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Abstract

In this paper we develop asymptotically optimal algorithms for fast computations
with the discrete harmonic Poincaré-Steklov operators in presence of nested mesh
refinement. For both interior and exterior problems the matrix-vector multiplication
for the finite element approximations to the Poincaré-Steklov operators is shown to
have a complexity of the order O(Nyes log® N) where Ny, # is the number of degrees of
freedom on the polygonal boundary under consideration and N = 2770 - N..¢, pg >
1, is the dimension of a finest quasi-uniform level. The corresponding memory
needs are estimated by O(Nyey log? N). The approach is based on the multilevel
interface solver (as in the case of quasi-uniform meshes, see [20]) applied to the Schur
complement reduction onto the nested refined interface associated with nonmatching
decomposition of a polygon by rectangular substructures.
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1 Introduction

Asymptotically optimal algorithms for solving boundary or interface reductions of elliptic
boundary value problems have been under a forced attention during the last few years.
Main results have been developed for the case of quasi-uniform meshes generating bound-
ary element spaces. We refer to [2], [10]-[14], [27, 28, 29] for recent results on wavelet
approximation in classical BEM yielding algorithms of the complexity O(Nlog? N), ¢ > 1,
with respect to the number N of degrees of freedom on the underlying boundary. The
similar asymptotical performance is achieved for panel clustering techniques in BEM [17].
Efficient matrix compression techniques of optimal complexity for the interior Poincaré-
Steklov (PS) operators associated with several classes of the second and fourth order
elliptic operators have been recently developed [19, 20, 23].

- In this paper we propose and analyze asymptotically optimal algorithms for the treat-
ment of the finite element (FE) discretizations to the harmonic interior and ezterior PS
operators on polygons in presence of nested mesh refinements near the corner points. For
both interior and exterior problems the proposed technique is shown to have a complexity
of the order O(N,slog® N) where N, is the number of degrees of freedom on the under-
lying boundary and N = 277°N,.¢, po 2> 1, denotes the boundary dimension of a finest
quasi-uniform level. The corresponding memory needs are estimated by O(Nyeslog? N)
where ¢ = 2 or ¢ = 3 for the interior or exterior problems, respectively. The approach is
based on the multilevel interface solver (as in the case of quasi-uniform meshes, see [20])
applied to the Schur complement reduction onto the nested refined interface associated
with a nonmatching decomposition of the underlying polygon by rectangular substruc-
tures.

The remainder of the paper is organized as follows. In Section 2 we derive the FE
approximation to harmonic PS operators on the polygonal boundary and provide the
corresponding error analysis. The general framework for the multilevel additive Schwartz
method is overviewed. Section 3 deals with the multilevel scheme on the nested refined
interface for a treatment of the interior PS operator in the case of mesh refinement by
nested selection. In Section 4, a similar approach is adapted to the case of exterior PS
operators based on the non conforming geometrical decomposition of the artificial annual-
type domain with enlargement of the coarse mesh to infinity. The FE approximation of
the PS operators with slave nodes on the interface defining the decomposition is applied.
We conclude in Section 5 with a brief discussion on applications of the proposed techniques
for solving classical boundary integral equations. ’

2 Preliminaries

Let © C R? be a polygonal domain with the boundary I' = U} T; where I'; is an open
edge and w; € (0,27) is the interior angle at s; = [; N4, j = 1,..., Np with the
convention I'y,4+1 = I'y. We denote by CQ2 := Rz\Q the exterior domain. Let n be the
unit outward normal vector on I'. Introduce the trace spaces on I' by

oy | You: ue HHY2(Q), 0<s<3/2
H(I) '—{ I2(r) 5=0



equipped with the norm [16, 24]
[[v]

H(T) = ZEH"+1}§’(.£):702=17 ”Z”le/z(g) .

The trace operator
70 Hot*(R?) —» H*(T), 0<s<3/2

is continuous and has a continuous right inverse. The space H*(T') := (H*(T"))’, —3/2 <
s < 0 is defined by L?(T')-duality. The generalized normal derivative operator

v HYQ, A) = H™Y4(T)

is continuous, surjective (see [8]) and coincides with the operator g_zlr = Ohu for u €
B (2). ;
Consider the interior and exterior boundary value problems (BVPs) for the Laplacian
AT=01in @, TEHL(Q),i=1,2 (2.1)
subject to the Dirichlet boundary condition
| YT =u € HY*(T) on T (2.2)
or Neumann boundary condition
wo=v€EHY?T) on I, (v,1)r=0, . (2.3)

where the notations @ = §2; and CQ = Q, are temporarily used. For the exterior problem
in Q9, we additionally require the ”radiation conditions”
1

U(z) = Coo + O(lxl

), lal = oo (2.4)

Given s € [—-1,1] and f € (H*(T"))', introduce the subspace
Hi(T):={ue HI): (u,f)r2=0}.

Since the Dirichlet problems are uniquely solvable for any v € H/2 (T') with a continuous
solution operator '
Miu:=7: H/?([) - HL (Q4,A), i=1,2
one can introduce the continuous Dirichlet-Neumann mappings
Ty : HY2(T) — H™YX(T),
Ty : HYX(T) — HyY2(T)

related to the interior and exterior problems, respectively, which map the trace u = v,
into the generalized normal derivative ;% of a harmonic function @ and possess Ker T; =
span{1}, i = 1,2. There exist continuous pseudoinverse operators S; : Hy 1 T —
HY2(T), i = 1,2, satisfying T;S5;T; = T; which are called Poincaré-Steklov operators.

Our goal is to construct asymptotically optimal interface solvers for the natural bound-
ary reductions of the Dirichlet and Neumann problems based on the FE approximations
to Poincaré-Steklov operators. We consider both interior and exterior BVPs in presence
of nested mesh refinement near the corner points.

The mapping properties of the operators T; and S; ,7 = 1,2 are well known [1, 8, 18].



Lemma 2.1 For s € [~1/2,1/2] the following operators are symmetric and continuous
Ty : HHY2(T) — HVA(), i=1,2,
Sy Hy7Y3(T) — HHY3(TY),
S Hi-VA(T) — H*TYA(T)

where go € H™Y/?(T") is the Robin potential on T'. The operators S; are positive definite

on their domains of definition while the operators T; are positive definite on H. 11 / 2(I‘) with
KerT; = span{l}, i=1,2. =

We deal with FE approximations of the operators 77 and 73. In the case of the interior
operator we assume that €2 is composed of Mg rectangles €);, ¢ € Ip and My regular right
triangles Q;, i € Iz (without overlapping), such that

—Q _ UieIRul‘Tﬁi . (25)
Let we are given the subspace W), C H!(f) of piecewise linear C°-finite elements related to

the quasi-uniform triangulation 73 of Q such that the restriction Thy,, ON any subdomain

Q; is defined by a tensor product of uniform meshes. The origixfal decomposition is
associated with the coarse triangulation 7, being quasi-uniform and regular with the
mesh size kg ~ O(1) ~ diamQ. The mesh parameter of the finest level W}, is'supposed to
be of the order h = h, ~ 27, p € IN. Let W, C W}, be the space admitting the sequence

of nested subspaces
Wo Cc W, C...Wp , (26)

where W, is the FE space with respect to 7. The choice of W}, [ =1,...,p is subject to
some nested selection strategy producing a conformal mesh refinement (with slave nodes)
near the corner points. It will be specified in Section 3. Denote

X, =W, CHYD), W =W,NH}Q).

The FE approximation Ty, : X, — X, of the operator 71 under consideration is defined

by .

(Tlpu,’)’o’l})Lz(r) = /VUthd:L' N Yv € Wp (27)
Q

where T, € W, satisfies v7, = u € X, and

[Vavadz=0, VieW. (2.8)
Q

The operator Ty, implements the discrete Dirichlet-Neumann mapping related to the
Galerkin approximation to the weak solution % of the interior problem (2.1), (2.2). With
given u € HY?(T) from (2.2), the approximate Neumann data ;4% now takes the form

’)’1},_12 = T]_pqu with Up = Phﬁ (29)
where Qg : Ly(T") = X, is the L2-orthoprojection onto X, and Py : H*(2) — W, is the
FE Ritz projection defined for any z € H(2) by

/V(z —Prz) Vndz =0, Vne Wy,
Q

YoPrz = Q207 -
The error estimate for the mapping ;5 is given by the following Lemma.



Lemma 2.2 Let uy, be the FE approzimation of T defined by u, = Ppu. There ezists a
constant C, independent of h, such that

1Q2Thw — 14Tl g-1r2ry < CR* V2|0l ey, 1/2< s < 50, (2.10)

where sy = 3/2 in the case of a convez polygon and sy < 3/2 in the general case depending
on the elliptic regularity (in sense of (3.19)) of the problem (2.1), (2.2).

Proof. Consider for brevity the case of a convex polygon. Applying the approximation
properties of the Ritz projection Py, see [6],

_ _ s _ 1
|z — Puti|| ga(q) < ch +1/2 |||l &2 (7, a-y <s<3/2, (2.11)

with a = 0,1 one obtains the error estimate in the H~/ 2(I‘)—norm'for the FE approxi-
mation T3, to the PS operator T}

(QoThu — T1,Q2u, v) _

sup =
vEXp 0 ol a2y
= sup Hvll;ﬁ,z(r) /V(E — PuT) - VPy Myvdz <
vEXp,v#0 o

| PrMy| 1oy
”U”HUZ(P)

< cll@ - Pull o) -
which yields (2.10) due to (2.11). Lemma 2.2 is proven.

Remark 2.1 The estimate (2.10) immediately implies
[ Tyw — vanTl g-1r2ry < b Plluflgey + c2h ™2 || Tyl gory

1/2<s<s, -1/2<0<1/2

when taking into account the approzimation property of the L®-projection, see [6],

”Z - QZZHH—I/Z(I‘) S Ch1/2+SHZHHs(r), —1/2 S s < 3/2 . B

We first construct an efficient compression technique for the stiffness matrix 7y, (that is,
in fact, the Schur complement related to (2.8)) of the operator T}, which admits a matrix-
vector multiplication of the complexity O(N log® N) up to the approximation error of the
order O(N~®), @ > 0, where N = dimX,. The approach is based on the multilevel
interface solver (in the framework of the cascadic CG method, see [31]) applied to the
Schur complement reduction onto the nested refined interface I'y = Ujer,ur,0€:\I aligned
with the nested refined coarse mesh decomposition.

We then extend the proposed technique to the case of the exterior PS operator 75.
To that end we first approximate the exact "radiation condition” (2.4) by homogeneous
Dirichlet or Neumann conditions on the boundary I', of the artificial rectangle 11, D €2
with diamIl, ~ N®, a > 0. Then we introduce a non conforming geometrical decompo-
sition of the domain Q, = II,,\Q which produces the coarse mesh space with enlargement



to infinity and with the number of subdomains of the order O(log V). Then the multilevel
additive Schwarz algorithm (in particular, the BPX scheme [7]) on the refined skeleton
may be designed along the same line as in the case of a bounded domain providing again
the complexity O(N log® N), where N = dim X, is the number of degrees of freedom on
the underlying boundary I, as above.

Note that in the case of nested refined meshes on a rectangular boundary the treatment
of the interior PS operator remains to be of the complexity O(N log? N) while for exterior
problems we arrive at the complexity O(N log® N) even for this particular geometry. This
is due to the decomposition of Q., by O(log N) substructures.

The proposed construction is substantially based on the multilevel additive Schwarz
(MAS) method for fast solving the interface equation on the refined skeleton. The analysis
of the MAS method under consideration appears to be a particular case of the general
theory for H'/?-setting. For the sake of completeness, we give here a brief description of
the MAS method for a strongly elliptic symmetric variational problem, see e.g. [15].

Let V be a finite dimensional Hilbert space with scalar product (-, -)y and related norm
| - |lv. Consider the following V-elliptic symmetric variational problem. '

Find v €V : a(y,v) = f(v), WweV - (212)

with the given continuous functional f € V' and with a symmetric bilinear form a :
V x V — R providing the norm equivalence

a(u,u) 2 ||lu|l?, YueV. , (2.13)

Assume we are given the decomposition
V=>V;, V;cV (2.14)

onto a finite number of subspaces V; equipped with scalar products (-,-)y; and related
norms which admit the following equivalence relation

bi(u,u) = lullf,,  YueV; (2.15)

where b; : V; x V; — R is an auxiliary symmetric bilinear form for j = 0,1,...,p.
The theory of MAS methods is based on the stability property of the splitting (2.14),
namely,

P
inf vill2, = |ullz, YueV -
"=Zvj=vjevj,~§“ illy; = llulls 216
2

uniformly (or with a moderate growth of the related condition number) with respect to the
number of levels p. The MAS method is defined in terms of the projections Py, : V = V;
and the elements f; € V; determined by

. bJ(PVJ’U,, ’U) — a(u’v)’ Yu € V,
bi(fjv) = f(v), VweV;.



Lemma 2.3 [15]. Assume the norm equivalences (2.13), (2.15) and (2.16) to be valid.
Then the operator equation

P
with Py = 'Eo Py, is equivalent to the variational problem (2.12). The relation k(Py) =
:’:

O(1) holds uniformly with respect to p and Ny = dim V. ]

In our context the stability (2.16) is derived in a standard way for the nested sequence of
subspaces '
WwCcWiCc...cVp=V (2.18)

as a consequence of the stable splitting of the H*/?(T,)-norm on the nested refined skele-
ton. It will be shown that from the computational point of view the coarse mesh en-
largement introduced for the proper interface reduction of the exterior problem has just
the same data structure as the reduction onto the nested refined skeleton in the situation
of local mesh refinement. We now conclude with the observation that the computing
complexity of a treatment of the erterior harmonic PS operator for both quasi-uniform
and refined meshes appears to be of just the same order as in the case of interior ones in
presence of nested geometrical refinement near the corner point.

3 Local mesh refinement by nested selection

We proceed in the situation of Section 2 and suppose that the decomposition (2.5) of
the polygon 2 is given, see Fig. 1, associated with the coarse triangulation 75 with mesh
parameter hy = O(1), where diamQ = O(1). Let

TCNnC...C7 ‘ (31)

be the nested sequence of regular triangulations with mesh size h; ~ 277, j =0,1,...,p,
obtained by a successive dyadic refinement of the initial triangulation 7y. The correspond-

Q2 €Qp | Qr

Q; € QT‘

. >~
p=3, h=27°?

Figure 1: Decompositions of right triangular and polygonal domains.



ing nested sequence L
WoCWiC...CW,=W,

of C-piecewise linear FE spaces with respect to the quasi-uniform triangulation {r;} will
be used now to construct the sequence (2.6) of nested subspaces W, 5 = 0,...,p. To
that end, following [25, 7], we choose some index 0 < py < p and define

W;:=W; for 7=0,1,...,p0 - (3.2)

Remark 3.1 In the case of quasi-uniform meshes the MAS method applied to the in-
terface problems on the uniformly refined skeleton (see Fig. 2 where dots ‘e’ denote the
mesh nodes on the interface) has been developed in [20] which provides an algorithm of the

complezity O(N log® N) for the treatment of interior PS operators. This case corresponds
to the choice py = p.

Dir

Dir V' V'V V| Dir

To

Neu

Figure 2: Uniformly refined interface for p = 0, 1,2 (mixed boundary conditions).

For the sake of clarity we further restrict our domain to the couple of rectangular and
triangular subdomains 2z and Qr, respectively, adjacent to the corner point where a
mesh refinement is given, see Fig. 3a). Adapting the nested refinement techniques, see
[7, 25, 9, 5], we introduce the sequence

QPCQP_lc...CQ():Q

of imbedded subdomains such that Qy =Q for k =0,1,...,p and Q1 C Q for k.Z Po-
Let Q,,+1 be composed of the upper-left quarter Q} of the rectangle Q} ; = UL, Q;} with
§ = Qg and of the upper quarter @, I = 1 of the triangle Qr as indicated on Fig.



a) b)

Figure 3: Nested refined interface b) for p = 4, py = 2 and related triangulation a).

3a). We then proceed with sucE_a recurrent procedure for [ = 2,...,p — po. Let 7\7]-,,,.
be the nodal basis functions of W;. To determine the corresponding nested sequence of
subspaces we set -
Wi=W;aa+W;, Jj=p+1,...p

where . B . :
W; = span{Nj; : suppN;= C Q}, j>po.
If we put Wj = W; for j = 0,...,po then the final computational space W, may be
‘introduced by '

P — fpngd —

Wy = Wj, W; CW; (3.3)

§=0

implying the required nestedness Wy C W; C ... C W,,.

The nested refined interface I', related to W, may be introduced by assembling the
corresponding ones associated with the subspaces W; for j = pg,po + 1,...,p. In fact,
following [20], let us introduce the uniformly refined interface f‘p0+z associated with the
triangle @; and with the mesh size hpy; = 27Po*) for I = 1 and define the contribution
from the level py + 1 by

fpo-!-l = (U?=1Qi\aﬂpo) U f‘p0+1 .
Then define recurrently
fpo+l = (U?=1Q§\aﬂpo+l—l) U i:‘po+l

forl =1,2,...,lp = p— po. Now the resultant refined interface I', corresponding to the
computational space W), is defined by :

Tp =Ty Ufg—_l f‘po+l : (3'4)



The particular case with p = 4 and py = 2 is shown on Fig 3.b).

Now we are in a position to define the FE approximation T3, of the interior Poincaré-
Steklov operator T3 by (2.7), (2.8) and then substitute instead of the Wy-harmonic func-
tion 7 in (2.8) the corresponding Schur complement reduction to the skeleton I', from

(3.4). To that end we first introduce the trace spaces V; := yW; and Vy; = "/Woj, Jj=

0,1,...p on I', where v: W, = C(I',) is the usual trace operator with respect to I',. We
equip V; with the norm

| lullvs = _ inf._ [alla o)

providing a Hilbert space structure with H'/2-setting. Let (-,-)r, be the duality with
respect to the L?-inner product (-,-)zz(r,) on I',. Then the operator Tj, from (2.7) and
(2.8) admits the following equivalent definition (cf. [19, 21])

(Tlpu, ’U)Lz(r) = (Aréﬂ, Tf)rp , V7 € 'Vp (35)
where 7,7 = v and @ € V}, satisfies
(Ar,T,z)r, =0, Vz€Vyp; Yi=u. (3.6)

Here the SPD interface operator Ar, : V, — V}, is defined by

(Arpu U)r Z(leuk,vk)p(pk), Yu,v € V;, ) (3.7)

where Ty is the FE approximation of the interior PS operator related to any subdomain
Q4 (most of which are rectangles) generated by the skeleton I', and uy, vk are the traces
of u and v onto Q. The operator Ty, from (3.5) admits a quaswptlmal error estimate
like (2.10).

The interface equation (3.6) to be solved may be easily transformed (by subtraction of
a particular solution) to the variational form (2.12) with V' = V{, and

a(u,v) := (Ar, %, v)r, , (3.8)
f() = (¥,v)r, = Z(\Ilk,'u)agk , Yu,v € Vg

with some given ¥k € (V| Y. To apply the MAS method to the equation (2. 12) (3.6)-
(3.8) we have to check the stab1hty property (2.16) with respect to the splitting

Z %] 3 ’YWOJ (39)

Lemma 3.1 For every u € Vq, the norm equivalences

(Ar,u, u)r, = [[u]ly, (3.10)

||“||%/ = 22 ””JHLZ(I‘ ) (3.11)

=) vj; 01]-0
J

hold uniformly with respect to py and p.

10



Proof. The relation (3.10) follows from

i o o " - 1/2
lully = gpint Bl 2 inf @l = (Ar,u,u)}?.

The equivalence (3.11) is the consequence of stability results for H!-setting

ol = S ey Vu € Wep (3.12)

“J JEWOJJ =0
3

with respect to the corresponding domain splitting Wy, = Z Wy, in the case of nested

mesh refinement involved. The lower estimate in (3.12) is tr1v1a1 To prove the upper
estimate a special bounded projection Q; : L*(Q) — Wj is constructed in [25] to keep
the properties Q;(W;) € W;, j < p and Qju; = u;, Vu; € W,. Then a particular
representation

~ p —~ o~ ~ ~
u=Qou+ ) (Qju—Qjnu), (Q—Qj1)uc
Jj=1
related to the splitting (3.3) does a job, see [25] for more details. Now (3.11) may be
obtained from (3.12) by passing to the interface I', and adapting the arguments similar
to [25, 9] applied there in the case of the single boundary I' = 89Q. In fact, it may be
easily checked that the local property

=~ inf  |lgll32q (3.13)

2_j ”h’H%z(an) 9EWo;:meg=h

is valid for any subdomain Q. Now, similarly to the case of a uniformly refined interface
[20], one derives from (3.13)

il /12
llully = ?IEVV})E:SE:U il ereen

p
~ . 3 2 2
5 -aevr%ffﬁﬂ{_ » inf > Z_: Z J”'Yk”j”LZ(Qk)} (3.14)
u=z uj:u; EWo; k j=0
3=0

>~ inf > Z 27| e 132 0y

u—z'qu 1u; EWo; k j=0

p .
= » inf Z 21”11_1'“%2(1-\?), Yu € W)p .
u=) vj:v;EVp; j=0
i=0

This completes our proof. (]
Starting with the decomposition (3.9), consider a more refined splitting

dimVo;

= zp: Ve (3.15)

ji=0 m=1

11



based on the decomposition i
Voi =) Vim (3.16)

into one-dimensional subspaces V; m = span{y;n} where the nodal basis functions ¢; , =
¥Njm of Vy; are chosen in such a way that suppN;m NI, # 0. Here N;,, is the nodal
basis function of Wy,.

As in the case of quasi-uniform meshes, for the geometrical refinement chosen the splitting
(3.16) appears to be stable, i.e.,

”UjH%z(r,,) = h; Zcf,m, Vu; = Z Cim®Pim € Voj
m m

with certain scaling constants h; independent of v;. With the bilinear form a(-,) given
by (3.8) we now introduce the MAS operator Pgpx : V — V with respect to the choice

bi(u,v) == (u,v)y;,, = 27 (u, Ve, Y0 € Vigm,
(Pv; mt, v)v;,. = (Ar,u,v)r,, YveVim, YueV.

The SPD operator Pgpx takes the form

dimme Vo;

p T N
Pppxu :=Z Z E (Tt 9im)

j=0kek(j) m=1 2j((Pj,m,(Pj,m)L2(1"p)

(pj,m (317)

where the index k runs the subset

N kzanEFpo: J<Dpo
k(”‘{k:anker,-, 7> po.

The right hand side F' from (2.17) is defined by substituting in (3.17) the elements ¥y
from (3.8) instead of Tyxu. The operator Pgpx corresponds to the BPX-scheme, see [7],
applied now to the interface problem with the operator Ar,.

As a direct consequence of Lemmas 2.3 and 3.1 we arrive at the following statement.
Theorem 3.1 The operator equation
Pgpxu=F eV (3.18)
is equivalent to the original interface problem
(Ar,u,v)r, = (¥, v)2r,), Vv € Vo,

and k(Pppx) = O(1) holds uniformly with respect to p and py. The computation of
Pgpxu, u € Vo, has the complezity O(Ny.s Iog3 N) with the memory needs of the order
O(Nyeslog? N) where N = 277 and N,o; = (p — po + 1)N. The solution of (3.18) on
a sequence of grids (say, by cascadic (C) CG method) up to the approzimation error
€ =N, a > 0, has the complezity loge;; - O(Nyes log® N) providing the same cost
estimate for the matriz-vector multiplication with the stiffness matriz Trp. ]

12



Proof. The first part of the theorem follows from Lemmas 2.3 and 3.1. To estimate the
complexity of the residual computation Pppxu, u € V{,, we note that any of the skeletons
Loy Tpotts 1 =1,...,po—p is uniformly refined and, thus, the corresponding contributions
from those pieces of I', into the sum determining Pppxu have the expense O(N log® N),
see [20], resulting in the overall complexity O(N,slog® N). Since the memory needs in
the case of a uniformly refined skeleton are of the order O(NV log® N) we finally arrive
at the desired estimate O(IV,;log® N). In the case of quasi-uniform meshes an optimal
convergence of the CCG method is achieved, see [4, 30], assuming the H'**-regularity of
the underlying interface problem (3.6), that means for the case of the Dirichlet problem
(2.1), (2.2)

HHHHH"(Q) < c”'YO-ﬂ“Hl/Z'*"(l")r ENS (0, 1] (319)

with s depending on the interior angles w;, j = 1,..., Ny and on the type of boundary
conditions on I" involved. However, the results from [30] has been recently extended in
[31] to the case of nested refined meshes. This completes our proof.

Remark 3.2 To fit the typical singularities near the corner point one should implement
the mesh grading of the order h..; ~ hy, o > 1, which yields p — py ~ O(log N). In this
case we get Ny.s ~ alNlog N indicating that the underlying nested refinement strategy
has no redundancy (in asymptotical sense) in compare with the quasi—optimal exponential

mesh grading since the latter also produces O(N log N) mesh points.

To conclude this Section we note that a more parallel version of the PBX scheme may be
involved if we choose the coarse mesh space by V; := V; with some 0 < j < py.

4 Exterior Poincaré-Steklov operators

Consider the exterior Dirichlet problem (2.1), (2.2) in the polygonal domain CQ with
diam$) = O(1) subject to the "radiation condition” of the form

lu(z)| = O(|z|™"), as|z| = o0, ¥>1. (4.1)

To approximate the condition (4.1) we introduce, following [22, 19], an artificial rectan-
gular domain I, D Q with diamIl,, = O(N?), see Fig. 4a) presenting one quarter of
I, where N would be the number of degrees of freedom on I' and ¢ = ¢q(v) > 0 will be
specified later on. Here '+’ marks the slave nodes. Consider the approximate equation to
(2:4)] (2.2)

stated on the domain Q, = II,\Q

Aw=10 ine Qg
YZ=uv on I (4.2)
Boi=0 on I'y =0l

where the boundary operator B, keeps either Dirichlet or Neumann conditions on I.
We set ¢ = 2 in the case of Dirichlet conditions and g = ;27 in the case of Neumann ones.
For the sake of clarity we further choose the Dirichlet condition on I', i.e., Boo = 70,7

and assume {2 to be a unit square.
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Figure 4: Refined interface for domains exterior to a rectangle (a) and a polygon (b).

Note that the domain decomposition method on the space extensive domain 2., to approx-
imate the exterior Poincaré-Steklov and boundary integral operators has been introduced
in [22, 19].
Define the non conforming geometrical decomposition of Q, with a coarsening to ”infin-
ity”, taking into account the estimate

olu

gl Selal™™ 1=1,2,.., 0<k<l (4.3)
1 2

for the solution u of the equations (2.1), (2.2) and (4.1). This decomposition is associated
with a tensor product mesh defined by the coarse mesh points a; = 1,as,...,8, = N?
for some fixed m > 1, see Fig. 4a), to be specified.

Related to the above coarse mesh decomposition define the sequence of L-shaped sub-
domains D;, 1 =0,1,...,m by

D,‘ = [0, a,-] X [O, G,,']\D,’_l, Do =

such that Qo = U, D;. Let N = 2P0, py > 1. Introduce the piecewise uniform mesh
defined by N + 1 equidistant mesh points on any interval [a;,a;—1], 1 =1,...,m,a_; = 0.
Another set J; of the considered uniform meshes will correspond to the intervals [0, @;—1].
For any subdomain D;, ¢ = 1, ..., m introduce the space W, of C° linear elements on the
triangulation associated with the product meshes (§; U §;) X (8; U d;) and subject to the
constrain yor_ u = 0. Assume that coarse mesh nodes aj,...,an are chosen in such a
way that V/V',-'F - W"ll; , T'; = 6D; N 6D;_; and, thus, by introducing slave nodes on f‘,r,

i=2.,...m one obtains the computational space W, C H'(Q0) with p = po + m. This
space satisfies the relation WPI‘D- c W; by definition and admits the splitting of the type
(3.3) with the nested sequence of subspaces Wy C W; C ... C W,. Let X, := W, and
Wop = Wp N Hj(Q). The FE approximation Ty, : X, = X, of the operator T3 is defined

14



by
(Topu, Y0v) L2(ry = / Va,Vudz, Yv e W, (4.4)
Qoo

where @, € W, satisfies youp, = u € X, and

/ Vi Vads =0, Vze We,. (4.5)
Qo

The interface representation of T5, may be given along the same line as for the scheme
behind (3.5). The nested refined interface I', is now defined by the nonmatching de-
composition with respect to the sequence ay,as,...,an, see Fig. 4a), and we fall in the
situation of Section 3 with the interface reduction (3.5), (3.6) and (3.7). The correspond-
ing analogue of the Theorem 3.1 remains valid.

To estimate the complexity of the algorithm we should choose the sequence ay,...,a, to
keep the approximation error of the order O(N~%), « > 1, and to minimize the number
M, of subdomains equals to 3 - m.

To simplify the exposition we assume the following hypothesis.

Hypothesis 1. For u € H'1t*(Q,) the estimate

m
viefg‘f,}’ lw = v]|2(00) < c;vie%f,p_ w15, — vill 22

holds where ¢ does not depend on u and m.

The fine mesh size h; on any interval [a;, a;_;] is defined by h; = N™'H;, H; = a; —a;_1,
1=0,1,...,m . To determine the values H; we assume the balancing equation

ho ’ |u|H1(Q) ~ h,~|u|H1(Di), = 1, s s MY (46)
to be hold. Due to the asymptotics (4.3) this equation may be rewritten in the form

hg & A0 ol f]\%a,.”_l, § PN (4.7)

Lemma 4.1 Let Hypothesis 1 hold and h; be chosen by (4.7). If am = c- N9, then

{ clog N, V=] (4.8)

clog(logN), v>2. nm
Proof. Equation (4.7) yields the recurrence relations
a; = @;—1 + Coa;_y, N T

which imply the estimate

1%

(1 + Co)m—l, V=1
Q+c)™, v>2.

Now (4.8) follows.

15



Corollary 4.1 For the number of subdomains M, the estimate

Mo = O(logN), re=1
® 1 O(loglogN), v>2

holds. ]

The mesh enlargement factor for the choice (4.7) is given by the equations

hiy1 = (1+Co)hi, v=1
hiy1 = a;h;, ve22,

Note that in the case of v > 2 the quasi-optimal choice (4.7) of the mesh sizes h; seems
to be not promising since a; ~ O(N?) for large indices ¢ and, thus, the conformal nested
spaces W;, j = 0,1,...p = po + m are hardly available. In this case the Lagrange
multipliers method may be applied.

Thus the conformal approximation of the exterior interface problem under consideration
appears to be efficient with the choice v = 1 in (4.7) even for » > 2 in the "radiation
condition” (4.1). The complexity of the matrix vector multiplication for the operator Ar,
is estimated now by

Q(Ar,) ~ My - O(N1og? N), My, ~ O(logN) .

In the case of a polygonal boundary the refined interface is defined to patch the boundary
I’ with the closest rectangular domain, see Fig 4b), and then we proceed with the non-
matching decomposition as on Fig. 4a). The number of right triangles involved is of the
same order as the number Ny of the edges on I'. Thus, in the general case we obtain

Q(Ar,) = Ny - O(Nlog® N) + M, - O(Nlog? N) ~ O(Nlog® N) .

Theorem 4.1 The MAS method related to the interface reduction of the exterior problem
(4.5) has the overall complezity and memory needs O(N log® N). Thus, the matriz-vector
multiplication of the Schur complement matriz Ty, related to Ty, has the same cost esti-
mate. The approzimate Neumann data v1pu = T5,Qou on I' admits the error estimate

|Q2Tou — 14T g-1/2ry < c||T — PiT] p1(a..)

where T solves the problem (2.1), (2.2), (4.1) and Py, is the Ritz projection defined for W,.

Remark 4.1 The implementation of the exterior PS operators in presence of a nested
mesh refinement near the corner points s;, j = 0,1,..., Ny may be designed along the
same line as in the case of interior problems providing the complezity O(N log® N).

5 Application in BEM and concluding remarks

Due to Theorems 3.1 and 4.1 the proposed compression scheme provides the complex-
ity O(N log® N) of the matrix-vector multiplication for the stiffness matrices 71, and T3,
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related to the FE approximations T, and T, of interior and exterior Poincaré-Steklov op-
erators, respectively. The memory needs are estimated by O(N log? N) and O(N log® N),
correspondingly. This leads to the interface solvers (on a nested refined interface) for the
Dirichlet, Neumann and some mixed BVPs in both bounded and unbounded domains
with polygonal boundaries.

The above results may be easily applied to the construction of asymptotically opti-
mal compression schemes for solving the classical boundary integral equations involving
weakly singular, hypersingular and double layer harmonic potential operators V, D and
K, respectively. The approach is based on the representation of the inverse to the above
mentioned boundary operators in terms of interior and exterior harmonic Poincaré-Steklov
operators proposed in [19]. In fact, the following theorem holds.

Theorem 5.1 [19]. The operator V= : HY*(T) — H™I*(T) has the representation

1
V4=§ﬂ+ny (5.9)
The following formulae
1
(E—K)lz= S(E+8 Tz,  Vze HY2(T) (5.10)
1 |
(E+KY%=§M+SyEk, vV z e HJ*T) (5.11)

hold. The operator D=1 : H-}/*(T') — H1/*(T') has the representation

D4=;&+&) | (5.12)

Substituting into the above formulae the developed FE approximations of the operators
S; and T; with ¢ = 1, 2 one obtains the FE approximations (with respect to h-harmonic
extensions of the boundary data) of the inverse to harmonic boundary integral operators.
These approximations admit an efficient matrix compression providing a matrix-vector
multiplication of the complexity O(N log® N). Here N is the number of degrees of freedom
on the underlying polygonal boundary. This approach is well suited for both quasi-
uniform and nested refined meshes. Numerical examples for the particular case of step-
type boundaries and quasi-uniform meshes may be found in [19].

The extension of the proposed techniques to the case of three-dimensional problems
and more general boundary conditions seems to be rather straightforward.
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