} is said to
satisfy a large deviation principle with speed {c,, } and rate function H if for each ' € B(S),

— inf H(x) < liminf o, log(R,(E)) < limsupa;, ' log(R,(E)) < — inf H(z),

zeE° n—oo n—oo z€eE



where E° and E denote the interior and closure of E, respectively.

We endow P(]Rd) with the weak topology and use 2, to denote convergence with respect to this
topology; recall that ju,, — 4 if and only if

vf € R, [ em(ax) = [ fooulax).

where Cy,(IR?) is the space of bounded continuous functions on R?. The Lévy-Prohorov metric d,,
metrizes the weak topology on P(R¢), and the space (P(R?), d,,) is Polish (see [4, Page 72]). We
also consider stronger topologies, parameterized by a positive, continuous function v : R¢ — R,
that satisfies the growth condition

lim inf ¢(x) = oc. (5)

c—00 x;HxH:C

Given such a function 1), let
Py(RY) = {u cPRY: [ ¥ (x)p(dx) < —l—oo} : (6)
]R‘i

We endow P, (Rd) with the metric

dy (p, v) = (V) +

[ vGou(a — | veovtax).

The space Pw(Rd) is a separable metric space (see Lemmafor a proof).

Remark 1. When ¢(x) = |x||?, x € RY, for some p € [1,00), dy, induces the p-Wasserstein
topology (see [1, Remark 7.1.11]). Another metric that is commonly used to induce the p-Wasserstein
topology on P(R?) is

dy(iv) = int / Ix — yIP¢(dx, dy),
R4 xRd

Cel(p,v)

where H( W, 1/) is the set of all measures in R?? with first marginal . and second marginal v. Although
Py (RY) endowed with d,, is complete and separable, we use the somewhat simpler metric d,;, defined
for any 1) satisfying @ under which P,,(R?) is only separable, and not complete.

1.3 Assumptions and main results

Throughout, we make the following assumptions on the potentials V" and V.

Assumption3. 1 The functions W : R? x R? — (—o0,00] and V : RY — (—o0, +0o0]
are Isc on their respective domains. In addition, there exists a set A € B(R?) with positive {
measure, such that

supV(x) < oo  and sup W(x,y) < oo. (8)
x€A (x,y)eAxA

2 V satisfies

/Rd exp (—=V (x)) {(dx) = 1.



Remark 2. Note that under Assumption Bg, e Vx)y (dx) is a probability measure on R¢. By some
abuse of notation, we will use e~V { to denote this measure.

Our first result, which establishes an LDP for the sequence {Q,, } with speed «v,, = 3, = n, requires
the following additional assumptions. Given ¢ € P(R? x RY) let

1
W) =5 [ Wik y)(dxdy). ©
RxR4
Assumption 4. 1 There exists c € R such that

inf Wi(x,y) > c. 10
LR C Y (10

2 There exists a Isc function ¢ : R, — R with

lim M = +00,

s——+00 S

such that for every p € P(R?)

W) p(dx) < inf {W()+R (Clet@e0)}. (11)

T el (p,p)

Assumption [3| and Assumption (41| guarantee that the Gibbs distribution given in (3) is well defined.
More precisely, Assumption 3] ensures that the measure

exp (—nH, (X1, ...,X,)) (dxy) - - - £(dxp,)

is non-trivial, and Assumption [3g] and Assumption [4ff] ensure its finiteness. Assumption [4p)]is used to
establish the LDP with respect to the stronger topology induced by d.

The rate functions are expressed in terms of the following functionals. For 1z € P(R?) let

1

W = e =5 [ Wy ntx)uldy). (12)

Given a measure v € P(IR%), recall that the relative entropy function R(:|v) : P(R?) — [0, co] is

defined by
dp dp _
R(plv) = /Rd dv (x)log <du (X)) v(dx), ifp <,
o otherwise,

where 1 < v denotes that 1 is absolutely continuous with respect to v. Also, for 1 € P(R?), define

() =R (ule™€) +W (). (13)

We now state our first main result, whose proof is given in Section

Theorem 5. Let V' and W satisfy Assumption|3 and Assumption[41] and forn € N, let 3, = n, let
P, be defined as in (3) and let ()),, be the measure on P (Rd) induced by F,, under the mapping L.,.
Then {Q,} satisfies an LDP onP (Rd) with speed ov,, = (3, = n and rate function

T () =T (p) - egl(fkd){f (1)}, (14)



where T is defined by (13). On the other hand, given a positive continuous ) : R +— R, that
satisfies (B), suppose (), denotes the measure on Py, (Rd) induced by P,, under the mapping L,
and Assumptionﬂg also holds. Then {Q),,} satisfies an LDP on Py (Rd), equipped with the stronger
topology induced by d.;, and with rate function

T =T - inf (TG0, (15)

When W is identically zero, Theorem 5| recovers the well known Sanov’s theorem (see [6, Theorem
6.2.10] or [9, Theorem 2.2.1] for the LDP with respect to the weak topology and [16] for the LDP with
respect to the p-Wasserstein topology). Moreover, if 13 is continuous and satisfies certain growth
conditions on R? x R, then the result can be obtained from Sanov’s theorem by a simple application
of Varadhan’s lemma (see [6, Theorem 4.3.1] or [9, Theorem 1.2.1]). To the best of our knowledge,
there are no general results in the literature that cover the case when IV is both unbounded and
discontinuous, and therefore Theorem [ is the first in that direction. Furthermore, Assumption 4@}
which can be viewed as a generalization of condition (1.3) in [16], provides a sufficient condition for
the LDP to hold with respect to a rather large class of stronger topologies.

Motivated by questions arising in random matrix theory, sampling and simulated annealing, several
authors [5, 2,3, 11, [13, [14] have considered LDPs for {(),,} at specific speeds that are faster than n,
such as 3,/nlogn — oo and 3, = n?. Our second theorem presents a general result for speeds
faster than n, that is, when (3, /n — oo, under Assumption and certain modified assumptions on
V and W stated in Assumption |§] below. In what follows, consider the functional 7 : P(R?) —
(—o0, 00, given by

1
TW=5 [ V0V )+ W ey udy). (16
R4 xRd
Assumption 6. 1 There exist1 > ¢; > 0, and ¢, € R, such that
inf V ! inf W Vv % : 17
WVESC Wy raVe V) s 07

2 There exists a Isc functiony : R, — R withlim,_, ., 7 (s) = 400 such that

VE) +Vy)+Wxy) =)+l (18)

3 Foreachp € P (Rd) such that J (1) < +o00, there is a sequence i, of probability mea-
sures, absolutely continuous with respect to the measure {, such that (i, converges weakly to
wand J () — J (1) asn — oc.

4 There exists a Isc function ¢ : R, — R with

lim ¢ (s)

s§——+00 S

—= —|—OQ,

such that
V(x)+V(y)+W(xy) > o(t(x)) + o(¥(y))- (19)

Similar to the case of Theorem |5, Assumption [3|and Assumption [g[1] guarantee that the Gibbs distri-
bution given in is well defined. More precisely, Assumption [ ensures that the measure

exp (—fnH, (X1, ..., X)) £(dxy) - - - £(dx,,)



is non-trivial, and Assumption @ and Assumption @EI, together with the fact that lim,,_ ’%” = 00,
ensure its finiteness. Assumption [68]is used in Section [4.4] to establish the Laplace principle upper
bound. For a class of pairs V, W, where Assumption is satisfied, the reader is directed to [5,
Proposition 2.8]. We now state our second main result, whose proof is deferred to Section

Theorem 7. Let V' and W satisfy Assumption[3 and Assumptions|d1{{43, and consider a sequence
{B,} such thatlim,, ., %" = 00. Forn € N, let P, be as in (3) and (),, be the measure on P (Rd)
induced by P,, under the mapping L,,. Then {Q,,} satisfies an LDP on P(R?) with speed c,, = 3,
and rate function
J. =J — inf {J , 20

(1) (1) . (Rd){ (1)} (20)
where J is given in (T6). Furthermore, given a positive continuous function 1) : R +— R, that
satisfies (5), if (,, denotes the measure on Pw(Rd) induced by P,, under the mapping L,,, and we
further assume that Assumption@ holds, then {Q),, } satisfies an LDP on P, (R%), with the stronger
topology d.;, and with the rate function

TV () =T (w)—  inf  {T ()} (21)

HEPy, (R‘i)

A direct consequence of Theorem [5]and[7]is the following.

Remark 3. Suppose V' and W satisfy Assumption@ Assumption and Assumption with)(x) =
||x||P for some p > 1. Let (X}, ..., X]") be distributed according to P" and for any ¢ < p, let
e = L3 |X7P9 n e N. Then Theorem@, the continuity of the map p — [ ||x||?u(dx) in
the Wasserstein-p topology and the contraction principle [6, Theorem 4.2.1] together show that {an}
satisfies an LDP with speed [3,, = n and rate function

H(y) = inf {ZV CyY = / x||?u(dx) ¢ .
= it {7y = [ i)
Likewise, if V and W satisfy Assumption 3, Assumption [d1] and Assumption[3 with ¢ (x) = ||x|[P
and f3,/n — oo asn — oo, then Theoremgshows that {Y;'} satisfies an LDP with speed /3, and

rate function H () = inf ,epra{TY (1) : y = Jpa |[x[|?u(dx)}.

To the best of our knowledge, the most general result in the direction of Theorem [7|is [5, Theorem
1.1]. The latter seems to be the first paper to present a general approach to proving LDPs for empirical
measures generated by Gibbs distributions, when the inverse temperatures (3,, diverge faster than n,
the number of particles (the particular case of 3, = n? was considered earlier in [3]). Our result
extends [5, Theorem 1.1] in several ways. First, whereas the paper [5] considers only speeds (3,
that satisfy lim,,_, #&n) = 00, we allow for any speed diverging faster than n, thus showing that
the growth rate condition of [5] is a technical one related to the combinatorial approach used in the
proofs therein. Our proof of Theorem [/| also reveals why relative entropy does not appear as a part
of the rate function whenever lim,,_, . 5”—” = 00. Second, for both Theorem [5| and Theorem (7| our
results cover cases when the interaction potential is not only unbounded but also discontinuous, which
includes several interesting examples, some of which are illustrated in the next section. In contrast,
the following assumptions were imposed in Assumptions H1-H3 of [5], which are restated below as
Assumption H:

Assumption 8. V : R? — (—o00,00) and W : R? x R — (—o0, 0] are continuous functions
on their respective domains, V' satisfies lim||x||—..c V (x) = 0o and fRd e V¥ dx < oo, and W is



symmetric, finite on RY x R?\ {(z, ) : # € R?} and satisfies the following integrability condition:
for each compact subset K C RY, the function

z € R — sup{IW (x,y) : [x—y| > |z, x,y € K}

is locally Lebesgue-integrable on R%. Moreover, VV and W satisfy the second inequality in Assumption
a7l

Furthermore, in both cases we cover stronger topologies than the weak topology, including in partic-
ular the Wasserstein-p topologies. Finally, we allow a fairly general reference measure, which allows
us to consider Gibbs distributions that are defined on sets of Lebesgue measure zero (surfaces, sub-
manifolds, fractal sets).

1.4 Discussion of assumptions and examples
1.4.1 Equivalent Formulations of the Assumptions

It follows from () that the representation of H,, in terms of " and V" is not unique. Given functions
W, W : R% x R — (—o0, 0] and V,V : R (—00,00], we call the pairs (W, V) and (W, V)
equivalent if the right-hand side of (1) remains unchanged when W and V' are replaced by 1/ and
‘7, respectively. A first benefit of this observation is that in many cases we can work with alternative,
equivalent assumptions that are easier to verify. For example, although the form of the conditions
given in Assumptions [3@] and [4f] is convenient for the proof of Theorem 5] to verify the assumptions,
it is often easier to work with the following equivalent set of conditions:

Assumption 9. For Isc functions V : RY — (—o0, 0], W : R x R? — (—o0, 00], we have

1 there exist Isc functions Vl, Vy: R — — (—00, 0], such that V =V, + \72, and

/Rd exp (—‘72 (x)) ((dx) < oo,

2 there exists ¢ € R such that the function f/l in Assumption satisfies

inf [W x,y)+ Vi (x)+ W }>é. 22
()RR (x,y) +Vi(x)+Vi(y) (22)
Note that the modified conditions, Assumptions [g] and [9B} are more akin to Assumptions [3@] and
in the sense that if V' satisfies Assumptions [32| and [6]1| and there exists ¢ > 0 such that e —(1-9V ig
integrable with respect to the measure ¢ then Assumptlon@s satisfied Vi = eV and V3 = (1—¢€)V.

Lemma 10. The pair (V, W) satisfies Assumption@g and Assumption if and only if there exists a
pair (V, W) that is equivalent to (V, W) and satisfies Assumption

Proof. Suppose (V, W) satisfies Assumption @ and Assumption Then it is clear that V = V
satisfies Assumption with Vi = 0and V; = V and, setting W = W, (V W) satisfies As-
sumption Hﬂ and Assumption @ To prove the converse, suppose that (V W) satisfies Assump-
tions |91| and @ for some Vi and Vj. It is straightforward to verify that then V(x) = VQ( ) +

log [ exp(—Va(x))l(dx) satisfies Assumption 32} W (x,y) = W(x,y) + Vi(x) + Vi(y)) —
log[ [a exp(—Va(x)){(dx)] satisfies Assumption {4fi|with ¢ = ¢ — log] [, exp(—Va(x))¢(dx)], and
that (V, W) is equivalent to (V, ). O



The observation that the representation of H,, in terms of 13 and V' is not unique, is also useful when
Assumption is considered. Given that Assumptions (3| and hold, Assumption is seemingly
weaker than limeHHOO V (x) = 400, posed in [5] as part of Assumption |8 This can be directly
seen if one sets y(t) = @ infjx=¢ V(x) + C’, where C" is chosen accordingly. However it is
also straightforward to see that if Assumptions and [6@2| hold, then we can pick a different pair
(f/, W), equivalent to (V, W) such that Assumptionsan are satisfied, and also

lim V (x) = +oo.

[[x[[—=00

We also consider the relationship of Assumption [4@]to the assumption

/ AMIVE(dx) < 400 YA ER (23)
R xR4

appearing in [16], where the case of W = 0, and speed (3,, = n is studied. In [16], the authors prove
that when (23) is true, the LDP holds in P,,(R?) with the rate function R (x|e~" ¢). As an intermediate
step they prove that is true if and only if there exists a Isc, superlinear function ¢ : [0,00) — R,
such that for every . € P(RY)

/R (W) p(dx) <R (ule”"E) . (24)

Assumption [4@] can be considered a generalization of (24). In fact, the following analogue holds,
whose proof is given in Appendix Al

Lemma 11. Let V and W satisfy Assumptions@ and|41, and letv) : R? — R, be a measurable
function that satisfies

/ ANUEIHU) (~ VIV O+ ) ey < 00 (25)
Rd xR
for all A € R. Then there exists a Isc function ¢ : R, — R withlim,_.., ¢(s)/s = oo, such that
o (x)p(dx) < inf {W(C)+R (e t@e L)}, (26)
R4 CEH(%H)

where 20 is defined by (9).

It is worth mentioning that [16] shows the reverse implication, which is that when the LDP holds
then is also true. In the case where WV # 0, we have not managed to prove a similar reverse
implication.

Considering Assumption [4] one may be tempted to replace Assumption by the condition that
there exists a Isc and superlinear function ¢ : R, — R such that

[ o< _nt (O, @)
where 1
305 [ VRV )+ Wk y) claxdy) (28

However, it is easy to see that is equivalent to Assumption |6d| by choosing measures of the form
M = %5X + %5},7 5)(7 5}’



1.4.2 Examples

In the rest of the section we give examples of potentials that satisfy our assumptions. In what follows,
let Kn : RY — R be the Coulomb potential given by Ka(z) = —|z| when d = 1, Ka(z) =
—log(||z||) when d = 2 and Ka(z) = 1/||x||*> when d > 2.

Lemma 12. Let { be Lebesgue measure. The pair (V, W) given by V (x) = ||x||P for some p > 1
and W (x,y) = Ka(x —y) satisfies Assumptions[3,[41| and[d1Hd3 and also satisfies Assumptions
[48 and[dd with ¢ (x) = ||x]|%, ¢ < p.

Proof. Let Vi =V, = V/2,and W = W. Then itis easy to see that the pair (f/, W) is equivalent to
the pair (V, W) and satisfies Assumptions i} [fi] and[dp] Therefore, by Lemma[10} the pair (V, W)
satisfies Assumptions [3|and Moreover, it follows from assertion (2) of Theorem 1.2 and the proof
of Corollary 1.3 of [5] that for d > 3, the pair (V, W) satisfies Hypotheses Since these hypotheses
are stronger than Assumptions |61H8B} it follows that (1, W) also satisfy the latter assumptions. For
the case d = 2, we just have to observe that 1||x||” + 1 ||y ||” — log ||x — y|| is bounded from below
by a constant ¢, since — log is convex and lim;,_,.(s? — log s) = oco. We recover Assumption @
by picking v(s) = }lsp + C, where C'is a suitable constant. Finally, it is also easy to see that the pair
(V, W) satisfies Assumptions [4f| and [gff] with ¢ (x) = ||x]|?,¢ < p, by applying Lemma [11]for the
first case and by picking ¢(s) = 1sp=a 4 C where C is suitable constant, for the second. Verification

4
of Assumption[B8]is a direct application of point (3) in [5, Proposition 2.8]. O

Lemmal[i2shows, in particular, that our assumptions are satisfied in the cases covered in [5], including
the popular case studied in [5, 3, A1, 3], of V(x) = ||x||?, W(x,y) = —log(x — y) and with £
Lebesgue measure. Our assumptions are also satisfied for discontinuous V' and W. To give some
illustrative examples, let O be an open convex set of R?, and K a closed convex subset of R?, that
coincides with the closure of its interior. Furthermore, let b : R? x RY — R, be a continuous
function. Consider the potentials

h(X7Y)7 (X?Y) GOXO,
W pu—
1%y) {O, otherwise,
Walx.y) = h(x,y), (x,¥)€ (0 xO0)U(((0%)° x (09)°),
2 0, otherwise,
h(x,y), [x,y]N(K x K) =10,
0, otherwise,

WS(X7 y) = {

where O, is an e-neighborhood of O and in the last definition, [x,y| stands for the straight line
connecting x and y. These three examples have a nice interpretation from a modeling point of view.
W, can be interpreted as an interaction that takes place only when both particles are inside a specific
area O. W5 can be interpreted as an interaction that takes place only when both particles are inside
the domain O or both outside of it. Finally if we assume that K is a “wall", W5 can be interpreted as
an interaction that takes place only when the particles can “seeéach other.

Also, unlike [5] we do not require local integrability of V" and 1. Hence, we can work with confined and
interacting potentials that are infinite outside a bounded domain, including cases where the particles
are confined within such a domain. Finally, the freedom of choice for the reference measure ¢ allows
Gibbs distributions defined on sets of R%-Lebesgue measure zero, for example a non-smooth surface



on R? or a fractal set like the Cantor dust in R%. A more specific example that often appears in
complex potential theory is the case where IV is the Coulomb potential, and ¢ is Lebesque measure
on some 1-dimensional subset of C such as the unit circle.

1.5 Outline of the paper

The structure of the rest of the article is as follows. In Section [2 we provide definitions and lemmas
that are used throughout the paper and then show that the candidate rate functions introduced above
are indeed rate functions. In Section [3| we prove results for speeds 3, = n, and in Section {4 we
consider the case of speeds (3, that grow faster than n. Proofs of several lemmas that are needed for
the main theorems are collected in the Appendix.

2 Rate Function Property

In what follows, ¢ : R? R, is always a positive, continuous function that satisfies (5). In Section
we show that under various combinations of Assumptions the functions Z, and 7, defined in
and (20), and the functions Z% and 7 defined in and are rate functions on the spaces
P(R?) and Py (R?), respectively. To begin, in Section[2. 1|we first introduce basic notions that will be
used in the rest of the paper.

2.1 Basic definitions

Definition 13. Let A be an index set and let {\,, a € A} C P (S). The collection {\,, a € A} is
said to be tight if for every € > 0, there is a compact set K. C .S, such that inf{\, (K.), a € A} >
1—e

Further, a sequence of random variables is said to be tight if and only if the corresponding distributions
are tight. The proofs of the following three lemmas can be found in [9], [8].

Lemma 14. A collection {\,,a € A} C P(S) is tight if and only if there exists a tightness function
g : S — [0, 00] such that sup,e 4 [ g(x)Aa(dz) < o0.

Lemma 15. Let g be a tightness function on S. Define G : P(S) — [0, o] by

G) = [ gtwmtdo)
Then for each M < oo the set {u € P(S) : G(u) < M} is tight (and hence precompact), and

moreover, G is a tightness function on P(.S).

Lemma 16. Let {A,,a € A} be random elements taking values in P(S) and let A\, = EA,. Then
{A,,a € A} is tight if and only if {\,, a € A} is tight. In other words, a collection of random prob-
ability measures is tight if and only if the corresponding collection of “means” is tight in the space of
(deterministic) probability measures.

The next result identifies a convenient tightness function on Py, (IR?). For the proof see Appendix
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Lemma 17. Let®) : R? — R, be a continuous function that satisfies the growth condition (5), and
let ¢ : R, — R be a lIsc function with lim;_, ¢is) = 00. Then

o) = | @) p(dx)
is a tightness function on P, (Rd) ..

Finally, it will be convenient to introduce the following projection operators to define marginal distribu-
tions.

Definition 18. We denote by 7rk, k = 1,2, the projection operators on a product space S7 X S
defined by
7 (21, 19) — 21 € 5], 7?2 (21, m9) — 29 € S5

2.2 \Verification of the rate function property

We first verify that the functions Z, and 7, are indeed rate functions.

Lemma 19. Suppose Assumption|3 and Assumption[41| hold. ThenZ, defined in (14) is a rate function
on P (R?). Moreover, if Assumption@ and Assumption|f|1| are satisfied then the function J, defined in
{20) is Isc on P(R?). If, in addition, Assumption|dgis satisfied, then 7, is a rate function on P(R?).

Proof. We start by showing that the functional V' defined in is Isc. For € P(RY), let p @ p
denote the corresponding product measure on RY x R¢, and recall from (T2) that W () = 20(u®@pu),
with 20 defined as in (9). Now, the map i — p ® u from P(R?) to P(RY x R?) is continuous, and
by Fatou’s lemma (for weak convergence) the map ¢ — 20(() is lower semicontinuous if TV is lower
semicontinuous and bounded from below. Since the latter property holds under Assumptions [3f] and
it follows that W is Isc. Since Z = W + R(-|e~"¢) and, as is well known, R (-|e~"¢) is Isc on
P(R?), this shows that Z, and hence Z,, are Isc. By the same argument, the lower semicontinuity
of J can be deduced from the fact that J = J(u ® p) where J is given in (28), and the fact that
(x,y) — W(x,y) + V(x) + V(y) is Isc and uniformly bounded from below due to Assumptions
[3] and [efi}, and from it follows that 7, is Isc.

Since Z, and J, are Isc, it only remains to show that the level sets of Z, and 7,, or equivalently, 7
and 7, are (pre)compact. In the case of Z = W + R(-|e~V), this holds because R(-|e~"¢) is a
rate function on P(R<) and WV is bounded below due to Assumption [4ft| Similarly, for 7, this holds
because Assumption@@implies that J (1) > [ra v(||2]|)pe(dz), where v : Ry — Ris a tightness
function in because it is Isc and satisfies y(s) — 0o as s — 00, and the fact that the lower level sets

of it — [ou v(||z||) 1(dx) are precompact by Lemma O

We next prove that, under suitable additional assumptions, Z, and .7, defined in and are
rate functions on Py.

Lemma 20. Suppose Assumptions@ and|d1 are satisfied. If, in addition, there exists 1) : R?
R, satisfying the growth condition (B) such that Assumption (respectively, Assumption@ is sat-
isfied, then I (respectively, J.V') is a rate function on Py (R%).

11



Proof. If Assumptions [3[and 41| (respectively, Assumptions 3| and are satisfied, then Z, (respec-
tively, 7,) is Isc on P(R?) by Lemma Since the topology on Py (IR?) is stronger than that on
P(RY), it follows that both ZV and J¥ are also Isc on P, (R?). Thus, to show that Z and 7 are
rate functions, it suffices to show that the lower level sets of Z and J are compact in Py (IR?). For
7., this follows from Lemmali4]and the fact that Assumption [4@] shows that there exists a superlinear,
Isc function ¢ : R, +— R suchthatif Z < C'then [, ¢ (¢ (x)) p (dx) < C and, analogously, the
result for 7 holds due to Lemma[i4]and Assumption O

3 TheCase«o, =03, =n

Throughout this section, we assume that Assumptions [3| and [4{1| are satisfied. To establish the LDP
stated in Theorem 5} by [9, Theorem 1.2.3], we can equivalently verify the Laplace principle. In view
of the rate function property of Z, and If’ already established in Lemmaand Lemma it suffices
to show the following: for any bounded and continuous function f on S, as n — oo, the Laplace
principle

~ LlogEq, [e] = inf {f () + L (1)} 29)

n pes

holds both for S = P(R?) and (under the additional condition stated as Assumption BEI) with S =
Py (R?) and Z, replaced by Z¥.
Remark 4. While the statement of [9, Theorem 1.2.3] assumes completeness of the space S, a

review of the proof shows that this property is not needed (though compactness of the level sets of
7, is used).

To establish the bound (29), we first express —1 log Eq, [e™"/] in terms of a variational problem
(equivalently, a stochastic control problem). We then prove tightness of nearly minimizing controls,
and finally prove convergence of the values of the corresponding controlled problems to the value of
the limiting variational problem. The last step is reminiscent of the notion of I'-convergence that is
often used for analyzing variational problems in the analysis community. For a nice exposition of the
relationship between LDPs and I'-convergence, the reader is refered to [12].

In what follows, the push forward operator # is defined as follows.

Definition 21. Given measurable spaces (S, F) and (S, F), a measurable mapping f : S — S
and a measure /1 : F — [0, 00}, the pushforward of 1 is the measure induced on (.S, F) by 1 under
f,i.e., the measure fu(u) : F — [0, 00] is given by

(fe(u)(B)=pn (f(B)) for B € F.

3.1 Representation formula

Recall that P, is the probability measure R™ defined in (3) and Q,, is the push forward of P, under
L,. Let P* be the measure on R defined by

Pr(dxy, ... dx,) = e 2= V& (dxy) - 0(dx,,), (30)

and note that it is a probability measure due to Assumption @} Analogous to WV defined in (12), W
is defined as follows: for ;1 € P(R?),

W)= ¢ L Wy p(dn(y) =5 [ Woey)ulxuldy). @)
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with

0, when x =y.

Wea(x,y) = {
Since 3, = n, for any measurable function f on P(R?) (or on P, (R?)), we have
— llog;IEJQ [e_”f] = —llong [e_”fOL"} = —llong* ie_"(lurw?‘)of“" (32)
n " n " n "\ Z, ’

where Z,, is the normalizing constant defined in (4).

We next state a representation for the quantity on the right-hand side of (32). To avoid confusion with
the original distibutions and random variables, we use an overbar (e.g., L,,) for quantities that will
appear in the representation, and refer to them as “controlled” versions.

Given a probability measure P* € P(R"?), we can factor it into conditional distributions in the
following manner:

Pn(dX1, Ce 7dxn) = Pﬁ}(Xm)P&}‘{l}(dXﬂXl) cee p?n”{l,..,nfl}(an’Xl? Cen 7X'n,—1)7

wherefori =1,...,n, Py1,_;—1(-|x1, ..., X;_1) denotes the conditional distribution of the i-th marginal
given Xi, ..., X;_1. Thus if {X }<j<n are random variables with joint distribution P"(dxl - dx,,)
on some probability space (€2, F, P), then ji?, the conditional distribution of X given X7, ... X" |,

can be expressed as - ~ ~
i (dxi) = Ppy, i (dx XY, X ). (33)

Note that /z;', 1 < ¢ < n, are random probability measures, and the 1th measure is measurable with
respect to the o-algebra generated by {X"}J<Z We refer to the collection {ii},1 < i < n} as
a control, and let L, (-) = L,(X";-), with L,, defined by (@), be the (random) empirical measure
of {Xj }1§]§n, which we refer to as the controlled empirical measure. We denote expectation with
respect to IP by IE, or by [Ep, when we want to emphasize the dependence on PP.

Let f belong to the space of functions on P(IR?) (or Py (IR?)) such that the map x™ — f (L, (x"; "))
from R™? to IR is measurable and bounded from below. This space clearly includes all bounded contin-
uous functions on P(IR?) (respectively, P,,(R?)). Then, since the functional V., is also measurable
and bounded from below (due to Assumption [4ff), we can apply Proposition 4.5.1 in [9] to the function
x" € R — f(Ln(x";")) + Wx(L,(x™;+)), to obtain

o [P = nf E [ (L) + Wy (E) + R (P @, ¢V 0)]

{am}

where L,, is the controlled empirical measure associated with P™ as defined above, and the infimum
is over all controls {/i}’ } defined in terms of some joint distribution P € P(R"?) via 3). Factoring
P™ as above and using the chain rule for relative entropy (see [9, Theorem B.2.1]), we then have

1
— —log Ep: [e_”(erW#)OL"] = inf E
n {a7}

f(Ln) +Wx (L ZR frle” Vﬁ] (34)

where the infimum is over all controls {/i}'} (equivalently, joint distributions P e P(R")). Also,
setting f = 0 in (34) and recalling the definition of Z,, from (@) gives

W, (L ZR arle” VE].

1 1
— Zlog(Z,) = —=logEp. [e™V#UIn)] = inf E
- 0g (Zn) logEp; e ] = {1:}
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We claim that to prove Theorem [5] it suffices to show that for every bounded and continuous (in the
respective topology) function f, the lower bound

liminf inf E | f (L,) + Wy (L ZR firle” Vﬁ] Zinf [f (u) +Z(u)]  (36)
n—oo {u;'} “
and upper bound
lim sup mf E|f (L) + Wy (L ZR eV ] <inf[f (1) +Z (w)] (37)
n—oo #Z ®

hold. Indeed, when combined with (34), (35) and (32), these bounds imply the desired limit (29). The
lower and upper bounds are establlshed in Sectlon [3.3|and [3.4] respectively. First, in Section [3.2] we
establish some tightness properties of the controls that will be used in the proofs of these bounds.

3.2 Properties of the controls

We continue to use the notation for the controls introduced in the previous section. We start with a
simplifying observation.

Remark 5. In the proof of the lower bound (36), we can assume that there exists Cy < oo such that

< Co. (38)

sup inf E | W, (L ZR firle”V0)

neN {A7}

If this were not true, we could restrict to a subsequence that has such a property, because for any
subsequence for which the left-hand side of is infinite, the lower bound is satisfied by default.
Furthermore, since under Assumption W.. > min{0, c}, we can restrict to controls for which the
relative entropy cost is bounded by Cyy + |c|: that is, for which

1 - —-n|,—V
E;RWHG f)

Lemma 22. Le_t V' satisfy Assumption@ and let {{il'},n € N, be a sequence of controls for which
holds, let L™ be the associated sequence of controlled empirical measures and let

= % ; . (40)

Then { (L, fi) ,n € N} is tight as a sequence of P(R?) x P(R?)-valued random elements.

< Co + |c]. (39)

sup E

Proof. Let {ii?},n € N, be a sequence of controls that satisfies (39). By the convexity of relative
entropy and Jensen’s inequality

supE [R (4"e”V()] < o0
n
We know that R (-|e~"¢) is a tightness function on P (R?) and hence, by LemmaE 14] the sequence

of random probability measures {/i,,, n € N} is tight. By Lemma. 16} the sequence of probability mea-
sures {E[fi,], n € N} is tight. Since /i is the conditional distribution of X7 given (X7, ..., X" ,),
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for any measurable function g : R? — R that is bounded from below, we have
_ (1 & -
E Udg(X)Ln(dX)} =K gzg(xz-)]
R L =1

ﬂ%g@“””“” —5 | [ 0.

Thus, E [L,] = E[fi,], and so {E[L,],n € N} is also tight. Another application of Lemma [1§]
then shows that { L,,,n € N}, is tight, which together with the tightness of {/i" } established above,
implies {(,&n, Ln) ,n € N} is tight. O

(41)

The following lemma, which uses an elementary martingale argument, appears in [8]. For the reader’s
convenience the proof is given in Appendix [C]

Lemma 23. Suppose L,,, iin,n € N, are as defined in Lem_ma and further assume that the couple
{(Ln, ftn) ,n € N} converges along a subsequence to (L, jt) . Then L = [i w.p.1.

For the next result, it will be convenient to first define a collection of auxiliary random measures that
extend the ones that appear in the representation . Let P" be a probability measure on R, and
let (X7, ...,X") be random variables with joint distribution P". For J C {1,...,n}, let P} equal
the marginal distribution of P" on {x;,j € J}, and for disjoint subsets I; and I5 of {1,...,n}, let
Pﬁllz denote the stochastic kernel defined as follows:

Pﬁuz(dxi,i € ]1’Xk,l€ < ]Q)Pg(dxk,k € ]2) = Pﬁulz(de,j el U ]2)

Let Kx = {1,...,k — 1}. Inthe sequel we fix i < j (the case j < i can be handled in a symmetric
way), and define - _
Also, note that with this notation

are the controls used in the representation (34). We claim that
1 - — 2 _ S
Tuly = f;  and  muu = E[u]| Xy k € K, (44)

where 7%, k = 1, 2, and # are the projection and push-forward operators introduced in Definition
and Definition |21} The first relation in is an immediate consequence of the definitions of ;' and
fi;;- Due to the asymmetry in the first and second (equivalently, ¢ and j) coordinates in the definition
of /TL?J- in (42), the proof of the second equality in is a little more involved. Indeed, note that for
every A C B(R?),

W?ééﬂ%(Az
_ / P (AR K0 %) By e (A0 € K)

= /PF]}K] (AD_(?, ceey X?—l? Xy euny Xj—l)P&(]-\Ki)\Ki(dXi cee de_lp_(le’ ceey X?_1>
= B[Pl (AIXG b € K)IXE K € K
= E[pf|Xy, k € Ki](A),

from which the second equality in follows.
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Lemma 24. LetV and W satisfy Assumptions@ and let{l'},n € N, be a sequence of controls
for which

sup E
neN

_ 1<

L) +—=Y R(a'le V)| < 4
We ( )+n; (iz7le™"e) | < oo, (45)
and let i,, be as defined in @0). Then { (L., fi») ,n € N} is tight in Py (R?) x Py(R?).
Proof. Let @ be a probability measure on R%. By the chain rule for relative entropy, we have

R(P{RZ-J}‘Ki(dXZ‘dXﬂXk, ke Kz) ||Q(dXZ)Q(dXJ))
= /R(P6}|Kz+1 (de|X]C7 k € Ki-l—l) HQ(dx]))P{Z}‘Kl(dxAxk, k € Kz)
+ R(Ppy i, (dxilxp, k € K;) [|0(dx,) ).

In addition, Jensen’s inequality gives
R(Py k.., (dx;xi, k € Kita) [|0(dx;))

=R (\/P‘?]}IKJ (dXJ|Xk, ke K])P(TLKJ\KZ+1)|KZ+1 (dxi-i-l cee de_1|Xk, ke Ki+1)

b))

S /R (P{ZHKJ (de|Xk, ke KJ) ‘ 9(dX])> P{}(j\Ki-&-l”Ki-&-l (dxi+1 cee de_1|Xk, ke Ki+1)-

Combining the last two displays with and (43), we obtain

E [R(7i;(dxidx;) [|0(dx:)0(dx;) )] < E[R(7] (dx;) [|0(dx;) ) + R(ff (dx;) [|0(dx;))]. (46)

Using with § = e~V /, the definition of W in and the tower property of conditional expecta-
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tions to get the first inequality below, we have

1 n
YR
=1

W (L) - D3R w-m]

E W

=K

! X P e
b Z /R W (X %) Prjyicsn (x| X & € Kis)

27”L2 Z/Rd X“X ) P{ HE; +1(dXZ‘Xk>k € KJ-H)

1<t

1 1
+—ZR fig;le” Viwe €)+n(n—ZR file Vie ﬁ)] (47)

n(n
1<J 1<t

_= [2”2 Z\/Rd Rd (XZaX]) P{'L]}lK (dXZdXJ|X_ k} e K’L)
X

z<]

t53 Z/Rd y W (x5, %) Ppi gy, (dx;dxi| X3 k € K;)
X

1<t

1 1
—i——ZR ile Vi ®e” €)~|—n(n—ZR isle Vi@ e 6)]

n(n
1<j 1<t

ZQIT i) oD ! ZR phleVe®e Vi) |,

i#] Z#J

where 20 is the functional defined in (9). Next, let

~2n -

P S Ty 2 (48)
Z#J

Then combining with the convexity of R in both arguments (see [9, Lemma 1.4.3]), the linearity
of 2, and the definition of i*" in (48), we obtain

1 n
+ = > R (apleVe)
=1

E W

E{ngl (™) + R (e Vi@e V)| . (49)

We now use (49) to establish tightness of both { L,,} and {/i"} in the d,; topology. Note that i*" is a
random probability measure on R¢ x R and that it has identical marginals. Since VV and W satisfy
Assumption @E] and relative entropy is nonnegative, there exists a superlinear function ¢ for which we
have the inequalities

E{";lm(u M 4R (2" Vi@ e e)]

n—1

>E
n

(w(u ")+ R (p*"e” VE@e‘W))} (50)

n—1

> e | [ ow@) ) )]

n
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For n > 2, combining and gives

T 1 = -n|,—V
2K W;,g (Ln) + E ZR (,ui ’6 E)

i=1

2B | [ ot @) @] e

Note that implies E[r},fi;] = E[a}] and E[r3,a7;] = E[a7]. Further, recalling the definition of
4™ in (@0) and 4> in (@8), this shows that

E[ryi*"] = E[ryp*"] = E[@"]. (52)

Substituting this into the right-hand side of and letting Cj < oo denote the left-hand side of (45),
we obtain the bound

B| [ ow@)ir )] <26,
R
However, since we know from Lemmathat D(p) = Jpa @ (1 (%)) 1 (dx) is a tightness function

on Py, (R?), it follows that {2} is tight as a collection of Py (R?)-valued random elements. Finally,
note that we have the equality

8| [ o600 —E :%gg(x?)]

S (53)
1
o i (d =FE L, (d .
23 [Lotanr | = | [ o0 0x)
Setting g(x) = $(1(x)), and again invoking Lemma 17} we see that { L,, } is also tight. O

Remark 6. In the remainder of the proof, which is carried out in Sections[3.3 and the arguments
for both P(R?) and Py (IR?) are similar, and so we will treat both cases simultaneously. The functions
f used will be considered continuous in the respective topology and any infimum taken should be with
respect to the corresponding set P(IR?) or P, (R?).

Remark 7. Due to Remark[5 and Lemma (22 and Lemma(24, it is without loss of generality, for the
lower bound (38), to restrict to controls for which { (L, fi») ,n € N} is tight in P(R%) x P(R?), or
(with the additional Assumption[4g) in Py, (R?) x Py (RY).

3.3 Proof of the lower bound

For the proof of the lower bound we will use some auxiliary functionals. For d’ € N, an arbitrary
function F' : RY — (—o0, 00] and M € [0, 00), let FM(z) = min{F(z), M}. For u € P(R?),

let
1

WM () = 5/11@ g WM (x,y) p(dx) pu (dy),

W (1) = %LWM (x,y) o (dx) pu (dy) = %/Rd g W2 (x,y) p (dx) pu (dy) ,

and note that for every u € P(R?),

WM () < W (1) + 5 (1 @ ) () & € R, (54)
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Let € > 0 be given. Then by and the boundedness of f, there exist C’ S R and a sequence of
controls { /i } with associated sequence of controlled empirical measures { L, }, such that

€' > inf E[f (L) + Wy (L) + L5, R (e V0)] +
> B[ (L) + Wy (L) + L0, R (i) |
>E\f (L) + WY (L, +§Z;;1R(gme—ve)}
> E|f (L) + WY (La) = %+ 150, R (igle™v0) |,

(55)

where W, > W;” is used for the third inequality and the last inequality uses and the fact that
L™ ® L™ put mass at most 1/n on the diagonal of R? x R,

Let /1, = %Z?Zl fil. Since Lemma implies { (L, jin)} is tight, we can extract a further subse-
quence, which we denote again by { (L, /i) }, which converges in distribution to some limit (L, ).
If the lower bound is demonstrated for this subsequence, the standard argument by contradiction es-
tablishes the lower bound for the original sequence. Let { M, } be an increasing sequence such that
limy, .o M, = o0 and lim,, .o = = 0, and let m € N. By the monotonicity of n — W,
Jensen’s inequality, the definition of /i,,, and Fatou’s lemma we have

(1) oo (i) =S SR )
> lim inf B { 7 (L) +whn (L) - % +R (ﬂn|ev€)]

>E[f (L) + W (L) + R (ile”"0)]

liminf E

n—oo

(56)

where the continuity of f and lower semicontinuity of YW and R (-|e~" ¢) are also used in the last
inequality. Since this inequality holds for arbitrary m & N, the monotone convergence theorem, the
property that L. = /i almost surely (due to Lemma and the definition of Z in , together imply

lim E [f( ) T ([ ( ) +R(u!e‘vf)] E [f (i) + W () + R(jile ™ 0)]
inf [f (1) + (u)] (57)

| \/

Since € > 0 is arbitrary, (55), and together imply the lower bound (36).

3.4 Proof of the upper bound

Again, fix f to be a bounded continuous function on P(R?Y), let ¢ > 0 and let u* € P(RY)
(respectively, P,,(R?)) be such that

F () +W () + R (e €) < inf [f () + ()] + €. (58)

Forn € N, let {if,1 < i < n} denote the particular control defined by fii' = * for alln € N and
i € {l,...,n}, and let X” t=1,...,n,and L, denote the associated controlled objects. Recall
that ¢ and hence 1* are non-atomic. From the definition of ¥V and W.. in and (31), respectively,
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we have

2w (1)) - 2|52 3 w(xex)
n—1

- 2n /Rded w (X7 Y) w (dX) W (dY)

n—1

= ——W(). (59)

Define fi, = L+ > | fi = p*. Then, due to (58), the conditions of Lemma hold for { (L, fin)}.
Together with Lemma this shows that { L,, } is tight in P(R?) and P, (IR?). When combined with
the almost sure convergence in — u*, which holds due to Lemma (or the Glivenko-Cantelli
lemma), this implies convergence of f}n to 41" with respect to both d,, and d.;, as appropriate. Since
f is bounded and continuous, lim,, .. E[f(L,)] = f (1*) by the dominated convergence theorem.
The above observations, together with (59), the nonnegativity of ¥V and show that

f(Ln) + Wy (L) + % i R (ﬂ?|eve)]

n—1

limsup inf E
n—oo A7}

. 1 <&
<limsupE | f (Ln> + W (") + - ZR ([Lﬂe_vé)]
neo i=1

< f () W) + R (wle™e)
< inf[f (u) + Z(w)] + e

Since ¢ is arbitrary, this implies the upper bound (37), which together with and the discussion at
the end of Section completes the proof of Theorem

4 The Case lim, o, 2 = oo

This section is devoted to the proof of Theorem |/l The structure of the proof is similar to that of the
case with speed 3, = n. In view of Lemmas [19] and [20| and Theorem 1.2.3 in [9], it suffices to
prove that for any bounded and continuous function f on S (where S = P(R?) or S = P, (R?), as
appropriate), as n — 00,

1 _an —
= logEq, 7] = tnf {f (1) + T (W)} (60)

4.1 Representation formula

As before, let P be the measure on R™? defined by
P (dxy, ... dx,) = e 2=V p(dxy) - 0(dx,,),

which is a probability measure due to Assumption EE We now introduce the functional 7, :
P(R?) — (—o0, 00| given by

1 n

e =y [ (15 ) v e+ (1= 5 ) v+ e ) i),
(61)
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Note that 7, (1) is bounded below for all sufficiently large n due to Assumption @ﬂand the fact that
Bn/n — oo. Also, recalling the definitions of L,, and H,, from (@) and (), observe that

i,j:l

Let f be a measurable function on P(R?) (or on P, (R?)) that is bounded below (in particular f
could be bounded and continuous). Then by and the definition of P, we have

1 ) 1 e 1 1 ]
- log EQn |:€ ﬁnfi| — _/8_ log EPn |:€ 5nf Ln] — _/8_ log EP;{ |:Z_ne 6n(f+\7n,¢) Ly, ,
(63)

n n n

where Z,, is the normalization constant defined in (4).

Using the same notation and arguments as in Section the following representations are valid.
Since the function (x,y) — (1 — %) V(x) + (1 - ﬂ%) V (y) + W, (x,y) is measurable and
bounded from below, we can apply Proposition 4.5.1 in [9] to f(L,(x";-)) + Jn(Ln(x"; ")), for

any function f on P(R?) (or Py (R?)), such that f o L,, is measurable in R"* and bounded from
below. This includes all continuous and bounded functions on P(R?) or P, (R?), and we obtain

1
— — log Ep- [e‘ﬁn(“%v#)oh)] = inf E |f(L,) + Tnx (L ZR firle”"0)
n " {.U‘l } i
(64)
Setting f = 0 in the last display, we have
— ilog (Z,) = —ilog Epx [e’ﬁ"j"v#OL”]
Bn Bn
_ ] —
= {ipnf}E Tn# (Ln) + ﬁ—ZR (M;‘|e‘vf)] . (65)
Hi L

As before, to establish Theorem [7] in view of (64), and (63), it suffices to establish the lower
bound

liminf inf E

n—0o0 {f}

f(La) + Tz (Ln T ZR ifle” Vﬁ)] > inf [f (1) + T ()], (69)

i=1
and the upper bound

n

f(Ln) + Tnz (L) + 12 (u?le‘vé)]Sigf[f(uHJ(u)], (67)

limsup inf E
Bn

n—o0 {Hz

i=1

for all bounded and continuous functions f (with respect to the corresponding topologies). The lower
and upper bounds are established in Section[4.3|and Section[4.4} respectively, with preliminary results
on the controls first established in Section

4.2 Tightness of controls

We first make an observation that simplifies the proof of the lower bound.
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Remark 8. In proving the lower bound (66), without loss of generality we can assume there exists
C € R such that

sup inf E | 7, 2 (L,

neN {£]} ﬁn

ZR (mrleVe)| < Cy. (68)
i=1

If this were not true, we could restrict to a subsequence that has such a property. For any subsequence
for which the left-hand side of is infinite, the lower bound is satisfied by default. Since’ R > 0
it is therefore possible to restrict to controls such that the associated sequence of controlled empirical
measures satisfies

supE [T, (Ln)] < o0. (69)
Let V : P(R?) — (—o0, o0, be given by

V= [ Ve, 70

and note that V is well defined due to Assumption [3|and Assumption

Lemma 25. Let {/i}'} be a sequence of controls such that the associated controlled empirical mea-
sures {L,} satisfy (69). Assume also that V and W satisfy Assumptions[3[d1] and @ Then {L,}
is tight in P(RY). If Assumption @ is also satisfied with respect to some 1 then { L, } is tight on
Py(R?).

Proof. Lete; > 0 be asin Assumption We observe that [E [jn,;,g(in)} is equal to

% [nz Z WX"X") (1——) ZV

1 ]_—6 n ~n v v N
=3 [%212 Z (XP,X2) + (V(X]) + V(X))
=1 j=1,j#i

2 2 (WXL + (VX)) + V(X))

i=1 j=1j#i

I G T DI

=1

For large enough n, Assumption (61| and the fact that n/3, — 0 as n — oo imply that the last two
summands are bounded from below by a fixed constant C’ € R. Therefore, we have

T l—€ n Nn &L &L /
E [Jns (L,)] > [ e Z Z (X7, X)) + (VX)) + V(X)) } +C'.
=1 j=1,j#i
Recalling the definition of the random probability measure fi;; in and using the same argument
as the one that led to (47), we obtain

E[Jnz (La)] 2 E[Juz (L))

> [ S [0 ) + (V) + Vi) |+

i=1,i#7]
Il |1l—a & ., .,
= SE 2 E J(H5) |
2 2n?®
ZZIJ’#J
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where J is the functional defined in (28). Now, let i and /i*™ be defined as in and (48), respec-
tively. By the linearity of JJ, we obtain

(1 —¢€)(n— 1)E

B3] < S,

(T2 (Ln)] — C' (71)

When Assumption@ is satisfied, using (52), it follows that there exists a function y with lim_., y(s) =
oo such that

B | [l @] <B 2 7))

Similarly, under Assumption |64} again using (52), there exists a superlinear function ¢ such that
B| [ 0wkt @] <5 [2 ()
R

However, Lemmaand Lemmal17|show that both [, v (||x]|) 1 (dx) ,and ®(u) = [pa & (¥ (%)) g (dx),
are tightness functions on P(R?) and P, (Rd), respectively. Therefore, the last three displays and
the uniform bound onE [jnﬁ,g (Z)n)} imply that {/1"} is tight. Finally, by establishing for the
weak topology and for the topology generated by v, we see that { L, } is also tight. O

Remark 9. Using Remark[§ and Lemma|25, while proving the lower bound we can restrict to controls
such that { (Ln, /fbn) ,neN } is tight on P(R?) or Py (IRY) as appropriate.

4.3 Proof of the lower bound

For the proof of the lower bound we use some auxiliary functionals on P (IR%):

T =5 [ V60V ) WY ko) ) ).

grw=g [ (15 ) veos (1= 5) ver e W ) )l ulay).

n

asw=y [ ((1=5)veos (1= 5 ) vy W ) ) ula ulay).

n

where for a function ' on R? and M < oo we define FM(z) = min{F(z), M}. These integrals
are well defined for sufficiently large n because of Assumption|3|and Assumptions [6]1}6R!

Since W > W™ forevery M andn € N,

_ _ 1 —
inf B | f (L) + Tz (L) + — > R (ﬂme—vf)] (72)
{ay} Bn =
_ _ 1 &
> fE | f (L) + J25% (Ln) + - ) R (@l 0) | -
Ha noi—1
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Lete > 0 and {/i'} be such that

C" > inf E

{a3}

£ (L) + ot (L) + 5= SR (e 0)| 4+

SE|f (in> + T (in> +5i n R (ﬂ?le_vg)]
i " i=1

(L) + a0 (1) - e 5 SR G|

where (' is a finite upper bound, whose existence is~a result gf Remarkland the boundedness of f,
and the last inequality follows from and the fact L,, (dx) L,, (dy) puts mass 1/n on the diagonal
X=Y.

Owing to tightness (see Lemma we can extract a further subsequence of {(f/n, fir,) }, which (with
some abuse of notation) we denote again by {(Ly, fi,)}, for which fi,, = £ ™" | [i", that converges
weakly to some limit (L, j1). Let M,, be a sequence that goes to infinity such that lim,, ., ]Vé" =0
and let m € N. Also, recall the constant €; from Assumption By Fatou’s lemma, the nonnegativity
of R(:|e™"), the definition of V' in (70), and the fact that n/3, — 0, we have

liminf E

noc f<in)+JnM” (in)—%+éin(ﬁy|e—Ve)]
>h7{££fE[f< > ij( ﬂ

F)+5 [ (@ +V @)+ W (xy) L (dx) L (dy)

> liminf E

n—oo

2
N |

/Rdx]Rd (et (V(x)+V(y)+ WY (x,y)) L (dx) L (dy)

+(1—61)V<Z~L)

“e[r () + 5 (£)].

Since the above inequality holds for arbitrary m, using the monotone convergence theorem
liminf E

1 (1) 2 (1) -2 i)
ZJE[f <E>+J<E)] = inf [f (1) + T ()]

Since € > 0 is arbitrary, this establishes (66).

4.4 Proof of the upper bound

We start by making an observation.
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Remark 10. Under Assumption. there exists at least one probability measure (1 such that J (1) <
o0 (e.g., p = % where B is a bounded subset of A, defined in Assumpt/on L with(0 < {(B) <
00). Also, in Assumption[g3, it follows without any loss of generality, that each 1, can be assumed to
have a bounded density With respect to e~V (. The argument is as follows. First, by direct application
of Assumption we can assume that |1, has a density with respect to {. We can even assume that
it has a density with respect to e~V ¢, because otherwise J (in) = o0. Let p,, be the density of i,
with respect to e~V (. We let
gy = Jap9e ldx)

! Je ! (x)e~VE(dx)
Since pM is increasing with respect to M, and the map (x,y) — W(x,y) + V(x) + V(y) is
bounded from below, by an application of the monotone convergence theorem J (ufy ) — T (fn),
and therefore we get the desired resullt.

Now, when a measure [ is an element of P¢(Rd), the approximating sequence { i, } can be taken
to satisfy dw( fin, it) — 0. To see this, first assume that 1. has compact support K . By the previous
part of this remark, we can find a sequence {1, }, with bounded densities with respect to e~V (, that
converges weakly to . and satisfies J (p,) — J(u). Exploiting the fact that the map (x,y) —
W(x,y) + V(x) + V(y) is bounded from below, with fi,,(-) = % an application of Fatou’s
lemma gives

T = T o [ V)V )+ WG y) e (05) )

nTee 4 JRIXRE
. .1 . _
> Tim () i o (V04 V() W () (%) i ()
n—oo n—oo Rd xR
= J(u).
Thus [i,, satisfies J (fin) — J(u). Moreover, since all i, have the same compact support and

converge to y, and since v is continuous, i, converges to | in the topology generated by .

Next consider an arbitrary 1w € Py(R?) and let v,(-) = %m. By dominated convergence

Jai0m ¥ (X) va (dx) — [pa (x) pu (dx), which shows that dy (v, ) — 0. Since we also have

J(vn) — J(p), the desired approximating measures can be found by combining the two approxi-
mations and using a diagonal argument.

Let e > 0 and let ;4* be such that
F)+J W) <mf[f () + T (W] +

We will also assume that for ;1* we have R (u*|e‘V€) < 00. We can make this claim because of
Assumption @ and Remark. 10| Then let ' = p* foralln € Nandi € {1,...,n}, and let the
random variables X” 1 <@ < n,n € N, beiid with distribution ;*. By Lemma | the weak limit of
L equals ©*. Calculations very similar to those of . ) give

f( )+jn,¢( )+—ZR |—V€]

=E[f(zn)}+%J<u*>+2(%—%)v< DRl 0).

Thus, by the dominated convergence theorem, the quantity

lim sup (E [f (%)] + %J(u*) +2 (% - %) V(') + 6n R (u*le” Vﬁ))

E
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is equal to f (u*) + J (u*). Combining these inequalities we have

limsup inf E
n—0o0 {lh

f(Ln) + Tnr (L ZR e ]
”z‘ 1
< limsupE

s | £ (L) + 7.0 (L) + % SR (qu—va]
< inf[f (u) + T (u)] + ¢

and since € > 0 is arbitrary, we obtain the upper bound (67), and thus the proof of Theorem [7] is
complete.

A Proof of Lemma[di]

The proof of Lemma[i1]is based on two preliminary results, established in Lemma[26|and Lemma [27]
below.

Lemma 26. Letv € P (R™) and let) : R™ — R be measurable. Then

/ @y (dz) < oo (73)

for all A < oo if and only if there exists a convex, increasing and superlinear function ¢3 Ry — R

such that o
/ 9@y (dz) < (74)

Proof. (=) If holds, for every k& € N we can find M}, € (0, 00) such that

7 1
/ i @y (dz) < T
{z:p(z) =My}

Without loss of generality, we can assume M., > My, and limy,_., M} = oo. We then define
¢ (s) = ks, s € [My, My41], and ¢ (s) = My, s € [0, M;], which implies lim,_.. @ = 0o and
also that ¢ is convex and increasing. Finally, we have

o0 o0

0@)y (dz) < M + / @y (dz) < M 4 L < 00.
/m ) = ; 5 0(2)> My} ) = 2y

(<) Let QE be as in the statement of the lemma. Since g5 satisfies lim,_, o,
there exists M), < oo such that ¢ (s) > Asif s > M. Then we have

/ My (dz) = /R Loy € v (dz) + /R Ligzan € (dz)
geWw/ 756, (dz)
Rm

< 00.
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Lemma 27. Letrv € P (R™) and let1) : R™ — R be measurable. Then
/ My (dz) < oo (75)

for all A < oo if and only if there exists a convex, increasing and superlinear function ¢ : R, — R
and a constant C' < oo such that for any ;i € P (R™),

| 60 @) utdn < Riul) +C 76)

Proof. (=) First assume that holds. Then by the previous lemma there exists a positive convex
function ¢ : R — R, with lim o0 ¢is) = oo such that holds. Since —¢ < 0, by using
Proposition 4.5.1 in [9] with £ = —¢, we get

s [ G @) utda) R =g [ () <o,

HEP(R™):R(ulr)<oo

from which we obtain

| 6@ @)utdn) <R Gulv) +1og | X

m

forall u € P (R™) with R (u|v) < oo. Thus, follows.

(<=) For the converse, if we assume that is true, then we have

sw L[ 0(0@) un) -R@m | <

REP(R™)
and implies that log [, e (v=),, (dz) is bounded, which proves (75). O
Proof of Lemmaliil Consider the probability measure on R? x R? defined by
v(dxdy) = %e_(V(x)+V(y)+W(x’y»€(dx)€(dy),
where Z is the normalization constant that makes v a probability measure; the finiteness of Z follows
on setting A = 0in (25). Since ¢ satisfies (25), we can apply Lemmal[27|with ¢(x,y) = 1(x)+(y)

to conclude that there exists a convex and increasing function ¢ : R, — R with lim,_,.. ¢(s)/s =
oo such that for any ¢ € P(R? x R?),

/ 6 (¢ (x) + 4 (v)) ¢ (dxdy) < R (¢le” VIO (ax)i(dy)/Z) + C.  (78)
R4 x R4
We claim, and prove below, that for every ¢
¢ (¥ (x)) (74C) (dx) <290 (¢) + 2R (¢le Ve ®@ e Vl) + C +log Z, (79)
R4
where recall from Definition and Definition that 77;'%{ represents the ¢th marginal of (. If the
claim holds, then since ¢ is increasing and since ) and R are positive, for i = 1,2, we have (79).

Adding the inequality fori = 1 and ¢ = 2 we have

[ 6 00) (hQ) (@)t |60 00) (mh0) () < 430 (O +4R (Cle™ 0 & V1) +2(C Hlog 2).
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If ¢ € II(y, pu) then 7, = 73¢ = p. Dividing both sides by 2, the assertion of the lemma
holds with ¢ = [¢ — C' — log Z]/2.

We now turn to the proof of the claim (79). We can assume without loss of generality that {(dxdy)
has a density with respect to the measure ¢~V / @ e~V (, because otherwise holds trivially, since
W is bounded from below. Denoting this density (with some abuse of notation) by (x,y), then
gives

/Rd R ¢ (¥ (x) + 1 (y)) ¢ (dxdy)

(xy) _
< log — ) o=(VEIHVD (dx)0(d
hS /Rded ((x,y)log e*W(X:Y)/Ze (dx){(dy) + C

< / W (x, y)C(x, y)e VOV 1(dx) 6(dy)
R4 xRd

+ / C(x,y)log C(x,y)e” VEIHVIDp(dx)e(dy) + log Z + C.
R xR4
Therefore, recalling the definition of 20 in (9), we have

/Rd » ¢ (¥ (x) + ¢ (y)) ¢ (dxdy) <220 (¢) + R (¢le™ ¢ ® e l) +1og Z + C,

which completes the proof of the claim, and therefore the lemma. O

B Proof of Lemma

We first establish a preliminary result in Lemma[28|below. Let B(0, ") denote the closed ball about 0
of radius 7, and let B¢(0, ) denote its complement.

Lemma 28. Lettp, Py(R?), and d,, be defined as in (5)-(7). Then dy(fun, 1) — 0 asn — oo ifand
only if

r—00

o) = 0 anat timsup{ [ (x| ~o. 0)
Be<(0,r)
Furthermore, the metric space (Py(R%), d) is separable.

Proof. (=). Let un,n € N, u € Py(R?) be such that dy(fin, 1) — 0. Since dy,(pn, 1) <
dy (fin, 1), this implies dy, (ftn, 1) — 0. Let € > 0. By the integrability of ¢/ there exists r < oo
such that ch(o " Y(x)u(dx) < 3, and also u(0B(0,7)) = 0. Hence, we have

X) o (dx) = x) (11, (dx) — pu(dx O uldx
Lo 00 = [ vt - p)+ [ weouti

< (81)

[ walax) = [ wxn(ax
X))t (dX) — xX)u(dx
/B R / () u(dx)

B(0,r)

€
+ 2.

" 3

From the definition of dy; in (7) and the nonnegativity of d,,, we can find ny € N such that Vn > ny,
we have

[ 000mn(x) = [ wGou(d)| < 5.
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Since 11(0B(0,7)) = 0, the pi-measure of the discontinuity points of x — 1(x)1 (0, (X) is zero.
Since 1/(x) can be extended outside of B(0, 7') to obtain a bounded and continuous function on R,
the fact that d,, (i, 1) — 0 implies that there exists n, < oo such that Vn > ng,

< (82)

Wl ™

/B o U (x) i (dx) — / P (dx)

B(0,r)

Combining the above estimates for all terms in we obtain

sup {/ w(x),un(dx)} < €.
n>max{ng,n{} Be(0,r)

Since v is integrable with respect to each i, for all n. < max{ng, n(} we can find an r,, < oo such
that [e o, ¥ (X)pn(dx) < €. Taking 7' = max{ry, ..., Tmax{ngny} 7} Vields

sup { /B C(Om,)w(x)”"(dx)} <e.

Since € is arbitrary, the conclusion follows.

(<) To prove the converse, let u,,n € N, i € Py(RY), be such that holds. For € > 0 there
exists < oo such that (0B(0,7)) = 0 and

€ €
a{ [ veomlao)<§ oema [ wGontin <

where the latter inequality holds because 11 € Py, implies that ¢ is pi-integrable. Thus, we have

3

[ weatan) — [ veoutax| < | [ IRCER / R
el v [ veoutax)| e
</ () - | weutan)|+ 5

B(0,r)

Since dy, (i, ) — 0 and p puts no mass on the set of discontinuities of the bounded function
Y (x)1 (0, (x), there exists n(, < oo such that

[ vtma— [ wGoutd| <5 oz
B(Or) B(0,r) 3
Since ¢ is arbitrary, when substituted back into (83), this shows that

lim | [ $(ua(dx) — [ b(x)u(dx)| = 0.

n—oo Rd R4

We now turn to the proof that P,,(R?) is separable. Let {x,} be a countable dense subset of R,
and define

N N N
Aﬁ{chéxn:Cn€Q+7n:1,..-;Nazcn:17zcn¢(xn)<OO,N€N})
=1 n=1 n=1
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where Q. is the set of nonnegative rational numbers, and observe that .4 is a countable subset of
Py. We nows show that A is dense in Py,. Fix u € Py and € > 0. Also, consider the space I of
bounded, Lipschitz continuous functions on R?, equipped with the norm

11152 = max ( sup LTI 5 |f(X)|> ,

x,yER x+£y ‘X - Y| z€RL

and let I, be the subspace of functions with || f|| gz, < 1. Then consider the metric on P(R?) given
by

dpr(p,v) = sup
fer

J)p(dx) — Rdf(X)V(dX) :

Rd
In view of the definition of dy; in (7) and the fact that there exists a constant C' < oo such that
dy(p,v) < 3y/dpr(p, v) (see [7) p. 396)), it suffices to show that there exists v € A such that

sup
JFeF1U{vy}

<e. (84)

f(@)p(dr) — » f(@)v(dx)

R4

Recalling that ¢/ is continuous, for each n € N, choose 7, € (0,£/2) such that

€
sup  [(x) — ¥(xa)l < 3 (85)
XEBr,, (Xn)
and note that then we also have
€
sup  [f(x) = f(a)| St < 5, f €T (86)
xeBTn(xl’l)

Now, define B,, = B, (z,) \ U=} B,, (z}) and b, = u(B,). Clearly, { B, }nen forms a disjoint
partition of R? and hence, Y -~ b, = 1. Moreover, by and we have for all f € F; U {¢},

< an sup |f(xa) — f(x)] <

n=1 rEB,

: (87)

DO ™

OUNIENERY VICICS

We can assume without loss of generality that v/ is uniformly bounded from below away from zero.
Since [pa ¥(x)p(dx) is finite, this implies >, b,1)(xn) < 00, and hence there exists N € N
such that

. 5 . €
by < —————  and bth(xn) < = (88)
DR TPV
Now, forn = 2,..., N, choose ¢, € Q. such that
b €
0<b,—c, < - - (89)
<maX(|¢(X1) + U(%n)], [xn — X1|)) 4

and set

N 00
a=bi+ Y (ba—ca)+ > b
n=2

n=N-+1
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Observe that 3 | ¢, = 32> b, = 1, and hence, ¢; also lies in Q. Setv = 3
for f € F; U {4}, using and (88), we have

¢n0y, - Then,

n=1

oo N
=D buf(wa)| = D _eaf(zn) Zb f(an)
n=1 n=1
N
<D (b — )| f(wn) = aﬂ+zbﬁm fln)]
n=2 n=N-+1
€ [e.9] [e.9]
<+ D7 bt D balf(za)l
n=N+1 n=N+1
€
< —.
— 2
When combined with this establishes the desired inequality (84). O

Proof of LemmaliZ Let C' < oo and let {u,} C P,(R?) be a sequence such that ®(,) <
C for all n. Now lim, o infy,|x|=c ¢(1(x)) = 00 because lim._.o infy.|x|=c 1 (X) = 0o and

lim,_ ¢(SS) = 00. Hence, by Lemmawith g = ¢ o1, the sequence { i, } is tight in the weak
topology, and we have

lim Sup{ /B o )w(X)un(dX)}

. o)
fE%?{@ﬁ%www)éwﬁwwmwﬂ}

()
C1 7
SO D W)

= 0.
Thus, by the first assertion of Lemmal|28] {/1,,} is tight in Py (R?). O

C Tightness Results

Proof of Lemmal[23. Since R? is a Polish space, to verify weak convergence of a sequence of mea-
sures in P(Rd) it suffices to consider convergence of integrals with respect to the measures of func-
tions f that are uniformly continuous. We use the fact [15, Lemma 3.1.4] that there is an equivalent
metric m on RY, such that if 2, (R?, m) is the space of bounded uniformly continuous functions
with respect to this metric, then there is a countable dense subset { f,,,},,.cy C Us(R?, m). Define
Koy = $upyega | fn ()| and A2 = fr (XP) — [pafm (%) [ (dx). For any € > 0, Chebyshev’s
inequality shows that
:

lz y fn (X) O (dx>—1z Rdfm (z) i’ (dz)| >

n n
i=1 1=1

1 n
> AnA

3,j=1

|
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Let 7' = o(X? i =1,...,7). As we show below, by a standard conditioning argument, the off-
diagonal terms vanish: for ¢ > 7,

E[An AL ] =E[E[AL AL | FPl =E[E (AL | AL =0

Since |A}, ;| < 2K,

> €

|

%Z /]R o (@) Oy (dw) - %Z L (x) " (dx)

Since (L", i) = (L, 1) and € > 0 is arbitrary, by Fatou’s lemma,

B[ @ Lo = [ o] =1

Now use the property that { f,,, m € N} is countable and dense to conclude that L= L a.s. O

References

(1]

(2]

3]

(4]

(5]

(6]

[7]
(8]

9]

[10]

Luigi Ambrosio, Nicola Gigli, Giuseppe Savare, and G. Savaré. Gradient Flows in Metric Spaces
and in the Spaces of Probability Measures. In Computer Vision, 1995. Proceedings., Fifth
International Conference on, Lectures in Mathematics. ETH Zirich, page 334, Basel, 2008.
Birkhauser.

G Ben Arous and A Guionnet. Large deviations for Wigner's law and Voiculescu’s non-
commutative entropy. Probability Theory and Related Fields, 108(4):517-542, aug 1997.

Gérard Ben Arous and Ofer Zeitouni. Large deviations from the circular law. ESAIM: Probability
and Statistics, 2:123—134, 1998.

Patrick Billingsley. Probability and Measure (2nd Edition). page 636, 1986.

Djalil Chafai, Nathael Gozlan, and Pierre-André Zitt. First-order global asymptotics for confined
particles with singular pair repulsion. The Annals of Applied Probability, 24(6):2371-2413, dec
2014.

A Dembo and O Zeitouni. Large Deviations Techniques and Applications, volume 38 of Stochas-
tic Modelling and Applied Probability. Springer, New York, 2nd edition, 1987.

R. M. Dudley. Real Analysis and Probability. Cambridge University Press, 2002.

P Dupuis. Representations and weak convergence methods for the analysis and approximation
of rare events, may 2013.

P Dupuis and R S Ellis. A Weak Convergence Approach to the Theory of Large Deviations. John
Wiley & Sons, 1997.

Crispin Gardiner. Stochastic Methods: A Handbook for the Natural and Social Sciences, volume
2010. Springer, 2010.

32



[11] Adrien Hardy. A note on large deviations for 2D Coulomb gas with weakly confining potential.
Electronic Communications in Probability, 17:1—12, may 2012.

[12] Mauro Mariani. A Gamma-convergence approach to large deviations. arXiv preprint
arXiv:1204.0640, apr 2012.

[13] D Petz and F Hiai. Logarithmic energy as an entropy functional. Contemporary Mathematics,
1998.

[14] Sylvia Serfaty. Coulomb Gases and Ginzburg-Landau Vortices. European Mathematical Society
Publishing House, Zuerich, Switzerland, mar 2015.

[15] D W Stroock. Probability Theory, An Analytic View. Cambridge University Press, Cambridge,
1993.

[16] Ran Wang, Xinyu Wang, and Liming Wu. Sanov’s theorem in the Wasserstein distance: A nec-
essary and sufficient condition. Statistics & Probability Letters, 80(5-6):505-512, mar 2010.

33



	Introduction
	Description of problem
	Notation and definitions
	Assumptions and main results
	Discussion of assumptions and examples
	Equivalent Formulations of the Assumptions
	Examples

	Outline of the paper

	Rate Function Property
	Basic definitions
	Verification of the rate function property

	The Case n=n=n
	Representation formula
	Properties of the controls
	Proof of the lower bound
	Proof of the upper bound

	The Case limnnn=
	Representation formula
	Tightness of controls
	Proof of the lower bound
	Proof of the upper bound

	Proof of Lemma 11
	Proof of Lemma 17
	Tightness Results

