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Abstract. A simulation based method for the numerical solution of PDE with random
coefficients is presented. By the Feynman-Kac formula, the solution can be repre-
sented as conditional expectation of a functional of a corresponding stochastic dif-
ferential equation driven by independent noise. A time discretization of the SDE for
a set of points in the domain and a subsequent Monte Carlo regression lead to an
approximation of the global solution of the random PDE. We provide an initial error
and complexity analysis of the proposed method along with numerical examples illus-
trating its behaviour.

1. Introduction

Many applications in the applied sciences, e.g. in engineering and computational bi-
ology, involve uncertainties of model parameters. These can for instance be related
to coefficients of media, i.e. material properties, the domains and boundary data. The
uncertainties may result from heterogeneities of media and incomplete knowledge or
inherent stochasticity of parameters. With steadily increasing computing power, the
research field of uncertainty quantification has become a rapidly growing and vividly
active area which covers many aspects of dealing with such uncertainties for problems
of practical interest.

In this work, we are concerned with the description of a novel numerical approach for
the solution of PDEs with stochastic data. More specifically, we consider the Darcy
equation related to the modelling of groundwater flow given by

−∇ · (κ(x)∇u(x)) = f (x), x ∈ D,(1a)
u(x) = g(x), x ∈ ∂D.(1b)

Here, the solution u is the hydraulic head, κ denotes the conductivity coefficient de-
scribing the porosity of the medium, f is a source term and the Dirichlet boundary
data is defined by g. The computational domain in d dimensions is D ⊂ Rd. In what
follows, we suppose that D is a convex polygon and all data is sufficiently smooth such
that the problem always exhibits a unique solution which itself is smooth. κ ∈ C2(D).
A detailed regularity analysis is beyond the scope of this paper. In principle, although
we restrict our investigations to a stochastic coefficient κ, any data of the PDE can
be modelled as being stochastic. This model is quite popular for analytical and nu-
merical examinations since it is one of the simplest models which reveals some major
difficulties that also arise in more complex stochastic models. Moreover, it is of practi-
cal relevance, e.g. in the context of groundwater contamination, and the deterministic
second order elliptic PDE is a well-studied model problem.

When stochastic data is assumed, an adequate description of the stochastic fields
has to be chosen. This can for instance be based on actual measurements, expert-
knowledge or simplifying assumptions regarding the statistics. For actual computa-
tions, a suitable representation amenable for the employed numerical method is re-
quired. It is a common assumption that the considered fields are Gaussian and are
thus completely specified by the first two moments. Another usual simplification is the
finite dimensional noise assumption which states that a field only depends on a finite
number of random variables.
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In fact, any stochastic field κ : Ω × D → R with finite variance can be represented in
terms of

(2) κ(ω, x) = E[κ] +

∞∑
m=1

am(x)ξm(ω)

where the product of the sum separates the dependence on ω ∈ Ω and x ∈ D. A
typical method to obtain such a representation is the Karhunen-Loève expansion (KL)
which will be used in the numerical examples with a finite number of terms (truncated
KL). In this case, the basis am consists of eigenfunctions of the covariance integral
operator weighted by the eigenvalues of this operator. The smoothness of the am

is directly related to the smoothness of the covariance function used to model the
respective stochastic field, see e.g. [11, 36, 26].

A variety of numerical methods is available to obtain approximate solutions of the
model problem (1) with random data and we only refer to [26, 33, 22] for an overview
in the context of uncertainty quantification (UQ). These methods often rely on the
separation of the deterministic and the stochastic space and introduce separate dis-
cretisations [32]. Common methods are based on sampling of the stochastic space,
the projection onto an appropriate stochastic basis or a perturbation analysis. The
most well-known sampling approach is the Monte Carlo (MC) method which is very
robust and easy to implement. Recent developments include the quite successful ap-
plication of multilevel ideas for variance reduction and advances with structured point
sequences (Quasi-MC), cf. [10, 13, 19, 21, 6]. (Pseudo-)Spectral methods represent a
popular class of projection techniques which can e.g. be based on interpolation (Sto-
chastic Collocation) [2, 29, 30] or orthogonal Projections with respect to the energy
norm induced by the differential operator of the random PDE (Stochastic Galerkin
FEM) [17, 27, 4, 3, 16, 15]. These methods are more involved to analyse and imple-
ment but offer the benefit of possibly drastically improved convergence rates when
compared to standard Monte Carlo sampling. The deterministic discretisation often
relies on the finite element method (FEM) which also holds for MC.

The aim of this paper is the description of a novel numerical approach which is
founded on the observation that the random PDE (1) is directly related to a stochastic
differential equation driven by a stochastic process, namely

(3) dXt = b(Xt)dt + σ(Xt)dWt

with appropriate coefficients b and σ, Brownian motion W and additional boundary
conditions. For deterministic data κ, f , g, for any x ∈ D, the Feynman-Kac formula
leads to a collection of random variables φx = φx(κ, f , g) such that u(x) = E[φx], i.e.
the deterministic solution at x is equivalent to the expectation of the random variable.
When the data is stochastic, the solution u(ω, x) of the random PDE at x ∈ D can
be expressed as the conditional expectation u(ω, x) = E[φx | κ, f , g] and the variance
of u(x) can be bounded by the variance of φx. To determine φx at points x ∈ D, a
classical Euler method can be employed. Given a finite set of sampling points in D,
the approximate expectation of the solution u(·) = E[u(ω, ·)] is determined by solv-
ing a regression problem with respect to a basis of orthogonal global polynomials.
By this, we obtain a representation of the (expectation of the) solution field which is
globally defined and smooth. One can regard the proposed method as a combination
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of sampling and reconstruction techniques, making use of classical stochastic solu-
tion techniques pointwise and a global polynomial projection in a least squares sense.
When compared to MC which samples a stochastic space (Ω,F , P) by (typically) de-
termining a FEM solution at every point and subsequently averaging the solutions,
our method determines realisations of stochastic solutions at points in the physical
domain D and determines the expectation by a global minimisation subject to a basis
in the physical space. Thus, the method does not require any type of deterministic
solver. Moreover, it can be parallelised extremely well.

The structure of the paper is as follows: In Section 2, we elaborate on the representa-
tion of deterministic and stochastic PDEs in terms of stochastic differential equations.
Moreover, we recall the Euler method as a way to determine pointwise stochastic so-
lutions numerically. Based on a set of stochastic solutions in the physical domain, the
reconstruction of a global approximation by means of a regression approach is de-
scribed in Section 3. In addition to the presentation of the method, we also provide
a global convergence analysis. In Section 4, we comment on the expected overall
convergence and complexity properties of the method. This should be considered as
initial and not in-depth analysis which provides pointers to further required research.
The paper is concluded with numerical examples in Section 5 where the performance
of our method is demonstrated with a very smooth and a less smooth field.

2. Stochastic representations

In this section, we construct proper stochastic representations of solutions of stochas-
tic PDEs in terms of solutions of stochastic differential equations. That is, our goal is
to construct an SDE such that the solution u(ω, x) of the SPDE at some point x ∈ D
can be expressed as conditional expectation of some functional of the solution to the
SDE.

We first give an extensive reminder of stochastic representations of certain determin-
istic PDEs. The material presented here is standard and we refer, for instance, to the
comprehensive presentation by Milstein and Tretyakov [28].

2.1. Stochastic representations for deterministic PDEs. We consider the follow-
ing stochastic differential equation (SDE):

dXt = b(Xt)dt + σ(Xt)dWt,(4a)
X0 = x,(4b)

where x ∈ Rd is a deterministic point, W is a d-dimensional standard Brownian motion
defined on a probability space (Ω,F , P) and b : Rd → Rd, σ : Rd → Rd×d are (say)
uniformly Lipschitz continuous functions. We could just as easily consider a Brown-
ian motion with a different dimension. Sometimes we shall additionally consider the



4

derived processes

Yt B exp
(∫ t

0
c(Xs)ds

)
,(4c)

Zt B

∫ t

0
f (Xs)Ysds,(4d)

for some functions c, f : Rd → R. In particular, for every T > 0, (4) has a unique
(strong) solution on [0,T ], i.e., there is a unique process X – adapted to the filtration
generated by the Brownian motion W – which satisfies∫ T

0
E[|Xt|

2]dt < ∞

and

Xt = x +

∫ t

0
b(Xs)ds +

∫ t

0
σ(Xs)dWs,

where the integral w.r.t. W is considered in the Ito-sense. If we want to stress the
dependence on the initial value we write Xx

t B Xt. Of course, Y and Z depend on x
as well, and we shall write Y x

t and Zx
t if we want to stress this dependence. (As usual,

all equalities between random variables are supposed to hold a.s. unless otherwise
noted.)

Remark 2.1. Here and in what follows we will generally be rather liberal with con-
ditions and assumptions, i.e., we will assume enough regularity of all data (σ, b, c,
f , g and, where relevant, the domain D) such that the objects under consideration
are well-defined, and the numerical approximations converge. A convenient assump-
tion to work with will be the usual uniform ellipticity assumption, even though most
of the facts will be true under weaker assumptions. Uniform ellipticity will generally
also allow us to assume that the PDEs have classical solutions, which is important for
the Ito formula. It is, however, very easy to generalize to the case of time-dependent
coefficients, for instance.

The infinitesimal generator of the SDE (4) is the differential operator L acting on test
functions by

(5) L f (x) =

n∑
i=1

bi(x)
∂

∂xi
f (x) +

1
2

n∑
i, j=1

ai j(x)
∂2

∂xi∂x j
f (x),

where a(x) B σ(x)>σ(x). We employ the following version of Ito’s formula: for any
function F : [0,T ] × Rd → R which is C1 in time and C2 in space it holds

F(t, Xt) = F(0, x) +

∫ t

0

(
∂

∂t
F(s, Xs) + LF(s, Xs)

)
ds +

∫ t

0

n∑
i=1

d∑
j=1

∂

∂xi
F(s, Xs)σi j(Xs)dW j

s .

Moreover, recall that for any process u(s) (adapted to the filtration generated by W),
t 7→

∫ t

0
u(s)dWs is a martingale on [0,T ] provided that

∫ T

0
E

[
|u(t)|2

]
dt < ∞. In particu-

lar, it holds that

E
[∫ t

0
u(s)dWs

]
= 0.
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After these preparations, we consider stochastic representations for solutions of PDEs
posed in terms of L. For simplicity, we first consider the Cauchy problem for (t, x) ∈
[0,∞[×Rn,

∂

∂t
u(t, x) = Lu(t, x) + c(x)u(t, x) + f (x),(6a)

u(0, x) = g(x).(6b)

Assuming that the solution u ∈ C1,2 ([0,∞[×Rn) and that the coefficients of L and c, f
are Lipschitz continuous, we can use that

(7) u(t, x) = E
[
g
(
Xx

t
)

Y x
t + Zx

t
]
, t ≥ 0, x ∈ Rd.

Indeed, fix some T > 0 and consider the functional F(t, x) B u(T − t, x). We assume
for simplicity that c = f = 0 which implies that Y ≡ 1 and Z ≡ 0. Ito’s formula and (6a)
yield

u(0, Xx
T ) − u(T, x) =

∫ T

0

(
−
∂

∂t
u(T − t, Xx

t ) + Lu(T − t, Xx
t )
)

dt

+

∫ T

0

d∑
i=1

d∑
j=1

∂

∂xi
u(T − t, Xx

t )σi j(Xx
t )dW j

t

=

∫ T

0

d∑
i=1

d∑
j=1

∂

∂xi
u(T − t, Xx

t )σi j(Xx
t )dW j

t .

Inserting (6b) and taking expectations on both sides, we obtain

u(T, x) = E
[
g(Xx

T )
]
.

Remark 2.2. Note that we have to compute a new solution of the SDE (4) for every
position x ∈ D for which we want to obtain the solution u(t, x) of (6).

Remark 2.3. Notice that the numerically challenging part of (4) is the simulation of
the paths of the process X. Given such paths, finding Y and Z is a standard one-
dimensional numerical integration problem.

For computations, we need to solve two problems:

(i) Find an approximation XN of Xt, which we can actually compute.
(ii) Given such an approximation, E

[
g
(
XN

)]
is computed by a (quasi) Monte Carlo

method.

As the second step is not different from other applications of the Monte Carlo method,
we will mainly focus on the discretization of the SDE (4). Clearly the most popular ap-
proximation method for SDEs is a straight-forward generalization of the Euler method
for ODEs. Indeed, let 0 = t0 < · · · < tN = t be a time grid and denote ∆ti B ti − ti−1,
∆Wi B Wti −Wti−1 , ∆tmax B maxi ∆ti. Set X0 B x and iteratively define

(8) Xi B Xi−1 + b
(
Xi−1

)
∆ti + σ

(
Xi−1

)
∆Wi, i = 1, . . . ,N.

Under very weak assumptions we have strong convergence with rate 1/2, i.e.,

E
[∣∣∣Xt − XN

∣∣∣] ≤ C
√

∆tmax
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for some constant C independent of ∆tmax. More relevant in most applications (includ-
ing our own application) is the concept of weak approximation. Fortunately, the Euler
scheme typically (for instance, when the diffusion is hypo-elliptic) exhibits first order
weak convergence, i.e., for any suitable test function F : Rd → R it holds

(9)
∣∣∣∣E[F(Xt)] − E

[
F

(
XN

)]∣∣∣∣ ≤ C∆tmax

with a constant C independent of ∆tmax.

Remark 2.4. Higher order weak schemes (i.e., schemes leading to higher order weak
convergence) do exist and are often used for the Cauchy problem. For simplicity, and
also because higher order methods are hard to find for boundary value problems, we
focus on the Euler scheme. Higher-order strong schemes are only available in very
special cases, we refer to Kloeden and Platen [20] for more information on high-order
(strong or weak) schemes. Adaptive time-stepping schemes have been constructed
by Szepessy et al. [34] based on the error representations of Talay and Tubaro [35].
Moreover, implicit Euler schemes may be preferable if the SDE solution exhibits insta-
bility.

Next, on a (smooth) domain D we consider the parabolic problem (6a) with Dirichlet
boundary conditions

∂

∂t
u(t, x) = Lu(t, x) + c(x)u(t, x) + f (x), t ≥ 0, x ∈ D,(10a)

u(t, x) = g(x), x ∈ ∂D,(10b)

u(0, x) = u0(x), x ∈ D.(10c)

Of course, we assume suitable compatibility conditions on h and g. Moreover, let

(11) τ B τx B inf
{

t ≥ 0
∣∣∣ Xx

t ∈ Dc }
denote the (random) first exit time of X from D. This leads to the stochastic represen-
tation

(12) u(t, x) = E
[(

u0(Xx
t )1τx≥t + g(Xx

τx
)1τx<t

)
Y x

min(t,τx) + Zx
min(t,τx)

]
.

In this case, we use the very same Euler discretization (8) as before. In particular, τ is
approximated by the first exit time τ of the discrete time process Xi, i = 0, . . . ,N. Note
that there are two sources of errors in the approximation of τ by τ:

(i) the error in the approximation of X by X;
(ii) the possibility that exit occurs between two grid points ti and ti+1.

Unfortunately, the second source of error reduces the weak error rate, i.e., the ap-
proximation error for u(t, x) to the rate 1/2. However, there are adaptive time-step
refinements, which have empirically shown to be very successful for improving the
order of convergence to an observed order 1 again, we refer to Dzougoutov et al. [14]
for the stopped diffusion and to Bayer et al. [7] for an adaptive scheme for reflected
and stopped diffusions. We also refer to Gobet and Menozzi [18] for an alternative
scheme based on shifting the boundary.
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For the elliptic problem

(13a) Lu(x) + c(x)u(x) + f (x) = 0, x ∈ D,

with the Dirichlet boundary condition

(13b) u(x) = g(x), x ∈ ∂D,

the stochastic representation is essentially obtained by the fact that the solution of
the elliptic problem is obtained as limit for t → ∞ from the solution of the parabolic
problem. Hence, the stochastic representation of the Dirichlet problem (13b) is given
by

(14) u(x) = E
[
g(Xx

τ )Y x
τ + Zx

τ

]
, x ∈ D,

for the stopping time τ given in (11).

Remark 2.5. Similar stochastic representations exist for both parabolic and elliptic
Neumann problems, based on reflected diffusion processes. Naturally, further exten-
sions in the case of mixed boundary conditions are possible, too. We again refer to
[28].

2.2. Stochastic representations for stochastic PDEs. This section is concerned
with the solutions of random PDEs. This means that the differential operator L and
possible the initial and/or boundary values are random. For the sake of concreteness,
let us concentrate on the case of a random elliptic Dirichlet problem in the sense
of (13a) with (13b).

In order for the above constructions to make sense for random data b, σ, f , c, g, we
need to choose a Brownian motion W independent of the other sources of random-
ness. This means we need to work on a probability space (Ω,F , P) large enough such
that the random fields and processes b, σ, f , c, g and W are all defined on the prob-
ability space and W is independent of the data. Given constructions of a probability
space carrying the fields and another probability space carrying the Brownian motion,
this simplifies to choosing the product space as the joint probability space.

More precisely, let us suppose that a Brownian motion W is defined on a probability
space (Ω1,F1, P1) where we shall write Wt(ω1) to stress the interpretation of W as a
process on (Ω1,F1, P1).

Moreover, we are given a second probability space (Ω2,F2, P2) on which the random
fields b = b(ω2, x), σ = σ(ω2, x), c = c(ω2, x), f = f (ω2, x), x ∈ D, and g(ω2, x), x ∈ ∂D,
ω2 ∈ Ω2 are defined. Additionally, we consider the product probability space

(Ω,F , P) B (Ω1,F1, P1) ⊗ (Ω2,F2, P2) = (Ω1 ×Ω2,F1 ⊗ F2, P1 ⊗ P2).

Obviously, we can extend any random variable Y on (Ω1,F1, P1) to a random variable
on (Ω,F , P) by setting Y(ω1, ω2) B Y(ω1), for any ω = (ω1, ω2) ∈ Ω, and likewise for
random variables Z defined on (Ω2,F2, P2). Note that the construction implies that any
such extended random variables Y and Z are independent. In this way, we obtain a
Brownian motion W and random fields b, σ, g, c, f on (Ω,F , P) with W independent of
the data.
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We interpret the random fields as random variables taking values in some function
spaces.1 More precisely, the random variables b(ω) B b(ω, ·), σ(ω) B σ(ω, ·) and
g(ω) B g(ω, ·), c(ω) B c(ω, ·), f (ω) B f (ω, ·) should assume values in the space
of Lipschitz continuous functions in order to avoid complications with regard to the
related SDEs.

On the one hand, inserting these into (4), for x ∈ D we obtain systems of (random)
SDEs of the form

dXt = b(Xt)dt + σ(Xt)dWt,(15a)
X0 = x.(15b)

It is clear that the solution Xt = Xt(ω) can only be considered on the full probability
space (Ω,F , P). As in (4c) and (4d), we further define

Yt := exp
(∫ t

0
c(Xs)ds

)
,(15c)

Zt :=
∫ t

0
f (Xs)Ysds.(15d)

On the other hand, we consider the random PDE given by the coefficients b, σ, g, c,
f . More precisely, define the random matrix field a B σ>σ and the random differential
operator L by

(16) L(ω2)h(x) =

n∑
i=1

bi(ω2)(x)
∂

∂xi
h(x) +

1
2

n∑
i, j=1

ai j(ω2)(x)
∂2

∂xi∂x j
h(x).

Obviously, L is obtained by inserting the random coefficients into the deterministic
formula for L as given in (5). Next, consider u = u(ω2)(x) = u(ω2, x), the random
solution of the random PDE

Lu + cu + f = 0,(17a)
u(ω2, x) = g(ω2, x), x ∈ ∂D.(17b)

From (14), we immediately derive the following stochastic representation for u: define
the stopping time τ = τx as in (11) (on the full probability space (Ω,F , P)), i.e.,

(18) τ B τx B inf { t ≥ 0 | Xt ∈ Dc } .

This leads to the solution
(19)

u(ω2, x) =

∫
Ω1

[
g
(
ω2, Xx

τx(ω1,ω2)(ω1, ω2)
)

Y x
τx(ω1,ω2)(ω1, ω2) + Zx

τx(ω1,ω2)(ω1, ω2)
]

P1(dω1),

by integrating out the randomness induced by the Brownian motion W. In a more
probabilistic notation and using the joint probability space (Ω,F , P), we can write

u(x) = E
[
g
(
Xx
τx

)
Y x
τx

+ Zx
τx

∣∣∣∣ b, σ, f , c, g
]

= E
[
g
(
Xx
τx

)
Y x
τx

+ Zx
τx

∣∣∣∣F2

]
,

assuming that F2 = σ (b, σ, f , c, g) and equating the σ-algebras F2 and Ω1 × F2 ⊂ F .

1This may not be true for the fields themselves, but it is certainly true for a suitable mollification of
the random fields, e.g., by a finite truncation of the Karhunen-Loève expansion.
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Remark 2.6. By independence between the coefficient fields and the added Brow-
nian motion W, the analysis of the SDE with random coefficients and the stochastic
representations remain basically unchanged compared to the deterministic coefficient
case, mainly replacing unconditional with conditional expectations when required. In
particular, the Euler scheme (8) can be extended in the obvious way to the above
problem, retaining the usual rates of convergence as discussed above.

Assuming we are only interested in E [u(x)], we can, of course, directly take the full
expectation in (19), namely

(20) E [u(x)] = E
[
g
(
Xx
τx

)
Y x
τx

+ Zx
τx

]
.

Hence, we do not need to use a nested Monte Carlo simulation procedure in the end.
In this context, note that

var u(x) ≤ var
[
g
(
Xx
τx

)
Y x
τx

+ Zx
τx

]
.

In fact, we have the elementary result that

var
[
g
(
Xx
τx

)
Y x
τx

+ Zx
τx

]
= var E

[
g
(
Xx
τx

)
Y x
τx

+ Zx
τx

∣∣∣∣F2

]
+ E var

[
g
(
Xx
τx

)
Y x
τx

+ Zx
τx

∣∣∣∣F2

]
= var u(x) + E var

[
g
(
Xx
τx

)
Y x
τx

+ Zx
τx

∣∣∣∣F2

]
.(21)

Note that the second term in the variance decomposition (21) can be interpreted as
the additional variance introduced by the Brownian motion W. Since it is non-negative
by definition, it increases the total variance of the estimator.

Discussion of finiteness of moments of hitting times. We generally assume sufficient
regularity such that the stochastic representation g

(
Xx
τx

)
Y x
τx

+ Zx
τx

is square integrable
and the (adaptive) Euler scheme converges with weak order one. In the spirit of this
exploratory paper, we do not try to provide a refined error analysis leading to minimal
conditions. (In particular, note that no proof of convergence rate one for the adaptive
Euler scheme – even in the case of deterministic coefficients – has been given in the
literature, to the best of our knowledge, cf. [14, 7].)

Regarding the step from deterministic to random coefficients, the representation (20)
holds provided that the deterministic counterpart holds for P-almost all (random) co-
efficients, and the resulting random variable u – obtained by conditional expectations
in (19) – is integrable. Similarly, error expansions for the case of deterministic coeffi-
cients (when available, such as for the non-adaptive Euler scheme) can be extended
to the case of stochastic coefficients provided that the terms are integrable (w.r.t. the
random coefficients).

However, it seems more tricky to obtain square integrability of g
(
Xx
τx

)
Y x
τx

+ Zx
τx

. In par-
ticular, square integrability of the stopping time τ is not straight-forward since there
seems to be a lack of explicit bounds of moments of hitting times for SDEs with de-
terministic coefficients (explicit in terms of said coefficients). Hence, one needs to
directly analyze the stochastic problem.
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To this end, note that w(t, x) B P (τx > t | b, σ), t ≥ 0, satisfies the (random) PDE

∂

∂t
w(t, x) + Lw(t, x) = 0,

w(t, x) = 0, x ∈ ∂D,
w(0, x) = 1, x ∈ D,

see, for instance, [28]. Moments of τ can now directly be related to moments of the
solution of the above random PDE by

E[τx] =

∫ ∞

0
E[w(t, x)]dt,

E[τ2
x] =

∫ ∞

0
tE[w(t, x)]dt.

Alternatively, Bouchard, Geiss and Gobet [9] give a general result on existence of
higher moments of hitting times of diffusion processes (actually of more general Ito
processes) provided that the first moment is finite and some uniform ellipticity holds.
This is relevant here as boundedness of the first moment E[τx] can actually be more
easily related to the elliptic problem (17) since

E[τx] = E[̃u(x)],

where ũ denotes the solution of (17) with c ≡ 0, g ≡ 0, f ≡ 1, as then Y ≡ 0 and Zt ≡ t.

Balaji and Ramasubramanian [5] study the problem of moments of hitting times for
diffusion processes (with deterministic coefficients) using Lyapunov functions. Again,
a careful analysis of the method may lead to improved estimates for moments of hitting
times even in the case of stochastic coefficients.

Assumption 2.7. The problem data is sufficiently regular. In particular, the results of
this paper hold if coefficients κ, ∇κ, f , g are a.s. Lipschitz continuous on D, a convex
polygon in Rd, additionally κ,∇κ, f , g ∈ L∞(Ω × D) and, κ−1 ∈ L∞(Ω × D).

3. Regression based methods and their error analysis

The construction of global approximate solutions based on probabilistic representa-
tions for different random PDEs may generically be carried out via solving a regression
problem connected with a probabilistic representation

(22) v(x) = E [Φx] , x ∈ D ⊂ Rd.

In (22), x ∈ D is a generic point in space and Φx is a real valued random variable on
a probability space (Ω,F ,P) such that the map

(x, ω) ∈ D ×Ω→ Φx (ω)

is B (D) ⊗ F measurable.

In the context of this paper, we consider v(x) = E[u(x)], u being the solution of the
random PDE (17). By (20), the above relation holds for

Φx B g
(
Xx
τx

)
Y x
τx

+ Zx
τx
.
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For each fixed x ∈ D, we consider the sequence of i.i.d. copies
(
Φx

m,m = 1, 2, . . .
)
.

Let further µ be some probability measure on (D,B (D)) , U be a random variable
on D with distribution µ, and (Un, n = 1, 2, . . .) a sequence of i.i.d. copies of U that are
independent of any Φx

m,m = 1, 2, . . . , x ∈ D.One now may estimate v(x) via regression
procedures based on a Monte Carlo simulation of

Φ
U1
1 , . . . ,ΦU1

M ,

Φ
U2
M+1, . . . ,Φ

U2
2M,

· ··

Φ
UN
(N−1)M+1, . . . ,Φ

UN
NM,

i.e. in condensed notation

(23)
(
Φ

Un
(n−1)M+1, . . . ,Φ

Un
nM

)
, n = 1, . . . ,N.

Notice once more that all these random variables are, by construction, independent.

Generally one distinguishes between regression estimators of local and global nature.
Below we give a concise recap, where we introduce for ease of notation the (point-
wise) averages

(24) Φ
x
n B Φ

x
n,M B

1
M

M∑
m=1

Φx
(n−1)M+m, x ∈ D.

3.1. Recap of regression estimators. In this section we recall some common re-
gression estimators starting with some local ones.

Local regression. LetK(x) ≥ 0 be some kernel function on Rd satisfying
∫
K(x)dx = 1

and
∫

xiK(x)dx = 0, i = 1, . . . , d. For a band-width δ > 0 with δ ↓ 0 in relation to
N → ∞, in a suitable way, one defines the kernel estimator

v̂(x) B

∑N
n=1K

(
x−Un
δ

)
Φ

Un

n,M∑N
n′=1K

(
x−Un′

δ

) .

Another related type of local regression is the so called local polynomial regression,
where one solves the following weighted least squares problem for some polynomial
degree p at a fixed point x0 :

arg min
{βη; |η|≤p}

N∑
n=1

K

( x0 − Un

δ

)
·

ΦUn

n,M −
∑
|η|≤p

βη(Un − x0)η


2

with η ∈ Nd
0 being a generic multi-index, which gives the approximations

v̂(x0) B β̂0, ∂η̂v(x0) B η!̂βη.

It should be noted that local polynomial regression is particularly favorable if one
needs to estimate derivatives at a fixed point. As some further local estimators we
mention the Nadaraya-Watson estimator, and the k-nearest neighbour estimators (e.g.
see [23] for more details).
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An application of local regression methods to the random PDE problem at hand is
postponed to a future paper. Here, we focus on global regression.

Fully stochastic global regression. Global Monte Carlo regression estimators are ex-
tremely popular in finance where they are used for the pricing of American options
([25] and [37]). The general procedure is as follows. One takes a system of (contin-
uous basis) functions ψk : D → R, k = 1, 2, . . . , and considers for a Monte Carlo
sample (23) and a fixed number K, the solution of the regression problem

(25) γ̂ B arg min
γ∈RK

1
N

N∑
n=1

ΦUn

n,M −

K∑
k=1

γkψk(Un)

2

.

The solution of (25) is straightforward and given by

(26) γ̂ =
(
M>M

)−1
M>Y,

whereM ∈ RN×K with entries given by

Mn,k B ψk(Un), n = 1, . . . ,N, k = 1, . . . ,K,

and

Y B
[
Φ

U1

1,M, . . . ,Φ
UN

N,M

]>
.

One thus obtains the approximation

(27) v̂(x) B
K∑

k=1

γ̂kψk(x),

which, of course, depends on N, M, K and the choice of basis functions ψ1, . . . , ψK.

Semi stochastic global regression. In several applications, in particular in finance, the
random variable U can be simulated (e.g. via an SDE) but its distribution is not explic-
itly known otherwise. Therefore the construction of γ̂ via (26) requires the inversion of
a random matrix M>M. In some situations this inversion may be ill-conditioned and
may be the source of suboptimal convergence properties unless some kind of regu-
larization is included. In the present context of random PDEs we, however, have full
control of the choice of the distribution of U. Note that

(28)
1
N

[
M>M

]
kl =

1
N

N∑
n=1

ψk(Un)ψl(Un)
N→∞
−−−−→

∫
D
ψk(x)ψl(x)µ (dx) C Gkl.

For favorable choices of µ and/or ψk, the matrix G may be pre-computed by some
quadrature method or even be known in closed form. In particular, if the basis func-
tions ψk are chosen orthonormal w.r.t. µ, then G is the identity matrix. So it is natural
to replace (26) with the estimate

(29) γ B
1
N
G−1M>Y

leading to the approximate solution

(30) v(x) B
K∑

k=1

γkψk(x).
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Figure 1. Subset of the regression points Φ
Ui
i and the solution of the

regression procedure.

The (semi-)stochastic global regression method is visualized in Figure 1. The dots in
the three-dimensional plot correspond to the samples

(
Ui,Φ

Ui
i

)
(or a subset thereof),

and the surface is the outcome of the regression procedure, i.e., the graph of v on the
domain D. Notice that Figure 1 is based on the actual calculations in Section 5.

Deterministic global regression. As an alternative to the semi stochastic procedure
(29), (30), we may alternatively carry out spatial regression with respect to some de-
terministic set of, e.g. uniform, grid points xn, n = 1, . . . ,N. This leads to the regression
problem

(31) γ̃ B arg inf
γ∈RK

1
N

N∑
n=1

Φxn

n,M −

K∑
k=1

γkψk(xn)

2

.

By the deterministic design matrix by N ∈ RN×K with entries given by

Nn,k B ψk(xn), n = 1, . . . ,N, k = 1, . . . ,K,

the solution is given by

(32) γ̃ =
(
N>N

)−1
N>Ỹ, Ỹ B

[
Φ

x1

1,M, . . . ,Φ
xN

N,M

]>
,
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yielding the approximation

(33) ṽ(x) B
K∑

k=1

γ̃kψk(x).

3.2. Convergence analysis of global regression estimators. The convergence
analysis of the full stochastic regression is highly nontrivial and relies on the the-
ory of empirical processes. For instance, in the case of American options see [12],
and in the case of Markovian control problems [8]. The convergence analysis for the
semi stochastic regression and the deterministic regression approach is significantly
easier. Since the latter procedures are more suitable for our purposes, we will restrict
our analysis to them.

Semi stochastic regression statistics. For the scalar product f , g ∈ L2
µ(D) defined by

〈 f , g〉L2
µ
B 〈 f , g〉 B

∫
D

f (x)g(x)µ(dx),

and the corresponding norm ‖·‖L2
µ
. Let

(34) γ◦ B arg min
γ∈RK

∥∥∥∥∥∥∥v −
K∑

k=1

γkψk

∥∥∥∥∥∥∥
2

and define

(35) vK(x) B
K∑

k=1

γ◦kψk(x), x ∈ D.

vK is the (exact) L2
µ-projection of v to span {ψ1, . . . , ψk }. Hence, we have that

〈v − vK , ψk〉 = 0, k = 1, . . . ,K,

i.e.,

〈v, ψk〉 −

K∑
k=1

Gklγ
◦
l = 0.

By defining
[w]k B 〈v, ψk〉 , k = 1, . . . ,K,

we thus have
γ◦ = G−1w.

Note that the semi-stochastic regression estimator v is a standard Monte Carlo esti-
mator of the projection vK, as (for simplicity for G = IK)

γk =
1
N

N∑
n=1

ψk(Un)Φ
Un

n,M ≈ 〈ψk , v〉 .

Hence, the standard Monte Carlo error formula shows that

E
[(
γk − 〈ψk , v〉

)2
]

=

var
[
ψk(Un)Φ

Un

n,M

]
N

.
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On the other hand, we are really interested in E
[
‖v − vK‖

2
]
. An immediate application

of the standard formula gives an error estimate of the order K2/N, as the K estimates
γ1, . . . , γK are not independent. However, we shall see that a more careful analysis
will give us an estimate of order K/N, see Proposition 3.1 below.

Let us write

1
N

[
M>Y

]
k =

1
N

N∑
n=1

ψk(Un)Yn =
1
N

N∑
n=1

ψk(Un)Φ
Un

n,M

=:
1
N

N∑
n=1

ψk(Un)
(
v(Un) +

ηn
√

M

)
(36)

with i.i.d. random variables

ηn B
√

M
(
Φ

Un

n,M − v(Un)
)

=
1
√

M

M∑
m=1

(
Φ

Un
(n−1)M+m − v(Un)

)
satisfying E

[
η1|U1

]
= 0. For the variances we have

var
[
η1|U1

]
= var

[
ΦU

∣∣∣ U]
var

[
η1

]
= var

[
ΦU − v(U)

]
= E

[(
ΦU − v(U)

)2
]

=

∫
µ(dx)E

[
(Φx − v(x))2

]
=

∫
µ(dx) var [Φx] .

From (36) we then define
1
N

[
M>Y

]
k =: 〈v, ψk〉 +

ξk
√

N
+

ϑk
√

NM
with

ξk B
1
√

N

N∑
n=1

(ψk(Un)v(Un) − 〈v, ψk〉) ,

ϑk B
1
√

N

N∑
n=1

ψk(Un)ηn =
1
√

NM

N∑
n=1

M∑
m=1

ψk(Un)
(
Φ

Un
(n−1)M+m − v(Un)

)
,

where the ξk and ϑk have zero mean for each k = 1, . . . ,K, and variances

var
[
ξk

]
= var

[
ψk(U)v(U)

]
= E

[
ψ2

k(U)v2(U)
]
− E

[
ψk(U)v(U)

]2

=

∫
µ(dx)ψ2

k(x)v2(x) −
∫

µ(dx)ψk(x)v(x),(37)

var [ϑk] = var
[
ψk(U1)η1

]
=

∫
µ(dx)ψ2

k(x) var [Φx] ,(38)

respectively. From (29) we then have

γ = G−1
(
w +

ξ
√

N
+

ϑ
√

MN

)
= γ◦ +

G−1ξ
√

N
+
G−1ϑ
√

MN
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with ξ B
[
ξ1, . . . , ξK

]> and ϑ B [ϑ1, . . . , ϑK]> .We so obtain a point-wise approximation
error,

v(x) − v(x) = ψ>(x) (γ − γ◦) + vK(x) − v(x)

= ψ>(x)
(
G−1ξ
√

N
+
G−1ϑ
√

MN

)
+ vK(x) − v(x).

with ψ B
[
ψ1, . . . , ψK

]> . Since ξ and ϑ have zero mean, the point-wise bias—i.e., the
error from projecting v to the span of the basis function ψ1, . . . , ψK—is equal to

δ(x) B vK(x) − v(x)

and the L2
µ(D)-norm of the bias equals,

(39)
∥∥∥δ∥∥∥ = ‖v − vK‖L2

µ
.

The bias depends on properties of v and the basis functions ψ and shall not be ana-
lyzed in this section.

On the other hand, let ε(x) denote the regression error on top of the bias δ, i.e.,

ε(x) B v(x) − vK(x).

Clearly, ε(x) is related with the “statistical error” of a standard Monte Carlo procedure.
Let us denote

varµ B ‖ε‖
2
L2(Ω×D;P⊗µ) ,

which can be seen as the average (w.r.t. µ) over the point-wise variance of v. We have

varµ B
∫

µ(dx)E
[(
G−1ξ
√

N
+
G−1ϑ
√

MN

)>
ψ(x)ψ>(x)

(
G−1ξ
√

N
+
G−1ϑ
√

MN

)]
= E

[(
G−1ξ
√

N
+
G−1ϑ
√

MN

)> (
ξ
√

N
+

ϑ
√

MN

)]
(40)

=
1
N

E
[
ξ>G−1ξ

]
+

2

N
√

M
E

[
ϑ>G−1ξ

]
+

1
MN

E
[
ϑ>G−1ϑ

]
,

by using (28) and the symmetry of G.

Let λK
min > 0 be the smallest eigenvalue of G = GK . We then have by (37), (38), and

Cauchy-Schwartz, the estimate
(41)

varµ ≤
1

λK
minN

K∑
k=1

var
[
ξk

]
+

2

λK
minN

√
M

K∑
k=1

√
var

[
ξk

] √
var [ϑk] +

1
λK

minMN

K∑
k=1

var [ϑk] .

The following proposition is now obvious.

Proposition 3.1. Suppose that the set of basis functions is such that the variances
(37) and (38) are bounded byV for all k if K → ∞, and that λK

min ≥: λmin > 0 if K → ∞.
We then have the estimate

‖ε‖2L2(Ω×D;P⊗µ) ≤
V

λmin

(
1 +

2
√

M
+

1
M

)
K
N
.
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Remark 3.2. In view of the above proposition, it is inefficient to take M larger than one
or two in the semi stochastic regression. For example, M = 2 doubles the computation
time but reduces the variance bound approximately by a factor 0.73 only. Moreover,
assuming a choice of µ-ortho-normal basis functions ψ1, . . . , ψK, the matrix G is the
identity matrix and, consequently, the parameter λmin = 1.

Deterministic regression statistics. With respect to the discrete measure

ρN B
1
N

N∑
n=1

δxn(dx)

we now consider the scalar product

〈 f , g〉N B
∫

f (x)g(x)ρN(x)dx B
1
N

N∑
n=1

f (xn)g(xn),

and the corresponding norm ‖·‖N . Similar to (28) we introduce the matrix F and the
vector z defined by

[F]kl B 〈ψk, ψl〉N =
1
N

N∑
n=1

ψk(xn)ψl(xn),(42)

[z]l B 〈v, ψl〉N =
1
N

N∑
n=1

v(xn)ψl(xn), k, l = 1, . . . ,K.

Let

γ† B arg inf
γ∈RK

∥∥∥∥∥∥∥v −
K∑

k=1

γkψk

∥∥∥∥∥∥∥
2

N

,

then 〈
v −

K∑
k=1

γ†kψk, ψl

〉
N

= 0 for l = 1, . . . ,K,

hence

〈v, ψl〉N −

K∑
k=1

γ†k 〈ψk, ψl〉N = 0.

and we have analogous to (3.2),

γ† = F−1z.

We thus have that

1
N

[
NTN

]
kl

=
1
N

N∑
n=1

ψk(xn)ψl(xn) = 〈ψk, ψl〉 = [F]kl ,
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and

1
N

[
NT Ỹ

]
k

=
1
N

N∑
n=1

ψk(xn)Ỹn

=
1
N

N∑
n=1

ψk(xn)Φ
xn

n,M

=
1
N

N∑
n=1

ψk(xn)
(
v(xn) +

η̃n
√

M

)
= 〈v, ψk〉N +

1
√

M
〈̃η, ψk〉

with i.i.d. random variables

η̃n B η̃(xn) B
√

M
(
Φ

xn

n,M − v(xn)
)

=
1
√

M

M∑
m=1

(
Φ

xn
(n−1)M+m − v(xn)

)
,

satisfying E
[̃
ηn

]
= 0 and

var
[̃
ηn

]
= var [Φxn] = E

[
(Φxn − v(xn))2

]
.

So we can write

1
N

[
NT Ỹ

]
k

= 〈v, ψk〉N +
ϑ̃N,M

k
√

NM
,

where for k = 1, . . . ,K,

ϑ̃k B
√

N 〈̃η, ψk〉N =
1
√

N

N∑
n=1

ψk(xn)̃η(xn)

has zero mean and variance,

(43) var
[
ϑ̃k

]
=

1
N

N∑
n=1

ψ2
k(xn) var [Φxn] =

〈
var [Φ·] , ψ2

k

〉
.

Next we proceed with

γ̃ =

(
1
N
NTN

)−1 1
N
NT Ỹ = F−1z +

1
√

NM
F−1ϑ̃ = γ† +

1
√

NM
F−1ϑ̃.

Remark 3.3. Similarly to the semi-stochastic regression analyzed above, we could
now also switch to a “semi-deterministic” regression by approximating N>N with G.
This would help avoid any stability issues in the above linear system when N < K.
Appart from this, the remainder of the analysis would remain almost unchanged.
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We obtain the random (point-wise) error

ε̃(x) B ψ>(x)̃γ − v(x)

= ψ>(x)γ† − v(x) +

K∑
k=1

(̃
γk − γ

†

k

)
ψk(x)

C δ̃(x) +
1
√

NM
ψ>(x)F−1ϑ̃,

with

(44) δ̃(x) = ψ>(x)γ† − v(x).

Since ϑ̃ =
[
ϑ̃1, . . . , ϑ̃k

]
has zero mean, the point-wise bias is thus equal to δ̃(x). The

L2
ρN

-norm of the bias (44) equals∥∥∥ δ̃N,K
∥∥∥

N
=

∥∥∥∥∥∥∥v −
K∑

k=1

γ†kψk

∥∥∥∥∥∥∥
N

=

√√√
1
N

N∑
n=1

v(xn) −
K∑

k=1

γ†kψk(xn)

2

.

Unlike in the semi stochastic case where the bias was only depending on K, the bias
(44) depends on N and K. Similar to (40) we obtain for the L2

ρN
-norm of the point-wise

variance,

ṽarρN B ‖̃ε‖
2
L2(Ω×D;P⊗ρN )

=
1

NM

∫
ρN(dx)E

[(
F−1ϑ̃

)>
ψ(x)ψ>(x)F−1ϑ̃

]
=

1
NM

E
[
ϑ̃>F−1ϑ̃

]
by using (42) and the symmetry of F. Let λN

min be the smallest eigenvalue of F. Then,
analogue to (41), we now obtain the variance bound,

ṽarρN ≤
1

λN,K
min NM

K∑
k=1

var
[
ϑ̃k

]
and the following result.

Proposition 3.4. Suppose that the set of basis functions is such that the variances
(43) are bounded by Ṽ for all N and k if N,K → ∞, and that lim infN,K→∞ λ

N
min C λ̃min >

0. We then have the estimate

‖̃ε‖2L2(Ω×D;P⊗ρN ) ≤
Ṽ

λ̃min

K
NM

.

For a closer look at the bias of the deterministic regression, observe that

∥∥∥ δ̃N,K
∥∥∥

N
−→

∥∥∥ δ̃∞,K∥∥∥
L2
ρ∞

B

√√√∫
D

v(x) −
K∑

k=1

γ†kψk(x)

2

dx.
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It is clear that, even if K is such that
∥∥∥ δ̃∞,K∥∥∥

L2
ρ∞

is small, a too small N causes extra
bias due to the deterministic integration error. This is in contrast to the semi stochastic
method where the bias (39) is independent of the number N of Monte Carlo samples
of the random variable U.

The size of the deterministic integration error as a function of the number N of grid
points depends on the nature of the point set x1, . . . , xN . For instance, in the case of
a uniform tensor grid x1, . . . , xN in dimension d, the integration error is, in principle, of
order 1

N1/d , and, hence, the bias gives

(45a)
∥∥∥ δ̃N,K

∥∥∥
N
≈

∥∥∥ δ̃∞,K∥∥∥
L2
ρ∞

+ const
d

N1/d ,

where the second term amounts to the deterministic integration error of the present
integration method based on ρN . On the other hand, if we choose x1, . . . , xN as the
first N points of a d-dimensional low-discrepancy sequence, then the integration error
can be reduced to logd N

N , leading to

(45b)
∥∥∥ δ̃N,K

∥∥∥
N
≈

∥∥∥ δ̃∞,K∥∥∥
L2
ρ∞

+ const
logd(N)

N
.

4. Convergence and complexity analysis

This section is concerned with a first analysis of the convergence and complexity of
the proposed numerical method. We point out that these are only first results and a
more thorough analysis should be carried out in subsequent work.

Let us first consider the case of a fixed point x ∈ D ⊂ Rd, i.e., we want to approximate
the solution u(x) or E[u(x)] for this particular single point x. Recall the elliptic model
problem (1) with stochastic coefficient κ, ω ∈ Ω. Then we can naturally decompose
the error into four parts:

(i) The error from approximating the stochastic fields κ, g and f ;
(ii) the error from the discretization of the SDE (4a) and the functional (4d);
(iii) the truncation error in the regression, i.e., the error introduced by choosing a

finite, non-dense set of basis functions;
(iv) the integration error in the regression, i.e., the error introduced by computing an

approximate projection of the true solution to the basis functions only.

In this paper, we are mainly concerned with the second and fourth sources of errors
of the method. We believe this can be justified for pragmatic reasons: while a quite
general and convincing error and convergence analysis can be given for all mentioned
sources of errors, the influence of the first and third error component is more difficult
to describe without imposing very specific assumptions on both the coefficients and
the solution of the random PDE. We just make the following remarks:

� We only consider stochastic fields with finite variance which can be represented
by a Karhunen-Loève expansion. These fields are described by a covariance
function the regularity of which directly determines the smoothness of the re-
alizations of the stochastic field. Note that for the considered application, there
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always is some correlation between sufficiently close points in the domain (i.e.
coloured noise). The number of expansion terms required for an adequate ap-
proximation again directly depends on the regularity of the covariance. If we
assume an expansion (2) of the form

κι(x, ω) = E[κ] +

ι∑
m=1

√
νmϕm(x)ξm(ω)

which is exact for ι = ∞, then the truncation error for M terms is determined by

‖κ∞ − κM‖
2
L2(Ω,L2(D)) ≤

∞∑
m=M+1

νm.

The νm are the eigenvalues of the covariance integral operator and their decay
behaviour thus determines the truncation error with respect to the number of
KL terms M. In some cases, the decay behaviour is known a priori for which
we refer to [11, 36, 26]. Note that alternate techniques to generate field realiza-
tions can be employed equally well with our method. For instance, turning band
methods and circulant embedding are frequently used approaches, see [26].

� For a given set of basis functions ψ1, . . . , ψK, the truncation error of the regres-
sion method, denoted as bias in Section 3, is given by

v(x) − vK(x),

where vK denotes the projection of v to span {ψ1, . . . , ψK }, cf. (34) and (35).
Clearly, if v ∈ L2(D; µ), then the error will converge to 0 as K → ∞, for any
reasonable sequence ψk of basis functions, for instance an orthonormal basis of
L2(D; µ). The speed of convergence, however, depends on the regularity of the
solution as well as the choice of the basis functions. For instance, if we cannot
assume any more regularity than square integrability, then we should expect
that the error will only decrease like K−1/d. On the other hand, if the solution is
actually analytic, then the error decays exponentially, for good choices of basis
functions. For more information we refer to Pinsker [31].

In this paper, we assume that the true solution v can be approximated by vK ∈

span {ψ1, . . . , ψK } with an error

‖v − vK‖L2
µ
≤ e(K).

We remark that a similar analysis can be done for other norms, say ‖·‖H1(D). This would
require a similar error analysis of the regression method as shown for the L2 norm.
We only assume that limK→∞ e(K) = 0 and that e is invertible with inverse e−1.

We first discuss the time-discretization error (ii). By the empirically well-established
first order weak convergence of the adaptive Euler scheme, see [14, 7], an error toler-
ance εdisc will yield approximate solutions X, Y, Z and a corresponding stopping time
τ such that the corresponding expected value vdisc(x) B E

[
g
(
Xτ

)
Yτ + Zτ

]
satisfies

‖v − vdisc‖L2
µ
≤ εdisc at a computational cost of order ε−1

disc on average for computing one
realization. Notice that the computational cost is a random variable as the hitting time
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at the boundary is random. However, uniform ellipticity and boundedness of the do-
main D (cf. Assumption 2.7 and the preceding discussion) guarantee that the hitting
time is square integrable, both for the approximate process X and the true solution X.

We next consider the integration error in the regression, term (iv), first concentrating
on the semi-stochastic case. Recall that the outcome of the semi-stochastic global
regression v = vK =

∑K
k=1 γkψk is obtained from γ = 1

NG
−1M>Y, see (30) and (29).

By Proposition 3.1, for instance assuming that ψk, v = vdisc and var Φx are uniformly
bounded in x on D (as guaranteed by Assumption 2.7) and, for simplicity, that (ψk)k≥1

are orthonormal w.r.t. µ, the error is bounded by

(46) ‖vK − vK‖
2
L2(Ω×D;P⊗µ) ≤ const

(
1 +

2
√

M
+

1
M

)
K
N
.

Clearly, M = 1 is the optimal choice, so we disregard other possible choices hence-
forth.

Remark 4.1. For this discussion, we note that the regression actually approximates
vdisc, not the true solution v. Hence, the assumptions needed in Section 3 have to hold
for the discretized solution vdisc uniformly in εdisc.

In total, we obtain the error decomposition

‖v − vK‖L2(Ω×D;P⊗µ) ≤ ‖v − vdisc‖L2
µ

+ ‖vdisc − vK‖L2
µ

+ ‖vK − vK‖L2(Ω×D;P⊗µ) =: ε(47)

with overall error bound ε.

For fixed N and K, the computational cost of the regression part of the algorithm is
proportional to NK, if the cost of computing the N realizations Φ

Un
n , n = 1, . . . ,N, is ne-

glected. For fixed K, we need to choose N proportional to Kε−2, so the computational
cost of the regression is proportional to K2ε−2. On the other hand, we need to sample
N realizations of ΦU at cost proportional to ε−1 each, which amounts to cost propor-
tional to Kε−3. Finally, by assumption, we need to choose K proportional to e−1(ε) to
achieve a truncation error bounded by ε. To summarize, we obtain

Theorem 4.2. Given Assumption 2.7 and a discretization error tolerance ε in ‖·‖L2(Ω×D;P⊗µ).
Then the average computational cost C of the semi-stochastic global regression algo-
rithm with adaptive time-discretization is bounded by

C ≤ C1e−1(ε)ε−3 + C2e−2(ε)ε−2.

Remark 4.3. Note that the computational cost is, superficially, independent of the di-
mension d. As discussed earlier, e−1(ε) could be anything between log ε−1 and ε−d.
Hence, it is not clear which of the two terms is dominant. One might expect the con-
stant C1 to be typically much bigger than C2, as C2 essentially just entails a floating
point multiplication, whereas C1 is the entire computational cost of one step of the
adaptive Euler scheme.

Remark 4.4. If we are only interested in the point-wise error, i.e., if we only want
to compute v(x) for one specific value x ∈ D, then we can replace the regression
analysis by a simple Monte Carlo analysis. The computational cost of our method for
computing v(x) at tolerance ε in RMSE sense is then proportional to ε−3, independent
of the dimension d.
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For the deterministic regression procedure analyzed in Proposition 3.4 (variance)
and (45) (bias), we need to replace the estimate (46) by

(48a) ‖vK − vK‖
2
L2(Ω×D;P⊗µ) ≤ const

(
K

NM
+

d2

N2/d

)
,

for a uniform, tensorized grid x1, . . . , xN and by

(48b) ‖vK − vK‖
2
L2(Ω×D;P⊗µ) ≤ const

(
K

NM
+

d2

N2

)
,

(ignoring logarithmic terms) for the low-discrepancy case, where we use the special
choice µ = dx|D. The cost-optimal choice for M will now depend on K — treated as
fixed at this stage —, the error tolerance ε and the dimension d. The computational
cost C of performing the algorithm is

C ≤ const
(
MNε−1 + KN + K2

)
on average, corresponding to the average cost of computing MN samples at accuracy
ε by the adaptive Euler-Maruyama algorithm, the cost of multiplying a K × N-matrix
with an N-dimensional vector and the cost of solving a K × K-linear system, cf. (32).
Hence, one has to minimize the cost given that the error (48) is bounded by ε2.

Let us first consider the case of a tensorized uniform grid. We may assume that both
error contributions in (48a) are of order ε2, implying that

N = const ddε−d and M = const max
(
Kd−dεd−2, 1

)
.

Hence, for the computational cost it holds

C ≤ const
(
max

(
Kε−3, ddε−(d+1)

)
+ ddKε−d + K2

)
.

No further calculation is needed for the case of x1, . . . , xN being based on a low-
discrepancy sequence, as this case essentially (up to logarithmic terms) corresponds
to the case d = 1 in the uniform case.

Theorem 4.5. Assume the conditions of Theorem 4.2 and an error tolerance ε in the
sense of ‖·‖L2(Ω×D;P⊗dx).
a) If the grid x1, . . . , xN is a uniform, tensorized grid in dimension d, then the average
computational cost C of the semi-stochastic global regression algorithm with adaptive
time-discretization is bounded by

C ≤ C1 max
(
e−1(ε)ε−3, ddε−(d+1)

)
+ C2dde−1(ε)ε−d + C3e−2(ε)

with constants C1,C2,C3 > 0.
b) Up to logarithmic terms, the above bound holds with d = 1 regardless of the dimen-
sion of the space if the point set x1, . . . , xN has low discrepancy.

Remark 4.6. Even in the analytic case (e(K) ∼ eK) we already see the curse of
dimensionality in the deterministic regression case. It appears because of the inherent
numerical approximation of integrals w.r.t. µ based on the grid, i.e., the approximation
error µ ≈ ρN , in the notation of Section 3. Further, note that we have not considered
stability restrictions (N � K) on the choice of N and K induced by the design matrix
N>N . Similarly to Remark 4.3, we note that typically C1 � C2,C3.
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e(K) Semi-stochastic reg. Det. reg. (tensor) Det. reg. (low disc.)

e−K ε−3 max(ε−(d+1), ε−3) ε−3

K−1/d ε−(3+d) ε−(3+d) ε−(3+d)

Table 1. Asymptotic computational costs for deterministic (tensor grid
or low discrepancy sequence) and semi-stochastic regression for error
tolerance ε. Logarithmic terms are ignored, C2 and C3 are set to 0.

e(K) Semi-stochastic reg. Det. reg. (tensor) Det. reg. (low disc.)

e−K ε−3 max(ε−(d+1), ε−3) ε−3

K−1/d ε−(2+2d) ε−(3+d) + ε−2d ε−(3+d) + ε−2d

Table 2. Asymptotic computational costs for deterministic (tensor grid
or low discrepancy sequence) and semi-stochastic regression for error
tolerance ε. Logarithmic terms are ignored, C2 and C3 are kept.

We end these theoretical complexity considerations by a sketchy, asymptotic com-
parison of deterministic and semi-stochastic regression techniques, see Table 1 and
Table 2. We compare the case of a very fast decay of the error in terms of the number
of basis functions K with the case of a slow small decay, i.e., the case of an analytic
solution v with a merely square-integrable solution v. In Table 1, we only consider the
cost of generating samples from the solution of the SDE. This is usually the dominant
contribution to the overall computational costs, as the cost of computing one step in
the stochastic Euler scheme is much larger than the cost of simple floating point multi-
plications. In Table 2, we treat all the contributions as equivalent, which is adequate for
a true asymptotic analysis. We see that the semi-stochastic regression is clearly supe-
rior in the highly regular case, at least for d > 2 and it is never worse than deterministic
regression based on a uniform, tensorized grid in the realistic scenario with C2 and
C3 ignored. This is a consequence of the curse of dimensionality. On the other hand,
the deterministic regression algorithm based on a low discrepancy point set x1, . . . , xN

seems comparable to the semi-stochastic algorithm. We should note, however, that
this very simple analysis does not take the constants into account. Recall that all the
presented algorithms are, overall, stochastic in nature. A pure QMC version of the
algorithm—i.e., an approch where the random coefficients and the Brownian motion
are replaced by their deterministic counterpart—seems difficult due to the very high
dimensionality.

5. Examples

For the benchmark problem at hand we consider a constant right-hand side f ≡ 1 on
the unit square domain D = [0, 1]2 ⊂ R2. The Dirichlet boundary data g = sin(πx1) +

sin(πx2) is enforced on the whole boundary ∂D of the domain. Here, xi denotes com-
ponent i of the coordinate vector x. An artificial Karhunen-Loève expansion constitutes
the permeability tensor κ. It exhibits the characteristics of a separable covariance func-
tion on the unit square and is easily controlled with respect to amplitude and frequency



25

of the field. More precisely, in (2) we set E[κ] = 1 and consider the coefficients am with
m = 1, 2, . . . and

am(x) = αm cos(2πβ1(m)x1) cos(2πβ2(m)x2), αm = Aαm−σα ,
β1(m) = m − k(m)(k(m) + 1)/2, β2(m) = k(m) − β1(m),

k(m) = b−1/2 +
√

1/4 + 2mc.

(49)

The parameters must verify σα > 1 and 0 < Aα < 1/ζ(σα) with the Riemann zeta
function ζ. For uniformly distributed random variables ϕm ∼ U(−1, 1), the parameters
ca, εa > 0 and the truncation length ta ∈ N determine the (computational) random field
κ by

κ(x) =
ca

αmin

 ta∑
m=1

am(x)ϕm + αmin

 + εa.(50)

The constant αmin is set to the absolute value of the minimum for the sum over the am,
i.e. αmin =

∑ta
m=1 αm =

∣∣∣minx∈D
∑ta

m=1 am(x)ϕm

∣∣∣ =
∑ta

m=1 αm.

The basis functions ψk for k = 1, . . . ,K in the regression methods from Subsection 3.1
are chosen as the Legendre polynomials. We choose the polynomial degree 4 for
each spatial direction which results in K = 25 basis functions. In case that locations x
are drawn uniformly in D, this choice admits the advantage of G = I with the identity
matrix I in (28) such that no inverse of G needs to be computed in (29).

A reference solution for this problem is obtained with a simple Monte Carlo approach
utilizing a standard finite element solver. A set of N = 106 samples κi for i = 1, . . . ,N
is drawn from the random variable κ and the finite element method gives a discrete
solution ui

h on some very fine mesh with approximately 3 · 106 degrees of freedom for
each sample. Subsequently, the stochastic estimator for the expected value is given
by ûh = N−1 ∑N

i=1 ui
h and we assume that E[u] ≈ ûh is a sufficiently close approximation.

As described in Section 4, we note that we only consider the error from the time-
discretization and the regression steps of our algorithm. In particular, we work with
an exact stochastic field given by a truncated expansion (“finite dimensional noise
assumption”) and also fix the number of basis functions. This implies that the error will
converge to a positive value given by the bias, i.e., by the error induced by projection
to the fixed set of basis functions.

In the following subsections, we first demonstrate point-wise convergence of the scheme
at an arbitrary location (the center) in the domain. Then, global convergence of the
regression approximation is examined with two different coefficient fields. First, a
“smooth” field with few expansion terms and thus only low frequencies is considered.
Second, a “rough” field with many expansion terms is employed. This also contains
high frequency components and thus exhibits large gradients. With both settings, the
convergence for a structured (deterministic) and a random (stochastic) selection of
regression points in the domain D is depicted.

Remark 5.1 (Notes regarding the implementation). We implemented the Euler-Maruyama
Monte-Carlo solver in C++ as a Python module. Using OpenMP, the solver calculates
the trajectories in parallel on an arbitrary amount of processors. To sample the discrete
Brownian motion we use a 64-bit Mersenne-Twister random number generator (RNG)
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Figure 2. Convergence of the solution in x = [0.5, 0.5].

from the C++ standard library. To ensure independently sampled random variables,
each thread has his own distinctly seeded RNG. Being a Python module, we can eas-
ily compare our solution with the reference solution computed with the finite element
solver FEniCS [24, 1] and references therein. Moreover, the fully/semi stochastic and
deterministic global regression methods from Subsection 3.1 are also implemented in
Python using the NumPy package.

5.1. Convergence in one point. For this experiment, we set σα = 2 and Aα = 0.6 in
(49) and ta = 5, ca = 1 and εa = 5 · 10−4 in (50). This yields a rather smooth coefficient
field. This first test compares the results of the implemented solver with the reference
solution at a single point x ∈ D. We examine convergence in two ways in Figure 2.
On the left, we observe a convergence rate of 1 in the Euler-Maruyama scheme by
decreasing the initial time step ∆t0. Note that an adaptive time step calculation is
applied which reduces the time steps close to the boundary ∂D. On the right, we can
see a convergence rate of 1/2 due to increasing the number of trajectories M in the
Monte Carlo simulation.

5.2. Experiment - smooth benchmark field. We again choose σα = 2 and Aα = 0.6
in (49) and ta = 5, ca = 1 and εa = 5 · 10−4 in (50). This time we are interested
in convergence in the whole domain. We thus measure the errors in the L2(D) and
H1(D) norms.

Deterministic global regression. The first part of this experiment applies the determin-
istic global regression from (31) to solutions with the above example problem data. On
a given uniform triangulation of D, a single trajectory is computed for each vertex. The
convergence of the errors in the L2(D) and H1(D) norms is depicted in Figure 3 with
square markers. Here, N is the total number of grid points and M = 1 is the number
of trajectories starting from each grid point. We also set an initial time step ∆t0 small
enough such that the first term on the right-hand side in (47) is smaller than the other
error contributions. Hence, Figure 3 shows the error resulting from the global regres-
sion. From Proposition 3.4 we expect to see a RMSE of order 1

√
MN

in terms of the
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total number of trajectories MN, i.e., a convergence rate of 1/2. Hence, the numerical
results are in line with the theory.
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Figure 3. The L2 and H1 errors from the experiments with deterministic
global regression (square) and semi stochastic global regression (cir-
cle) on a smooth benchmark field as well as the L2 and H1 error of the
projection into the polynomial regression space (i.e., the bias, no
marker).

Semi stochastic global regression. The second part of this experiment uses uniformly
distributed points in the domain D together with the semi stochastic global regression
from (28). Once again, for each sample point a single trajectory is computed. The
results are depicted in Figure 3 with circular markers. They show the same behavior
of the L2 error as in the first experiment with a slightly improved performance in the
H1 norm. The convergence rate is the same as in the previous part of the experiment,
as predicted by Proposition 3.1.

5.3. Experiment - rough benchmark field. We now choose σα = 1.1 and Aα =

0.0009 in (49). Furthermore we drop the first 1000 terms of the sum in (50) and take
ta = 1020, ca = 1 and εa = 5 ·10−4. This results in a coefficient field which only includes
higher frequencies in the expansion (2). We thus call this field “rough” when compared
to the “smooth” first field. A sample realization is depicted in Figure 4. With this, the
experiment from Section 5.2 are repeated in the following.
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Figure 4. Example realization of the rough benchmark field

Deterministic global regression. As in the former experiment, we launch one trajec-
tory from each vertex of a uniform grid of the domain D. The errors in the L2(D)
and H1(D) norms are again depicted with square markers in Figure 5. Although the
stochastic field now exhibits high oscillations, we can still observe the anticipated con-
vergence rate of 1/2 in both error norms.

Semi stochastic global regression. To conclude this second experiment, as before,
we sample on uniformly distributed points in D and compute one trajectory from each
point. Then again, the semi stochastic global regression is applied and we observe
a convergence rate of 1/2 (circular markers in Figure 5) and a slight performance
improvement compared to the deterministic global regression.

5.4. Comparison. Comparing the two experiments in Sections 5.2 and 5.3, we can
see that the projection error in the H1(D) norm is reached at around 107 and the L2(D)
error around 2 · 10−3 sampled points in both cases. However, the L2(D) error of the
projection is approximately one order of magnitude lower in the case of the rough field.
A possible explanation for this last observation could be that realizations of the rough
field exhibit much smaller global L2(D) norms than the smooth fields. This directly
leads to smaller absolute values of the solutions (high frequencies of the coefficient
are smoothed by the differential operator) and hence smaller L2 errors.

In summary, the experiments of this section illustrate that the described algorithm
exhibits the predicted convergence behaviour for stochastic fields of different smooth-
ness.
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Figure 5. The L2 and H1 errors from the experiments with deterministic
global regression (square) and semi stochastic global regression (cir-
cle) on a rough benchmark field as well as the L2 and H1 error of the
projection into the polynomial regression space (no marker).

Certainly, further experiments and a more detailed analysis will have to be carried
out to assess the possibilities and the limitations for the application of this numerical
method.
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