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Abstract 

In this paper we develop asymptotically optimal algorithms for fast computations 
with the discrete harmonic Poincare-Steklov operators in presence of nested mesh 
refinement. For both interior and exterior problems the matrix-vector multiplication 
for the finite element approximations to the Poincare-Steklov operators is shown to 
have a complexity of the order O(Nref log3 N) where Nref is the number of degrees of 
freedom on the polygonal boundary under consideration and N = 2-Po · Nref, Po ~ 
1, is the dimension of a finest quasi-uniform level. The corresponding memory 
needs are estimated by O(Nref log2 N). The approach is based on the multilevel 
interface solver (as in the case of quasi-uniform meshes, see [20]) applied to the Schur 
complement reduction onto the nested refined interface associated with nonmatching 
decomposition of a polygon by rectangular substructures. 
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1 Introduction 

Asymptotically optimal algorithms for solving boundary or interface reductions of elliptic 
boundary value problems have been under a forced attention during the last few years. 
Main results have been developed for the case of quasi-uniform meshes generating bound-
ary element spaces. We refer to [2], [10]-[14], [27, 28, 29] for recent results on wavelet 
approximation in classical BEM yielding algorithms of the complexity O(Nlogq N), q 2:: 1, 
with respect to the number N of degrees of freedom on the underlying boundary. The 
similar asymptotical performance is achieved for panel clustering techniques in BEM [17]. 
Efficient matrix compression techniques of optimal complexity for the interior Poincare-
Steklov (PS) operators associated with several classes of the second and fourth order 
elliptic operators have been recently developed [19, 20, 23]. 

In this paper we propose and analyze asymptotically optimal algorithms for the treat-
ment of the finite element (FE) discretizations to the harmonic interior and exterior PS 
operators on polygons in presence of nested mesh refinements near the corner points. For 
both interior and exterior problems the proposed technique is shown to have a complexity 
of the order 0 ( Nref log3 N) where Nref is the number of degrees of freedom on the under-
lying boundary and N = 2-po Nref, p0 2:: 1, denotes the boundary dimension of a finest 
quasi-uniform level. The corresponding memory needs are estimated by O(Nref logq N) 
where q = 2 or q = 3 for the interior or exterior problems, respectively. The approach is 
based on the multilevel interface solver (as in the case of quasi-uniform meshes, see [20]) 
applied to the Schur complement reduction onto the nested refined interface associated 
with a nonmatching decomposition of the underlying polygon by rectangular substruc-
tures. 

The remainder of the paper is organized as follows. In Section 2 we derive the FE 
approximation to harmonic PS operators on the polygonal boundary and provide the 
corresponding error analysis. The general framework for the multilevel additive Schwartz 
method is overviewed. Section 3 deals with the multilevel scheme on the nested refined 
interface for a treatment of the interior PS operator in the case of mesh refinement by 
nested selection. In Section 4, a similar approach is adapted to the case of exterior PS 
operators based on the non conforming geometrical decomposition of the artificial annual-
type domain with enlargement of the coarse mesh to infinity. The FE approximation of 
the PS operators with slave nodes on the interface defining the decomposition is applied. 
We conclude in Section 5 with a brief discussion on applications of the proposed techniques 
for solving classical boundary integral equations. " 

2 Preliminaries 

Let n c R2 be a polygonal domain with the boundary r = U~1fi where ri is an open 
edge and Wj E (0, 27r) is the interior angle at Sj = rj n rj+l, j = 1, ... 'No with the 
convention I'No+l = I'1 . We denote by CO := R2\0 the exterior domain. Let n be the 
unit outward normal vector on r. Introduce the trace spaces on r by 

Hs(r) ·= { 'You: u E Hs+l/2 (n) , 
. L2(r) , 
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0 < s < 3/2 
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equipped with the norm [16, 24] 

llvllH11 (r) := inf llzllHs+i/2(n) · 
zEH 11+112 (0):1oz=v 

The trace operctor 
H s+i/2(R2) s( ) lo : Zoe -+ H r , 0 < s < 3/2 

is continuous and has a c~ntinuous right inverse. The space H8 (I') := (H-s(r))', -3/2 < 
s < 0 is defined by L2(I')-duality. The generalized normal derivative operator 

11 : H1(f21, L'.l) -+ H-112(r) 

is continuous, surjective (see [8]) and coincides with the operator ~~ lr = 8nu for u E 

Hz~c(R2). 

Consider the interior and exterior boundary value problems (BVPs) for the Laplacian 

Liu= 0 in Oi, u E Hz~c(Oi), i = 1, 2 

subject to the Dirichlet boundary condition 

/o'U = u E H 1/ 2 (I') on I' 

or Neumann boundary condition 

/171 = v E H-1l 2(r) on r, (v, l)r = 0, 

(2.1) 

(2.2) 

(2.3) 
where the notations 0 = 0 1 and CO= 0 2 are temporarily used. For the exterior problem 
in 0 2 , we additionally require the "radiation conditions" 

U(x) = C00 + o(1!1), lxl-+ 00 · 

Givens E [-1, 1] and f E (H 8 (r))', introduce the subspace 

Hj(r) := {u E H8(I') : (u, f)L2 = O}. 

(2.4) 

Since the Dirichlet problems are uniquely solvable for any u E H 112(r) with a continuous 
solution operator 

Miu:= u: H 1l2(r) -+ H1~c(Oi, Li) , i = 1, 2 
one can introduce the continuous Dirichlet-Neumann mappings 

T1 : Hlf2(r) -+ H-1/2(r), 
T2 : H;f2(r) -+ H-;1/2(r) 

related to the interior and exterior problems, respectively, which map the trace u = /o'U 
into the generalized normal derivative / 1 u of a harmonic function u and possess Ker 1i = 
span{l}, i = 1, 2. There exist continuous pseudoinverse operators Si : H-;1

/
2(r) -+ 

H 112(r), i = 1, 2, satisfying 1i.Si1i =Ti which are called Poincare-Steklov operators. 

Our goal is to construct asymptotically optimal interface solvers for the natural bound-
ary reductions of the Dirichlet and Neumann problems based on the FE approximations 
to Poincare-Steklov operators. We consider both interior and exterior BVPs in presence 
of nested mesh refinement near the corner points. 
The mapping properties of the operators 1i and Si , i = 1, 2 are well known [1, 8, 18]. 
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Lemma 2.1 Fors E [-1/2, 1/2] the following operators are symmetric and continuous 

n : Hs+i/2(r) --+ Hs-1f2(r), i = 1, 2, 

81 : H;-112(r) --+ Hs+if2(r), 
82 : H;;1l2(r) --+ Hs+lf2(I') 

where g0 E H-1/ 2(r) is the Robin potential on I'. The operators Si are positive definite 
on their domains of definition while the operators n are positive definite on H{12 (r) with 
Kern= span{l}, i = 1, 2. 11 

We deal with FE approximations of the operators T1 and T2 • In the case of the interior 
operator we assume that n is composed of MR rectangles ni, i E IR and MT regular right 
triangles ni, i E IT (without overlapping), such that 

n = uiEJRUJTni . (2.5) 
Let we are given the subspace W h c H 1(n) of piecewise linear C0-finite elements related to 
the quasi-uniform triangulation 'Th of n such that the restriction 'Thin. on any subdomain 
ni is defined by a tensor product of uniform meshes. The origii{al decomposition is 
associated with the coarse triangulation r0 being quasi-uniform and regular with the 
mesh size ho rv 0(1) rv diamn. The mesh parameter of the finest level W his.supposed to 
be of the order h = hp rv 2-p, p E JN. Let WP c W h be the space admitting the sequence 
of nested subspaces 

(2.6) 
where W0 is the FE space with respect to r 0 • The choice of Wi, l = 1, ... , p is subject to 
some nested selection strategy producing a conformal mesh refinement (with slave nodes) 
near the corner points. It will be specified in Section 3. Denote 

Xp = WP
1
r c H 1(I'), Wop= WP n HJ(n) . 

The FE approximation T1P : Xp --+ x; of the operator T1 under consideration is defined 
by 

(T1pu, ')'ov)L2(r) = j V'uh V'vdx, \Iv E Wp (2.7) 
n 

where uh E WP satisfies ')'o'ilh = u E Xp and 

j V'uh \lzdx = 0, Vz E Wop. (2.8) 
n 

The operator T1p implements the discrete Dirichlet-Neumann mapping related to the 
Galerkin approximation to the weak solution u of the interior problem (2.1), (2.2). With 
given u E H112(I') from (2.2), the approximate Neumann data 'Yihu now takes the form 

'Y1hu := T1pQ2u with uh ='Phu (2.9) 
where Q2 : L2(I') --+ Xp is the L 2-orthoprojection onto Xp and 'Ph : H 1 (r2) --+ WP is the 
FE Ritz projection defined for any z E H 1 (r2) by 

{ 
[ 'il(z - Phz) 'i71Jdx = 0, 

'Yo 'Phz = Q2'YoZ . 
The error estimate for the mapping 'Yih is given by the following Lemma. 
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Lemma 2.2 Let uh be the FE approximation of u defined by uh =Phu. There exists a 
constant C, independent of h, such that 

where so = 3/2 in the case of a convex polygon and s0 < 3/2 in the general case depending 
on the elliptic regularity (in sense of (3.19)) of the problem (2.1), (2.2). 

Proof. Consider for brevity the case of a convex polygon. Applying the approximation 
properties of the Ritz projection Ph, see [6], 

1 
a - - < s < 3/2 2 - - ' (2.11) 

with a = 0, 1 one obtains the error estimate in the H-1/ 2 (r)-norm for the FE approxi-
mation T1p to the PS operator T1 

( Q2T1 u - T1pQ2u, v) sup 
vEXp,v=faO llvllH1/2(r) 

= sup llvll~i;2(r) j \i'(u - Phu) · \i'PhM1 vdx :::; 
vEXp,v;faO n 

_ _ llPhM1vllH1(n) 
:S: cllu - PhullH1(n) · II II . 

V H1/2(r) 

which yields (2.10) due to (2.11). Lemma 2.2 is proven. 

Remark 2.1 The estimate (2.10) immediately implies 

l1T1 u - 1'1hullH-1/2(r) :::; c1hs-l/21lullHs(r) + c2hu+l/2 llT1 ullHa(r) , 

1/2 :::; s :::; s0 , -1/2 ::;; a ::;; 1/2 
when taking into account the approximation property of the L2-projection, see [6], 

We first construct an efficient compression technique for the stiffness matrix /ip (that is, 
in fact, the Schur complement related to (2.8)) of the operator T1p which admits a matrix-
vector multiplication of the complexity O(N log3 N) up to the approximation error of the 
order O(N-0

), a > 0, where N = dimXp· The approach is based on the multilevel 
interface solver (in the framework of the cascadic CG method, see [31]) applied to the 
Schur complement reduction onto the nested refined interface r o = UiEIRu1Tani \r aligned 
with the nested refined coarse mesh decomposition. 

We then extend the proposed technique to the case of the exterior PS operator T2 . 

To that end we first approximate the exact "radiation condition" (2.4) by homogeneous 
Dirichlet or Neumann conditions on the boundary r 00 of the artificial rectangle 1100 :J n 
with diaml100 rv N°, a > 0. Then we introduce a non conforming geometrical decompo-
sition of the domain 0 00 = II00 \n which produces the coarse mesh space with enlargement 
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to infinity and with the number of subdomains of the order O(log N). Then the multilevel 
additive Schwarz algorithm (in particular, the BPX scheme [7]) on the refined skeleton 
may be designed along the same line as in the case of a bounded domain providing again 
the complexity O(Nlog3 N), where N = dimXP is the number of degrees of freedom on 
the underlying boundary r' as above. 

Note that in the case of nested refined meshes on a rectangular boundary the treatment 
of the interior PS operator remains to be of the complexity 0( N log2 N) while for exterior 
problems we arrive at the complexity O(Nlog3 N) even for this particular geometry. This 
is due to the decomposition of 0 00 by O(log N) substructures. 

The proposed construction is substantially based on the multilevel additive Schwarz 
(MAS) method for fast solving the interface equation on the refined skeleton. The analysis 
of the MAS method under consideration appears to be a particular case of the general 
theory for H 112-setting. For the sake of completeness, we give here a brief description of 
the MAS method for a strongly elliptic symmetric variational problem, see e.g. [15]. 

Let V be a finite dimensional Hilbert space with scalar product(·, ·)v and related norm 
II · llv- Consider the following V-elliptic symmetric variational problem. 

Find u E V : a(u,v) = f(v), Vv E V (2.12) 

with the given continuous functional f E V' and with a symmetric bilinear form a 
V x V-+ R providing the norm equivalence 

a(u, u) rv llulli, 
Assume we are given the decomposition 

p 

v - """"Vi - L.J Jl 
j=O 

VuE V. 

V:· c v J 

(2.13) 

(2.14) 

onto a finite number of subspaces V; equipped with scalar products (·, ·)v; and related 
norms which admit the following equivalence relation 

Vu E Vj (2.15) 

where bi : V; x V; -+ R is an auxiliary symmetric bilinear form for j = 0, 1, ... , p. 
The theory of MAS methods is based on the stability property of the splitting (2.14), 
namely, 

(2.16) 

uniformly (or with a moderate growth of the related condition number) with respect to the 
number of levels p. The MAS method is defined in terms of the projections Pv; : V-+ V; 
and the elements fj E V; determined by 

bi(Pv;u,v) = a(u,v), 
bi(fj,v) = f(v), 

6 
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Lemma 2.3 [15]. Assume the norm equivalences (2.13), (2.15) and (2.16) to be valid. 
Then the operator equation 

p 

Pvu = F := Lfi 
j 

(2.17) 

with Pv = 2: Pv- is equivalent to the variational problem (2.12). The relation K,(Pv) = 
j=O J 

0(1) holds uniformly with respect to p and Nv = dim V. 11 

In our context the stability (2.16) is derived in a standard way for the nested sequence of 
subspaces 

VocVic ... cVp=V (2.18) 

as a consequence of the stable splitting of the H 112(I'p)-norm on the nested refined skele-
ton. It will be shown that from the computational point of view the coarse mesh en-
largement introduced for the proper interface reduction of the exterior problem has just 
the same data structure as the reduction onto the nested refined skeleton in the situation 
of local mesh refinement. We now conclude with the observation that the computing 
complexity of a treatment of the exterior harmonic PS operator for both quasi-uniform 
and refined meshes appears to be of just the same order as in the case of interior ones in 
pr.esence of nested geometrical refinement near the corner point. 

3 Local mesh refinement by nested selection 

We proceed in the situation of Section 2 and suppose that the decomposition (2.5) of 
the polygon 0 is given, see Fig. 1, associated with the coarse triangulation To with mesh 
parameter ho = 0(1), where diamO = 0(1). Let 

To C 71 C ... C Tp (3.1) 

be the nested sequence of regular triangulations with mesh size hi rv 2-i, j = 0, 1, ... , p, 
obtained by a successive dyadic refinement of the initial triangulation r0 • The correspond-

p = 3' h = 2-p 

Figure 1: Decompositions of right triangular and polygonal domains. 
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ing nested sequence 
Wo c W1 c ... c WP . Wh 

of c0-piecewise linear FE spaces with respect to the quasi-uniform triangulation { Tj} will 
be used now to construct the sequence (2.6) of nested subspaces Wi, j = 0, ... , p. To 
that end, following [25, 7], we choose some index 0 < p0 < p and define 

Wi := Wi for j = 0, 1, ... ,po. (3.2) 

Remark 3.1 In the case of quasi-uniform meshes the MAS method applied to the in-
terface problems on the uniformly refined skeleton (see Fig. 2 where dots '•' denote the 
mesh nodes on the interface) has been developed in [20] which provides an algorithm of the 
complexity O(N log3 N) for the treatment of interior PS operators. This case corresponds 
to the choice Po = p. 

Dir 

To 

Neu 

Figure 2: Uniformly refined interface for p = 0, 1, 2 (mixed boundary conditions). 

For the sake of clarity we further restrict our domain to the couple of rectangular and 
triangular subdomains OR and OT, respectively, adjacent to the corner point where a 
mesh refinement is given, see Fig. 3a). Adapting the nested refinement techniques, see 
[7, 25, 9, 5], we introduce the sequence 

OP c Op-1 c ... c Oo = 0 

of imbedded subdomains such that Ok = 0 for k = 0, 1, ... , Po and OH1 C Ok for k 2:: Po· 
Let npo+l be composed of the upper-left quarter Q[ of the rectangle QL1 = ut=l Q1 with 
Q6 = nR and of the upper quarter Qz, l = 1 of the triangle nT as indicated on Fig. 
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a) b) 

Figure 3: Nested refined interface b) for p = 4, p0 = 2 and related triangulation a). 

3a). We then proceed with such a recurrent procedure for l = 2, ... ,p - p0 • Let Nj,x 
be the nodal basis functions of W i. To determine the corresponding nested. sequence of 
subspaces we set 

j =Po+ 1, .. . p 

where 
Wi = span{Ni,x: suppNi,x c Di}, j >Po. 

If we put Wi - Wi for j = 0, ... ,p0 then the final computational space WP may be 
introduced by 

p 

WP=LWi, W·CW· J J (3.3) 
j=O 

implying the required nestedness W0 C W1 C ... C WP. 

The nested refined interface r P related to WP may be introduced by assembling the 
corresponding ones associated with the subspaces Wi for j = Po, Po + 1, ... , p. In fact, 
following [20], let US introduce the uniformly refined interface f Po+l associated with the 
triangle Qz and with the mesh size hpo+l = 2-(po+Z) for l = 1 and define the contribution 
from the level Po + 1 by 

Then define recurrently 

for l = 1, 2, ... , lo = p - p0 • Now the resultant refined interface r P corresponding to the 
computational space WP is defined by 

l -rp = rpo Uz~l rPo+l . (3.4) 
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The particular case with p = 4 and p0 = 2 is shown on Fig 3. b). 

Now we are in a position to define the FE approximation T1p of the interior Poincare-
Steklov operator Ti by (2.7), (2.8) and then substitute instead of the WP-harmonic func-
tion u in (2.8) the corresponding Schur complement reduction to the skeleton rP from 
(3.4). To that end we first introduce the trace spaces Vj := ".'f Wi and Voj := ".'(Woj, j = 
0, 1, .. . p on rP where 1': WP--+ C(rp) is the usual trace operator with respect to rP. We 
equip Vj with the norm 

llullv· := _ inf_ llu!IH1(n) 1 uEWpyu=u 

providing a Hilbert space structure with Hi/2-setting. Let ( ·, · )r p be the duality with 
respect to the £ 2-inner product (·, ·)L2(rp) on rP. Then the operator T1p from (2.7) and 
(2.8) admits the following equivalent definition ( cf. [19, 21]) 

where ".'foV = v and u E Vp satisfies 

(Arpu, z)rp = 0, Vz E VoP; ".'foU = u. 

Here the SPD interface operator Arp : Vp --+ v;: is defined by 

(Arpu, v)rp := 2)Tikuk, vic)P(rk)' 
k 

Vu,v E Vp, 

(3.5) 

(3.6) 

(3.7) 

where Tik is the FE approximation of the interior PS operator related to any subdomain 
Dk (most of which are rectangles) generated by the skeleton rp and Uk, Vk are the traces 
of u and v onto ank. The operator Tip from (3.5) admits a quasioptimal error estimate 
like (2.10). 

The interface equation (3.6) to be solved may be easily transformed (by subtraction of 
a particular solution) to the variational form (2.12) with v = Vop and 

a(u, v) :=(Ar Pu, v)rp , (3.8) 

f(v) := (w, v)rp = z)wk, v)ank, Vu, v E VQP 
k 

with some given Wk E CVirJ'. To apply the MAS method to the equation (2.12)-(3.6)-
(3.8) we have to check the stability property (2.16) with respect to the splitting 

p 

VoP = L Voi, Voi = ".'(Woj. (3.9) 
j=O 

Lemma 3 .1 For every u E VoP the norm equivalences 

(3.10) 

(3.11) 

hold uniformly with respect to p0 and p. 
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Proof. The relation (3.10) follows from 

The equivalence (3.11) is the consequence of stability results for H 1-setting 

(3.12) 

p 
with respect to the corresponding domain splitting Wop = L: Woj in the case of nested 

j=O 
mesh refinement involved. The lower estimate in (3.12) is trivial. To prove the upper 
estimate a special bounded projection Qj : L2 (0) -t wj is constructed in [25] to keep 
the properties Qj(Wj) c wj' j :::; p and QjUj = Uj, 'Vuj E Wj. Then a particular 
representation 

p 

u = Qou + L:)Qiu - Qj-1u), 
j=l 

related to the splitting (3.3) does a job, see [25] for more details. Now (3.11) may be 
obtained from (3.12) by passing to the interface rp and adapting the arguments similar 
to [25, 9] applied there in the case of the single boundary r = an. In fact, it may be 
easily checked that the local property 

(3.13) 

is valid for any subdomain nk. Now, similarly to the case of a uniformly refined interface 
[20], one derives from (3.13) 

llulli = _ inf _ llull~1(n) 
uEWop:-yu=u 

~ ilEjo!,1:~il=u L • inf :Et 22iJJ-yku;JJJ.,(nk)} 
u= L: u;:u;EWo; k J-0 

j=O 

p 

p inf L 2i llvilli2(rp)' 
u= L: v;:v;EVo; j=O 

j=O 

This completes our proof. • 
Starting with the decomposition (3.9), consider a more refined splitting 

p dimVo; 

V=L L VJ,m 
j=O m=l 

11 

(3.14) 
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based on the decomposition 
(3.16) 

m 

into one-dimensional subspaces V},m = span{ 'Pi,m} where the nodal basis functions 'Pi,m = 
r Nj,m of Voi are chosen in such a way that suppNj,m n r P =/= 0. Here Nj,m is the nodal 
basis function of W0i. 
As in the case of quasi-uniform meshes, for the geometrical refinement chosen the splitting 
(3.16) appears to be stable, i.e., 

llvilli2(rp) rv hj 2: cJ.m, 'Vvj = L Cj,m'Pj,m E Voj 
m m 

with certain scaling constants hi independent of Vj. With the bilinear form a(·, ·) given 
by (3.8) we now introduce the MAS operator PBPX : V -t V with respect to the choice 

bj(u, v) := (u, v)Vj,rn 
(Pv- u, v)v. 3,rn 3,rn 

2i ( u, v )£2 (r p) , 

(Ar Pu, v)rp, 

The SPD operator PBP x takes the form 

p 

PBpxu:=L: L 
j=O kEk(j) 

where the index k runs the subset 

dimflc Vo; 

2: 
m=l 

k(j) = { k '. ank E ~po, 
k. ank E rj, 

Vu,v E VJ,m, 
Vv E V},m, Vu E V. 

j ~Po 
j >Po· 

(3.17) 

The right hand side F from (2.17) is defined by substituting in (3.17) the elements wk 
from (3.8) instead of T1ku. The operator PBPX corresponds to the BPX-scheme, see [7], 
applied now to the interface problem with the operator Arp. 

As a direct consequence of Lemmas 2.3 and 3.1 we arrive at the following statement. 

Theorem 3.1 The operator equation 

PBPXU =FE v (3.18) 

is equivalent to the original interface problem 

and K,(PBPx) = 0(1) holds uniformly with respect top and p0 . The computation of 
PBPxu, u E VoP, has the complexity O(Nref log3 N) with the memory needs of the order 
O(Nref log2 N) where N = 2-po and Nref = (p - Po+ l)N. The solution of (3.18) on 
a sequence of grids (say, by cascadic (C} CG method} up to the approximation error 
c = ctozN-0

, a > 0, has the complexity log c;;,} · O(Nref log3 N) providing the same cost 
estimate for the matrix-vector multiplication with the stiffness matrix hp. • 
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Proof. The first part of the theorem follows from Lemmas 2.3 and 3.1. To estimate the 
complexity of the residual computation P3pxu, u E VQP, we note that any of the skeletons 
r Po' r po+l, l = 1, ... 'Po-P is uniformly refined and, thus, the corresponding contributions 
from those pieces of rp into the sum determining PBPXU have the expense O(Nlog3 N), 
see [20], resulting in the overall complexity O(Nref log3 N). Since the memory needs in 
the case of a uniformly refined skeleton are of the order O(N log2 N) we finally arrive 
at the desired estimate O(Nref log2 N). In the case of quasi-uniform meshes an optimal 
convergence of the CCG method is achieved, see (4, 30], assuming the Hl+s_regularity of 
the underlying interface problem (3.6), that means for the case of the Dirichlet problem 
(2.1)' (2.2) 

sE(O,l) (3.19) 

with s depending on the interior angles Wj, j = 1, ... , N 0 and on the type of boundary 
conditions on r involved. However, the results from [30) has been recently extended in 
[31] to the case of nested refined meshes. This completes our proof. 

Remark 3.2 To fit the typical singularities near the corner point one should implement 
the mesh grading of the order href f'-.J h~0 , a> 1, which yields p - p0 f'-.J O(log N). In this 
case we get Nref f'-.J aN log N indicating that the underlying nested refinement strategy 
has no redundancy {in asymptotical sense) in compare with the quasi-optimal exponential 
mesh grading since the latter also produces O(N log N) mesh points. 

To conclude this Section we note that a more parallel version of the PBX scheme may be 
involved if we choose the coarse mesh space by V0 := Voi with some 0 < j :::; p0 . 

4 Exterior Poincare-Steklov operators 

Consider the exterior Dirichlet problem (2.1), (2.2) in the polygonal domain en with 
diamO = 0(1) subject to the "radiation condition" of the form 

lu(x)I = O(lxl- 11
) , as lxl-+ oo, v 2:: 1. (4.1) 

To approximate the condition ( 4.1) we introduce, following [22, 19), an artificial rectan-
gular domain Il00 ::> n with diam Il00 = O(Nq), see Fig. 4a) presenting one quarter of 
Il00 , where N would be the number of degrees of freedom on r and q = q(v) > 0 will be 
specified later on. Here '*' marks the slave nodes. Consider the approximate equation to 
(2.1), (2.2) 

stated on the domain noo = Iloo \ n 

{ 
~u=O 

'Yo~= u 
B00u = 0 

in noo 
on r 
on roo =an~ 

(4.2) 

where the boundary operator B00 keeps either Dirichlet or Neumann conditions on r oo· 
We set q = ~in the case of Dirichlet conditions and q = 

11
!1 in the case of Neumann ones. 

For the sake of clarity we further choose the Dirichlet condition on r oo, i.e., Boo = 'Yo,r00 

and assume n to be a unit square. 
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Figure 4: Refined interface for domains exterior to a rectangle (a) and a polygon (b). 

Note that the domain decomposition method on the space extensive domain !100 to approx-
imate the exterior Poincare-Steklov and boundary integral operators has been introduced 
in [22, 19]. 
Define the non conforming geometrical decomposition of !100 with a coarsening to "infin-
ity", taking into account the estimate 

I azu I I I 'V z 

a 
ka l-k :::; c x - - , 

X1 X2 
l = 1, 2, ... ' (4.3) 

for the solution u of the equations (2.1), (2.2) and (4.1). This decomposition is associated 
with a tensor product mesh defined by the coarse mesh points a1 = 1, a2, ... , am = Nq 
for some fixed m > 1, see Fig. 4a), to be specified. 

Related to the above coarse mesh decomposition define the sequence of L-shaped sub-
domains Di, i = 0, 1, ... , m by 

Do=O 

such that noo = u~l Di. Let N = 2P0 ' Po 2:: 1. Introduce the piecewise uniform mesh 8i 
defined by N + 1 equidistant mesh points on any interval [ai, ai_1], i = 1, ... , m, a_1 = 0. 
Another set (Si of the considered uniform meshes will correspond to the intervals [O, ai_1]. 

For any subdomain Di, i = 1, ... , m introduce the space Wi of C0 linear elements on the 
triangulation associated with the product meshes ( 8i U CSi) x ( 8i U CSi) and subject to the 
constrain 'Yo,r

00 
u = 0. Assume that coarse mesh nodes a1 , ... , am are chosen in such a 

way that wi,.,.... c wi-11-.' i\ = aDi n aDi-1 and, thus, by introducing slave nodes on i\, 
I' . I' . 

i = 2, ... , m ~ne obtain~ the computational space WP C H 1 (!100 ) with p = p0 + m. This 
space satisfies the relation WPlv . c wi by definition and admits the splitting of the type 
(3.3) with the nested sequence ~f subspaces W0 C W1 C ... C Wp. Let Xp := WPlr and 
Wop= WP n H6(!100 ). The FE approximation T2P: Xp-+ x; of the operator T2 is defined 
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by 

(T2pu, 1ov)L2(r) = j Vuh Vvdx, ( 4.4) 
noo 

where uh E WP satisfies /oUh = u E Xp and 

Vz E Wop· (4.5) 

The interface representation of T2p may be given along the same line as for the scheme 
behind (3.5). The nested refined interface rP is now defined by the nonmatching de-
composition with respect to the sequence ai, a2, ... , am, see Fig. 4a), and we fall in the 
situation of Section 3 with the interface reduction (3.5), (3.6) and (3.7). The correspond-
ing analogue of the Theorem 3.1 remains valid. 
To estimate the complexity of the algorithm we should choose the sequence a1 , ... , am to 
keep the approximation error of the order O(N-a), a~ 1, and to minimize the number 
M 00 of subdomains equals to 3 · m. 
To simplify the exposition we assume the following hypothesis. 

Hypothesis 1. For u E Hl+a(n00 ) the estimate 

holds where c does not depend on u and m. 

The fine mesh size hi on any interval [ai,ai-l] is defined by hi= N- 1Hi, Hi= ai-ai-1, 

i = 0, 1, ... , m . To determine the values Hi we assume the balancing equation 

i = l, ... ,m (4.6) 

to be hold. Due to the asymptotics ( 4.3) this equation may be rewritten in the form 

i == 1, ... ,m. 

Lemma 4.1 Let Hypothesis 1 hold and hi be chosen by ( 4. 7). If am = c · Nq, then 

< { clogN, 
m - c log(log N), 

ZI = 1 
ZI ~ 2. • 

Proof. Equation ( 4. 7) yields the recurrence relations 

which imply the estimate 

Now ( 4.8) follows. 

(1 + co)m-1, 
(1 + co)vm-1' 
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i == 1, ... , m 

ZI == 1 
ZI ~ 2. 

(4.7) 

(4.8) 



Corollary 4.1 For the number of subdomains M00 the estimate 

M _ { O(logN), 
00 

- O(log log N), 

holds. • 

v=l 
v~2 

The mesh enlargement factor for the choice ( 4. 7) is given by the equations 

v=l 
v ~ 2. 

Note that in the case of v ~ 2 the quasi-optimal choice ( 4. 7) of the mesh sizes hi seems 
to be not promising since ai rv O(Nq) for large indices i and, thus, the conformal nested 
spaces Wi, j = 0, 1, .. . p = p0 + m are hardly available. In this case the Lagrange 
multipliers method may be applied. 
Thus the conformal approximation of the exterior interface problem under consideration 
appears to be efficient with the choice v = 1 in ( 4. 7) even for v ~ 2 in the "radiation 
condition" ( 4.1). The complexity of the matrix vector multiplication for the operator Arp 
is estimated now by 

M00 rv O(log N) . 

In the case of a polygonal boundary the refined interface is defined to patch the boundary 
r with the closest rectangular domain, see Fig 4b), and then we proceed with the non-
matching decomposition as on Fig. 4a). The number of right triangles involved is of the 
same order as the number N0 of the edges on r. Thus, in the general case we obtain 

Q(Arp) =No· O(Nlog3 N) + M00 • O(Nlog2 N) rv O(Nlog3 N). 

Theorem 4.1 The MAS method related to the interface reduction of the exterior problem 
(4.5) has the overall complexity and memory needs O(Nlog3 N). Thus, the matrix-vector 
multiplication of the Schur complement matrix hp related to T2p has the same cost esti-
mate. The approximate Neumann data "Yih u = T2pQ2u on r admits the error estimate 

llQ2T2u - "Y1hullH-1/2(r) ::; cllu - PhullH1(noo) 

where u solves the problem (2.1), (2.2), (4.1) and Ph is the Ritz projection defined for WP. 

Remark 4.1 The implementation of the exterior PS operators in presence of a nested 
mesh refinement near the corner points si, j = 0, 1, ... , N 0 may be designed along the 
same line as in the case of interior problems providing the complexity 0( N log3 N). 

5 Application in BEM and concluding remarks 

Due to Theorems 3.1 and 4.1 the proposed compression scheme provides the complex-
ity O(N log3 N) of the matrix-vector multiplication for the stiffness matrices 71.P and hp 
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related to the FE approximations T1p and T2p of interior and exterior Poincare-Steklov op-
erators, respectively. The memory needs are estimated by O(Nlog2 N) and O(Nlog3 N), 
correspondingly. This leads to the interface solvers (on a nested refined interface) for the 
Diriclilet, Neumann and some mixed BVPs in both bounded and unbounded domains 
with polygonal boundaries. 

The above results may be easily applied to the construction of asymptotically opti-
mal compression schemes for solving the classical boundary integral equations involving 
weakly singular, hypersingular and double layer harmonic potential operators V, D and 
K, respectively. The approach is based on the representation of the inverse to the above 
mentioned boundary operators in terms of interior and exterior harmonic Poincare-Steklov 
operators proposed in [19]. In fact, the following theorem holds. 

Theorem 5.1 [19]. The operator v-1 : H:t2(r)---+ H={12 (f) has the representation 

-1 1 ( ) V =-T1+T2. 
2 (5.9) 

The following formulae 

(E - K)-1z = ~(E + S2 • T1)z, (5.10) 

1 1 ) (E + K)- z = "2(E + S1 · T2 z, (5.11) 

hold. The operator D-1 : H=i12 (r) ---+ H:t2 (r) has the representation 

D (5.12) 

Substituting into the above formulae the developed FE approximations of the operators 
Si and Ti with i = 1, 2 one obtains the FE approximations (with respect to h-harmonic 
extensions of the boundary data) of the inverse to harmonic boundary integral operators. 
These approximations admit an efficient matrix compression providing a matrix-vector 
multiplication of the complexity O(N log3 N). Here N is the number of degrees of freedom 
on the underlying polygonal boundary. This approach is well suited for both quasi-
uniform and nested refined meshes. Numerical examples for the particular case of step-
type boundaries and quasi-uniform meshes may be found in [19]. 

The extension of the proposed techniques to the case of three-dimensional problems 
and more general boundary conditions seems to be rather straightforward. 
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