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Preface 

This Symposium was held at the Scientific Communication and Conference Center 
Berlin, Eichwalder StraBe 100, 0 - 1251 Gosen (Germany). It can be considered 
as a continuation of a long tradition of workshops on special topics of the theory 
and numerical analysis of integral equations ·held during the last decade in Au-
erbach, Binz, Biesenthal and Einsiedel. The 23 foreign guests of the Symposium 
came from Austria (1), CIS (3), Estonia (2), Finland (2), Georgia (3), Israel (1), 
Italy (3), Poland (2), Portugal (3), Sweden (2) and the USA (1). 37 participants 
were Germans. 

The main intention of this conference was to bring together researchers from both 
the areas of Operator Equations and Numerical Analysis to discuss problems and 
to stimulate the transfer of results, methods and applications between these fields. 
17 survey lectures ( 45 minutes) and 29 short communications ( 30 minutes) were 
devoted to the following topics: 

(1) Approximation methods for integral, pseudodifferential and operator equa-
tions. 

(2) Theory and Numerical Analysis for boundary integral equations on non-
smooth surfaces and boundary-value problems. 

(3) Banach algebra techniques in Operator Theory and Numerical Analysis. 
( 4) Applications of integral and pseudodifferential equations. 

The lectures and the numerous discussions have demonstrated the close connecti-
ons and the interplay between these areas. In particular, the conference has shown 
the increasing enormous influence of the local principles and Banach algebra tech-
niques to the Numerical Analysis. The large number of participating top-experts 
has contributed essentially to the success of the Symposium. 

I express my gratitude to all participants, in particular, to the lecturers, chairmen 
and participants in the discussions. Especially, I would like to thank Mrs. M. Teu-
chert and Mrs. A. Giese for the excellent organization and the German Research 
Council (DFG) for sponsoring the Symposium. 

The great interest of the participants suggests to organize a subsequent conference 
on this subject. 

Berlin, 15th October 1992 

( 
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B. Silbermann (Chemnitz): 
Non-strongly converging approximating methods 

W. Spann (Munich): 
Error estimates for the approximation of semi-coercive variational inequalities 
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Scientific Programme 

Monday, September 28, 1992 

9.00 Opening 

9.15 - 10.00 V. Maz'ya (Linkoping): 
· Asymptotic behaviour of solutions of ordinary differential equations 
with variable operator coefficients 

10.00 - 10.20 Coffee break 

10.20 - 10.50 A.-M. Sandig (Rostock): 
Calculation of singularities for inclusions with conical points 

10.50 - 11.20 A. Rathsfeld (Berlin): 
Numerical solution of the double layer potential equation over po-
lyhedral boundaries 

11.20 - 11.50 K. Giirlebeck (Chemnitz): 
On hypercomplex solution methods for interface problems 

11.50 - 12.20 A. Hommel (Chemnitz): 
Discrete fundamental solutions for canonical problems in the plane 

12.30 - 14.30 Lunch 

14.30 - 15.15 E. Meister (Darmstadt): 
Some interior and exterior boundary-value problems for the Helm-
holtz equation in a quadrant 

15.15 - 16.00 L. v. Wolfersdorf (Freiberg): 
On the theory of nonlinear singular integral equations 

16.00 - 16.20 Coffee break 

16.20 - 16.50 R. Kress (Gottingen): 
On a quadrature method for a logarithmic integral equation of the 
first kind 

16.50 - 17.20 K. Ruotsalainen (Oulu): 
The collocation method for nonlinear boundary integral equations 

17.20 - 17.50 D. Oestreich (Freiberg): 
Numerical solution of a nonlinear integro-differential equation of 
Prandtl's type 

17.50 - 18.20 D. Berthold (Chemnitz): 
A fast algorithm for solving the airfoil equation 

18.30 - 19.30 Dinner 
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Tuesday, September 29, 1992 

8.30 - 9.15 N. Ortner (Innsbruck): 
Operational formulae for the construction of fundamental solutions 

9.15 - 10.00 V. Kozlov (Linkoping): 
Parabolic boundary-value problems in domains with conical points 

10.00 - 10.20 . Coffee break 

10.20 - 10.50 L. Jentsch (Chemnitz): 
On boundary value problems with interface corners 

10.50 - 11.20 D. Mirschinka (Chemnitz): 
Integral operators with fixed singularities on the half plane with 
applications . 

11.20 - 11.50 R. Duduchava (Tifiis): 
Pseudodifferential operators on compact manifolds with Lipschitz 
boundary 

11.50 - 12.20 E. Shargorodsky (Tifiis): 
Boundary value problems for elliptic pseudodifferential operators 
and some of their applications 

12.30 - 14.30 Lunch 

14.30 - 15.15 D. Przeworska-Rolewicz (Warsaw): 
Smooth solutions to linear equations with right invertible operators 

15.15 - 16.00 E.P. Stephan (Hanover): 
h-p version of the boundary element method for two- and threedi-
mensional problems 

16.00 - 16.20 Coffee break 

16.20 - 16.50 G. Schmidt (Berlin): 
Approximation of Poincare-Steklov operators with boundary 
elements 

16.50 - 17.20 M. Efendiev (Stuttgart): 
Nonlinear Riemann-Hilbert problems for multiply connected 
domains 

17.20 - 17.50 E. Wegert (Freiberg): 
Discrete nonlinear Riemann-Hilbert problems 

17.50 - 18.20 S. Rolewicz (Warsaw): 
On <I>-Subdifferentiability and <I>-Differentiability 

18.30 - 19.30 Dinner 
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Wednesday, September 30, 1992 

8.30 - 9.15 G. Monegato (Turin): 
Nystrom interpolants based on zeros of Legendre polynomials for 
non compact one-dimensional integral equations 

9.15 - 10.00 S. ProBdorf (Berlin): 
Convergence theory of wavelet approximation methods for pseudo-
differential equations 

10.00 - 10.20 Coffee break 

10.20 - 10.50 V. Didenko (Odessa): 
On the approximative solution of some operator equations with 
conjugation 

10.50 - 11.20 U. Schmid (Munich): 
A collocation method for singular integral equations on Holder 
spaces 

11.20 - 11.50 V. Pilidi (Rostov a.D.): 
On the uniform invertibility of regular approximations of singular 
integral operators 

11.50 - 12.20 E. Venturino (Iowa): 
Stability and convergence of a hyperbolic tangent method for sin-
gular integral equations 

12.30 - 14.30 Lunch 

Excursion 
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Thursday, October 1, 1992 

8.30 - 9.15 J. Saranen (Oulu): 
Quadrature methods for boundary integral equations on curves 

9.15 - 10.00 W. Wendland (Stuttgart): 
Substructuring for boundary integral equations 

10.00 - 10.20 Coffee break 

10.20 - 10.50 D. Zarnadze (Tifl.is ): 
On generalization of the least squares method for the operator equa-
tions in some Frechet spaces 

10.50 - 11.20 W. Spann (Munich): 
Error estimates for the approximation of semi-coercive variational 
inequalities 

11.20 - 11.30 Break 

11.30 - 12.00 J. P.restin (Rostock): 
Marcinkiewicz-Zygmund-type inequalities and interpolation 

12.00 - 12.30 G. Mastroianni (Naples): 
Some new results on Lagrange interpolation 

12.30 - 14.30 Lunch 

.14.30 - 15.15 R. Schneider (Darmstadt): 
Wavelet approximation methods for pe.riodic pseudodifferential 
operators: matrix compression and fast solution 

15.15 - 16.00 F. Teixeira (Lisbon): 
Wiener-Hopf-Hankel operators and diffraction by wedges 

16.00 - 16.20 Coffee break 

16.20 - 16.50 A. dos Santos (Lisbon): 
Convolution equations on a union of two intervals 

16.50 - 17.20 F.-0. Speck (Lisbon): 
Meromorphic factorization, partial index estimates and elastody-
namic diffraction problems 

17.20 - 17.30 Break 

17.30 - 18.00 B. Silbermann (Chemnitz): 
Non-strongly converging approximating methods 

18.00 - 18.30 J. Elschner (Berlin): 
Exponential convergence of spline approximation methods for 
Wiener-Hopf equations 

18.30 - 19.30 Dinner 
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Friday, October 2, 1992 

8.30 - 9.15 N. Krupnik (Ramat-Gan): 
Extensions of Fredholm symbols 

9.15 - 10.00 Y. Karlovich (Odessa): 
Algebras of convolution type operators with shifts 

10.00 - 10.20 Coffee break 

10.20 - 11.05 S. Roch (Chemnitz): 
Spline approximation methods cutting off singularities 

11.05 - 11.35 R. Gorenflo (Berlin): 
Regularized differentiation of arbitrary positive (not necessarily in-
teger) order 

11.35 - 11.45 Break 

11.45 - 12.30 G.M. Vainikko (Tartu): 
Higher order collocation methods for multidimensional weakly sin-
gular integral equations 
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A Fast Algorithm for Solving the Airfoil Equation 

D. Berthold (Chemnitz) 

We consider the singular integral equation 

1 1 

~ j u(y )O'(Y) dy - ~ j lnlx - y Ju(y )O'(Y )dy + 
71" y-x 71" 

-1 -1 

1 
(1) 

+ j k(x,y)u(y)O"(y)dy=f(x), 
-1 

x E (-1,1),whereO"(y) = (l-yt 112(l+y) 112 ,v =f. Oisagivencomplexnumber,and 
J and k are given continuous functions defined on [-1, 1) and [-1, 1] 2 , resp. In the 
following, we propose a fully discretized, optimal convergent 0( n log n )-algorithm 
(being based on the quadrature method) for calculating an approximate solution 
Un of (1) in form of a polynomial of degree at most n - 1. 

For {! = O' and {! ·= µ := O'-~ let {pf, i = 0, 1, ... ,} be an orthogonal system of 
polynomials with respect to the scalar product ( u, v )u := 71"-1 J~ 1 u(y )v(y )e(y )dy. 
Furthermore, choose a natural number m satisfying the two conditions: 
(i) (2n + 1)/(2m + 1) is an integer and (ii) m 2 ~ n. Our algorithm calculates the 
Fourier coefficients an,i := (un,Pi)u, i = 0, ... ,n - 1, of the approximate solution 
Un and consists of two steps ( cp. [1 ]). 

Step 1: Calculate an,ii i = m, ... ,n - 1, by an,i := (vn,Pi)u, where Vn is a poly-
nomial of degree at most n - 1, which is the solution of the collocation 
method for equation (1) with k( x, y) _ 0. Here the collocation points are 
the zeros of p~. The complexity of Step 1 is only O(nlogn) (see [3]), [4]). 

Step 2: Calculate an,i, i = 0, ... ,m-1, by an,i := (wm,Pi)u, where Wm is a polyno-
mial of degree at most m - 1, which is the solution of quadrature method 
for equation ( 1) with a special right-hand side. This right-hand side is 
formed in a certain way using the function f and the already computed 
Fourier coefficients an,i, i = m, ... , n - 1. 

Using multiple grid ideas for the quadrature method ([2]) we need O(m2 +nlogn) = 
O(nlogn) operation for Step 2, too ([3], [4]). 
In order to investigate the convergence we define a scale of Sobolev-like subspaces 
L~,s of the weighted space L~ by 

L~,s := { U EL~: llull~,s := ~ (1 + i)28 J(u,pf)uJ2 < 00} , S 2'.: 0, 

{! = O' and {! = µ, resp. Now, if we suppose that f E L~,s' k(·,y) E L~,s+si 
k(x, ·) E L;,s+o> s > ~' 5 > 0, then we have the optimal convergence rate (see [3]) 

1 
JJu - unJJu,t ~ cnt-sJJuJJu,s for all t > 2 with s - 5 ~ t ~ s · 
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On the Approximative Solution of Some Operator 
Equations with Conjugation 

V. Didenko (Odessa) 

We consider the following singular integral equations with conjugation 

(K )( ) _ ( ) ( ) b(t) J cp(T)dT ( )-( ) d(t) J cp(T)dT cp t =atcpt +-. +ctcpt +-. -
7r'1. T - t 1r'1. T - t r r 

p(t.) j cp(T)dT _ h(~) j cp(T)dT = f(t), t Er, 
7r'1. T - t 1r'1. T - t 

r r 

(1) 

where a, b, c, d, p, h E C(r) and r is a simple closed curve with corners. We pre-
sent a stability analysis of quadrature, spline collocation and qualocation meth-
ods for equation (1). All these methods are stable if and only if the operator 
K E Badd(L2(r)) and some operators A.,. E Badd(Z2 ), T E r, which depend on 
the approximation method, are invertible. Furthermore we investigate the Fred-
holmness of the operators A.,., T E r, and point out that the local operators have 
some interesting properties. For example, their indices are independent of the pa-
rameters of the considered approximation methods, but they depend on the values 
of coefficients a, b, c, d, p, h at the point T E r. In the special case p( T) = h( T) = 0 
the index of A.,. can be equal to -1, 0 or + 1 only. 
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Pseudodifferential Operators on Compact Manifolds 
with Lipschitz Boundary 

R. Duduchava (Tiflis) and F.-0. Speck (Lisbon) 

In the manuscript, written in 1985 and published only in 1990, a Bessel potential 
operator (BPO) for a two-dimensional angle was constructed. In the meantime 
two papers of R. Schneider appeared which were based on this manuscript and 
succeeded in constructing BPO's for a Lipschitz domain n c JR,.,.. Two kinds of 
BPO's were defined: with non-smooth and with sr,0 (.1Rn)-symbol (of the Horman-
der class). These operators are called order reduction operators and help to lift a 
pseudodifferential operator A : fI;(n) -+ H;-r(n) to the singular integral operator 
B : Lq(n) -+ Lp(n) equivalently, where n is any special or general (including com-
pact) Lipschitz domain in JR,.,.. Earlier such results where known only for n with 
the smooth boundary. 

The results of R. Schneider for BPO's with non-smooth symbols are extended here 
from the case p = 2 to the general one 1 < p < CXJ. Then \J!DO's with non C00 -

smooth symbols on manifolds n with Lipschitz boundary are defined on Bessel 
potential spaces fI; ( n) -+ H;-r ( n) using operators of local type; the following 
results are obtained for them: a Fredholm criteria in terms of the local representa-
tives, the fredholmity of \J!DO's with locally sectorial matrix symbols and triviality 
of their index. Here similar results of F.-0. Speck, M. Costabel - E. Stephan, R. 
Schneider and some others are generalized while the proof gets more transparent. 

\J!DO's and BPO's in Holder-Zygmund spaces z;(n), z; (f2) (a > 0, 1 ~ p ~ CX)) 
on a manifold with a Lipschitz boundary are treated as well. 

Our approach to \J!DO's is based on the local principle, which is much refined, but 
enables to involve under the investigation \J!DO's with symbols out of the Horman-
der class S1 ,0(f2 x lRn). The method provides a more simple approach to the inves-
tigation of the solvability of equations appearing in mechanics and mathematical 
physics. One of such applications is demonstrated in the concluding section, where 
the crack problem for isotropic elastic media with steady oscillation is considered. 

The paper will appear in "Mathematische Nachrichten". 
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Nonlinear Riemann-Hilbert Problems for Multiply 
Connected Domains 

M.A. Efendiev and W.L. Wendland (Stuttgart) 

In this paper we consider the global existence of solutions to nonlinear Riemann-
Hilbert problems (abbr. RHP) for a q-connected domain with q 2:: 2. Let Gq be 
a bounded q-connected domain with boundary r = &Gq = Uf=irk, where rk are 
Jordan curves with parametric representations tk = tk(sk)i 0 ~ Sk < 27r and q 2:: 1. 
The nonlinear RHP can be formulated as follows: Find a holomorphic function 
</>(z) = u(z) + iv(z) in Gq which is continuous in the closure Gq satisfying the 
boundary condition 

f((,u((),v(())=O for(E&Gq. (Hq) 
Clearly (Hq) generalizes two well-known classical problems of analytic function 
theory; namely: 

1. The Riemann conformal mapping problem. 
2. The linear Riemann-Hilbert problem. 

During the last twenty years, many results have been obtained for the nonlinear 
RHP for a simply connected domain; in particular, results based only on topological 
conditions for the function f ( (, u, v ). It was A.I. Snirelmann with his fundamental 
work [2] who initiated the new geometrical approach to this problem generalizing 
the conformal mapping problem for q = 1. However, his analysis did not cover the 
linear RHPs and problems where the family of curves f ( (, u, v) = 0 in the u-v-
plane with parameter ( E &G1 consists of non-closed curves going off to infinity 
which come up in hydrodynamical applications. This case of non-closed curves 
was treated with two different geometric methods by M.A. Efendiev [1] and by 
E. Wegert [3], respectively. In the case of nonlinear as well as of linear RHPs for 
multiply connected domains, i.e. q 2:: 2, arise new fundamental difficulties. Here, 
we present for these cases new global existence theorems based on the introduction 
of ( q - 2) additional degrees of freedom for the curves f( (, u, v; w) = 0, where 
w E Rq-2 • The modified nonlinear RHP now reads as: 

Find a pair (w, <I>(z)) E Rq- 2 x A where A denotes the analytic functions in Gq 
which are continuous in Gq, which satisfies the boundary conditions 

fj(ti(sj), u(ti(sj)), v(tj(sj)); w) = 0 on I'j; j = 1, ... , q. (Hq) 
The existence proof is based on a degree theory of the so-called Fredholm quasilin-
ear mappings in Banach spaces. Under sufficient geometrical conditions for the q 
families of curves fj = 0 we obtain existence. 
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Exponential Convergence of Spline Approximation 
Methods for Wiener-Hopf Equations 

J. Elschner (Berlin) 

We consider the numerical solution of the Wiener-Hopf integral equation 
00 

u(x)-j k(x-y)u(y)dy=f(x), xE(O,oo), 
0 

(1) 

by approximation methods based on piecewise polynomials. Such equations arise 
in a number of applications in radiative equilibrium and transfer, in refraction of 
electromagnetic waves, and in crack problems in linear elasticity. In particular, in 
the problem of a pressurised crack in the form of a cross, the kernel function 

k( x) = -7!'-1sech2 ( x) 
arises. Using piecewise polynomials of degree [µn], µ > 0, subordinate to the parti-
tions {O, 1, ... , n - 1 }, we obtain results on stability and exponential convergence in 
the Lq norm, 1 ::; q ::; oo, of Galerkin, collocation and Nystrom quadrature meth-
ods for the approximate solution of Eq. (1). A main ingredient of the convergence 
analysis is a smoothness result with respect to a certain scale of countable normed 
spaces of real-analytic functions with exponential decay at infinity. 
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Regularized Differentiation of Arbitrary Positive 
(not necessarily integer) Order 

R. Gorenflo (Berlin) 

For a> 0, 1 Sp S oo, consider the operator Ja: Lp(O, b)---+ Lp(O, b), given by 

1 t 
(Jau)(t) := r(a) j(t- st-1u(s)ds. 

0 

(1) 

For 0 < b < oo this operator is compact, its inverse unbounded. Hence the integral 
equation 

Jau = g , g given, u unknown, 

is ill-posed. If instead of g we have available only a function f with 

Ilg - flips c 

(2) 

(3) 
we require some additional information on (the smoothness of) u if we want to 
find a good estimate or approximation. In cooperation with Vu Kim Tuan in Ha-
noi/Vietnam the following result has been obtained. 

Assume that the zero extension u of u (coinciding with u on [O, b], vanishing outside 
this interval) has the Holder property 

llu(. - h) - u(.)llp s Eh13 (4) 
with numbers E > 0, (3 E (0, l]. Then by a fractional difference technique with 
appropriately chosen steplength h one can determine a function uh on JR such that 

lluh - ullP S K(a)Ea.+{3 cab (5) 
with a constant K(a) depending only on a. 
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On Hypercomplex Solution Methods 
for Interface Problems 

K. Giirlebeck (Chemnitz) 

It is considered a transmission problem in the case of a domain G with an inclusion 
G1. In a first step an explicit representation for the solution of a boundary value 
problem in GJ., is given using known results of hypercomplex function theory and its 
applications to elliptic boundary value problems. In a second part a hypercomplex 
method for the solution of boundary value problems in a ring-shaped domain is 
demonstrated. Again an explicit description of the solution is possible. Therefore 
it is necessary to study IH-regular functions in multiple connected domains. We 
are interested in the behaviour of these functions near the different parts of the 
boundary and in the description of the orthogonal complement of the subspace 
of JH-regular functions in L 2 ( G\ G1 ). Collecting the representation formulas in G1 

and G\G1 we derive a hypercomplex integral equation on r 1 = 8G1 by the help of 
the transmission conditions. The uniqueness of the solution is proved using some 
new results concerning the boundary values of JH-regular functions in multiple 
connected domains. The solvability of the integral equation is investigated in a 
constructive manner. An equivalent formulation of the problem is given in form 
of a generalizetl Riemann-Hilbert-Problem for JH-regular functions. This problem 
can be solved explicitly. Using this solution the representation formula for the 
solution of the transmission problem can be simplified. The result is an explicit 
integral representation which depends only on the data on r 1 and on the solution 
of a boundary value problem in the whole domain G. The representation formula 
holds in G without any change by crossing the inner boundary r 1 . 
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Discrete Fundamental Solutions for Canonical Problems 
in the Plane 

A. Hommel (Chemnitz) 

We start with a general theorem about boundary projection operators (see Rya-
benkij: "Method of difference potentials for any tasks in continuous mechanics", 
Moscow, "Nauka", 1987, in russian). In this sense the integral representation for 
functions of the class C(2) is a special realization. Furthermore, it is possible to 
derive from this theorem the well-known integral equations of potential theory. 

It is our aim to use this theorem to develop a discrete potential theory. The first 
step in this direction is the desc~iption of a discrete fundamental solution; In case 
of the Laplace equation we use the discrete Fourier transform. We apply a sum 
formula given in a paper by van der Pol to compute this fundamental solution 
on the diagonal points of an equidistant mesh. We use symmetry and the Laplace 
equation to find the solution in all the other mesh points. 

By the help of our discrete fundamental solution it is possible to solve some simple 
canonical problems. Interface problems are the next point of view. We are able to 
solve the problem of two coupled half spaces and, under an additional condition, the 
problem of four coupled quadrants. We have some ideas to treat the last problem 
if the additional condition is not fulfilled, but up to now the expressions are very 
complicated. 

The next problem is the description of the discrete boundary. We illustrated our 
. results on a L-shaped domain. 

Our ideas and results have not been published yet. 
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On Boundary Value Problems with Interface Corners 

L. Jentsch (Chemnitz) 

In the framework of elastostatics formulae for singular exponents in the asymptotic 
expansion of boundary value problem solutions at interface corners are presented. 
An interface corner occurs, if the interface between two different materials meets 
with the boundary of the whole body. 

In the :first part we look for the solution of the traction boundary value problem in 
the form of a single layer potential which satisfies a priori the transmission condi-
tions on the interface. For the asymptotics of the potential density at a corner point 
as well as for the Fredholm property of the boundary integral operator the symbol 
of a Mellin convolution operator is responsible. The Mellin symbol is calculated 
explicitly. It can be expressed by elementary transcendental functions. The case of 
homogeneous material is discussed in detail. The asymptotics of the solution of the 
boundary value problem can be obtained by evaluation of the potential. 

The disadvantage of the boundary integral method consists in the fact that a 
singular exponent of the potential density must not lead to a singular function in 
the asymptotics of the boundary value problem solution. 

In the second part formulae for the singular exponents are obtained using the 
direct method of Mellin transformation. In connection with that some new formulae 
for corner problems with unusual boundary conditions are included. In the case 
of the general boundary transmission problem the singular exponents are zeros 

. of a determinant with eight rows. These determinants are calculated for several 
boundary conditions. 
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Algebras of Convolution Type Operators with Shifts 

Yu. I. Karlovich (Odessa) 

A review of some results on Fredholm theory of algebras of convolution type oper-
ators with discrete groups of shifts and coefficients having discontinuities of the 
first and second kind. This class includes algebras of singular integral operators. 
with shifts and coefficients with discontinuities of the semi-almost-periodic type, 
algebras of integrodifference Wiener-Hopf operators with piecewise-continuous or 
oscillating coefficients and others. In the general case these algebras consist of non-
local convolution type operators with two discrete groups of shifts with respect to 
direct and dual Fourier variables in the presence of discontinuities of the coefficients 
and presymbols. The investigation of these algebras is based on two methods of 
local-trajectory studying the Fredholm property of considered operators in Banach 
and Hilbert spaces, respectively (see [Yu. I. Karlovich, Dokl. Akad. Nauk SSSR, 299 
(1988), 546-550; 304 (1989), 274-280]). The theory essentially depends on structure 
of the set of fixed points in shifts. In general case the representations are infinite 
and inhomogeneous. 
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Parabolic Boundary-Value Problems in Domains 
with Conical Points 

V. Kozlov (Linkoping) 

The talk is devoted to general parabolic. boundary-value problems in a domain G 
.with a conical point 0 E fJG. 

If the right-hand sides satisfy the consistency conditions then the asymptotics of 
the solution has the form 

u(x, t) ,_., L.Ui(x, 8t)hi(t), 
where Ui(x,p) is a polynomial in p with coefficients determined by solving a model 
elliptic boundary-value problem in the tangent cone and Uj depends only on the 
asymptotics of the operators and the boundary near conical point. The coefficient hi 
is expressed by some Volterra operator applied to the right-hand sides. The kernel 
of this operator satisfies the homogeneous adjoint problem and has a singularity at 
x = 0, t = 0. 

Consider the case when the consistency condition is not valid and let us confine 
ourselves to the heat equation. Then the following asymptotics holds 

u(x,t) ,_., ~tk/2 (((r)Uk ( w, 20) +rx(v/r)V,. (x', 2Jt)) . 
Here v is the distance to the boundary, x' is the projection of the point x onto 
fJG, ( and x are cutoff functions. The functions Uk(·,·) and V,.(x', ·) are found 
successively by solving model problems in the cone and on the half line. 

The next topic relates to the Green function and the Poisson kernels of the general 
parabolic problem in a cone. Pointwise estimates as well as asymptotics near the 
vertex of the cone and as t ~ oo are obtained. 
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On a Quadrature Method for a Logarithmic Integral 
Equation of the First Kind 

R. Kress ( Gottingen) 

We present a quadrature method for the numerical solution of the logarithmic 
integral equation of the first kind arising from a single-layer approach to solving 
the Dirichlet boundary value problem for the two-dimensional Helmholtz equation. 
Our method is based on weighted trigonometric interpolation quadratures on an 
equidistant mesh with appropriately chosen weight functions taking care of the log-
arithmic singularity. The convergence analysis is based on the theory of collectively 
compact operators and yields error estimates with respect to uniform convergence. 
For analytic boundaries and boundary data the convergence is exponential. We 
also briefly indicate how the method can be extended to the corresponding integral 
equation on open arcs by using a graded mesh where the grading is based upon the 
idea of substituting a new variable. Numerical examples illustrate rapid convergence 
of the method both for closed and open contours. 

This is joint work with R, Chapko (Lwow) and will be published in due source 
as R. Chapko and R. Kress: On a quadrature method for a logarithmic integral 
equation of the first kind. 
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Extensions of Fredholm Symbols 

I. Gohberg (Tel Aviv) and N. Krupnik (Ramat-Gan) 

Let A be an algebra of linear bounded operators acting in some Banach space 1B 
and {Ir} ( T E T) a set of homomorphisms Ir ~ A ~ ctxl ( l = l( T) :::; n ). One says 
that the set { /r} ( T E T) generates a Fredholm symbol of order n for algebra A 
in the space 1B if any operator A E A is Fredholm in 1B iff det /r(A) -=f. 0 for all 
TE T. In this case we write A E FS(n, JB). 
Theorem. Let 1K be a dense subalgebra of A and let a set { /r} ( T E T) generates 
a Fredholm symbol for algebra 1K. If A E F S ( m, 1B) then for every T E T the 
function det(A) is continuous on 1K and any operator A E A is Fredholm in 1B iff 

inf I det1r(A)J > 0. 
rET 

(1) 

Here is one of the applications of this theorem. Let r be a non-simple contour on 
the complex plane C, (! - some weight function such that the operator of singular 
integration Sr is bounded in Lp(r, e). Denote by 1K the algebra (nonclosed) gen-
erated by singular integral operators with piecewise continuous coefficients. If a set 
{ /~} ( T E T) generates a Fredholm symbol of order n for algebra 1K then any 
operator A EA(= JK) is Fredholm in 1B iff (1) holds. 
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Some New Results on Lagrange Interpolation 

G. Mastroianni (Naples) 

Lagrange polynomial interpolation is useful in polynomial approximation of func-
tions and in searching numerical solutions of functional equations by collocation 
methods. 

Unfortunately, classical literature gives few examples of "good" interpolatory pro-
cesses. One of the aim of this talk is to give two procedures (extended interpolation 
and the method of additional nodes), by which it is possible to construct infinite op-
timal interpolation processes. The previous methods allow to obtain simultaneous 
approximation theorems. 

The error estimates are expressed by the best uniform approximation error. The 
previous estimates are natural, if we consider the interpolation operator as an 
operator mapping bounded functions into functions belonging to LP. However, the 
previous estimates are unsuitable and often it is needed to estimate the LP-norm 
of Lagrange error by the same norm of the derivatives of the function. 

Finally I want to remark that such estimates are possible for more general cases. 
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Asymptotic Behaviour of Solutions of Ordinary Differential 
Equations with Variable Operator Coefficients 

V. Maz'ya (Linkoping) 

This is a survey of results obtained together with V. Kozlov. 

Conditions of uniqueness, existence and asymptotic properties of solutions to the 
differential equation A( t, Dt)u = f on R 1 with unbounded operator coefficients are 
found. One of the results is a theorem on the preservation of a "powerexponential" 
asymptotics under the Dini type condition 

00 j w(t)t2(m-l)dt < oo, 
0 

where w( t) is the continuity modulus of the coefficients at infinity (understood 
in the sense of corresponding operator norms) and m is the maximal length of 
Jordan chains corresponding to some eigenvalues of the operator pencil A( oo, A). 
The condition ( *) is best possible in a sense. The proof is based on estimates for 
the inverse operator of the equation in question. An auxiliary result of independent 
interest is a comparison theorem for solutions of the operator differential equation 
A( t, Dt)u = f and those of a certain higher-order ordinary differential equation. 
Results of this type have immediate applications to the theory of partial differential 
equations in domains with boundary singularities. 
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Some Interior and Exterior Boundary-Value Problems 
for the Helmholtz Equation in a Quadrant 

E. Meister, F. Penzel (Darmstadt), F.-0. Speck, F.S. Teixeira (Lisbon) 

The variety of problems in classical mathematical physics which allow a solution 
in closed analytical form is relatively small. However, those canonical problems are 
of particular interest, since they give a clear understanding of correct settings of 
functional spa.ces which includes unique solvability and continuous dependence of 
the given data. Moreover they can be used for more detailed studies of the regularity 
of the solutions, asymptotics, convergence and stability of numerical procedures. 
This analysis is straightforward, if the resolvent is known as a bounded operator 
in a suitable form. 

In this talk the first author presents a method to solve the Dirichlet, Neumann and 
· mixed D / N boundary-value problem for the interior and exterior of a right-angled 
wedge in the energy space H 1 ( Q; !J..) or H 1 ( JR3 \ Q; !J..) using a Fourier transform 
representation based on H±lf2(1R+)-data and a reduction method where data on 
one face of the wedge are equal to zero. With the help of the corresponding explicit 
solutions of the interior problems, the exterior one for IR3 \ Q3 is reduced to a 2 x 2-
system of singular integral equations of Wiener-Hopf-Hankel type in fI- 112(1R+) 2 

for the pair of unknown Dirichlet-Cauchy-data (!1 , f2) on the 1st and 2nd semi-
axes, the boundary parts of the cross-section of the 1st wedge. After lifting to 
(L2 (1R+))2-space this system can be resolved by a method introduced by the fourth 
author treating wedge boundary-value problems by formulating them as 2 x 2 
Wiener-Hopf problems with special symbol matrices which allow for a canonical 
factorization. 
The details of this subject presented in the talk will appear in one of the next issues 
of the Proceedings of the Royal Society, Edinburgh. 
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Integral Operators with Fixed Singularities 
on the Half Plane with Applications 

D. Mirschinka (Chemnitz) 

The background of our investigations is a local treatise of boundary integral oper-
ators appearing in the solution of so-called bimetal problems. 

As an example we consider the Dirichlet problem for stationary heat conduction 
in a nonhomogeneous medium. More precisely, we look for a function u which is 
harmonic in a domain D consisting of two subdomains D+ and D_ with a common 
plane interface S0 • On this interface natural transmission conditions are given. 
Furthermore, we assume that the interface intersects the outer boundary S in a 
smooth curve r which is an edge of S. The ansatz of the double layer potential 
with the Green's function for two coupled half spaces leads to an integral equation 
on the outer boundary only. One can show that this operator on S is a zero index 
Fredholm operator iff a family of 2 x 2-matrix operators on the half plane related to 
the points of r is invertible. These operators are studied via a Harmonic Analysis 
approach on the" ax+b" group. We show that the aforementioned operators admit a 
representation as convolution operators on this group. For nonperfect heat contact 
between the two medias we can prove the invertibility of the matrix operators in 
LP-spaces with p ~ 2 for arbitrary wedge angles. Unfortunately, this result can not 
be improved in the case of perfect heat contact. We give some special results in 
terms of the wedge angles. 

Finally, we want to note that the presented approach is applicable to a wide class 
of operators including classical singular integral operators, Green type operators 
and operators with piecewise continuous symbols. 
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Nystrom Interpolants Based on Zeros 
of Legendre Polynomials for Non Compact 

One-Dimensional Integral Equations 

Giovanni Monegato (Turin) 

Several problems of Mathematical Physics lead to integral equations of the type 

1 

u(y) + >. j k(x, y )u(x )dx = h(y) (1) 
-1 

where the kernel k( x, y) is either weakly or strongly singular. When the input func-
tions h(y) are smooth, and the kernels satisfy certain conditions, these equations 
have solutions which are smooth everywhere in (-1, 1) except at the endpoints 
±1. For instance, in the case k(x,y) = k(lx - YI), with k(l + t) E oq-1(-l, 1], 
h E Oq[-1, 1], q 2: 1, if we also assume that 

lk(i)(1 + t)I :::; 'Yi(1 + t)-a-i, -1 < t:::; 1, i = o, 1, ... , q - 1, 
lk(i)(l + t)j 2: Di(l +ttao-i l -1 < t ::=; t 0 , i = O, 1, ... , q - 1, 

where /i, Di, 0 < a < 1, -1 < a 0 ::=; a, t 0 are constants, then it has been shown 
(see [5]) that the solution of (1) belongs to 0[-1, 1) n Oq(-1, 1). Furthermore, we 

-q can also claim that u E 0 0 [-l, 1], where 

G;[-1, 1) = {g: (1 - x2 )i-pg(i)(x) E 0[-1, 1), i = 0, 1, ... , q}. 

In the case of certain classes of Mellin convolution equations of form (1 ), when 
h E 0$[-1, 1) + IId for some q 2: 1, p 2: 0, where 

o;(-1, 1) = {g: (1 - x)i-pg(i)(x) E 0(-1, 1), i = 0, ... , q} 

and Ild denotes the space of polynomials of degree d, we have (see (1)) u E 
0$[-1, 1) + IId. 
Among the numerical methods proposed to solve such equations we recall the 
Nystrom methods, which are based on quadrature formulas for the discretization of 
the integral present in (1). Here we consider the use of product rules of interpolatory 
type, based on zeros of Jacobi polynomials. They are obtained by replacing the 
function u( x) by its Lagrange interpolation polynomial. For this type of rules we 
derive accurate uniform error estimates in the cases 

(i) lk(x,y)I:::; clx -ylv' -1 < v < 0' u E o:[-1, 1) 
(ii) k(x,y) = k* C=~) l~x' k*(·) bounded, u E o:[-1, 1]. 
Once we prove stability of our numerical methods, these estimates describe the 
behaviour of the errors associated with the Nystrom interpolants. 

Since in the case of weakly singular kernels the stability issue has already been char-
acterized by several authors, we have confined our attention to the case of Mellin 
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convolution equations. In particular we have considered the following equation 
1 

.4 j y 2x u(y)+- ( 2 2 ) 2 u(x)dx=y, O<y~l, 
7r y + x 

0 

for which it is known (see [2]) that u E Cf [O, 1] + II1 . 

At the moment we are not able to prove stability for the method associated with a 
quadrature rule of interpolatory type which integrates exactly the kernel. Numerical 
testing shows however that the method is stable, convergent, and more accurate 
than what was expected. 

We have proved stability, hence convergence, for a proper modified discrete operator 
associated with the well-known Gauss-Legendre formula. In spite of the presence 
of the singularity at x = y = 0, its convergence rate and numerical performances 
are very similar to those we obtain by using the previous product type rule. 
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Numerical Solution of a Nonlinear Integro-Differential 
Equation of Prandtl's Type 

D. Oestreich (Freiberg) 

The analysis of crack initiation and growth in brittle solids such as ceramics com-
posites leads to the following nonlinear integro-differential equation 

1 . 
1 j u'(s) -; s _ t ds + F(t, u(t)) = G(t), (ltl < 1) (1) 

-1 

with homogeneous boundary conditions 

u( -1) = u( 1) = 0 (2) 
An existence theorem for the problem (1), (2) was proved by v. WOLFERSDORF. 

Discretization by a collocation method using special trigonometrical polynoms 
yields a nonlinear algebraic equation system Ax + <I>(x) = 0 with a well-defined 
matrix A and vector-function <I>. If the function F(t,u) is continuous and non-
decreasing in u E JR for almost all t E [-1, 1] and bounded in t E [ -1, 1] for all 
u E JR and G(t) is bounded int E [-1, 1], this nonlinear algebraic equation system 
can be solved by the Jacobi method. The convergence of the approximated solution 
to the exact solution of the problem (1), (2) is proved. 

The other numerical approach, namely at first linearization of (1) and after that 
discretization of the linearized equation, will be considered too. For linearization 
a Newton-method is used. If F( t, u) has the above mentioned properties and pos-
sesses a derivative Fu( t, u) which is continuous in u E JR for all t E [-1, 1 J and 
bounded int E [-1, 1] for all u E JR the convergence of the approximated solution 
in C ( -1, 1) can be easily shown. 

The practical computing for relevant examples shows that the most effective way 
may be the combination of the global, but slow Jacobi-method with the local 
Newton-method which converges Q-superlinear. 

REFERENCES 

1. Oestreich, D.: Numerical solution of a nonlinear integro-differential equation of Prandtl's type. 
Math. Nachr. (submitted). 

38 



Operational Formulae for the Construction 
of Fundamental Solutions 

N. Ortner (Innsbruck) 

The main methods for constructing fundamental solutions of linear differential 
operators are t-he Fourier- and the Laplace transform for tempered distributions. 
(see L. Schwartz 1966, L. Hormander 1983, V.S. Vladimirov 1971, 1979). In contrast 
to these methods, operational procedures are procedures allowing the construction 
of fundamental solutions from other fundamental solutions. Often, the result of an 
operational procedure is an operational formula. 

5 Examples of operational formulae were presented. The first operational formula 
relates to the so-called "difference trick" and to convolution (see N. Ortner, Meth-
ods of Construction of Fundamental Solutions of Decomposable Linear Differential 
Operators. In: BEM IX, Vol. 1, ed. by C.A. Brebbia et al., Springer, 1987; Prop. 
2, p. 86). It allows the construction of a fundamental solution of a product of 
operators as a convolution of a fundamental solution with a sum of fundamental 
solutions of the factors of the product. This procedure was applied for the first 
time by G. Herglotz in 1926 to construct the fundamental solution of a product 
of wave operators with different speeds. Other examples are: product of Helmholtz 
operators, Reissner's system for the static, elastic plate, ..6..(..6.. - 2a81 )C2>. 
A second type of operational formulae are the parameter-integration formulae. In 
the talk, the one-dimensional version was presented (loc. cit., Prop. 5, p. 92). To 
apply the parameter-integration method it is necessary to know fundamental solu-
tions of "simpler" operators "with parameters" and of iterates of these "simpler" 
operators. These fundamental solutions can be found as well by some operational 
formulae. 

A last type of operational formula is the Sommerfeld formula permitting the con-
struction of the fundamental solution a;+ P(Bx) from the fundamental solution of 
a;+ P(Bx) + c2 , c EC. 
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On the Uniform Invertibility of Regular Approximations 
of Singular Integral Operators 

V. Pilidi (Rostov a.D.) 

Let a and b be piecewise continuous functions .defined on the real axis JR, and let 
T be a compact operator in Lp(JR). We introduce the operators A= al+ bS + T 
and Ae = al + bSe + T ( c > 0) acting in Lp( JR). Here S is the singular integration 
operator in the latter space, Se acts in this space as follows: 

l (x-e oo) J( ) (Sef)(x) = -. j + j _Y_dy, x E JR. 
7r'/, y - x oo x+e . 

Assume in addition that A is invertible. We get necessary and sufficient conditions 
for the operators Ae to be invertible for all sufficiently small c, and for their inverse 
operators to converge strongly to A-1 as c --+ +O. The property just formulated is 
equivalent to the condition that the operators Ae ·are invertible for all sufficiently 
small c and the norms of the operators inverse to them are uniformly bounded. We 
say that such family is uniformly invertible. 

We also investigate other classes of operators and other types of approximations. 

The proofs use approaches from [1], [2] and local principle of Gohberg-Krupnik. 

REFERENCES 

1. Kozak, A.V.: A local principle in the theory of projection methods (in russian). Dokl. Akad. 
Nauk SSSR. 212 (1973), 1287-1289. 

2. Silbermann, B.: Lokale Theorie des Reduktionsverfahrens fiir Toeplitzoperatoren. Math. Nachr. 
104 (1981), 137-146. 

3. Pilidi, V.S.: A criterion for the uniform invertibility of regular approximations for one-
dimensional singular integral operators with piecewise continuous coefficients (in russian). Izv. 
Akad. Nauk SSSR, Ser. Mat. 54 (1990), 6. 

4. Pilidi, V.S: On the method of cutting off the singularities for bisingular integral operators with 
continuous coefficients (in russian). Funkts. Anal. Prilozh. 23 (1989), N.1, 82-83. 

5. Pilidi, V.S: On the uniform invertibility of the regular approximations of one-dimensional sin-
gular integral operators with non-compact perturbations (in russian). Diff. Uravn. 26 (1990), 
N.12, 2127-2136. 

40 



Marcinkiewicz-Zygmund-Type Inequalities 
and Interpolation 

J. Prestin (Rostock) 

The underlying question is the convergence. order of interpolatory processes on 
[-1, 1] for non-smooth functions in LP-norms. In particular, we are interested in the 
interpolation of functions of bounded variation and Riemann-integrable functions 
where the interpolation nodes coincide with the zeros Xk of certain generalized 
Jacobi polynomials p~a.,f3)_ Furthermore we use the concept of additional nodes Yi, Zj 

near the boundary ±1 to control large values of Jacobi parameters a and /3. For this 
extended node-system we investigate the corresponding Lagrange interpolant and 
compare it with a Lagrange-Hermite interpolant defined by additional conditions 
on the derivatives in ±1. 
The main result are Marcinkiewicz-Zygmund-type inequalities for algebraic poly-
nomials which give an equivalence of the weighted LP-norm to some weighted lP-
norm of polynomial values on the zeros Xk, Yi, Zj. By the help of these inequalities 
we carry over the interpolation error problem to the theory of best one-sided ap-
proximation. I.e., results which connect the degree of weighted LP-approximation 
of a bounded measureable function f by polynomials Pn with Pn ( x) ~ f ( x) to 
smoothness properties of the function f. In other words, we are able to estimate 
the interpolation error by the best one-sided approximation. This demonstrates 
that here the best one-sided approximation plays the same role than the ordi-
nary best approximation for the LP-error of the Fourier-Jacobi series. Moreover 
we obtain estimates for the simultaneous approximation of the derivatives of the 
interpolants. 
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Convergence Theory of Wavelet Approximation Methods 
for Pseudodifferential Equations 

S. Prof.Mor£ (Berlin) 

This is a survey of some recent results obtained together with W. Dahmen and R. 
Schneider [1]. 

A significant number of recent papers treats Galerkin or collocation methods sep-
arately for special cases of operators and for various special choices of trial and test 
functions. Here we attempt to propose a general framework that allows us to devel-
op a unified approach to all these cases and also to extend previous results. It seems 
that ascending sequences of nested spaces which are generated by the translates and 
dilates of a single refinable function provide a suitable setting for that purpose. Of 
course, spline spaces form a typical example which fits into this context. More pre-
cisely, we are concerned with generalized Petrov-Galerkin schemes for elliptic pe-
riodic pseudodifferential equations in JRn covering e.g. classical Galerkin methods, 
collocation and quasiinterpolation. It turns out that the essential conditions that 
entail optimal convergence rates and stability of the methods can be conveniently 
formulated in terms of the Fourier transform of the refinable function (ellipticity of 
the symbol of the Petrov-Galerkin scheme under consideration). A crucial point of 
our method is the observation that the matrices corresponding to the discretized 
equations for convolution operators with positively homogeneous symbol are cir-
culants. The key to the convergence analysis for pseudodifferential operators with 
variable symbols is a local principle due to the author. This principle enables us 
to deduce the stability of the corresponding approximation method for the general 
pseudodifferential operator A from the stability for a family of convolution opera-
tors derived from A by freezing its principal symbol. Its applicability relies here 
on a sufficiently general version of a so-called discrete commutator property (i.e. a 
certain super-approximation result) in combination with the equivalence of Sobolev 
norms and certain discrete norms. Moreover, optimal error estimates in the scale 
of Sobolev norms are established. 

Notice that here we focus on the model case of periodic pseudodifferential equations 
to exploit the full advantages of Fourier transform techniques in connection with 
appropriate representations for the class of operators under consideration. However, 
the analysis in the papers [1], [2] is mainly of local nature and therefore remains 
valid in a nonperiodic setting. 

On the other hand, the above mentioned sequences of refinable spaces, often called 
multiresolution analysis, offer convenient ways of constructing wavelets bases. Thus 
one expects that the present setting should be able to take advantage to the recent 
interesting developments in this direction. In this regard, there are two issues which 
are of central importance for the present purposes, namely the preconditioning 
effect of wavelet bases, as well as the possibility of compressing stiffness matrices 
relative to wavelet bases in order to obtain sparse matrices (see the paper [2] as 
well as the lecture given by R. Schneider at this symposium). 
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Smooth Solutions to Linear Equations with · 
Right Invertible Operators 

D. Przeworska-Rolewicz (Warsaw) 

Let X be a linear space. Consider a linear equation 

P(D)x = y, where y EEC X 

with a right invertible operator D E L(X) and, in general, operator coefficients. 
The main purpose of this paper is to characterize these subspaces E C X for which 
all solutions of (*) belong to E (provided that they exist). The largest space with 
this property is the space 

D00 = n domDk 
k>l 

of smooth elements. This leads, even in the classical case of ordinary differential 
equations with scalar coefficients to a new class of 0 00-functions which properly 
contains the classes of analytic functions of a real variable and of functions vanishing 
together with all derivatives at a given point. Some results of [1] proved in the 
case when X is a Banach space and a right inverse R of D is quasinilpotent are 
here generalized for complete linear metric space and almost quasinilpotent right 
inverses. These last results are not yet published. 
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Numerical Solution of the Double Layer Potential Equation 
over Polyhedral Boundaries 

A. Rathsfeld (Berlin) 

One popular method for the solution of boundary value problems for elliptic dif-
ferential equations consists in the reduction to boundary integral equations. For 
instance, the Dirichlet problem for Laplace's equation in a bounded and simply 
connected polyhedron n ~ JR3 can be reduced to the second kind integral equation 
Ax= {I+ 2Ws}x = y over the boundary S := 80, where Ws denotes the double 
layer integral operator defined over S. Note that, since Sis not smooth, Ws is not 
compact. For the numerical solution of Ax = y, various methods have been in-
troduced. For instance, Wendland has considered the so-called panel method, i.e., 
piecewise constant collocation, and Angell, Kleinman, Kral, and Wendland have 
shown that this method is stable for the case of certain rectangular domains n. 
Arbitrary polyhedral domains have been considered by the author. Elschner has 
analysed the Galerkin method with piecewise polynomial trial functions over ar-
bitrary polyhedrons, and the Galerkin method together with an approximation of 
the Lipschitz boundary by smooth surfaces has been investigated by Dahlberg and 
Verchota. For all these procedures, the question arises how to compute the entries 
of the discretized system of equations. In order to avoid this problem, the author 
has analysed simple quadrature methods which are similar to those of Graham 
and Chandler, Kress, and Elschner for the corresponding equation over polygonal 
boundaries. However, for two dimensional boundaries, these quadrature methods 
improve the complexity only up to a certain order. 

In order to get a fully discretized numerical method which reduces the complexity 
similarly to the one-dimensional case one needs quadrature methods, where the 
quadratures and the grids depend on the collocation points, in other words one 
needs certain discretized collocation methods. The first step in this direction is the 
stability analysis of piecewise polynomial collocation due to Angell, Kleinman, Kral, 
Wendland, Atkinson, and Chien. However, all these authors consider uniform grids 
only. In the present paper we shall consider a method, where the trial functions 
are taken from a certain space of higher degree tensor product splines defined over 
a geometrically graded mesh. For this method, we can prove stability and nearly 
optimal error estimates in the L2-space. The stability proof is a discretized version 
of the invertibility proof for the continuous operator A. Analogously to the well-
known reduction via Mellin transform to the corresponding invertibility problem 
for one-dimensional double layer operators, we can reduce the stability problem 
to the investigation of the collocation method applied to one-dimensional double 
layer operators (to the "discretized Mellin symbol"). The method of proof requires 
a certain stability condition. Namely, we have to suppose that certain finite section 
operators are invertible. 
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Spline Approximation Methods Cutting Off Singularities 

S. Roch (Chemnitz) 

Let </; be a bounded, measurable, and compactly supported function, set 'Pkn( t) = 
i.p( nt - k ), and let Sn denote the smallest closed subspace of L2 ( JR) which contains 
all functions 'Pkn, k E Z. For solving the equation Au= f where A stands, e.g., for 
a singular integral operator or a Mellin operator, consider approximation equations 
LnAun = Lnf ( *) with Ln referring to a projection from L2 (1R) onto Sn (one can 
take Galer kin, collocation or qualocation projections) and with Un being seeked 
in Sn. Standard theory of spline projection methods for SIO (ProBdorf/Rathsfeld, 
Hagen/Silbermann) entails that applicability of method ( *) is equivalent to inverti-
bility of two families of operators, Wt with t E 'f and Ws withs E R, which depend 
on the sequence (LnAISn) in a natural way. These operators are often of the form 
B + K where B is a well behaving operator but K is a compact perturbation which 
essentially complicates the exploitation of this criterion. 

In a special situation, Chandler and Graham proposed to overcome these difficulties 
(and, by the way, some others) by replacing the spline space Sn by the space Sn,i 
which is spanned by functions_ 'Pkn with lkl 2: i only. The author shows that the 
modified spline approximation methods Ln,iAun,i = Ln,d with Ln,i : L2(1R) --+ Sn,i 
and Un,i E Sn,i (actually depending on two parameters) are stable iff the family (Wt) 
of the operators is invertible and if another family, (Ws), which is now formed by 
operator sequences, is stable. The latter sequences can be thought of as infinite 
section method sequences for operators in a Toeplitz algebra whose stability can 

. be completely (and verifiably) studied by the author's earlier results concerning 
finite sections of operators in Toeplitz algebras. 

A publication is in preparation. 
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On <I>-Subdifferentiability and <I>-Differentiability 

S. Rolewicz (Warsaw) 

Let (X, d) be a metric space. Let <I> be a family of real-valued functions on X. Let 
f be a real-valued function. We say that rp E <I> is a (global) <I>-subgradient of the 
function J at a point x 0 E X if 

J(x) - J(x 0 ) ~ rp(x) - rp(xa) (1) 
for all x EX. If there is a neighbourhood U of x0 such that for x E U (1) holds we 
say that rp is a local <I>-subgradient of the function f at x 0 • 

We say that the family <I> has globalization property if from the fact that for all 
x 0 E X there is a local <I>-subgradient tpx0 of a function J at x 0 follows that tpx0 

are global <I>-subgradients. 

It is easy to see that if (Y, d) is a linear metric space, X is a convex set in Y, and <I> 
is a restriction of linear functions to X, then <I> has globalization property. There is 
a natural question, which subsets X of linear metric spaces have the property that 
the restrictions of linear functions to X have globalization property. In the talk it 
was shown that for one-connected domain it holds if and only if X is convex. It 
was also shown that the restrictions of linear functions to the surface of a convex 
body in Rn have globalization property. 

As a consequence we obtain that the family of functions <I> = { rp : rp( t) = a sin t + 
b cost} has globalization property. There was presented an example of simple sets 
X E Rn about which we do not know: do restrictions of linear functions to X, have 

. globalization property? 

Let X, Y be two normed spaces. Let M be a family of subsets of X. We say that 
a linear operator rp is an (M)-di:fferential off: X---+ Y at x if for each M E M, 
each c > 0 there is a 5 > 0 such that 

llJ(x + h) - f(x) - rp(h)IJ ~ cllhll (2) 
for such h that h E Mand llhll < 8 (in other words: for h E Mn 8B, where B 
is the unit ball in X). We say that rp is an M-differential of J at x if (2) holds 
for all h E 5M. For important classes M both the definitions coincide. There is an 
example of a normed non-complete space, where they differ. 
The following problem is open. Suppose that X is a Banach space. Suppose that 
X C UMEM M. Are both the definitions equivalent? 
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Calculation of Singularities for Inclusions 
with Conical Points 

A.-M. Sandig (Restock) 

Let n2 be a two- or threedimensional domain with an inclusion n1 in the inte-
rior. The domain n1 is polygonal in the two dimensional case or has a rotationally 
symmetric conical boundary point in the threedimensional case. It follows from the 
general theory that the solutions of elliptic differential equations in ni, i = 1, 2, 
which satisfy certain transmission conditions on the common boundary an1' have 
an asymptotic expansion in singular and regular terms. The method, how to calcu-
late these singularities is demonstrated for different examples, namely for the 2D 
and 3D-Poisson equations, the 2D plate equations and for the 2D and 3D-Lame 
equation systems. The singular terms can have the following form: ra si( a, <p, '11), 
i = 1, 2, where (r, <p, '11) are the spherical coordinates and r is the distance to a 
conical point. The real parts of the exponents a determine the regularity of the 
solutions belonging to weighted or usual Sobolev spaces. 

They are calculated numerically for some materials and for all openings of the 
conical points. The corresponding graphs show, when oscillating singularities (a is 
complex) and when instabilities in the asymptotics (branching points or crossing 
points with integer-lines) appear. 
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Convolution Equations on a Union of Two Intervals 

A. dos Santos (Lisbon) 

Solvability conditions for convolution equations on a union of two disjoint intervals 
(I) are studied. The solution is sought in a Sobolev space Ha(I) and the right-
hand side is given in another Sobolev space Hf3(I). The method of analysis is based 
on the reduction of the problem to a vector Wiener-Hopf equation with a symbol 
that is a 4 x 4 matrix valued function with oscillating elements. It is shown that 
the Wiener-Hopf operator associated with this equation has the same Fredholm 
properties as the original convolution operator on the union of the two intervals. 

By a standard procedure the Wiener-Hopf operator is shown to be equivalent to a 
Wiener-Hopf operator acting on the space [Lt(IR)] 4 • 

A constructive procedure is given which permits the reduction of the Wiener-Hopf 
operator with the oscillating symbol to one that is piecewise continuous on JR. 
From this the Fredholm properties of the operator are easily derived. 

Finally a sufficient condition for the invertibility of the Wiener-Hopf operator is 
given. 

The work mentioned above was done jointly with M. Amelia Bastos and is incor-
porated (except for the invertibility section) in the paper "Wiener-Hopf operators 
with oscillating symbols and convolution operators on a union of intervals" to ap-
pear in "Integral Equations and Operator Theory". 

49 



Quadrature Methods for Boundary Integral Equations 
on Curves 

J. Saranen (Oulu) 

Consider the boundary integral equation which after using a parametric represen-
tation takes the form 

1 

(Au)(t) = J k(t,T)u(T)dT = f(t). (1) 
0 

We apply the simple E- and the modified quadrature methods for the numerical 
solution of (1) assuming that the operator A has the order (3 < 0. As particular 
examples we have Symm's operator with the logarithmic kernel and (3 = -1, and 
the biharmonic single layer operator with the kernel k(t, T) = lx(t)-x(T)l 2lnlx(t)-
x( T) I (where x : IR --+ r is a regular 1-periodic parametrization of the curve r) 
and (3 = -3. In both methods we use the composite trapezoidal rule to replace 
the integral in ( 1), in the latter method after subtraction of the singularity of the 
kernel. We set up the quadrature equations by requiring collocation at the evenly 
spaced meshpoints ti = ti + Eh, ti = ih, which gives 

N 
h L k(ti, ti)(ui) = f(ti), 1::; i::; N 

j=l 

for the simple E-quadrature method and, with E = 0, 
N 

a(ti)ui + h L k(ti, tj)(uj - ui) = f(ti), 1::; i::; N 
j=l 

(2) 

(3) 

for the modified quadrature method. Here a:( t) = f01 k( t, T )dT. For the first method 
we have the stability and the convergence with the maximal rate O(h-f3), h = Jr, for 
classical strongly elliptic pseudodi:fferential operators of negative order. Moreover, 
for operators of a special form covering the typical applications the maximal rate 
O(h-/3+1 ) is achieved with a special choice of E. Correspondingly, the maximal rates 
O(h-f3+1 ), O(h-f3+2 ) hold in the case of the modified quadrature method. Since 
for the general curves the function a:( t) is not explicitly known, we introduce a 
numerical approximation ah(t) for a(t) such that the previous convergence results 
are retained when a(t) is replaced by ah(t). We point out that the method (3) 
yields a symmetric equation for solution of the unknown quantities Ui '.::::'. u( ti)· 
Some numerical experiments confirming our theoretical results are also presented. 
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A Collocation Method for Singular Integral Equations 
on Holder Spaces 

U. Schmid (Munich) 

For the singular integral equation (A+ K)u = f, where 

1 1 d( ) Au(t) := c(t) · u(t) + -. j - 7-u(T)tT 7!'?, T - t 
-1 

and K is a compact perturbation, the classical polynomial collocation method is 
investigated in a weighted Holder space 

Ho(µ, a) := {f :] - 1, l[---+ JKjf ·(!a. is Holder continuous of orderµ} , 

where ea.(t) := (1 + t)°'1 (1- t)a.2. 
For this method you construct a function s, depending on the functions c and 
d, such that A(s ·IP) C IP (c.f. Junghanns/Silbermann 1981) and look for an 
approximate solution Un E s · 1Pn-1 · 
In the case considered here the nodes of the Chebyshev polynomials tj,m = 
cos (2~:1 7!'), j = 1, ... m are used as collocation points. 

Under certain conditions on the functions c and d A is a Fredholm operator in 
H0 (µ, a) (c.f. Duduchava 1970). If its index k ~ 0, you can show that under less 
restrictive assumptions on the k side-conditions Nu= v and under the additional 
assumption K E £(H0 (µ, a), Cr•,.,.[-1, 1]), where r E JN0 , / E]O, 1] and 2µ < r + /, 
there exists an unique solution of 

( A+NK)u = (vf)' f E Ho(µ, a) , v E lKk 

and for n ~ n0 you can solve 

f(tj,n-k), j = 1, ... ,n - k 

v 

uniquely in s · _IPn-1· 
The proof is based on a theoretical result of Junghanns and Silbermann (1981). 
Using a lemma due to Kalandiya (1957) and assuming f E cr,,.,.(-1, 1] one can 
derive the following error estimate for n ~ n 0 : 

ln(n- k) 
JJ(u - Un)ea.lloo:::; I Ju - unJJµ,a.:::; c · (n _ k _ l)r+,.,.-2µ' 

where 

11! 11 -JI!· II + IU·ea.)(s)-U·ea.)(t)I µ,a. - (!a oo sup , J I · 
s::j:.t S - t µ 

Numerical examples confirm these results, but the given order of convergence seems 
not to be optimal. · 
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Approximation of Polncare-Steklov Operators 
with Boundary Elements 

Gunther Schmidt (Berlin) 

Poincare-Steklov operators are natural mathematical tools for the investigation of 
boundary value problems and their numerical solution with boundary decomposi-
tion methods. If, for example, the domain is decomposed into nonoverlapping sub-
domains, then the continuity conditions on common boundaries for the solutions in 
adjacent subdomains can be interpreted as equations with Poincare-Steklov oper-
ators of these subdomains (cf. [2] ). The iterative solution of the equations is known 
as iterative substructuring, which convergence depends strongly on the mapping 
properties of Poincare-Steklov operators and their discretizations determined by 
the approximation method for the corresponding subproblem. 

In this talk we consider Poincare-Steklov operators for elliptic selfadjoint partial 
differential equations of second order, which map given Dirichlet data on some part 
r of the piecewise smooth boundary of the domain n to the conormal derivative 
on r of the solution of the homogeneous equation with homogeneous boundary 
conditions on 8n\r. This operator maps boundedly .zf1!2(r) onto its dual, is self-
adjoint and positive definite. The finite element solution of the given problem yields 
the FE-discretization of the Poincare-Steklov operator, which maps the space of 
traces on r of finite element functions endowed with the .if1! 2(r)-norm onto its 
dual space. This mapping is selfadjoint, bounded and positive definite independent 
of the discretization parameter. 

We show that the symmetric Galer kin BEM (cf. [1]) can be used to construct a 
discretization of the Poincare-Steklov operator which possesses the same mapping 
properties as the FE-discretization, if the bollndary elements on r satisfy some 
natural conditions. 

Therefore in iterative substructuring procedures for elliptic problems the finite 
element solution of subproblems can be replaced by the solution with the symmetric 
Galerkin BEM. For the special case of Laplace equation the mentioned results are 
obtained in [3]. 
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Wavelet Approximation Methods 
for Periodic Pseudodifferential Operators: 

Matrix Compression and Fast Solution 

R. Schneider (Darmstadt) 

The advantages of the use of wavelets for the numerical solution of periodic pseu-
dodifferential equations will be discussed in principle. 

Based on the framework of multiresolution analysis, biorthogonal wavelets are con-
structed. They provide a hierarchical basis in L 2 which forms also a Riesz basis. A 
recursive cascade (pyramide) algorithm performs the transformation from the sca-
ling function basis into a wavelet basis. If the wavelets are compactly supported, 
such an algorithm requires only 0( N) operations, where N denotes the number of 
unknowns. This algorithm is sometimes called Fast (discrete) Wavelet Transform. 
An important property of a wavelet basis is that it provides a discrete Littlewood 
Paley decomposition, i.e., Sobolev (and Besov-) norms of functions can be charac-
terized equivalently by certain weighted l2-norms of the corresponding coefficients. 
This result explains the possibility of immediate preconditioning and adaptive ap-
proximation. The latter fact is used e.g. for image data compression. 

A recent paper of Beylkin, Coifman and Rohklin (C.P.A.M. 1991) demonstrates the 
adaptive approximation of the Schwartz kernel of Calderon Zygmund operators 
using a wavelet Galerkin method. Therein they derived a drastical reduction of 
complexity. 

The corresponding algorithm for_generalized Petrov Galerkin schemes for the nu-
merical solution of pseudodifferential equations of arbitrary order is examined, 
taking stability for granted. Two possibilities of representation, namely, the wa-
velet representation given by the stiffness matrix arising from wavelet bases, and 
secondly, the atomic representation based on the atomic decomposition of the ope-
rator are discussed in parallel. Applying analytical tools developed by Y. Meyer 
for a recent framework of Calderon Zygmund theory, we show that only 0( N) 
coefficients are required for numerical computation if a fixed, but arbitrary, error 
bound should not be exceeded. Modifying the above compression, certain order of 
convergence can also be achieved with an expense of at most O(N), and in the 
extreme case, 0( N loga N) operations. 

The connection to former fast algorithms as multi pole expansion or panel clustering 
is mentioned. All these algorithms are more or less multilevel algorithms. 
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Boundary Value Problems for Elliptic Pseudodifferential 
Operators and some of their Applications 

E. Shargorodsky (Tiflis) 

The boundary value problems for elliptic pseudodifferential operators (PDO) with-
out transmission property are considered in the Besov and the Bessel potential 
spaces. Applications to the mathematical theory of cracks, mixed boundary value 
problems of the elasticity theory for isotropic and anisotropic, homogeneous and 
nonhomogeneous bodies are discussed as well. The existence and uniqueness theo-
rems for boundary value problems of statics, steady-state oscillation and dynamics 
are established. Regularity of solutions is treated. Analogous results are valid for 
boundary value problems of electrodynamics and linearized hydrodynamics. 

Mixed initial-boundary value problems (and screen type problems) are studied for 
nonclassical integro-differential equations, generalizing Sobolev's equation, which 
describes rotation of fluid, and equation of gravitational gyroscopic waves in expo-
nentially stratified fluid. 

Boundary value problems in the half space are investigated for anisotropic ellip-
tic PDO-s with "constant coefficients". The elliptic and 2b-parabolic operators 
are examples of such PDO-s. From the obtained results it follows, for example, 
that for the heat conduction equation 8u/8t - (,6. - l)u = f, t > 0, the Cauchy 
problem ult=O = <p is uniquely solvable in proper functional spaces, while for the 
heat conduction equation "with inverted time" 8u/8t + (,6. - l)u = f, t > 0, 
the initial conditions are superfluous. The last equation is uniquely solvable in the 
corresponding anisotropic Besov and Bessel potential spaces. 

The case of boundary value problems on two-dimensional manifolds is studied in 
detail. The problems with boundary conditions containing either the operator of 
complex conjugation or analytic projections are considered. They generalize the 
Hilbert problem and the problem of linear conjugation for analytic functions. Ap-
plications to the differential boundary value problems for the generalized analytic 
vectors and for the equation f)m+nu/fJzmfJzn = f(z), z E fl = C are given. In 
particular, it is proved that for the Bitsadze equation 82u/8z2 = f(z) not only the 
Dirichlet and the Neumann problems are non-Noetherian (=non-Fredholm), but 
also the problem Bulan = <p, where B is an arbitrary C-linear differential operator 
(more generally, for the Bitsadze equation any boundary value problem from the 
Boutet de Monvel's algebra would be non-Noetherian). 
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Non-Strongly Converging Approximating Methods 

B. Silbermann (Chemnitz) 

The aim of my talk is to present some concept of non-strongly converging approx-
imating methods. 

Let M stand for the set of all finite unions of left-sided closed and right-sided open 
intervals of IR+. Assume that to each U EM a projection operator Ru (acting on 
some Banach space X) is associated such that 

Ru + RR+ \u = I, 
• RuRv = RvRu = Runv, 

Ru + Rv = Ruuv if U n V = 0 

• sup llRull < oo 
UEM 

• n ker R[o,w) = {O}. 
wER+ 

The collection of all these projection operators is denoted by R. With R there are 
connected three important notions 

• R-convergence of elements 
• R-convergence of operators 
• operators of R-local type 

Note that R-convergence is in general weaker than norm or strong convergence, 
respectively. Then a special case of a general converging theorem reads as follows: 

Suppose that the bounded operator A : X --7 X is invertible and of R-local type. 
Then the projection method {P[o,T)AP[o,T)} R-converges for the operator A if and 

only if the sequence {P[o,T)A P[o,T)} is stable. 
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Error Estimates for the Approxin1ation of Semi-Coercive 
Variational Inequalities 

W. Spann (Munich) 

Semi-coercive variational inequalities arise in a wide area of physical phenomena, 
for example Signorini problems in elasticity where no Dirichlet data on parts of the 
boundary are prescribed. The abstract variational inequality 

u E K, a( u, v - u) ;:::: f( v - u) for all v E K 

with a positive semidefinite, not necessarily symmetric, bilinear form satisfying 
Garding's inequality is considered. Here K denotes a closed convex set in a Hilbert 
space V. The discretization yields a variational inequality 

uh E Kh, ah( uh, vh - uh) ;:::: fh( vh - uh) for all Vh E Kh 

where Vh c V is a closed linear subspace, Kh c Vh is closed and convex without 
assuming Kh C K, and ah, fh are approximations of a, f respectively. For the case 
of coercive bilinear form a (on spanK) and uniformly coercive ah (on spanKh) error 
estimates are well-:-known. However, this does not apply to semi-coercive variatio-
nal inequalities. For the approximation we require that ah is positive semidefinite 
uniformly satisfying Garding's inequality and that ah, fh approximate a, f in the 
sense of Strang's conditions. Furthermore, dist ( u, Kh) ---+ 0 and dist ( vh, K) ---+ 0 
uniformly in {vh E Kh: llvhll s:; r} for r > r0 is supposed. 

The variational inequality is assumed to be uniquely solvable and to satisfy the 
. intersection condition {v E V : a(v,v) = O} n {v E V : a(u,v) = f(v)} n 
cone(K - u) = {O}. For the discrete variational inequality we suppose that a so-
lution exists. Then an error estimate generalizing Falk's estimate for the coercive 
case is obtained. It can be proven that the intersection condition is even necessary 
in order to imply that the error estimate holds. 

These results are applied to the obstacle problem for the beam with free ends. The 
intersection condition turns out to be satisfied if the center of the external forces 
belongs to the interior of the coincidence set. For the case of sufficiently smooth 
data and assuming that the coincidence set is a finite union of closed nondegenerate 
intervals the approximation by cubic splines that satisfy the obstacle condition in 
the grid points gives the optimal convergence order 0( h3l 2-~) in the H 2-norm. This 
is also observed in the numerical examples presented. 
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Meromorphic Factorization, Partial Index Estimates and 
Elastodynamic Diffraction Problems 

M.C. Camara, A.B. Lebre and F.-0. Speck (Lisbon) 

This work is motivated by some elliptic boundary and transmission problems in 
mathematical physics, in particular by elastodynamic wave propagation. The ana-
lytical solution of the boundary pseudodifferential equations requires a generalized 
factorization of the lifted Fourier symbol which is a non-rational matrix-function. 
In the factorization procedure poles and increasing terms appear, and cause enor-
mous practical and theoretical problems due to the possible occurance of partial 
indices different from zero. The paper presents an approach which avoids those 
difficulties by use of a factorization of the symbol matrix into meromorphic fac-
tors. An operator theoretic interpretation yields resolvents up to finite dimensional 
operators, whose ranks are closely related to partial indices, order of the algebraic 
increase at infinity, and the multiplicities of the poles in the factors. 

For details, see [1]. 

1. Meromorphic Factorization, Partial Index Estimates and Elastodynamic 
Diffraction Problems. Math. Nachr. 157 (1992) 291-317. 
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h-p Version of the Boundary Element Method for 
Two- and Threedimensional Problems 

E.P. Stephan (Hanover) 

This lecture presents the h-p-version of the boundary element Galerkin method 
for first kind integral equations on polygons and on open surface pieces. The h-p . 
version is a combination of both the h version (which achieves higher accuracy by 
refining the mesh) and the p version (which achieves higher accuracy by increasing 
the polynomial degree of the trial functions). The integral equations under con-
sideration are those with the single layer potential and the normal derivative of 
the double layer potential, respectively. In case of quasiuniform meshes it is shown 
that the convergence of the p version is twice as fast as the h version, and the rate 
of convergence is restricted by the corner singularities and the edge singularities 
of the exact solutions of the integral equations. If a geometric mesh refinement 
towards the corners (in the 2D case, i.e. on the polygon) and towards the edges 
(in the 3D case, i.e. on the surface pieces) is used together with an appropriate 
p-refinement (i.e. increasing polynomial degrees away from corners or edges), we 
obtain exponentially fast convergence of the Galerkin error in the energy norm. 
Also adaptive refinement strategies based on the local residues are given both for 
the h and the h-p version. Furthermore, numerical experiments are given which 
underline the theoretical results. 
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Wiener-Hopf-Hankel Operators and Diffraction by Wedges 

F.S. Teixeira (Lisbon) 

The subject of this lecture lies in the topic "Applications of integral and pseudo-
differential equations". It is divided into two parts: in the first one we present a 
survey on some problems in Mathematical Physics which give rise to convolution 
type operators, namely problems of Diffraction Theory and their operator-theoretic 
approach. In the second part, which follows a paper by E. Meister, A. Lebre and 
F.S. Teixeira, entitled "Some results on the invertibility of Wiener-Hopf-Hankel 
Operators" and published in Z.A.A., vol. 11 (1992) 1, 57-76, a study is presented 
on the invertibility properties of scalar operators defined as the sum of a Wiener-
Hopf and a Hankel operator on L2 (JR+) with symbol in L00 (1R). This study is based 
on the properties of a vector Wiener-Hopf operator naturally associated with each 
of the operators mentioned above. In particular, it is shown that the invertibility 
of such an associated operator is equivalent to the simultaneous invertibility of 
the Wiener-Hopf-Hankel operators W(a) + H(b) and W(a) - H(b), and explicit 
analytic formulas are given for the inverse operators. At the end we consider an 
application of these results to the diffraction problem of a time-harmonic electro-
magnetic wave by a rectangular wedge, one of whose faces is perfectly conducting 
and the other having a prescribed impedance (finite or infinite). The problem, in-
itially formulated as an exterior boundary value problem for the two-dimensional 
Helmholtz equation in the Sobolev space H 1 (f2), with a Dirichlet condition on one 
face of the wedge and a third kind boundary condition on the other, is reduced to 
an equivalent pseudodifferential equation of Wiener-Hopf-Hankel type in the trace 
spaces H11; 2 (1R). By the standard lifting procedure, using Bessel Potential opera-
tors, that equation is seen to be equivalent to a Wiener-Hopf-Hankel equation on 
Li(JR), with piecewise continuous symbols. The Fredholm property is obtained, 
and for the case of infinite impedance we prove the existence and uniqueness of the 
solution to the corresponding equation. In that case an explicit solution is given 
in terms of the generalized factorization of the presymbol of the associated vector 
Wiener-Hopf operator. 
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Higher Order Collocation Methods for Multidimensional 
Weakly Singular Integral Equations 

G.M. Vainikko (Tartu) 

Consider the integral equation 

u(x) = j K(x,y)u(y)dy + J(x) 
G 

where G C JRn is a parallelepiped, f is defined and smooth on G and the kernel 
is weakly singular, e.g. K(x,y) = a(x,y)log Ix -yl or K(x,y) = a(x,y)jx -yj-v, 
0 < v < n, with a smooth coefficient a which is bounded on G X G together with 
derivatives. Dividing G into boxes which correspond to graded grids in coordinate 
directions, a collocation method with piecewise polynomial functions of degree 
m - 1 with respect to any of arguments x 1 , ... , Xn is introduced; in any box, mn 

collocation points are -obtained by a standard affine transformation of fixed nodes 
e1, ... , em in [-1, 1] into corresponding subdivision intervals. The global estimates 
maxxEG luN(x)-u(x)I ~chm as well the superconvergence estimates at collocation 
points are derived, e.g. in the case of Gaussian nodes e1, ... , em, 

C:N ~ chm { ~=I log hi : ~ = ~ ~: } 
hn-v ' n - v < m 

where C:N is the maximal error at collocation points. 

For more details, see [1]. 

1. Vainikko, G.: Multidimensional Weakly Singular Integral Equations: Ana-
lysis and Numerics (to appear). 
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Stability and Convergence of a Hyperbolic Tangent 
Method for Singular Integral Equations 

E. Venturino (Iowa) 

In this paper we reexamine a previously proposed quadrature scheme [Venturino], 
based on a formula proposed by [Stenger, 1976]. Our goal is to establish a stability 
result for the dominant singular integral equation of index one, and from it derive 
the error analysis for the proposed numerical method. We show that the norm of 
the inverse matrix of the discretized linear algebraic system, to which the original 
equation is reduced, grows like the square root of the number of unknowns. 

The convergence of the method nevertheless is not affected by this growth, since 
the consistency error is exponentially convergent, and this feature is retained by 
the error of the solution. 

A technical point must be made here. In discretizing the system, a new unknown 
function is defined, which has the nice property of vanishing at the endpoints. The 
discretization leads to a rectangular system, but in view of the previous property, 
the parts of the unknown vector corresponding to nodes close to the endpoints are 
removed, and the corresponding columns of the matrix as well. These terms must 
be accounted for in the error analysis. 

The convergence of the method can then be extended to the first kind complete 
equation, although in this case a very strong assumption on the coefficients must 
be made. The results are then shown also for the equation of index zero. 

Finally the necessary modifications for applying this analysis to a recently proposed 
scheme [Zhang] for Hadamard finite part integral equations are examined. Because 
of the good stability result, where the norm of the inverse is of order h2 , the method 
gains in convergence rate. Indeed it should be remarked that the quadrature scheme 
is modified in order to adapt it to finite part integrals [Zhang], but in so doing the 
consistency error loses the exponential convergence and becomes only quadratically 
convergent. The final convergence rate for the method is shown to be three. 

In all these proofs the necessary assumption we need to make is to restrict our con-
siderations to a compact subset of the interval in which the equation is formulated, 
containing all riodes where the unknown is evaluated. 

REFERENCES 

F. Stenger (1976), Approximations via Whittaker's cardinal function. J. Approx. Theory 17, p. 
222-240. 

E. Venturino (1985), On solving singular integral equations via a hyperbolic tangent quadrature 
rule. Math. Comp. 47, p. 159-167. 

F. Zhang (1991), A hyperbolic tangent quadrature rule for solving singular integral equations 
with Hadamard finite part integrals. Comp. Math. Applic. 22, p. 59-73. 

(The paper is submitted to Mathematische N achrichten.) 
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Discrete Nonliner Riemann-Hilbert Problems 

E. Wegert (Freiberg) 

Let { Mt}tE'll' be a given fa"uiily of curves in the complex plane. A nonlinear Riemann-
Hilbert problem consists in finding all functions w which are holomorphic in the 
complex unit disk ID, extend continuously up to its boundary 1', and satisfy the 
boundary relation 

w(t) E Mt Vt E 1'. 
A solution to (1) that meets the additional condition 

a.Re w(O) + (3Im w(O) = / 

at the origin is called a regular solution of (1), (2) if 

windv = 0 

and 

a cos 5 + (3 sin 5 = / , 

where v( t) denotes the tangent to Mt at w( t) and 
271" 1 . 

5 := - j arg v( eir)dT. 
27r 

0 

(1) 

(2) 

We describe a (nondiscrete) quadratically convergent Newton type method for the 
iterative computation of a regular solution. A straightforward discretization, how-
ever, disturbs convergence. Alternatively, we propose a collocation method with 
trigonometric polynomials. The existence and local uniqueness of a solution and 
an optimal error estimate in the scale of Sobolev space Wf(1') are shown. Ap-
plying Newton's method to the discrete problem yields a quadratically convergent 
projection-iteration method. If one uses·fast solvers for Toeplitz systems the com-
putational complexity is of order N log2 N per iterative step. 

In the special case of conformal mapping similar results go back to R. Wegmann 
[1], [2]. 

REFERENCES 

1. Wegmann, R.: Convergence proofs and error estimates for an iterative method for conformal 
mapping. Numer. Math. 44 (1984), 435-461. 
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Substructuring for Boundary Integral Equations 

W.L. Wendland (Stuttgart) 

The lecture reports subs.tructuring,formulations involving boundary element meth-
ods and some corresponding analysis by G.C. Hsiao, B.N. Khoromskij and W.L. 
Wendland [4, 5, 6, 7]. . 

1. Macro-elements and FEM-BEM coupling 

For a combined FEM-BEM approximation of the Dirichlet problem in variational 
form, e.g. the Laplacian or the Lame system, the given domain n is decomposed 
into subregions nj corresponding for j E JF to the finite element partition and for 
j E JM to so-called macro-elements. The family of subdivisions is characterized by 
a mesh-width parameter H. :F denotes a finite element space in H 1 (r2) associated 
with {r2ihEJp· The space Fit of traces on the sceleton f' = uani is extended 
to the whole sceleton. The well known finite element variational formulation is 
to find uF E :F satisfying the Dirichlet condition uFlan = </>F such that for all 

0 0 1 
VF E:FCH (r2) there holds 

L j u(uF) · e(vF)dx + L j Aj(uF)vFdSj = 0 
jElp n. jEJM r· 

J J 

where Aj( UF) = T( UF) Ir; denotes the Steklov-Poincare mapping associated with 
the Laplacian or the Lame system in ni. These individual mappings can approxi-
mately be constructed by appropriate boundary element equations which require 
additional boundary element subdivisions and spline approximation on the macro-
element boundaries r j' j E JM. This coupling procedure is widely used in engineer-
ing structural analysis. Brezzi and Johnson provided asymptotic error estimates in 
[2] which were extended in [7], also to the opposite case of finer finite element 
refinements; a detailed analysis including boundary approximation is presented in 
[3]. 

2. Domain decomposition and a parallel algorithm 

The above-mentioned coupling formulation can also be used for a domain decom-
position method with boundary elements [4]. In [5], a parallel algorithm based on 
the so-called Glowinski-Wheeler preconditioner for two subdomains is preserited 
whose convergence follows from [1 J. In the lecture, this method is extended to a 
new two-level multigrid iteration where the coarse grid corresponds to the cross 
points of the sceleton. The method requires fast solution of individual Dirichlet 
problems, Neumann problems and mixed problems in each of the macro-elements 
and belongs to the class investigated in [6]. 
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On the Theory of Nonlinear Singular Integral Equations 

L. v. Wolfersdorf (Freiberg) 

In the lecture there was given an overview about some results and also open prob-
lems for nonlinear singular integral and integro-differential equations of Cauchy 
type. 

(1) Application of Schauder's fixed point theorem and of methods of monotone 
operator theory to Hammerstein type and related integral equations and 
to a nonlinear version of Prandtl's integro-differential equation of airfoil 
theory. Further by monotone operator theory in combination with Banach's 
fixed point theorem and by Schauder's fixed point theorem, respectively, to 
mixed Volterra and singular integral equations of several kinds. 

(2) As open problems there were mentioned: Nonlinear singular integro-differen-
tial equations in infinite intervals, for instance Prandtl's equation on the half 
axis and Peierls' equation in dislocation theory; nonlinear singular integral 
equations of Hammerstein and Uryson type with shift; nonlinear singular 
integral equations of polynomial type, for instance a bilinear singular inte-
gral equation from hydrodynamics for plane potential fl.ow past and through 
a cylinder with porous surface. 

(3) Briefly mentioned there were also three time-dependent equations, namely 
the Benjamin-Ono equation of wave theory and the Satsuma-Mimura equa-
tion from population dynamics both containing the Hilbert transform on the 
real axis and further the well-known Birkhoff-Rott equation describing the 
evolution of a vortex sheet in two-dimensional ideal fl.ow. 
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On the Generalization of the Least Squares Method for the 
Operator Equations in Sarne Frechet Spaces 

D. Zarnadze ( Tiflis) 

The generalization of the classical least squares method for the linear equation with 
an operator mapping a Frechet space into a Frechet space is given. The approximate 
solution is found by means of minimization the discrepancy with respect to the 
metric, which in the case of Hilbert spaces coincides with the metric, generated by 
the scalar product. The convergence of the sequence of approximate solutions to 
the exact solution is proved. Some estimates are also proved and the concretization 
of these estimates for the operators between the power series spaces of finite and 
infinite type are given. 
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