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Abstract 

In this paper, we develop a thermodynamically consistent description of the uniaxial 
behaviour of thermoelastoplastic materials that are characterized by a constitutive law 
of the form a(x,, t) = P[c:, O(x, t)](x, t) , where c:, a, e denote the fields of strain, stress 
and absolute temperature, respectively, and where {P[·, O]}o>o denotes a family of (rate-
independent) hysteresis operators of Prandtl-Ishlinskii type, parametrized by the absolute 
temperature. The system of state equations governing the space-time evolution of the ma-
terial are derived. It turns out that the resulting system of two nonlinearly coupled partial 
differential equations involves partial derivatives of hysteretic nonlinearities at different 
places. It is shown that an initial-boundary value problem for this system admits a global 
weak solution. The paper can be regarded as a first step towards a thermodynamic theory 
of rate-independent hysteresis operators depending on temperature. 

1 Introduction 
For many materials the stress-strain ( a - e ) relations measured in uniaxial load-deformation 
experiments strongly depend on the absolute (Kelvin) temperature B and, at the same time, 
exhibit a strong elastoplasticity that is witnessed by the occurrence of hysteresis loops that are 
rate-independent, i. e. independent of the speed with which there are traversed. Due to the 
hysteresis, which reflects the presence of a rate-independent memory in the material, the stress-
strain relation can no longer be expressed in terms of a simple single-valued function. Among 
the materials showing such very strong temperature-dependent and rate-independent hysteretic 
effects are the so-called shape memory alloys (see, for instance, Chapter 5 in [1]); but even quite 
ordinary steels are well-known to exhibit this kind of behaviour (cf. [22]), although to a smaller 
extent. 

A classical approach that has been used repeatedly to model temperature-dependent hysteretic 
stress-strain relations is the following: one first tries to construct a free energy density F(e, ex, B) 
of Landau-Ginzburg type in such a way that the observed stress-strain phenomena are matched 
using the relation 

8F 
a= Be (e, ex, B), (1.1) 

and then determines the field equations governing the space-time evolution from the balance laws 
of linear momentum and of internal energy. In order that a hysteresis be modeled by (1.1), the 
free energy density F(·, ex, B) needs to be non-convex in the range of interesting temperatures. 

A typical example for such an approach is the model introduced by F. Falk ( cf. [3-5]) to 
explain the hysteresis phenomena in shape memory alloys. In Falk's model, a Landau-Ginzburg 
free energy density of Devonshire form, 

- Fo(B) + a1 (B - Be) e2 - a2 e4 + a3 e6 + ~ e;, 

p ( - Cv B ln ( B / B) + Cv B + Co) , 

(1.2) 

(1.3) 

with positive physical constants ~h , a 2 , a3 , 'Y, Be, B, Cv , Co , has been assumed. The model 
leads to a system of nonlinear partial differential equations that has recently been studied in a 
number of papers (see [8, 18, 20, 21, 25], for both stress- and temperature-controlled experiments, 
and [2], for deformation-controlled experiments). 

The above approach has several disadvantages. At first, the use of a non-convex free energy 
does not guarantee that a hysteresis actually· occurs; for example, in the case of deformation-
controlled experiments in shape memory alloys there are strong indications (see [2, 16, 17]) 
that the occurrence of hysteretic effects is rather due to the presence of an interfacial energy 
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than to a non-convexity of the free energy density. In addition, simple functional relations like 
(1.1) are certainly not able to give a correct account of the inherent memory structures that are 
responsible for the complicated loopings in the interior of the hysteresis loops that are observed 
in experiments. 

To avoid these difficulties, we propose a different approach to thermoelastoplastic hysteresis 
in this paper. For this purpose, we employ the notion of rate-independent hysteresis operators 
introduced by the Russian group around M.A. Krasnoselskii in the seventies. We express the 
temperature-dependent stress-strain relation in the form of an operator equation, 

o- = P[c:, B], (1.4) 

where, for every fixed temperature e, P[·, B] denotes a rate-independent hysteresis operator 
acting on the set of strain fields c . 

The advantage of this approach is that an operator equation like (1.4) is suited much better 
than a simple relation like (1.1) to keep track of the memory effects imprinted on the material in 
the past history. In fact, the output at any time t E [O, T] may depend on the whole evolution of 
the input in the time interval [O, t]. Observe that the rate-independence implies that P cannot 
be expressed in terms of an integral operator of convolution type, i. e. we are not dealing with 
a model with fading memory. 

Unfortunately, there are two disadvantages: the input-output behaviour of rate-independent 
hysteresis operators usually cannot be described explicitly, and they have, as a rule, only very 
restricted smoothness properties. Both these facts render the analysis of partial differential 
equations involving such hysteresis operators difficult.· 

For the i.sothermal case, i. e. if P is independent of e , a one-dimensional approach to elasto-
plasticity using rate-independent hysteresis operators has been carried out by P. Krejci in a series 
of papers (cf. [10, 11, 13]). In this case, the field equation governing the space-time evolution is 
the equation of motion which takes the form 

pu.,(x, t) - (! P[uxl) (x, t) = J(x, t), (1.5) 

where p and u denote mass density and displacement, respectively. 
The non-isothermal case considered in this paper is more complicated. Indeed, the equation 

of motion has to be supplemented by a field equation representing the balance law of internal 
energy, and the second principle of thermodynamics in form of the Clausius-Duhem inequality 
must be obeyed. It is, however, not obvious how the correct expressions for thermodynamic 
state functions like the densities of free energy, internal energy and entropy, should look like 
in a situation with a constitutive law of the form (1.5). In the following section, we carry 
out a corresponding construction for the case when P[·, B] is a family of hysteresis operators 
of Prandtl-Ishlinskii type, parametrized by the absolute temperature e. More precisely, we 
consider stress-strain relations of the form 

a= f" rp(r, 0) sr[c] dr, (1.6) 

where cp = cp(r, B) is some density function, and where Sr denotes the so-called stop operator 
or elastic-plastic element. Note that this class of operators is already rather general in the 
framework of rate-independent elastoplasticity. It will turn out that in our setting it is convenient 
to regard the densities of free energy, internal energy and entropy as operators instead of as 
functions. 

The remainder of the paper is organized as follows. In Section 2, we derive the field equations 
governing the space-time evolution in thermoelastoplastic materials with the constitutive law 
(1.6). In Section 3, we study an approximating system for which global a priori estimates are 
derived. Section 4 discusses the passage to the limit and ultimately results in the proof of the 
existence of a weak solution. 
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2 Derivation of the Model 
The aim of this section is to give a thermodynamically consistent description of the dynamical 
behaviour of a thermoelastoplastic material characterized by the constitutive law (1.6). 

A. Hysteresis Constitutive Operators of Elastoplasticity 
L. Prandtl's normalized elastic-perfectly plastic model, corresponding to the rheological combi-
nation in series of one elastic (with elasticity modulus 1) and one rigid-perfectly plastic element, 
provides the simplest example for a hysteresis constitutive operator. It can formally be described 
as follows. 

Let r > 0 (the yield limit) and er~ E [- r, r] (the initial stress) be given numbers. For any 
input function c E W1,1 (0, T), we define the output err E W1,1(0, T) as the solution to the 
variational inequality (the superimposed dot denotes the time derivative) 

o"r( t) E [- r, r J V t E [ 0, T], (2.1) 

(i(t) - 0-r(t)) (crr(t) - 0-) 2: 0 V 0- E [-r, r], a.e. in (O,T), (2.2) 

crr(O) = er~. (2.3) 

In Fig. 1, the typical input-output behaviour is depicted. 

r 

0 

-r 

Fig. 1. Prandtl's normalized elastic-perfectly plastic element. 

It can easily be proved that the problem (2.1)-(2.3) admits a unique solution err E W1'1(0, T) 
for every c E W1,1(0, T) and er~ E [- r, r] (even in the multi-dimensional case, see [12, 13, 23, 
24]). The solution operator 

Sr : [- r, r] x W1'1(0, T)--+ W1'1 (0, T) : (er~' c) i--+ O"r 

is called stop operator ( cf. [9]). 
It is immediately seen that for piecewise monotone inputs e the output sr[cr~, c] can be 

explicitly described in each monotonicity interval [to, t1] C [O, T]. Indeed, from Fig. 1 we can 
infer that 

min{r, sr[cr~, e](to) + e(t) - c(to)}, t E [to, ti], 
if e is non-decreasing in [to, ti] , 

max{-r,sr[cr~,e](to) + c(t) - c(to)}, t E [ta,t1], 
if e is non-increasing in [to, ti] . 

The stop operator has the following properties (For a proof, see [1, 13]). 
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Proposition 2.1 

(i) Let a~ E [- r, r] and c E W 1,1 (0,.T) be given, and let O"r := Er[a~, c]. Then 

ar(t) (i(t) - o"r(t)) 2:: 0, a.e. in (0, T), (2.5) 

(o"r(t)) 2 = i(t) 0-r(t), a.e. in (0, T). (2.6) 

(ii) Dor every ;"T"rOl ' ;"T"r02 E [ ] W 1 1 ( T) d . £1 v v - r, r , c1 , c2 E ' 0, , an a; := 1, 2' it 
holds 

(2.8) 

Notice that the inequality (2. 7) enables us to extend the domain of definition of the stop 
operator to the whole space C[O, T] and to consider Er : [- r, r] x C[O, T] -+ C[O, T] as a 
Lipschitz continuous operator. 

For functions c of two variables, c : I x [O, T] -+ 1R, where I c 1R is an interval such that 
c(x, ·) E C[O, T] for almost every x EI, we define the output of the stop operator with initial 
configuration la~(x)I :::; r, x EI, through the formula 

Er [a~, c] (x, t) = Er[a~(x ), c(x, · )] (t) , (x, t) EI x [O, T] . (2.9) 

Here, we have used the same symbol Er since there is no risk of confusion. 
The following properties of the operator defined in (2.9) follow directly from Proposition 2.1. 

Proposition 2.2 

(i) The operator Er : C(f; [- r, r]) x C(Ix [O, T]) -+ C(Ix [O, T]) defined in {2.9} is Lipschitz 
continuous with respect to the supremum-norm. 

(ii) For any a~ E W 1'1 (I; (- r, r]) and any c E W 1'1 (Ix (0, T)) with ex E L1 (I; L00 (0, T)), 
it holds with O"r = Er[a~, c] that 

l(ar)x (x, t)I :::; l(a~)x (x)I + 2 sup lcx(x,-r)I, for a.e. t E (0, T). 
O~r~t (2.10) 

Following the approach of Prandtl [19] and Ishlinskii [7], we now consider the parallel rheo-
logical combination of simple elasto-plastic elements defined by the operator Er with a density 
function r.p which, in our case, is assumed to depend also on the temperature () ; that is, we 
consider a stress-strain relation of the form 

a(x, t) = f" cp (r, O(x, t)) sr[a~, e](x, t) dr. (2.11) 

For the sake of simplicity, we assume that the initial stress configuration a~ = a~ ( x) is of the 
form 

a~(x) = sign c(x, 0) min{r, lc(x, O)I}, x EI; (2.12) 
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which characterizes the state without initial memory. 
~or this choice of _?~ , we may simply write Sr [c] instead of Sr [a~, c] , and the operator sr : 

C(I x [O, T]) -+ C(I x [O, T]) thus defined is still Lipschitz continuous. This enables us to 
rewrite the constitutive equation (2.11) in the simpler operator form 

er = P[e, OJ := f 0 

<p(r, 0).sr[e] dr, (2.13) 

with a given non-negative function r.p whose properties will be specified below in the hypothesis 
(Hl). 

We remark that for each constant temperature e the function r.p(·, B) can be identified from 
the initial loading curve a = <I>(c, B) which is obtained by plotting the value of a against 
a monotonically increasing value of c from the imperturbed state c(O) = a~ = O for every 
r > 0. We then have (see [1, 10, 13]) r.p(r, B) = - <I>rr(r, B) for constant e, and the branches of 
the hysteresis loops are given by the functions C ± 2 <I>(~lc - col, B) (see Fig. 2). 

Fig. 2. Hysteresis diagram of the operator (2.13) at constant e. 

Similarly to [5, 18, 21], we consider the equation of motion in the form (the density is supposed 
to be constant and normalized to unity, i.e. p = 1 ) 

Utt - C7x + µxx = f (x, t), (2.14) 

where µ = 'Y ex, 'Y > 0 given, denotes the couple stress, c = Ux, a has the form (2.13), and 
f is a given function. We need to couple (2.14) with the balance law for the density of internal 
energy. 

B. The Balance Law of Internal Energy 
We now construct an internal energy operator U = U[c, B] and an entropy operator S = S[c, B] 
that assign to each pair ( c, B) of functions the densities of internal energy and of entropy, 
respectively. For thermodynamic. consistency, the first and second laws of thermodynamics, 
expressed by the balance of internal energy, 

(2.15) 

and by the Clausius-Duhem inequality, 

St > ~ - (q) - e e x ' 
(2.16) 

respectively, must hold almost everywhere for all functions c, e E L1(I x (0, T)) satisfying 
Ct' Cxt 'et E L1 (I x (0, T)) . Here, q denotes the heat flux and g is a given heat source density. 
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Moreover, we have used the abbreviations 

(2.17) 

For the heat flux q, we assume Fourier's law 

(2.18) 

with a constant heat conductivity K, > 0; hence, assuming e > 0 (this will have to be verified 
later on), we can rewrite (2.16) as 

/'l, 2 
Ut - e St - a Ct - µ ext ~ 7i ex ' 

or, introducing the free energy operator :F := u - es' as 

Here, we have used the abbreviation 

(2.19) 

(2.20) 

(2.21) 

In order to find a suitable expression for :F, we now make use of the well-known fact that 
the inequality (2.5) can be interpreted as an energy inequality for the individual stop operator 
Sr; in addition, the operator ~s: is known to be a hysteresis potential for Sr ( cf. Section 2.5 in 
[1]). This observation suggests to define the free energy operator :F in the form 

')' 1100 :Fte,e] := Fo(B) + -e; + - cp(r,e)s;[e]dr, 
2 2 0 

(2.22) 

where F0 is defined in (1.3). With this choice of :F, (2.20) becomes (at least formally) 

Bt (s[e, B] + F~(B) + ! f
00 

cp9(r, B) s;[e] dr) ~ ~(} e; + f
00 

cp(r, B) sr[e] (et - (sr[e])t) dr. 
2 lo lo (2.23) 

Taking (2.5) into account, we see that (2.20) is satisfied provided the density cp is non-negative 
and the entropy operator S is defined as 

S[e, OJ := -F~(O) - ~ [" <po(r, 0) s~[e] dr. (2.24) 

Note that then the classical thermodynamic relation between free energy and entropy becomes 

(2.25) 

, In addition, 

')' 1100 U[e,B] = :F[e,B] + BS[e,B] = F0 (B) - BF~(B) + -e; + - (cp(r,B) - Bcp9 (r,B))s;[e]dr. 
2 2 0 (2.26) 

Consequently, the balance of internal energy (2.15) takes the form 

(2.27) 
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where 

1 rX) 
V[c, B] := 2 lo (cp(r, B) - B cp8 (r, B)) s~[c] dr. (2.28) 

The analysis of the above equation is independent of the concrete value of the positive constant 
Cv ; we therefore assume in the sequel Cv = 1 . 

C. Statement of the Problem 
Since c = Ux, the equation of motion (2.14) and the balance law of internal energy (2.27), 
(2.28) constitute a coupled system of nonlinear partial differential equations of the form 

(2.29) 

(2.30) 

to be satisfied in Ix (0, T), where, for the sake of convenience, we assume that I = (0, 7r). 
The functions f and g are given data, and V[ux, B] is defined by (2.28). We complement (2.29), 
(2.30) by the initial and boundary conditions 

u(O, t) = u(7r, t) = Uxx(O, t) = Uxx(1t", t) = 0' t E [O, T]' (2.31) 

Bx(O, t) = Bx(1t", t) = 0' t E [O, T], (2.32) 

u(x, 0) = u0 (x), Ut(x, 0) = v0 (x), B(x, 0) = e0 (x), x E [O, 7r]. (2.33) 

We make the following general assumptions on the data of our problem. 

(Hl) 

(i) f, g E L2 ((0, 7r) x (0, T)) , fx E L1 (0, T; L2 (0, 7r)) , g(x, t) ~ 0 for almost every (x, t) E 
(0, 7r) x (0, T). 

(ii) u0 E W 312 (0, 7r), v0 E W 212 (0, 7r), 8° E W112 (0, 7r), B0 (x) ~ 0 on [0, 7r], u0 (0) = u0 (7r) = 
ux°x(O) = ux0x(7r) = 0' v0 (o) = v0 (7r) = 0. 

(iii) cp88 E L00 ( (0, oo) x (0, oo)), and there exists some non-negative function ,.\ E L1 (0, oo) , 
such that for every B > 0 and almost every r > 0 it holds 

where L := f0
00 >..(r) dr. 

0 ::; cp(r, B) ::; ..\(r) , 
0::; cp(r,B) - Bcp8(r,B)::; ,.\(r), 
l'Po(r, B) I ::; ,.\(r) , 

1 IB 'Poo(r, B) I ::; L r 2 ..\(r) ' 

Remark 1. A non-trivial example for a function cp satisfying (Hl), (iii) is given by 

qJ(r, e) := A(r) G + 'Y(r) arctan C~r))) , 
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provided that A E L1 (0, oo) is non-negative, I E L00 (0, oo) and 

sup l1(r)I < - , k(r) 2: l1(r)I max 1, -1 { Lr
2

} 
r~O ~ 2 

a.e. on (0, oo) . (2.39) 

We now state the main result of this paper. 

Theorem 2.3 Suppose that {Hl) holds. Then there exist functions u, e E C([O, ~J x [O, T]) with 
et, Uxt, Uxxx E L00 (0, T; L2 (0, ~)) 'Utt E L2 (0, T; w- 1,2 (0, ~)) 'Bxx E L2 ((0, ~) x (0, T))' such 
that the initial and boundary conditions (2.31)-(2.33} are satisfied and such that the following 
conditions hold. 

ff ( -Ut(x, t) w(x) ,,P'(t) + (- / u,,,,,, + P[u,,, OJ) (x, t) w' (x) ,,P( t)) dt dx 

- ff f(x, t) w(x) ,,P(t) dt dx, V w EW1•
2 (0, 7r), V 'l/J E 'D(O, T), (2.40) 

(8 + V[ux, 8]\ - K, Bxx = g(x, t) + P[ux, 8] Uxt, for a.e. (x, t) E (0, ~) x (0, T), 
(2.41) 

with the operator V defined in (2.28}. In addition, e is non-negative on [O, ~J x [O, T]. 

Remark 2. 
1. Any pair ( u, 8) having the properties stated in Theorem 2.3 is called a weak solution to the 

system (2.29)-(2.33). 
2. The uniqueness of the solution is an open problem. 
3. The equations (2.40), (2.41) are meaningful, since Ux is continuous on [O, ~] x [O, T] if Uxt, Uxxx 

have the required regularity. 

3 Approximation and A Priori Estimates 
To establish the existence result, we employ an approximation. For this purpose, we approximate 
for any R > 0 the operator P by the truncated operator 

(3.1) 

and we replace the equations (2.40), (2.41) by a regularized system with parameters R > 0 and 
a E (0, 1), namely 

f foT ( - Ut w(x) ,,P' (t) - a u,,t w' (x) ,,P' (t) + (-'Yu,,,,,, 

+ PR[u,,, en w'(x) ,,P(t)) dt dx = ff f w(x) ,,P(t) dt dx' 
0 

V w EW1'2 (O,~), V 'ljJ E V(O,T), (3.2) 

with the truncated operator 

VR[c, e] := ! {R (cp(r, e) - e 'Pe(r, e)) s~[c] dr + !s~[c] f, 00 

(cp(r, e) - e 'Pe(r, e)) dr. 
2 Jo 2 R (3.4) 

8 



Our intention is to let a ~ 0 and R / oo . 
For every fixed n E lN, we replace the system (2.31)-(2.33), (3.1)-(3.4) by Galerkin approxi-

mations: we consider the system 

~Ok + ak f (o(n) + VR[u~n), o<nlJ)t cos(kx) dx + K.k 2 Ok 

ak f (g(x, t) + PR[u~n), o<nl] u~~)) cos(kx) dx, (3.6) 

. for k = 0, ... , n, where a0 := /"f, ak := j!, fork~ 1, 

n 

u(n)(x, t) :=· L uk(t) ak sin(kx), (3.7) 
k=l 

n 
e(n)(x, t) := :L ek(t) ak cos(kx), (3.8) 

k=O 

and where the unknown functions U1, ... ,Un, ea, ... , en satisfy the initial conditions 

uk(O) = ak lo" u0(x) sin(kx) dx, Uk(O) = ak lo" v0(x) sin(kx) dx, 

Ok(O) = ak f 0°(x) cos(kx) dx, lik(O) = 0. (3.9) 

We rewrite (3.5), (3.6) as a first order system 

1 
1 + ak2 Vk' (3.10) uk -

vk -"( k4 Uk + ak f (! sin(kx) - PR[u~n), o<nl]k cos(kx)) dx, (3.11) 

(k - ak f (O(n) + VR[u~n), O(n)]) cos(kx) dx, (3.12) 1 . 
-ek n 

(k - "'k2 Ok + ak f (g + P[u~n), o<nl] w<nl) cos(kx) dx, (3.13) 

with 

(n) ~ k ak ( ) ( ) w (x, t) := L.; k2 vk t cos kx , 
k=l 1 +a 

(3.14) 

and where Vk , (k satisfy 

ak(l + a k2 ) lotr v0 (x) sin(kx) dx, 

ak f (o0 (x) + VR[u~"l, o<nl](x, o)) cos(kx) dx. 

Obviously, the system (3.10)-(3.16) is of the form 

W = G(W) + b, W(O) = Wo, 
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where W is a function with values in JR4 n+ 2 having the components uk, vk, ek, (k, and 
where G is an operator in C([O, T]; JR4 n+ 2 ) which is Lipschitz continuous on bounded subsets 
of C([O, T]; JR4 n+ 2). The vector function b E L2 (0, T; ]R4 n+ 2 ) is given in terms of f and g. 
Hence, using standard arguments (successive approximations, say), the system (3.17) has a 
unique solution WE W 112 (0, Tn; JR4 n+ 2 ) for some maximal Tn E (0, T]. 

We will now derive some a priori estimates that will guarantee that Tn = T, for all n E IN, 
and that will enable us to pass to the limit as n -+ oo. In the sequel, C and Ci, i E IN, will 
always denote positive constants that may depend on the given data, but not on n, R, a. To 
reduce the notation effort, we will occasionally omit the arguments of functions, and we will 
denote the L2 (0,-rr)- norm by II · II· 

Lemma 3.1 There is some C > 0 such that 

llu~)(t)ll 2 + allu~~t(t)ll 2 +T'llu~12x(t)ll 2 +11e~)(t)ll 2 + ]:_11e~n)(t)ll 2 + r11e~n)(r)ll 2dr::; CeC(I+R
2
T), 

n lo (3.18) 

for all n E IN, a E (0, 1), R > 0, and t E [O, Tn]. 

Proof. For the sake of brevity, we suppress the index n, and we write PR = PR[ux, B] . Let 
t E [O, Tn] be arbitrary. At first, we multiply (3.5) by k2 Uk , sum over k and integrate over 
[O, t] and by parts to obtain 

~ (llu,,t(t) 11 2 + allu,,xt(t) 11 2 + 'Yllu,,,,,,(t) 11 2
) - f PR(t) u,,,,,,(t) dx 

H11u,,t(OJll2 + allu,,,,t(O)ll2 + 'Yllu,,,,,,(0)112
) - f PR(O) u,,,,,,(0) dx 

-l fo" u,,,,,, (PR)t dx dr + l lo" f,, u,,t dx dr. 

From (H3), (iii) and (2.6) we infer that almost everywhere in (O,-rr) x (0, T) it holds 

IPR[ux, B]I ::; LR, l(PR[ux, e])tl ::; L(RIBtl + luxtl). 
In addition, by Young's inequality and (Hl), (i), 

lot lo1r. lot 1 fx Uxt dx dt ::; llfx( r) 11 lluxt( r) II dr ::; -4 sup lluxt( r) 11
2 + C1 · 

0 0 O O~r::;t 

Therefore, using (Hl), (ii), and Young's inequality, we can easily see that 

lluxt(t) 11 2 + alluxxt(t) 11 2 + ~lluxxx(t) 11 
< ~ sup lluxt(r)ll 2 + -

4
1 

ft llBt(r)ll 2 dr 
2 o~r::;t lo 

+ C2(l + R2
) ( 1 + l (llu,,t(r)ll2 + llu,,,,,,(r)ll2

) dr) . 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

Next, we multiply (3.6) by ih , sum over k and integrate over [O, t] and by parts to obtain 

2~ (lllit(t)ll2 
- llOt(O)i12

) + i (llO,,(t)ll2 
- ll0,,(0)112

) 

+ l f l0tl2 
[ 1 - ~ foR 0 cpee(r, 0) s~[u,,J dr - ~ sk[u,,J l"" 0 cpee(r, 0) dr] dx dr 

l f Ot [g + PR[u,,J U,,t - f ( cp(r, 0) - 0 cpe(r, 0)) Sr [u,,J(sr[u,,J)t dr 

- SR[iL,,J(sR[u,,J)t l"" ( cp(r, 0) - 0 cp9(r, 0)) dr] dx dr. (3.23) 
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Now observe that (H3), (iii) implies that almost everywhere on (0, 7r) x (0, T) it holds 

foR 0 <poo(r, 0) s~[ux] dr + .s~[ux] loo 0 'Poo(r, 0) drl :<::: 1, (3.24) 

and, owing to (2.6) and (H3), (iii), the expression in the brackets in the integrand on the 
right-hand side of (3.23) is bounded from above by IYI + 2LRluxtl, a.e. on (0, 7r) x (0, T). 

Consequently, we obtain from (3.23) via Young's inequality that 

(3.25) 

Adding the inequalities (3.22) and (3.25), taking the supremum with respect to t on both sides 
and applying Gronwall's inequality, we obtain (3.18). This concludes the proof of the lemma. D 

Lemma 3.1 implies, in particular, that the unknowns Uk, vk, (}k, (k in the system (3.10)-(3.13) 
remain bounded in [O, Tn], and therefore we have Tn == T for all n E IN. Observe also that 
the bound on the right-hand side of (3.18) is independent of a. 

Lemma 3.2 There is some C > 0 such that 

f (llul;'l (t) 11 2 + allui~l (t) 11 2
) dt :<::: ~ eC(i+ R

2
)T, (3.26) 

for every n E IN , a E ( 0, 1) and R > 0 . 

Proof. Again, we omit the index n. Let t E [O, T] be arbitrary. Multiplying (3.5) by uk , 
summing over k and integrating over [O, t] , we find that 

l (llutt(r)ll 2 + alluxtt(r)ll2
) dr S l 1 (luxxxl luxttl + LR luxttl + IJI luttl) dx dr, 

(3.27) 

whence, using (3.18) and Young's inequality, the assertion easily follows. D 

4 Passage to the Limit 
In this section, we finish the proof of Theorem 2.3 using compactness arguments and a passage-to-
the-limit procedure. We first verify that for fixed a and R the approximate solutions ( u(n), (J(n)) 
have a limit point (ua,R, ea,R) satisfying the system (2.31)-(2.33), (3.1)-(3.4). Then we let a 
tend to 0 and check that there exists some Ro > 0 , independent of a , such that for every 
R 2'.: Ro the limit functions fulfil the conditions of Theorem 2.3. 

STEP 1: PASSAGE TO THE LIMIT AS n -t 00. 

For fixed a E (0, 1) and R > 0 we can by Lemmas 3.1 and 3.2 extract from { ( u(n), (J(n))} a 
subsequence (still denoted { ( U(n), (}(n))} ), such that there exist Ua,R, (}a,R in appropriate function 
spaces satisfying 

(n) a,R (n) a,R 
Uxxx --1' Uxxx ' Uxxt -t Uxxt ' 

(}(n) -t (}a,R 
x x ' all weakly-star in L 00 (0, T; L 2 (0, 7r)), 

( 4.1) 

(n) a,R (n) a,R 
Utt -t Utt , Uxtt -t Uxtt ' all weakly in L 2 ((0, 7r) x (0, T)), 

(4.2) 
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and, by compact imbedding, 

U(n) -t Uo:,R U(n) -t Uo:,R U(n) ~ Uo:,R U(n) ~ Uo:,R 
' t . t ' x -,- x ' xx -,- xx ' 

{n) o:,R ()(n) ~ ()o:,R 
Uxt -t Uxt ' -,- ' all strongly in C([O, 7r] x (0, T]) . (4.3) 

Let now N E IN be fixed, and let 'ljJ E 'D(O, T), w E span { sin(kx) I k · 1, ... , N}, 
z E span { cos(kx) I k = 0, ... , N} be arbitrary test functions. For every n ~ N the func-
tions u(n), ()(n) satisfy the system 

ff [- u)nl w(x) if;' ( t) - a ui~) w' (x) if;' (t) + ( - 'Y ui~x + PR[u~n), IJ(n)l) w' (x )i/J(t)] dx dt 

=ff fw(x)if;(t)dxdt, (4.4) 

{ f [- ~IJ)n) z(x)if;'(t) + IJ)n) z(x)if;(t) + KIJj;l z'(x)if;(t) - VR[u~n),!J(n)]z(x)if;'(t)J dxdt 

= { f (g + u~~) 'PR[uin), IJ(n)J) z(x) if;(t) dx dt. ( 4.5) 

Using (4.1)-(4.3), we can pass to the limit as n -t oo in (4.4), (4.5). The continuity of the 
stop operator with respect to the uniform convergence stated in Propositions 2.1 and 2.2, and 
Lebesgue's Theorem of Dominated Convergence yield that ( uo:,R, ()o:,R) satisfies (3.2), as well as 
the integral identity 

foT fo" [ (IJ'"R + VR[u~·R, IJ"•RJ) t - g - u~;RPR[u~·R, IJ"•RJ] z(x) if;(t) dx dt 

- K { f IJ~·R z'(x) if;(t) dxdt, (4.6) 

for any z E W 112 (0, 7r) and 'ljJ E 'D(O, T). This implies, in particular, that ()~!cR E L 2 ((0, 7r) x 
(0, T)) and that ()~,R(o) = ()~,R(i) = 0. Hence, (uo:,R, ()o:,R) satisfy (3.3) almost everywhere, 
as well as the initial and boundary conditions (2.31)-(2.33). We now collect some properties of 
the functions ( uo:,R, ()o:,R) . 

Lemma 4.1 For any a E (0, 1) and R > 0, there holds 

()o:,R(x, t) ~ 0, on [O, 7r] x [O, T] , (4.7) 

and, for every t E [O, T], 

Proof. ( 4.8) is an immediate consequence of Lemma 3.1. Next, observe that equation (3.3) 
with U = Uo:,R () = ()o:,R can be rewritten as 

' ' 
b(x, t) Bf'R - K, ()~~R - a(x, t) eo:,R = g(x, t)' (4.10) 
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a(x, t) := foR cpo(r, O"'•R) sr[u~·R] ( sr[u~·RJ) 
1 

dr + sR[u~·R] ( sR[u~·R]) 
1 
loo cp8(r, {)"'•R) dr, 

( 4.12) 

jj(x, t) := g(x, t) + foR cp(r, {)"'•R) sr[u~·R] ( u~;R - (sr[u~·R]),) dr 

+ sR[u~·R] ( u~;R - (sR[u~·R]),) l 00 

cp(r, O"'·R) dr. ( 4.13) 

Owing to (2.5) and hypothesis (H3), (i), we see that g(x, t) 2: 0 almost everywhere. In 
addition, (2.6), (2.36) and (4.3) entail that a E L00 ((0, n") x (0, T)). Therefore, thanks to the 
classical theory of linear parabolic equations (cf., for instance, [14]), (4.7) is satisfied. 

To confirm the validity of ( 4.9), we multiply (3.5) by uk, and sum over k to arrive at 

! Gff u)">(t)ff 2 + ; ffu~~) (t)ff 2 + ~lfu~'2(t)ff 2) 

-f PR[u~"l, o<nl](t) u~~) (t) dx + ff ( t) u)"> (t) dx, ( 4.14) 

whence, integrating over [O, t] and then letting n--+ oo, 

~lfuf,R(t)lf 2 + ; lfu~;R(t)f f 2 + ~ffu~~R(t)f [2 

'.':: C1 - lo'{' PR[u~·R, {)"'•R] u~;R dx dr + lo'{' J u~·R dx dr. (4.15) 

Integrating (3.3) for u = ua,R, (} = (}a,R, over [O, 7r] x [O, t] and adding the result to (4.15), we 
find that 

~f[u~'R(t)lf 2 + ; ff u~;R(t)f f 2 + ~ff u~~R(t)lf 2 

+ f (O"'·R(t) + VR[u,,, O](t)) dx '.':: C2 + fa' ff u~·R dx dr. ( 4.16) 

By (2.35), VR[ux,B] is non-negative. Using (4.7) and Young's inequality, we obtain (4.9) by an 
application of Gronwall's lemma. D 

Remark 3. Note that the bound established in ( 4.9) is independent of R. It could be derived 
from the fact that (}a,R is non-negative. In fact, we have introduced the a-approximation exactly 
with the purpose to get u~iR bounded in L00 in order to apply the maximum principle for (}a,R. 

Of course, ( 4.9) means that the energy is globally bounded. 

STEP 2: PASSAGE TO THE LIMIT AS a -7 0+. 

Since the bounds established in ( 4.8), ( 4.9) are independent of a, there exist functions uR, (JR 

in appropriate function spaces such that, possibly after selecting a subsequence, we have for 
a--+ o+' 

Ua,R ~UR 
xt -, xt' 

U a,R ~UR 
xx -, xx' 

Ua,R -7 UR (}a,R -7 (}R Ua,R -7 UR 
xxx xxx ' x x ' t t ' 

all weakly-star in L00 (0, T; L2 (0, 7r)), 

weakly in L2 ((0, 7r) x (0, T)), 

( 4.17) 

( 4.18) 

(}a,R --+ (}R, ua,R --+ uR, u~,R --+ u~, all strongly in C([O, 7r] x [O, T]) . ( 4.19) 
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In addition, ( 4.9) implies that 

( 4.20) 

with C* independent of a and R. Similarly as in Step 1, we may now pass to the limit as 
a -+ 0+ in (3.2) and ( 4.6) to see that ( uR, ()R) satisfies (3.2) and (3.3), as well as the bound-
ary conditions (2.31) and (2.32), with a = 0. By (4.19), also uR(x, 0) = u0(x), ()R(x, O) = 
e0 (x), on (0, 7r]. To confirm that also uf(x, 0) = v0 (x) almost everywhere on (0, 7r), we 
note that equation (3.5) and the estimate (3.18) imply that the sequence { u~~)} is bounded 
in L2 (0, T; w- 1•2 (0, 7r)), independently of n and a. Hence, {u~'R} is bounded in L2 (0, T; 
w- 1•2 (0, 7r)), independently of a. We may therefore assume that, for a-+ o+, 

a:,R ~ R 
Utt ----, Utt ' weakly in L2 (0, T; w- 1•

2 (0, 7r)). ( 4.21) 
0 

In addition, since W 1•2 (0, T; w- 1•2 (0, 7r)) n L00 (0, T; W 1•2 (0, 7r)) is by a classical compactness 
result (cf. [15)) compactly imbedded in C([O, T]; L2 (0, 7r)), we may select the sequence a-+ 0+ 
in such a way that 

strongly in C([O, T]; L2 (0, 7r)), ( 4.22) 

so that uf(., 0) = v0 in the sense of L2 (0, 7r). 

STEP 3. PASSAGE TO THE LIMIT AS R-+ oo. 

Recalling the definition (2.1)-(2.3) of the stop operator with initial condition given by (2.12), we 
see that the implication 

IC: ( t) I < r V t E [ 0, T] => Sr [ c:) ( t) = c: ( t) V t E [ 0, T] ( 4.23) 

is valid for every r > 0 an~ every c: E W1•1(0, T) (and hence, by Proposition 2.1, also for every 
c: E C[O, T] ). In particular, given any function c: E C[O, T], we have Sr[c:] = c: provided that 
r > llc:llL00 (0,T) · 

Now fix some R > C*, where C* is the constant defined in ( 4.20). Then sR[u:J = u: = 
sr[u:J for all r 2:: R. Consequently, for a = 0 the systems (3.2), (3.3) and (2.40), (2.41) 
coincide. Hence (u, (}) = (uR, ()R) is a weak solution to the system (2.29)-(2.33). Finally, (4.7) 
and ( 4.19) imply that (} is non-negative on (0, 7r] x (0, T], which concludes the proof of Theorem 
2.3. D 

Remark 4. 
1. It follows from the maximum principle that (} is everywhere positive on (0, 7r] x (0, T] if 

e0 ( x) > 0 V x E [ 0, 7r) . 
2. The fact that we cannot prove the uniqueness of solutions has nothing to do with the hysteresis 

branching. In PDE's with hysteresis which are linear with respect to the hysteretic term 
there exist techniques for proving the uniqueness ( cf. (6, 11, 24)). The difficulty here consists in 
the complicated nonlinear coupling in (2.29), (2.30) and in a loss of regularity in the 
hysteretic terms. 
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