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1. INTRODUCTION AND MAIN RESULTS

In this paper, we study a transformed path measure that arises from a mean-field type interaction of a three
dimensional Brownian motion in a Coulomb potential. Under the influence of such a transformed measure,
the large-t behavior of the normalized occupation measures, denoted by Lt, is of high interest. This is
intimately connected to the well-known polaron problem from statistical mechanics and a full understanding
of the behavior of Lt under the aforementioned transformation is crucial for the analysis of the polaron
path measure under ‘strong coupling’ , its effective mass and justification of mean-field approximations. For
physical relevance of this model, we refer to [S86]. Some mathematically rigorous research in this direction
began in the 1980s with the analysis of the partition function of Donsker and Varadhan ([DV83-P]), but it was
not until recently that a new technique was developed [MV14] for handling the actual path measures, and
the main results the present paper, besides being interesting on their own, make determinant contribution
towards a deeper analysis and a full identification of the limiting distribution of Lt under the transformed path
measure.

We start with developing the mathematical layout of the model in Section 1.1, remind on earlier results
in Section 1.2, present our new progress in Section 1.3 and report on the achievements of [MV14] in Sec-
tion 1.4, which plays an important role in the present context.

1.1 The transformed path measure.

We start with the Wiener measure P on Ω = C([0,∞),R3) corresponding to a 3-dimensional Brownian
motion W = (Wt)t≥0 starting from the origin. We are interested in the transformed path measure

P̂t(dω) =
1

Zt
exp

{
1

t

∫ t

0

∫ t

0

dσds
1∣∣ωσ − ωs∣∣

}
P(dω) ω ∈ Ω, (1.1)

with the normalizing constant, the partition function,

Zt = E
[

exp

{
1

t

∫ t

0

∫ t

0

dσds
1∣∣Wσ −Ws

∣∣
}]

. (1.2)

We remark that the asymptotic behavior of P̂t is determined by those influential paths which make |Wσ−Ws|
small, i.e., the interaction is self-attractive.

Let

Lt =
1

t

∫ t

0

ds δWs (1.3)

be the normalized occupation measure of W until time t. This is a random element ofM1(R3), the space
of probability measures on R3. Then the path measure P̂t can be written as

P̂t(A) =
1

Zt
E
[
1lA exp

{
tH(Lt)

}]
A ⊂ Ω,

where

H(µ) =

∫
R3

∫
R3

µ(dx)µ(dy)

|x− y|
, µ ∈M1(R3), (1.4)

denotes the Coulomb potential energy functional of µ. Hence, P̂t is an exponential tilt of the Coulomb energy
function of Lt with parameter t. It is the goal of this paper to make a contribution to a rigorous understanding
of the behavior of Lt under P̂t.

For any µ ∈M1(R3), we define the function(
Λµ
)
(x) =

(
µ ?

1

| · |

)
(x) =

∫
R3

µ(dy)

|x− y|
,
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which is also sometimes called its Coulomb potential energy functional. In order to avoid misunderstandings,
we will callH(µ) the Coulomb energy and Λ(µ) the Coulomb functional of µ. Note thatH(µ) =

〈
µ,Λµ

〉
=∫

(Λµ)(x)µ(dx). We remark that the Coulomb energy of the Brownian occupation measure,

Λt(x) =
(
ΛLt

)
(x) =

∫
R3

Lt(dy)

|x− y|
=

1

t

∫ t

0

ds

|Ws − x|
, (1.5)

is almost surely finite in R3.

1.2 Existing results.

Donsker and Varadhan [DV83-P] studied the asymptotic behavior of Zt resulting in the variational formula

lim
t→∞

1

t
logZt = sup

µ∈M1(R3)

{
H(µ)− I(µ)

}

= sup
ψ∈H1(R3)
‖ψ‖2=1

{∫
R3

∫
R3

dxdy
ψ2(x)ψ2(y)

|x− y|
− 1

2

∥∥∇ψ∥∥2

2

}
= ρ,

(1.6)

with H1(R3) denoting the usual Sobolev space of square integrable functions with square integrable gradi-
ent. Furthermore, we put

I(µ) =
1

2
‖∇ψ‖22 (1.7)

if µ has a density ψ2 with ψ ∈ H1(R3), and I(µ) =∞ otherwise. Note that bothH and I are shift-invariant
functionals, i.e., H(µ) = H(µ ? δx) and I(µ) = I(µ ? δx) for any x ∈ R3.

The above result is a consequence of a large deviation principle (LDP) for Lt under P inM1(R3), devel-
oped by Donsker and Varadhan ([DV75-83]). This means, whenM1(R3) is equipped with the usual weak
topology, for every open set G ⊂M1(R3),

lim inf
t→∞

1

t
log P

(
Lt ∈ G

)
≥ − inf

µ∈G
I(µ), (1.8)

and for any compact set K ⊂M1(R3),

lim sup
t→∞

1

t
log P

(
Lt ∈ K

)
≤ − inf

µ∈K
I(µ). (1.9)

The above statement is also called a weak large deviation principle since the upper bound (1.9) holds only for
compact subsets. We say that a family of probability distributions satisfies a strong large deviation principle
if, along with the lower bound (1.8), the upper bound (1.9) holds also for all closed sets.

The variational formula (1.6) has been analyzed by Lieb ([L76]). It turns out that there is a smooth, rota-
tionally symmetric and centered maximizer ψ0 which is unique except for spatial translations. In other words,
if m denotes the set of maximizing densities, then

m =
{
µ0 ? δx : x ∈ R3

}
, (1.10)

where µ0 is a probability measure with a density ψ2
0 so that ψ0 maximizes the variational problem (1.6). We

will often write µx = µ0 ? δx and write ψ2
x for its density.

Given (1.6) and (1.10), we expect the distribution of Lt under the transformed measure P̂t to concentrate
around m and, even more, to converge towards a mixture of spatial shifts of µ0. Such a precise analysis was
carried out by Bolthausen and Schmock [BS97] for a spatially discrete version of P̂t, i.e., for the continuous-
time simple random walk on Zd instead of Brownian motion and an interaction potential v : Zd → [0,∞)
with finite support instead of the singular Coulomb potential x 7→ 1/|x|. A first key step in [BS97] was to
show that, under the transformed measure, the probability of the local times falling outside any neighborhood
of the maximizers decays exponentially. For its proof, the lack of a strong LDP for the local times was handled
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by an extended version of a standard periodization procedure by folding the random walk into some large
torus. Combined with this, an explicit tightness property of the distributions of the local times led to an
identification of the limiting distribution.

However, in the context of the continuous setting with a singular Coulomb interaction, the aforementioned
periodization technique or any standard compactification procedure does not work well to circumvent the
lack of a strong LDP. An investigation of P̂t ◦ L−1

t , the distribution of Lt under P̂t, remained open until a
recent result [MV14] rigorously justified the above heuristics, leading to the statement

lim sup
t→∞

1

t
log P̂t

{
Lt /∈ U(m)

}
< 0, (1.11)

where U(m) is any neighborhood of m in the weak topology induced by the Prohorov metric, the metric
that is induced by all the integrals against continuous bounded test functions. Hence, (1.11) implies that
the distribution of Lt under P̂t is asymptotically concentrated around m. Since a one-dimensional picture of
m is an infinite line, its neighborhood resembles an infinite tube. Therefore, assertions similar to (1.11) are
sometimes called a tube property.

It is worth pointing out that although (1.11) requires only the weak topology in the statement, its proof is
crucially based on a robust theory of compactification X̃ of the quotient space

M̃1(Rd) ↪→ X̃

of orbits µ̃ = {µ ? δx : x ∈ R3} of probability measures µ on Rd under translations and a full LDP for the

distributions of L̃t ∈ M̃1(Rd) embedded in the compactification. In particular, this is based on a topology
induced by a different metric in the compactification X̃ , see Section 1.4 for details and its consequences in
the present context.

1.3 Our results: uniform tube property and regularity of Λ(Lt)

Let us turn to our main results. We write

Λ(ψ2)(x) =

∫
dy

ψ2(y)

|x− y|

for functions ψ2, and recall that ψ2
w = ψ2

0 ?δw denotes the shift of the maximizer ψ2
0 of the second variational

formula (1.6) byw ∈ R3. Roughly speaking, we will establish that on the large deviations scale, the Coulomb
potentials Λ(Lt) under the transformed path measures P̂t stay close to the manifold of Coulomb functionals
Λm = {Λψ2

w : w ∈ R3} acting on the translations of the Pekar maximizers, see Theorem 1.1. This is a first
determinant step towards establishing the full conjecture on the convergence of the distributions P̂t ◦ L−1

t

towards an explicit spatial mixture of the maximizers m, see Remark 1. On the way towards proving Theorem
1.1, we also derive some modulus of continuity of Λ(Lt), which can be of independent interest in the realm
of regularity properties of local times for stochastic processes.

Here is the statement of our first main result.

Theorem 1.1. For any ε > 0,

lim sup
t→∞

1

t
log P̂t

{
inf
w∈R3

∥∥Λt − Λψ2
w

∥∥
∞ > ε

}
< 0. (1.12)

This is a tube property for Λt in the uniform metric, since the ε-neighbourhood of Λ(m) = {Λ(ψ2
w) : w ∈

R3} can be visualized as a tube around the ‘line’ m. The proof of Theorem 1.1 is given in Section 3.

As a consequence of Theorem 1.1, the HamiltonianH(Lt) = 〈Lt,ΛLt〉 converges in distribution towards
the common Coulomb energy of any member of m and we state this fact as
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Corollary 1.2. Under P̂t, the distributions of H(Lt) converge weakly to the Dirac measure at

H(ψ2
0) =

∫ ∫
R3×R3

ψ2
0(x)ψ2

0(y)

|x− y|
dxdy.

Let us highlight the core of the proof of Theorem 1.1. An important technical hindrance in the proof of
Theorem 1.1 stems from the singularity of the Coulomb potential x 7→ 1/|x|, which does not fit within
the set up of standard large deviation theory. This problem was encountered also in [MV14] for deriving
(1.11). As it concerns Lt, this turned out to be a mild technical issue. Indeed, a simple truncation argument
with replacing 1/|x| by its regularized version 1/

√
|x|2 + δ2 sufficed to carry over the theory developed in

[MV14] to this singular potential. However, as we need now to work with Λ(Lt) in the uniform metric, the
singularity of 1/| · | turns out be a more serious problem, since a standard contraction principle combined
with the truncation argument does not work well here. Instead, we need a strategy that shows a strong
regularity property of the random map x 7→ Λt(x), more precisely, an exponential decay of the probability
that its modulus of continuity deviates from zero. This is our second main result.

Theorem 1.3. For every b > 0,

lim
δ→0

lim sup
t→∞

1

t
log P

{
sup

x1,x2∈R3 : |x1−x2|≤δ

∣∣Λt(x1)− Λt(x2)
∣∣ ≥ b

}
= −∞. (1.13)

In Section 2, we prove Theorem 1.3. Let us state the following useful corollary to Theorem 1.3, which is
also of independent interest; its proof is also deferred to Section 3.

Corollary 1.4. For any b > 0,

lim sup
t→∞

1

t
log P

{
‖Λt‖∞ > b

}
< 0.

Concerning the regularity of Λt we have a more quantitative result than Theorem 1.3, which we state here
because of its own interest. Indeed, one main step in the proof of Theorem 1.3 is the following (stretched)
exponential integrability.

Proposition 1.5. There are constants ρ > 1, a ∈ (0, 1) and β ∈ (0,∞) such that

sup
x1,x2∈R3

|x1−x2|≤1

sup
x∈R3

Ex

[
exp

{
β

(∣∣Λ1(x1)− Λ1(x2)
∣∣

|x1 − x2|a

)ρ}]
<∞.

This assertion suffices for our purposes, but it is clear that our proof can be extended to prove a number
of more refined statements about the regularity of Λt, like the identification of the exact index of its Hölder
continuity, almost sure limsup and liminf assertions about its modulus of continuity, and local and global laws
of iterated logarithms. Let us remark that this might run prallel to the work of Donsker and Varadhan [DV77]
on the law of iterated logarithm for one-dimensional Brownian local times.

Remark 1 Let us remark that Theorem 1.1, in combination with Corollaries 1.2 and 1.4, besides their in-
trinsic interests on their own right, have proved to be instrumental in proving tightness of the distributions of
Lt under P̂t and their convergence towards an explicit (spatially inhomogeneous) mixture of the maximizers
{ψ2

x : x ∈ R3}, which resolves the aforementioned “mean-field approximationöf the polaron problem on
the level of path measures. This has been carried out in [BKM15], and in this context, we refer to Section
2.4 in [BKM15] for a heuristic discussion on the relevance of the results derived in the present paper.

1.4 Review: compactness and large deviations

We now turn to the second main ingredient for the proof of Theorem 1.1, which is based on the results
derived in [MV14]. Since this will play an important role in our proof, we take the opportunity to introduce the
main idea in [MV14] and review its salient assertions.
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Note that the space M1(Rd) of probability measures in Rd fails to be compact in the weak topology,
which is due to several reasons. For instance, the location of the mass can shift away to ∞ as for the
sequence (µ ? δan)n with an →∞, or the mass can be spread thinly and totally disintegrate into dust, like
for a sequence of Gaussians with diverging variance. Similarly, a mixture like µn = 1

2
[µ∗δan +µ∗δ−an ] can

split into two (or more) widely separated pieces if an →∞. To compactify this space one should be allowed
to “centerëach such piece separately, as well as to allow some mass to be “thinly spread and disappear". Let

M̃1(Rd) = {µ̃ : µ ∈M1(Rd)}

denote the quotient space of orbits µ̃ = {µ?δx : x ∈ Rd} ofM1(Rd) under translations. Then intuitively, for

any sequence (µ̃n)n in M̃1(Rd) in the limit, one imagines, an empty, finite or countable collection {αj : j ∈
J} of sub-probability distributions that are widely separated with total mass

∑
j∈J αj(Rd) = p ≤ 1 and the

remaining mass 1− p having totally disintegrated. For example, let µn be a mixture of three Gaussians, one
with mean 0 and variance 1, one with mean n and variance 1 and one with mean 0 and variance n, each
with equal weight 1

3
. Then the limiting object is the collection {α̃1, α̃1}, where α̃1 is the equivalence class of

a Gaussian with variance 1 and weight 1
3
.

This intuition naturally inspires the introduction of the space

X̃ =
{
ξ = (α̃j)j∈J : J at most countable, αj ∈M≤1(Rd)∀j ∈ J

}
of empty, finite or countable collections of orbits {α̃j : j ∈ J} of sub-probability distributions αj having
masses pj with p =

∑
j pj ≤ 1. Note that we have a canonical embedding

M̃1(Rd) ↪→ X̃ .

In the proof of Theorem 1.1, the following results will play an important role.

Theorem 1.6 ([MV14], Theorem 3.2). There is a metric D on X̃ so that M̃1(Rd) is dense in (X̃ ,D) and

any sequence (µ̃n)n in M̃1(Rd) finds a subsequence which converges in the metric D to some element

ξ ∈ X̃ . In other words, X̃ is the compactification of M̃1(Rd) and also the completion under the metric D

of the totally bounded space M̃1(Rd).

Theorem 1.7 ([MV14], Theorem 4.1). The distribution of the orbits L̃t of the Brownian occupation measures
embedded in the compact metric space (X̃ ,D) satisfy a strong LDP with the rate function

J̃(ξ) =
∑
j∈J

Ĩ(α̃j) =
∑
j∈J

I(αj), ξ = (α̃j)j∈J ∈ X̃ ,

where we recall that I(·) is defined in (1.7) and is shift-invariant and for any α ∈ M≤1(Rd), I(α) is a

function only of the orbit α̃, which we call Ĩ(α̃).

Let us now choose d = 3 and recall the transformed path measure P̂t from (1.1).

Theorem 1.8 ([MV14], Theorem 5.3). The family of distributions of L̃t under P̂t satisfies a strong LDP in X̃
with rate function

Ĵ(ξ) = ρ̂−
∑
j

{∫
R3

∫
R3

1

|x− y|
αj(dx)αj(dy)− Ĩ(α̃j)

}
, ξ = {α̃j} ∈ X̃ ,

and ρ̂ is given by

ρ̂ = sup
ξ∈ eX

∑
j

{∫
R3

∫
R3

ψ2
j (x)ψ2

j (y)

|x− y|
dxdy − 1

2

∑
j

∥∥∇ψj∥∥2

2

}
(1.14)

and αj(dx) = ψ2
j (x)dx with

∑
j

∫
R3 ψ

2
j (x)dx ≤ 1.
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Let us finally remark that the above theory applies to any shift-invariant functional f of Lt, since f(Lt) =

f̃(L̃t) for an obviously defined lifting f̃ of f to the space of orbits. For example, in Theorem 1.8 the theory
was applied to H(Lt), recall (1.4). In the present paper, such shift-invariant dependence of ‖Λt‖∞ on Lt is
exhibited by the simple identity

‖Λt‖∞ = sup
y∈R3

(∫
R3

Lt(dz)

|z − y|

)
= sup

y∈R3

(∫
R3

(
Lt ? δx

)
(dz)

|z − y|

)
= ‖Λt ? δx‖∞ ∀x ∈ R3,

and is of crucial importance in the context of deriving Theorem 1.1 from the above theory, see the proof of
(3.9) in Section 3.

2. SUPER-EXPONENTIAL ESTIMATE: PROOF OF THEOREM 1.3

For any x ∈ R3 we will denote by Px the Wiener measure for the Brownian motion W = (Wt)t≥0 starting
at x and by Ex the corresponding expectation and we continue to write P0 = P and E0 = E. First we turn
to the proof of Proposition 1.5, which follows from the following lemma.

Lemma 2.1. For any ε ∈ (0, 1), if a = 1− 2ε and ρ = 1
1−ε , then, for some β ∈ (0,∞),

sup
x1,x2∈R3

|x1−x2|≤1

sup
x∈R3

Ex

[
exp

{
β

(∣∣Λ1(x1)− Λ1(x2)
∣∣

|x1 − x2|a

)ρ}]
<∞. (2.1)

Proof. We fix x1, x2 ∈ R3 with |x1 − x2| ≤ 1 and denote

V (y) = Vx1,x2(y) =
1

|y − x1|
− 1

|y − x2|
, y ∈ R3,

so that Λ1(x1)− Λ1(x2) =
∫ 1

0
V (Ws) ds. Then by Jensen’s inequality,∣∣∣∣ ∫ 1

0

V (Ws) ds

∣∣∣∣ρ ≤ ∫ 1

0

|V (Ws)|ρ ds.

Let us now recall Khas’minski’s lemma (see [S98, p.8], [P76]), which states that, if for a function Ṽ ≥ 0,

sup
x∈Rd

Ex

{∫ 1

0

Ṽ (Ws)ds

}
≤ η < 1,

then

sup
x∈Rd

Ex

{
exp

{∫ 1

0

Ṽ (Ws)ds

}}
≤ η

1− η
<∞.

Hence, (2.1) follows for some β ∈ (0,∞) if we show that

sup
x1,x2∈R3 :
|x1−x2|≤1

|x1 − x2|−aρ sup
x∈R3

Ex

[ ∫ 1

0

|V (Ws)|ρ ds

]
<∞. (2.2)

Now let us introduce a generic constant C that does not depend on x, x1, x2, y, nor on any integration
variable, and may change its value from line to line.

We estimate, for any x1, x2 satisfying |x1 − x2| ≤ 1, and a = 1− 2ε,

|V (y)| =
∣∣|y − x2| − |y − x1|

∣∣
|y − x1| |y − x2|

≤ |x1 − x2|
|y − x1| |y − x2|

≤ |x1 − x2|a
[
|y − x2|1−a + |y − x1|1−a

]
|y − x1| |y − x2|

.

(2.3)
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The latter inequality follows from (r + s)1−a ≤ r1−a + s1−a for any r, s ≥ 0. Furthermore, let us estimate
the integral

h(y) = hx(y) =

∫ 1

0

dt
e−|x−y|

2/2t

t3/2

as follows. Since for any b > 0, the map [1,∞) 3 z 7→ z3/2−be−z is bounded, we can estimate∫ |y−x|2∧1

0

dt
e−|y−x|

2/2t

t3/2
≤ C|y − x|−3−2b

∫ |y−x|2∧1

0

dt e−|y−x|
2/2t
( |y − x|2

2t

)3/2+b

tb

≤ C|y − x|−3−2b

∫ |y−x|2∧1

0

dt tb

≤ C|y − x|−3−2b
(
|y − x|2 ∧ 1

)1+b
, x, y ∈ R3.

For the remaining integral, we have the upper bound∫ 1

|y−x|2∧1

dt
e−|y−x|

2/2t

t3/2
≤
∫ 1

|y−x|2∧1

dt t−3/2 ≤
[
|y − x|2 ∧ 1

]−1/2 − 1.

Combining the preceding two estimates, we obtain that

h(y) =

∫ 1

0

dt
e−|y−x|

2/2t

t3/2
≤ C

1

|y − x|(1 + |y − x|)b
. (2.4)

Let us now combine (2.3) and (2.4), to get

|x1 − x2|−aρ Ex

[ ∫ 1

0

|V (Ws)|ρ ds

]
= (2π)−3/2

∫
R3

dy |x1 − x2|−aρ|V̂ (y)|ρ h(y)

≤ C

∫
R3

dy
|y − x2|ρ(1−a) + |y − x1|ρ(1−a)

|y − x1|ρ |y − x2|ρ
1

|y − x|(1 + |y − x|)b
.

Taking the symmetry in x1 and x2 into account, we see that (2.2) follows once we have

sup
x1,x2∈R3 :
|x1−x2|≤1

sup
x∈R3

∫
R3

dy

(1 + |y − x|)b
1

|y − x1|ρ
× 1

|y − x|
× 1

|y − x2|ρa
<∞.

For this, we apply Hölder’s inequality to the measure dy
(1+|y−x|)b and the other three functions with parameters

p1, p2, p3 > 1 satisfying 1
p1

+ 1
p2

+ 1
p3

= 1. Hence, it suffices to show that all the integrals∫
R3

dy

(1 + |y − x|)b
1

|y − x1|ρp1
,

∫
R3

dy

(1 + |y − x|)b
1

|y − x|p2
,

∫
R3

dy

(1 + |y − x|)b
1

|y − x2|ρap3
,

are bounded in x, x1, x2 for proper choices of p1, p2, p3 and b. But this is ensured by requiring b > 3 and
p1 < 3/ρ and p2 = ρp1 (enforcing that p3 = p1ρ/(p1ρ − ρ + 1)) and p3 < 3/aρ. The latter mean that
3(ρ−1)
ρ(3−ρa) < p1 <

3
ρ

and are possible as soon as 4 > ρ(1 + a). But this is satisfied for our choices ρ = 1
1−ε

and a = 1− 2ε, for any ε ∈ (0, 1).

This finishes the proof of Lemma 2.1. �

Lemma 2.2. Fix ε ∈ (1
3
, 1

2
) and choose a = 1 − 2ε and ρ = 1

1−ε as in Lemma 2.1. Then there exists a
constant β1 = β1(ε) > 0 such that the random variable

M =

∫
R3

dx1

∫
R3

dx2 1l{|x1 − x2| ≤ 1}
[

exp

{
β1

(∣∣Λ1(x1)− Λ1(x2)
∣∣

|x1 − x2|a

)ρ}
− 1

]
(2.5)

has a finite expectation under P0.
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Proof. By Lemma 2.1 and Fubini’s theorem, it suffices to show that∫ ∫
|x1−x2|≤1

dx1dx2 E
[

exp

{
β1

(∣∣Λ1(x1)− Λ1(x2)
∣∣

|x1 − x2|a

)ρ}
− 1

]
<∞. (2.6)

We decompose R3 ⊂
⋃∞
n=0

{
x ∈ R3 : n ≤ |x| < n + 1

}
and put τn = inf{t > 0: |Wt| > n− nα}

for some α ∈ (0, 1). Then∫ ∫
|x1−x2|≤1

dx1dx2 E
[

exp

{
β1

(∣∣Λ1(x1)− Λ1(x2)
∣∣

|x1 − x2|a

)ρ}
− 1

]
≤

∞∑
n=0

∫
|x1|∈[n,n+1)

dx1

∫
B1(x1)

dx2

[
E
{

1l{τn>1}

(
exp

{
β1

(∣∣Λ1(x1)− Λ1(x2)
∣∣

|x1 − x2|a

)ρ}
− 1

)}
+ E

{
1l{τn≤1}

(
exp

{
β1

(∣∣Λ1(x1)− Λ1(x2)
∣∣

|x1 − x2|a

)ρ}
− 1

})]
.

(2.7)

The first expectation inside the integrals is handled as follows. We note that, with |x1| ∈ [n, n + 1) and
x2 ∈ B1(x1), if τn > 1, then |Ws − x1| > nα and |Ws − x2| > nα − 1 for any s ∈ [0, 1]. Hence, for any
n ∈ N, on the event {τn > 1},∣∣Λ1(x1)− Λ1(x2)

∣∣
|x1 − x2|a

≤ |x1 − x2|
|x1 − x2|1−2ε

∫ 1

0

ds

|Ws − x1||Ws − x2|
≤ c1|x1 − x2|2εn−2α ≤ c1n

−2α.

Hence,

∞∑
n=0

∫
|x1|∈[n,n+1)

dx1

∫
B1(x1)

dx2 E
{

1l{τn>1}

(
exp

{
β1

(∣∣Λ1(x1)− Λ1(x2)
∣∣

|x1 − x2|a

)ρ}
− 1

)}

≤
∞∑
n=0

(
eβ1c

ρ
1n
−2αρ − 1

)
Leb

{
x1 ∈ R3 : |x1| ∈ [n, n+ 1)

}
Leb(B1(0)).

(2.8)

Since the first term is of size O(n−2αρ) and the first Lebesgue measure is of size O(n2), the above sum is
finite for α > 3

2ρ
. Since we chose ε > 1

3
and hence ρ = 1

1−ε >
3
2
, we can choose some α ∈ (0, 1) so that

α > 3
2ρ

, as desired.

Let us now handle the second expectation in (2.7). By the Cauchy-Schwarz inequality and Proposition
1.5, if β1 is small enough, for any x1, x2 ∈ R3 such that |x1 − x2| ≤ 1,

E
[
1l{τn≤1}

{
exp

{
β1

(∣∣Λ1(x1)− Λ1(x2)
∣∣

|x1 − x2|a

)ρ}
− 1

}]
≤ P

(
τn ≤ 1

) 1
2 E
[

exp

{
2β1

(∣∣Λ1(x1)− Λ1(x2)
∣∣

|x1 − x2|a

)ρ}] 1
2

≤ CP
(

max
[0,1]

W > n− nα
) 1

2

,

whereC does not depend on x1, x2. Since the last probability is of order e−cn
2
, the second sum on n in (2.7)

is obviously finite. This, combined with the finiteness of the sum in (2.8), proves (2.6) and hence finishes the
proof of Lemma 2.2. �

For the proof of Theorem 1.3 we will use the following (multidimensional) estimate of Garsia-Rodemich-
Rumsey [SV79, p. 60].
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Lemma 2.3. Let p(·) and Ψ(·) be strictly increasing continuous functions on [0,∞) so that p(0) = Ψ(0) =
0 and limt↑∞Ψ(t) = ∞. If f : Rd → R is continuous on the closure of the ball B2r(z) for some z ∈ Rd

and r > 0, then the bound∫
Br(z)

dx

∫
Br(z)

dy Ψ

(
|f(x)− f(y)|
p(|x− y|)

)
≤M <∞, (2.9)

implies that ∣∣f(x)− f(y)
∣∣ ≤ 8

∫ 2|x−y|

0

Ψ−1

(
M

γu2d

)
p(du), x, y ∈ Br(z), (2.10)

for some constant γ that depends only on d.

Finally we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. The Brownian scaling property implies that

Λt(x) =
1

t

∫ t

0

1

|Ws − x|
ds =

∫ 1

0

1

|W (ts)− x|
ds
D
=

∫ 1

0

1

|
√
tW (s)− x|

ds = t−1/2Λ1(xt
−1/2),

where
D
= denotes equality in distribution. Hence, the claim of Theorem 1.3 is equivalent to

lim
δ→0

lim sup
t→∞

1

t
log P

{
sup

x1,x2∈R3 : |x1−x2|≤δt−1/2

∣∣Λ1(x1)− Λ1(x2)
∣∣ ≥ bt1/2

}
= −∞, b > 0. (2.11)

Now we would like to apply Lemma 2.3. We pick ε ∈ (1
3
, 1

2
) and a = 1 − 2ε and ρ = 1

1−ε and β = β1

as in Lemma 2.2 and choose

Ψ(x) = eβ|x|
ρ − 1, p(x) = |x|a = |x|1−2ε, f(x) = Λ1(x). (2.12)

Then Ψ(·), p(·) and f(·) all satisfy the requirements of Lemma 2.3. Furthermore, Lemma 2.2 implies that
hypothesis (2.9) is satisfied if |x1 − x2| ≤ δ and δ > 0 is chosen small enough, where the random variable
M is given in (2.5). Hence, (2.10) implies that for |x1 − x2| ≤ δt−1/2 and all t ≥ 1,∣∣Λ1(x1)− Λ1(x2)

∣∣ ≤ 8

∫ δt−1/2

0

Ψ−1

(
M

γu6

)
p(du) = 8

1− 2ε

β1/ρ

∫ δt−1/2

0

log

(
1 +

M

γu6

)1/ρ

u−2ε du.

(2.13)
For u ∈ (0, δt−1/2] and all sufficiently large t, we estimate

8
1− 2ε

β1/ρ
log

(
1 +

M

γu6

)1/ρ

≤ C
(

(log(M ∨ 1))1/ρ + (log 1
u
)1/ρ
)
,

for some constant C that does not depend on t if t is sufficiently large. Hence, the right-hand side of (2.13)
is not larger than

Cδ(log(M ∨ 1))1/ρtε−1/2 + Cδ(log t)ctε−1/2

for some Cδ, c, not depending on t. Substituting this in (2.13) and recalling that ρ = 1
1−ε , we obtain

P
{

sup
x1,x2∈R3 : |x1−x2|≤δt−1/2

∣∣Λ1(x1)− Λ1(x2)
∣∣ ≥ bt1/2

}
≤ P

{
(log(M ∨ 1))1/ρ + (log t)c ≥ b

Cδ
t1−ε

}
≤ P

{
log(M ∨ 1) ≥ C1b

ρt− C2(log t)cρ)

}
≤ E(M ∨ 1)e−C1bρt+C2(log t)cρ .

(2.14)
Recall that by Lemma 2.2, E(M ∨ 1) < ∞. Hence, the above estimate now implies (2.11) and therefore
Theorem 1.3. �



10

Corollary 2.4. For any b > 0,

lim
δ→0

lim sup
t→∞

1

t
log P̂t

{
sup

x1,x2∈R3 : |x1−x2|≤δ

∣∣Λt(x1)− Λt(x2)
∣∣ ≥ b

}
= −∞.

Proof. Let us denote by At,δ the above event inside the probability. Then the Cauchy-Schwarz inequality
gives that

1

t
log P̂t

{
At,δ
}

=
1

2t
log E

{
e2tH(Lt)

}
− 1

t
log E

{
etH(Lt)

}
+

1

2

1

t
log P

{
At,δ
}
.

While the first two terms have finite large-t limits, by Theorem 1.3 the large-t limit of the third term tends to
−∞ as δ → 0. This proves the corollary. �

3. LDP FOR Λt IN THE UNIFORM METRIC: PROOF OF THEOREM 1.1

Recall that we need to show, for any ε > 0,

lim sup
t→∞

1

t
log P̂t

{
inf
w∈R3

∥∥Λt − Λψ2
w

∥∥
∞ ≥ ε

}
< 0. (3.1)

We approximate the sup-norm inside the probability via a coarse graining argument as follows. For any
δ ∈ (0, 1), we can estimate

inf
w∈R3

∥∥Λt − Λψ2
w

∥∥
∞ = inf

w∈R3
sup
x∈R3

∣∣Λt(x)−
(
Λψ2

w)(x)
∣∣

≤ sup
x1,x2∈R3 : |x1−x2|≤δ

∣∣Λt(x1)− Λt(x2)
∣∣

+ inf
w∈R3

sup
z∈δZ3

[∣∣Λt(z)−
(
Λψ2

w)(z)
∣∣+ sup

z̃∈Bδ(z)

∣∣(Λψ2
w

)
(z̃)−

(
Λψ2

w

)
(z)
∣∣].
(3.2)

Note that, for any w ∈ R3 the deterministic function Λψ2
w is uniformly continuous on R3 and hence

lim
δ↓0

sup
z∈δZ3

sup
z̃∈Bδ(z)

∣∣(Λψ2
w

)
(z̃)−

(
Λψ2

w

)
(z)
∣∣ = 0.

Since ε > 0 is arbitrary, the above fact and Corollary 2.4 imply that, to deduce (3.1), it suffices to prove, for
any ε, δ > 0,

lim sup
t→∞

1

t
log P̂t

{
inf
w∈R3

sup
z∈δZ3

∣∣Λt(z)−
(
Λψ2

w)(z)
∣∣ ≥ ε

}
< 0. (3.3)

For any z ∈ δZ3, w ∈ R3 and any η > 0, we can estimate∣∣Λt(z)−
(
Λψ2

w)(z)
∣∣ ≤ ∫

Bη(z)

ψ2
w(y)

|y − z|
dy+

∫
Bη(z)

Lt(dy)

|y − z|
+

∣∣∣∣ ∫
R3

1l{|y − z| ≥ η}
|y − z|

(
Lt(dy)−ψ2

w(y)dy

)∣∣∣∣.
(3.4)

The first term can be handled easily. Note that, for any w ∈ R3, ψw is radially symmetric and ‖ψw‖2 = 1.
Hence using polar coordinates and invoking the dominated convergence theorem we can argue that

lim
η→0

sup
z∈δZ3

∫
Bη(z)

ψ2
w(y)

|y − z|
dy = 0. (3.5)

Let us turn to the second term in (3.4). We claim that, for any δ > 0 and η > 0 small enough,

lim sup
t→∞

1

t
log P̂t

{
sup
z∈δZ3

∫
Bη(z)

Lt(dy)

|y − z|
≥ ε

}
< 0. (3.6)
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Let us first handle the above event with the Wiener measure P replacing P̂t. Then we can estimate

P
{

sup
z∈δZ3

∫
Bη(z)

Lt(dy)

|y − z|
> ε

}
≤
∑
z∈δZ3

|z|≤t2

P
{∫

Bη(z)

Lt(dy)

|y − z|
≥ ε/2

}
+ P
{

sup
z∈δZ3

|z|>t2

∫
Bη(z)

Lt(dy)

|y − z|
≥ ε/2

}
.

(3.7)
The second term can be estimated by the probability that the Brownian path, starting at origin, travels a
distance t2 − ε by time t. This probability is of order exp{−ct3} and can be ignored. For the first term we
note that a box of size t2 in R3 can be covered by O(t6) sub-boxes of side length δ and that the probability
is maximal for z = 0. Hence, we can estimate, with the help of Markov’s inequality, for any β > 0,∑
z∈δZ3

|z|≤t2

P
{∫

Bη(z)

Lt(dy)

|y − z|
> ε/2

}
≤ Ct6 P

{
β

∫ t

0

Vη(Ws)ds > tβε/2

}
≤ Ct6e−

ε
2
tβ E

{
eβ

R t
0 Vη(Ws) ds

}
,

(3.8)
where Vη(x) = 1l{|x|≤η}

1
|x| . Note that, for any β > 0 and some constants c1, c2 independent of η,

sup
y∈R3

Ey

{
β

∫ 1

0

Vη(Ws) ds

}
≤ β

∫
Bη(0)

dx

|x|

∫ 1

0

ps(0, x) ds ≤ βc1

∫
Bη(0)

dx

|x|2
= c2ηβ.

For any fixed β > 0 and η small enough, this is not larger than 1/2, and by Khas’minskii’s lemma ([S98,
p. 8]), successive conditioning and the Markov property,

E
{

eβ
R t
0 Vη(Ws)ds

}
≤ 2dte.

Then (3.8) and (3.7) imply, for any β > 0,

lim sup
t→∞

1

t
log P

{
sup
z∈δZ3

∫
Bη(z)

Lt(dy)

|y − z|
≥ ε

}
≤ −εβ/2 + log 2.

From this we can deduce (3.6) by choosing β > 0 large enough and invoking Hölder’s inequality as in the
proof of Corollary 2.4. We drop the details to avoid repetition.

Let us turn to the third term on the right hand side of (3.4). Then by (3.5) and (3.6), it suffices to prove
that, for every η, ε > 0,

lim sup
t→∞

1

t
log P̂t

{
Lt ∈ Fη

}
< 0, (3.9)

where

Fη =

{
µ ∈M1(R3) : ∀w ∈ R3 sup

z∈R3

∣∣〈fz,η, µ− ψ2
w

〉∣∣ ≥ ε

}
,

where we put fz,η(y) = 1
|y−z| ∧

1
η

. We claim that for each η > 0, Fη is a closed set in the weak topology in

M1(R3). First note that the familyAη = {fz,η : z ∈ Rd} is equicontinuous and uniformly bounded. Hence,
for any η > 0, the set

Gη,w =

{
µ ∈M1(R3) : sup

f∈Aη

∣∣〈f, µ− ψ2
w

〉∣∣ < ε

}
is weakly open and hence

Fη =
⋂
w∈Rd

Gc
η,w

is weakly closed. Furthermore, we note that Fη is shift-invariant, i.e., if µ ∈ Fη, then µ ? δx ∈ Fη for any
x ∈ R3. In other words,

P̂t
{
Lt ∈ Fη

}
= P̂t

{
L̃t ∈ F̃η

}
,
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where F̃η = {µ̃ : µ ∈ Fη}, the set of orbits µ̃ = {µ ? δx : x ∈ R3} of members of Fη, is a closed set in

M̃1(R3) ↪→ X̃ , and by Theorem 1.6, F̃η is also compact in (X̃ ,D). Then by Theorem 1.8,

lim sup
t→∞

1

t
log P̂t

{
L̃t ∈ F̃η

}
≤ − inf

ξ∈ eFη Ĵ(ξ).

According to [MV14, Lemma 5.4], the variational formula in (1.14) attains its maximum only in trivial se-
quences ξ consisting of just one single orbit of a probability measure µ(dx) = ψ2(x) dx with ψ a rota-
tionally symmetric, L2-normalized function, which, by the uniqueness of the variational problem (1.6) (recall
(1.10)), must be one of the maximizers of the formula in (1.6), and ρ = ρ̂. Since F̃η is in particular compact

and does not contain such an element ξ, we have that infξ∈ eFη Ĵ(ξ) > 0. These two facts imply (3.9) and
hence Theorem 1.1. �

We end this section with the proof of Corollary 1.4.

Proof of Corollary 1.4. The proof is straightforward and similar to the last line of arguments. Indeed, we
note that for any δ > 0,

P
{
‖Λt‖∞ > b

}
≤ P

{
sup

|x1−x2|≤δ

∣∣Λt(x1)− Λt(x2)
∣∣ ≥ b/2

}
+ P

{
sup
x∈δZ3

Λt(x) ≥ b/2
}

≤ P
{

sup
|x1−x2|≤δ

∣∣Λt(x1)− Λt(x2)
∣∣ ≥ b/2

}
+ P

{
sup
x∈δZ3

|x|≤t2

Λt(x) ≥ b/2

}

+ P
{

sup
x∈δZ3

|x|>t2

Λt(x) ≥ b/2

}

By Theorem 1.3, the first term has a strictly negative exponential rate. The third term can again be neglected
since this is of order exp{−ct3}. Also for the second term, the box of size t2 can be covered by O(t6)
sub-boxes of side length δ. Therefore,

P
{

sup
x∈δZ3

|x|≤t2

Λt(x) ≥ b/2

}
≤ Ct6P

{
Λt(0) > b/2

}
.

For any κ > 0,

P
{

Λt(0) > b/2

}
≤ e−κbt/2 E

{
exp

{
κ

∫ t

0

ds

|Ws|

}}
.

We choose t > u� 1 and κ > 0 small enough so that
√
uκ� 1 and

α = sup
x∈R3

Ex

{
κ

∫ u

0

ds

|Ws|

}
= E0

{
κ

∫ u

0

ds

|Ws|

}
= 2κ

√
uE
(

1

|W1|

)
� 1.

Then by Khas’minskii’s lemma [S98, p. 8],

sup
x∈R3

Ex

{
exp

{
κ

∫ u

0

ds

|Ws|

}}
≤ 1

1− α
,

and by successive conditioning and the Markov property,

E
{

exp

{
κ

∫ t

0

ds

|Ws|

}}
≤
(

1

1− α

)t/u
.
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Since log(1 + α) ≈ α as α→ 0, for any b > 0 and κ > 0 suitably chosen and u large enough,

P
{

Λt(0) > b/2

}
≤ exp

{
− κbt

2
+
t

u
log(1− α)

}
≤ exp

[
− tκ

{
b

2
− 1√

u
c

}]
≤ exp

{
− tκC̃

}
for some C̃ = C̃(u, a, c) > 0. This proves the corollary. �
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