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Abstract

We discuss analytical and numerical methods for the optimization of optoelectronic de-
vices by performing optimal control of the PDE governing the carrier transport with respect
to the doping profile. First, we provide a cost functional that is a sum of a regularization
and a contribution, which is motivated by the modal net gain that appears in optoelectronic
models of bulk or quantum-well lasers. Then, we state a numerical discretization, for which
we study optimized solutions for different regularizations and for vanishing weights.

1 Introduction

Studies of semiconductor device optimization via optimal control methods have been the sub-
ject of a number of previous studies, cf. e.g. [6, 7, 8]. In recent years there has been an increase
in research on optoelectronic devices, e.g. aimed at on-chip integration of lasers in order to
increase communication bandwidths for computing or telecommunication applications. For ex-
ample, it has been demonstrated recently that germanium can be used as an optically active
medium, however, advanced engineering techniques such as high doping or application of large
strain, are necessary to improve optical properties of laser cavities [1].

In the following, we present our first steps towards the optimal control of an optoelectronic
device. In Sec. 2 we introduce a model that has been used to describe optical modes, charge
transport and spontaneous emission in the cross-section of an edge-emitting laser. We first
simplify this model to the extend we believe is reasonable for a laser below lasing threshold.
For this model we discuss well-posedness in Sec. 3 relying on well-known existence results cf.
e.g. [4, 12, 16, 17]. In Sec. 4 we set up an optimal control problem with the goal to improve
the optical properties of the laser. Finally, in Sec. 5 we discuss the feasibility of the optimization
concept at the hand of 1D-examples.

2 Mathematical model

The state of a semiconductor in a bounded domain Ω ⊂ Rd, with d = 1, 2, 3 is described by
the electrostatic potential ψ and by the carrier densities n, p for the electrons in the conduction
band and holes in the valence band, respectively. Steady-state solutions (ψ, n, p) solve the
van Roosbroeck system [4], which after non-dimensionalization using [x] = l, [ψ] = UT ,
[n, p, C] = N0 reads

−∆ψ = q(C + p− n), ∇ · jn = R, ∇ · jp = −R. (1a)
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The current densities for electrons jn = −µnn∇ϕn and holes jp = −µpp∇ϕp are propor-
tional to the gradients of the quasi-Fermi potentials ϕn and ϕp, which are related to the carrier
densities through the equation of state

n = ni exp(ψ − ϕn), and p = ni exp(ϕp − ψ). (1b)

With C we denote the given doping concentration. In this model we rescaled the dimensional
mobilities by µ0, recombination rates by R0 = UTµ0N0/l

2, intrinsic densities by N0, and
defined q = l2qeN0/(UT ε) and UT = kBT/qe. At Ohmic contacts ΓD these equations are
supplemented with the following special type of Dirichlet boundary conditions

ψ = ψbi + ψext, ϕn = ψext, ϕp = ψext, on ΓD, (1c)

using the built-in voltage ψbi and the given external voltage ψext, and on the insulating part with

∇ψ · ν = jn · ν = jp · ν = 0, on ΓN. (1d)

Rewriting the fluxes in (1) in terms of the densities n, p, one arrives at the well-known form

jn = −µn(n∇ψ −∇n), jp = −µp(p∇ψ +∇p), (2)

and at Ohmic contacts the boundary conditions become

ψ = ψbi + ψext =: ψD, n = nie
ψbi =: nD, p = nie

−ψbi =: pD, on ΓD, (3)

so that we have np = n2
i at ΓD.

In addition to the electronic transport model (1), an optoelectronic model needs to take into
account radiative recombination processes and should, in particular, capture the number of
coherent photons S generated by stimulated emission. Analogously to [9] we introduce the
optical modes Ψ as solutions of a Helmholtz eigenvalue problem, which prototypically for TE
modes reads [

∇2 +
(
nr + i

2
(g − `− `1)

)2
]

Ψ = β2Ψ,

with nr the refractive index of the material. The imaginary part of the eigenvalue enters the
stationary balance of stimulated emission and spontaneous emission rsp as 0 = (2Imβ −
`2)S + rsp, where `1, `2 constitute additional loss mechanisms not consider here. With g and `
we denote the gain and, as a representative loss mechanism, the free carrier absorption, which
encodes the rate at which photons S are created and annihilated and which both depend on
carrier densities, i.e. g = g(n, p) and ` = `(n, p). Motivated by one of our previous studies [2]
we use

g(n, p) := g0(np)δ − g1(np)δ−1, (4a)

`(n, p) := fnn+ fpp, (4b)

where g0, g1, fn, fp > 0, δ ∈ (0, 1/2) are material dependent parameters (possibly depending
on wavelength, material quality, temperature, mechanical strain etc.) and which in the following
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are taken to be constant in space. By a perturbation argument one can show that the imaginary
part of the eigenvalue can be approximated

Imβ '
∫

Ω

(g(n, p)− `(n, p))|Ψ|2 dx, (5)

where, to leading order, the form of Ψ does not depend on the charge distribution.

The recombination-generation term R = Rnorad +Rrad in (1) takes into account different non-
radiative and radiative recombination processes. The non-radiative Auger and Shockley-Read-
Hall recombination terms are of the form Rnorad = R̃(n, p)(np − n2

i ). In addition we have
radiative recombinations Rrad = R̃spont(np − n2

i ) + Rstim(n, p). In addition to spontaneous
recombination it contains the main ingredient for a laser, the stimulated radiative recombination

Rstim(n, p) ' g(n, p)|Ψ|2S, (6)

which has the stimulated emission term Imβ in the algebraic equation for S as a counter-
part. For the purpose of this paper we consider the optimization of a laser below threshold
0 < S � 1. From a practical point of view this implies that we neglect the influence of the optics
on the electronic transport and set S = 0, whereas it is taken into account in the optimization
by using Imβ in (5) as one part of the cost functional. Such a strategy is aimed at lowering the
threshold current of a semiconductor laser.

3 The existence of solutions

In the subsequent sections we assume that

• the domain Ω is bounded in Rd, d ∈ {1, 2, 3}, with Lipschitz boundary such that

ΓD 6= ∅ and ΓN = ∂Ω\ΓD ,

• R(n, p) = R̃(n, p)(np− n2
i ) with R̃ : [0,∞)2 → [0,∞) continuously.

(7)

In order to account for general Dirichlet data (ψD, nD, pD), we shall understand from now on
ξD = (ψD, nD, pD) as the extension of the data prescribed on ΓD into the domain Ω. The spe-
cial case of Ohmic contacts (1c) is included the existence Theorem 1. Moreover, we introduce
H1

D(Ω) := {u ∈ H1(Ω), u = 0 on ΓD}. Then we set

H := [H1(Ω)]3, X := [H1
D(Ω) ∩ L∞(Ω)]3, C∈{H1(Ω), Lp(Ω) s.t. p > d/2} . (8)

Note that we want to keep the space C as general as possible in order to allow for some freedom
in the choice of the cost functional later on in Sections 4 & 5. In order to specify our notion of
solution we shall interprete the system (1a,2,3) as an operator

ρvR(ξD; ·, ·) : X×C→ [H1(Ω)∗]3, ρvR(ξD; ξ, C) :=

−∆(ψ+ψD)−q(C+p+pD−n−nD)
∇ · jn −R
∇ · jp +R

 ,

where jn := ∇(n+nD) + (n+nD)∇(ψ+ψD) , jp := −∇(p+pD) + (p+pD)∇(ψ+ψD) ,(9)

with ξ = (ψ, n, p) ∈ X and H1(Ω)∗ the dual of H1(Ω). In this way, a suitable notion for
solutions of the boundary value problem (1) can be stated as follows.

3



Definition 1 (Solution for the boundary value problem (1)). For the given data C ∈ C and
ξD = (ψD, nD, pD) ∈ [H1(Ω) ∩ L∞(Ω)]3 a triple ξ = (ψ, n, p) ∈ X is a solution to the
boundary value problem of the van Roosbroeck system (1) if

ρvR(ξD;ψ, n, p, C) = 0 in [H1(Ω)∗]3 . (10)

Arguing along the lines of [4, 17, 12, 7] the following existence result can be obtained.

Theorem 1 (Existence of solutions). Let (7) be satisfied and ρvR(ξD, ·, ·) : X × C →
[H1(Ω)∗]3 as in (8) & (9). Then for all given data C ∈ C and (ψD, nD, pD) ∈ [H1(Ω) ∩
L∞(Ω)]3 such that

‖ψD‖L∞(Ω) ≤ K, and 1
K
≤ nD, pD ≤ K a.e. in Ω (11)

for some K ≥ 1, there exists a triple (ψ, n, p) ∈ X such that (10) is satisfied and

‖(ψ, n, p)‖X ≤ L as well as 1
L
≤ n, p ≤ L a.e. in Ω (12)

with a constant L = L(Ω, K, ‖C‖C) ≥ 1.

For the shortness of the presentation we shall not give a full proof of the existence Theorem 1,
but just outline the main ideas in Remark 2 and rather refer the reader to [4, Sec. 3.2] or [17, 12]
for further details. However, it is important to note that the bounds on the given data (11) and
the choice of C according to (8) allow us to find the bounds (12) on the solutions (ψ, n, p). This
information will play an important role in the optimization lateron. More precisely, introducing, in
accordance with the bounds (12), the topology τvR

(ψk, nk, pk, Ck)
τvR→ (ψ, n, p, C) ⇔


(ψk, nk, pk) ⇀ (ψ, n, p) in [H1(Ω)]3,

(ψk, nk, pk)
∗
⇀ (ψ, n, p) in [L∞(Ω)]3,

(ψk, nk, pk) → (ψ, n, p) in [Lq(Ω)]3 for all q ∈ (1,∞),
Ck ⇀ C in C

(13)
and the set

SvR :={(ξ, C) ∈ X×C, (ξ, C) satisfy (10) & (12) with ξD as in (11)} , (14)

it can be shown, thanks to (12), that SvR is compact in H × C with respect to the topology
τvR. This will be the crucial ingredient to verify the existence of a solution for the optimization
problem treated in Sec. 4.

Proposition 1 (Compactness of SvR). The set SvR defined in (14) is compact in H ×C with
respect to the topology τvR.

Proof: Consider a sequence (ψ̂k, n̂k, p̂k, Ĉk)k ⊂ SvR such that ‖(ψ̂k, n̂k, p̂k, Ĉk)‖H×C ≤M
for a constantM <∞. Thus, ‖Ĉk‖C ≤M and hence, by (12), also ‖(ψ̂k, n̂k, p̂k)‖[L∞(Ω)]3 ≤
L(M) and 1/L(M) ≤ n̂k, p̂k ≤ L(M) a.e. in Ω. By the reflexivity of [H1(Ω)]3 we find
a (not relabelled) subsequence (ψ̂k, n̂k, p̂k)k and a triple (ψ̂, n̂, p̂) ∈ [H1(Ω)]3 such that
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(ψ̂k, n̂k, p̂k) ⇀ (ψ̂, n̂, p̂) in [H1(Ω)]3. By the compact embedding [H1(Ω)]
3 b [L2(Ω)]

3
we

have that (ψ̂k, n̂k, p̂k)→ (ψ̂, n̂, p̂) in [L2(Ω)]3, which can be upgraded to strong convergence
in [Lq(Ω)]3 for any q ∈ (1,∞) thanks to the uniform L∞-bound. Indeed, this bound also
implies the weak-star convergence inL∞(Ω) of a further subsequence. Upon extrating a further
subsequence that converges pointwise a.e. in Ω we deduce that 1/L(M) ≤ n̂, p̂ ≤ L(M)
a.e. in Ω. Finally, using Banach-Alaoglu’s theorem, the uniform bound of (Ĉk)k in C, as a dual
of a separable Banach space, allows us to conclude the convergence of a subsequence to a
limit Ĉ ∈ C. In conclusion, we have obtained that also the limit (ψ̂, n̂, p̂, Ĉ) satisfies (12).

It remains to show that the limit (ψ̂, n̂, p̂, Ĉ) complies with (10). Thanks to the first and the fourth
convergence property of (13) we find that ψ̂ is a weak solution of the Poisson equation in (1),
i.e. the first line of system (10), with right-hand side q(Ĉ−n̂−nD+p̂+pD). In order to show that
(ψ̂, n̂, p̂) also solve the corresponding continuity equations note that with (n̂k, p̂k)k satisfying
(12) we have |R| ≤ max(n,p)∈[1/L,L] R̃(n+nD, p+pD) ((L+K)2 − n2

i ) pointwise a.e. in Ω,
uniformly for all k ∈ N. Owing to the strong Lq-convergence ensured in the third line of (13), we
may extract a not relabelled subsequence such that (n̂k, p̂k)→ (n̂, p̂) pointwise a.e. and since
all the reaction terms are continuous according to (7), we find that R(n̂k+nD, p̂k+pD) →
R(n̂+nD, p̂+pD) along this subsequence. Thus, thanks to the pointwise uniform bound, we
find with the aid of the dominated convergence theorem that

∫
Ω
R(n̂k+nD, p̂k+pD)v dx →∫

Ω
R(n̂+nD, p̂+pD)v dx for any test function v ∈ H1(Ω), hence the convergence of the

right-hand sides in the second and third line of (10). Finally, we obtain the convergence of the
corresponding left-hand sides by weak-strong convergence arguments using the first of (13) and
that ‖(n̂k − n̂)v‖2

L2(Ω) ≤ ‖v‖2
L2∗ (Ω)

‖n̂k − n̂‖2
L(2∗)′ (Ω)

→ 0 thanks to the third of (13), and the

corresponding argument for the hole density. Thus, (ψ̂, n̂, p̂, Ĉ) satisfies (10) and alltogether
we have verified that (ψ̂, n̂, p̂, Ĉ) ∈ SvR.

Remark 1 (Comments on the uniqueness of solutions to (10) and its effect on optimization).
Uniqueness of the solution has been proved in [12] under additional smallness assumptions on
the Dirichlet data and restrictions on K in (11) which ensure that the applied voltage is suffi-
ciently small and hence keep the carrier densities solving (10) sufficiently close to the thermal
equilibrium state. Further away from equilibrium, uniquess is in general not to be expected. This
has the effect that also an optimization problem based on (10) may admit multiple solutions. Also
observe that, due to the quasilinear character of the current continuity equations, it is unclear
whether SvR from (14) forms a convex set. This spoils the uniqueness of a minimizer, or at least
its verification, for an optimization problem involving functionals with equality constraint (10),
even if the functional itself is strictly convex. We refer to [8, Sec. 2], where the non-uniqueness
of a minimizer has been demonstrated for a particular choice of the cost functional.

In order to convince the reader that the bounds (12) indeed hold true for the given data chosen
in accordance with (11) and C as in (8), we shall here outline the main steps of the existence
proof leading to (12).

Remark 2 (Comments on the existence proof). We refer to [4, Sec. 3] for all the details of the
existence proof, which may in fact be carried out using the so-called Slotboom variables ψ̃, u, v
such that ψ̃ = ψ + ψD, n+nD = niexp(ψ̃)u and p+pD = niexp(−ψ̃)v. The bounds
(11) on the Dirichlet data nD, pD in fact ensue from analogous bounds for the Dirichlet data
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uD, vD for u, v. The main idea is to apply a fixed point argument based on Schauder’s fixed
point theorem using a decoupled iteration scheme. More precisely, at iteration step j ∈ N, one
keeps the variables uj−1, vj−1 ∈ H1(Ω) ∩ L∞(Ω) (satisfying bounds analogous to (12) with
constants C1, C2, C3) fixed in the Poisson equation, i.e. one seeks a solution to the problem
∆ψ̃ = q(niexp(ψ̃)uj−1 − niexp(−ψ̃)vj−1 − C), (+ corresponding boundary conditions).
For this modified PDE the existence of a unique solution H1(uj−1, vj−1) = ψ̃j ∈ H1(Ω)
can be proved using monotone operator theory. Thanks to the Stampacchia method [13] it is
possible upgrade this solution ψ̃j to be bounded in L∞(Ω) by a constant which continuously
depends on the Lp(Ω)-norm (hence C-norm) of the doping function, on the bound correspond-
ing to K for the Dirichlet datum, and on the space dimension, cf. also [11, 12]. Subsequently
one may use ψ̃j as an input for the equations for the (u, v)-variables (corresponding to the
carrier transport equations), hereby suitably linearizing the recombination rate. In this way, one
seeks a solution (uj, vj) for the system div µnexp(ψ̃j)∇u = R̃(ψ̃j, uj−1, vj−1)(uvj−1 − 1)
& div µpexp(−ψ̃j)∇v = R̃(ψ̃j, uj−1, vj−1)(uj−1v − 1) (+ corresponding boundary condi-
tions). The existence of weak solutions (H2(ψj, uj−1, vj−1), H3(ψj, uj−1, vj−1)) = (uj, vj)
for this system can be deduced from [10, Sec. 3.13, Thm. 13.1], which additionally gives a
bound in L∞(Ω) that only depends on the bound corresponding to K for the Dirichlet data
and the space dimension. Thanks to the nonnegativity of R̃(ψ̃j, uj−1, vj−1) and the bound
from below corresponding to the one in (11) on the Dirichlet data the maximum principle addi-
tionally ensures that (uj, vj) are bounded from below by a constant C1. The H1(Ω)-bounds
ensue from standard coercivity estimates, also using the L∞(Ω)-bounds for (uj−1, vj−1) in
order to find R̃(ψ̃j, uj−1, vj−1) bounded. Hence, one can define a fixed point map H =
(H1, H2, H3) : N → N on the closed, convex set N = {(ψ̃, u, v) ∈ [L2(Ω)]3, C1 ≤
u, v ≤ C2, |ψ̃| ≤ C3 a.e. in Ω}, where the constants C1, C2, C3 correspond to 1/L, L. Then
ρvR(ξD;ψ, n, p) = 0 text if H(ψ̃, u, v) = (ψ̃, u, v). Thanks to the above observations on the
boundedness of the solutions (ψ̃j, uj, vj) ∈ [H1(Ω) ∩ L∞(Ω)]3, j ∈ N, one obtains that
H(N) ⊂ [H1(Ω) ∩ L∞(Ω)]3 is contained in a compact subset of L2(Ω)3. Moreover, from
the well-posedness of the above elliptic boundary value problems it follows that the solution op-
erator is continuous on [L2(Ω)]3. Thus, the existence of a fixed point H(ψ̃, u, v) = (ψ̃, u, v)
follows by Schauder’s fixed point theorem.

4 Optimization problem

Our optimization goal is to maximize the optical output, i.e. the number of photons available in
the device, with respect to the doping profile C ∈ C injected into a device, whose electrical
properties are governed by the van Roosbroeck system (10). This will amount to a constrained
minimization problem for a suitable cost functional Q : X × C → R ∪ {∞} which shall be
introduced now. Following [2], the optical output is related to the modal net-gain

−Q1(n, p) = (g − `)|Ψ|2, (15)

with the representation of the optical mode Ψ ∈ C∞0 (Ω) as in (6) and with the material gain g
and the optical losses ` from (4). In view of this, we introduce the functional

Q̃1 : X→ R , Q̃1(ψ, n, p) :=

∫
Ω

Q1(ψ+ψD, n+nD, p+pD) dx , (16)
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so that the maximization of the optical output will be realized by minimizing a functional that
involves Q̃1. In particular, since the doping profile C ∈ C shall be the control parameter of the
optimization problem, we shall combine Q̃1 with a second functional

Q̃2 : C→ R ∪ {∞} with domain dom Q̃2 = C0 ⊂ C a closed, convex subset (17a)

and we impose that Q̃2 : C→ R ∪ {∞} is:

• weakly sequentially lower semicontinuous on C , (17b)

• bounded from below and coercive: ∃ cQ2 , c̄Q2 > 0, r ∈ (1,∞),

∀C ∈ C : Q̃2(C) ≥ cQ2‖C‖rC − c̄Q2 . (17c)

Making use of (14), (16), and (17a) we finally introduce the cost functional

Q : X×C→ R∪{∞}, Q(ψ, n, p, C) :=

{
Q̃1(ψ, n, p) + Q̃2(C) if (ψ, n, p, C) ∈ SvR,
∞ otherwise

(18)
and in what follows we shall treat the constrained minimization problem

min
X×C
Q(ψ, n, p, C) . (19)

Observe that the functional Q̃ := Q̃1+Q̃2 : X×C→ R∪{∞} only carries the compactness
property (17c) encoded in Q̃2 for the doping profiles, whereas Q̃1 does not give any compact-
ness for the densities. Therefore it is important to note that the functional Q gives this missing
compactness by constraining the minimization to the set SvR, which is compact by Prop. 1. This
idea will be used in order to prove the existence of a minimizer in (19). In particular, we now
collect the following properties of the functionalQ:

Proposition 2 (Properties of Q). The functional Q : X × C → R ∪ {∞}, defined by the
relations (14), (4a)–(18), enjoys the following properties:

• Q is bounded from below and coercive: ∃CQ1 ∈ (−∞, 0), ∃ cQ2 , c̄Q2 > 0, r ∈ (1,∞),

∀ (ψ, n, p, C) ∈ X×C : Q(ψ, n, p, C) ≥ CQ1 + cQ2‖C‖rC − c̄Q2 . (20a)

• Q is lower semicontinuous wrt. convergence in τvR . (20b)

Proof: Ad boundedness from below and coercivity (20a): For this, we first check that
the density Q1 = −(g − `) is bounded from below. Indeed, for any n, p > 0 observe by
Young’s inequality that −g(n, p) > −g0(np)δ ≥ −g0

2
(n2δ + p2δ) =: f(n, p). On the in-

terval [0,∞) the function F (n, p) := f(n, p) + `(n, p) has a global minimum at (n∗, p∗) :=(
(2δg0
fn

)1/(1−2δ), (2δg0
fp

)1/(1−2δ)
)

since the Hessian D2F (n∗, p∗) = −(2δ−1)(2δ)g2
0 diag(n2δ−2

∗ , p2δ−2
∗ )

is positively definite because of δ < 1/2. This yields that

−g(n, p) + `(n, p) > F (n, p) ≥ F (n∗, p∗) for any (n, p) ∈ [0,∞)2 , (21)

hence a bound from below on Q̃1. In combination with the bound (17c) on Q̃2 we thus obtain

Q(ψ, n, p, C) ≥ F (n∗, p∗)Ld(Ω) + cQ2‖C‖rC − c̄Q2 .
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Ad lower semicontinuity (20b): Consider a sequence (ψk, nk, pk, Ck)
τvR→ (ψ, n, p, C). In

the case that (ψk, nk, pk, Ck) ∈ (X × C)\SvR for all but a finite number of indices, then
there is nothing to check because ∞ = lim infk→∞Q(ψk, nk, pk, Ck) ≥ Q(ψ, n, p, C).
Assume that (ψk, nk, pk, Ck)k ⊂ SvR for a not relabelled subsequence. By the compactness
of SvR, ensured by Prop. 1, we thus find that the limit (ψ, n, p, C) ∈ SvR. Therefore we
may argue that the lower semicontinuity estimate for Q in this case coincides with the lower
semicontinuity of Q̃1 + Q̃2. Then, lim infk→∞ Q̃2(Ck) ≥ Q̃(C) by (17b). We now check that
Q̃1 is lower semicontinuous with respect to strong convergence of (nk, pk)k in Lq(Ω)×Lq(Ω)
for any q ∈ (1,∞), which corresponds to convergence property 3 in (13). For this, we use that
−g(nk, pk) + `(nk, pk) > F (n∗, p∗), which serves as an integrable minorant according to
(21), since in particular (n∗, p∗) =

(
(2δg0
fn

)1/(1−2δ), (2δg0
fp

)1/(1−2δ)
)
∈ Lq(Ω)× Lq(Ω) for any

q ∈ [1,∞]. Moreover, since strong Lq-convergence implies the convergence of the sequence
in measure, Fatou’s lemma ultimately yields the lower semicontinuity.

The existence of a minimizer can now immediately be concluded by employing the direct method
of the calculus of variations, making use of the boundedness from below, the coercivity of Q
and its lower semicontinuity.

Theorem 2 (Existence of minimizers for the constrained minimization problem). Let the func-
tional Q : X × C → R ∪ {∞} be defined by (4a), (14), (15)–(18). Then the constrained
minimization problem (19) admits at least one solution (ψ, n, p, C) ∈ (X×C) ∩ SvR.

Remark 3 (Different choices of C and Q2). If C = H1(Ω), possible choices for Q2 are e.g.
QD

2 orQN
2 defined by

QD
2 (C) :=

{
γ
2
‖∇(C + CD − C̄)‖2

L2(Ω) if C ∈ H1
D(Ω),

∞ otherwise,
(22a)

QN
2 (C) :=

{
γ
2
‖C − C̄‖2

H1(Ω) if C ∈ H1(Ω),

∞ otherwise,
(22b)

where γ > 0 is a weight, C̄ ∈ H1(Ω) is a given “desired” doping profile and CD ∈ H1(Ω) ∩
L∞(Ω) the extension of a given Dirichlet datum into the domain. Note that in the first case a
Poincaré inequality is available to ensure the boundedness from below (17c) in terms of the full
H1(Ω)-norm.

If C = H1(Ω), the traces to the boundary are well-defined for the doping profile C . Then also
the Dirichlet boundary conditions for (ψ, n, p) can be formulated in terms of the corresponding
boundary datum ofC, thus allowing for Ohmic contacts (1c), cf. [4, 7], where the built-in potential
ψbi is determined by

CD + ni(e
−ψbi − eψbi) = 0, on ΓD. (23)

which results in nD =
(
CD + (C2

D + 4n2
i )

1/2
)
/2 and pD = CD − nD. Hence, in case of

(22a) one has to ensure that max{( 1
K
−Kni), (niK −K)} ≤ CD ≤ min{(K− ni

K
), (niK−

1
K

)}, in order to match (3) with (11). In case of (22b) condition (11) is harder to meet as
one has to additionally impose that C ∈ L∞(ΓD). This can be achieved either by adding a
further suitable penalization term to QN

2 or, as we will do in Sec. 4, by treating the problem
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in space dimension d = 1, where H1(Ω) compactly embeds into C(Ω), i.e. ‖C‖C(Ω) ≤
c‖C‖C =: Z . For this latter case we find with K(‖C‖C) := max{m(C),M(C)}, where
m(C) := (minz∈[0,Z]{nD(z), pD(z)})−1, and M(C) = maxz∈[0,Z]{nD(z), pD(z), ψD(z)}
that K(‖C‖C)−1 ≤ nD(C), pD(C) ≤ K(‖C‖C) as well as ‖ψD(C)‖L∞(Ω) ≤ K(‖C‖C).
Thus, for the data (nD(C), pD(C), ψD(C)) from (3) in (10) one has K = K(‖C‖C) in (11)
and hence, L = L(Ω, K(‖C‖C), ‖C‖C). According to Remark 2, thanks to the continuous
dependence of L on its parameters, both constants are bounded on bounded sets in C. Hence,
it remains true that SvR is compact in X×C with respect to τvR.

In the case C = Lp(Ω) a possible choice ofQ2 would be

QL
p (C) =

{
γ
2
‖C − C̄‖pLp(Ω) if C ∈ Lp(Ω),

∞ otherwise,
(24)

where traces are generally not well-defined. In this case we adopt artificial Ohmic contacts by
defining the built-in potential as

C̄ + ni(e
−ψbi − eψbi) = 0, on ΓD. (25)

This choice is not driven by any physical meaning but in order to study its impact on optimized
doping profiles. In particular for γ → 0 the artificial Ohmic contact will in general strongly violate
the desired charge-neutrality.

Remark 4 (The first order optimality system). In the following we assume that

dom Q̃2 = C and Q̃2 : C→ R is twice continuously Fréchet differentiable. (26)

Observe that Q̃1 : X → R is indeed twice continuously Fréchet differentiable. In this way, the
cost functional Q̃ = Q̃1 + Q̃2 : X×C→ R satifies the assumptions posed in [7, Sec.s 3,4]
and hence the first order optimality system and the existence of Lagrange multipliers can be
obtained following the lines of [7, Sec. 4]. Abbreviating ξ := (ψ, n, p), we write the Lagrangian
associated to the minimization problem (19)

LvR : X×C×H→ R , LvR(ξ, C, λ) := Q̃(ξ, C) + 〈ρvR(ξD; ξ, C), λ〉H . (27)

The associated first order optimality condition reads D(ξ,C,λ)LvR(ξ, C, λ) = 0 in X∗ ×C∗ ×
H∗. The existence and uniqueness of a Lagrange multiplier λ is verified in [7, Thm. 4.2] under
an additional smallness condition on the quotients j2

n/n and j2
p/p. For Ohmic contacts as in (3)

and (23) the derivative DCLvR also acts on the dependence of ξD on C at ΓD.

5 Numerical results

The numerics is based on a stationary formulation of (1) in terms of the original quasi-Fermi
potentials ϕn, ϕp introduced in (1b) and the electrostatic potential ψ in one spatial dimension.
Unlike the standard approach by Scharfetter-Gummel schemes [14], we use finite differences
on a mesh 0 = x1 < ... < xk < ... < xN = 1 where the discrete electron current is

9



expressed using ϕn;k = ϕn(xk), ϕp;k = ϕp(xk), ψk = ψ(xk), ηp;k = (ϕp;k − ψk) and
ηn;k = (ψk − ϕn;k) as

jn;k+1/2 = −µnni exp
(

1
2
(ηn;k+1 + ηn;k)

)(ϕn;k+1 − ϕn;k

xk+1 − xk

)
,

jp;k+1/2 = −µpni exp
(

1
2
(ηp;k+1 + ηp;k)

)(ϕp;k+1 − ϕp;k
xk+1 − xk

)
,

and approximate the divergence by ∂xjn ≈ (jn;k+1/2 − jn;k−1/2)/(xk+1/2 − xk−1/2). The
hole current jp = −µpp∂xϕp is discretized analogously. For sake of notation we use ξ =
(ψ, ϕn, ϕp)

>. Introducing the flux jψ;k+1/2 = −(ψk+1−ψk)/(xk+1−xk) the previous expres-
sions can be combined into the following discrete and nonlinear residual ρ̃vR : R3N × RN →
R3N as

ρ̃vR(ξ, C) =


jψ;k+1/2−jψ;k−1/2

xk+1/2−xk−1/2
− Q̂k

jn;k+1/2−jn;k−1/2

xk+1/2−xk−1/2
−Rk

jp;k+1/2−jp;k−1/2

xk+1/2−xk−1/2
+Rk


for k = 2, ..., N−1 and with the total charge Q̂k(ξ, C) = q

(
Ck+ni exp(ηp;k)−ni exp(ηn;k)

)
.

This residual is the equivalent to the operator introducted in (9). It depends on the doping
through the total charge and through the boundary conditions. The boundary conditions (1c)
in ρ̃vR for k = 1 and k = N are ψk = ψbi(Ck) + ψext;k and ϕn/p;k = ψext;k. The dis-
cretized van Roosbroeck equation, which now reads ρ̃vR(ξ, C) = 0, is then solved using
a Newton method ξn+1 = ξn − (∂ξρ̃vR)−1ρ̃vR. In thermal equilibrium ψext = 0 we have
ϕn = ϕp ≡ 0, so that since q � 1 it makes sense to choose ξ0 = (ψ0, 0, 0)> with ψ0 so

that Q̂k = q
(
Ck + ni(e

−ψ0
k − eψ0

k)
)

= 0. As the magnitude of the bias ψext is increased, the
previous solution with smaller bias is used as the starting-point for the Newton method.

For the present paper the recombination in (7) is R̃ = (Cnn+ Cpp) + (τp(n+ ni) + τn(p+
ni))

−1, with the parameters Cn = Cp = 10−1, τn = τp = 10, ni = 10−2. Additionally
we have q = 102, µn = µp = 1. The external potential is ϕext = 0.4 V/UT ≈ 15.47 for
T = 300 K. These values are somewhat realistic in the sense that usually one has 0 < ni � 1
and q � 1. The optical mode is set to a Gaussian |Ψ|2 = exp

(
−(10(x − 1/2))2

)
and the

parameters in the net-gain (4) are fn = 1/5, fp = 1, δ = 0.3, g0 = e−1, g1 = n2
i .

The optimization strategy for (19) is similar to [8], where we discretize the cost functionalQ1 by

Q1(ξ) =
N∑
k=1

hQ1(nk, pk), (28a)

with Q1 = −
(
g(nk, pk)− `k

)
|Ψk|2 and free-carrier absorbtion `k = fnnk + fppk.

The different regularization termsQN/D
2 from (22) for C = H1(Ω) or C = H1

0 (Ω) are treated
equally within our discretization by a functional Q2. Together with the functional QL

2 for C =
L2(Ω) we discretize using

Q2(C) =
γ

2

N−1∑
k=1

h
(
Ck+1−Ck+C̄k+1−C̄k

h

)2

, QL
2 (C) =

γ

2

N∑
k=1

h
(
Ck − C̄k

)2
(28b)
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where h = xk+1 − xk, which for this paper we assume to be constant. Note that for QN
2

from (22b) the boundary values for C are not kept fixed. Hence, (22b) suggests to use the
full H1(Ω)-norm for regularization. However, here we study the effect of different regulariza-
tions and thereby use the L2(Ω)-norm and H1(Ω)-seminorm separately. As before we use
Q̃(ξ, C) = Q1(ξ)+Q2(C) and introduce a Lagrange multiplier λ ∈ Rn, so that the first-order

optimality conditions using the discrete counterpart LvR : R3N × RN̂ × R3N → R of the
Lagrangian in (27) is L′vR = (LvR,ξ,LvR,C ,LvR,λ) = 0. For 〈u, v〉 we use the standard inner
product in R3N . Note that, unlike [8], ρ̃vR is not linear in C , if we do not fix the value of C1, CN .
In this case N̂ = N , otherwise N̂ = N −2. Due to the nonlinearity of the boundary conditions
(23) in C , this produces the slightly different reduced Hessian Q̂′′ of Q̂(C) = Q(ξ(C), C)
being

Q̂′′ = Q,CC + 〈ρ̃vR,CC, λ〉+ ρ̃∗vR,Cρ̃
−∗
vR,λ [Q,ξξ + 〈ρ̃vR,ξξ, λ〉] ρ̃−1

vR,ξρ̃vR,C ∈ RN̂×N̂ .

As in [8] we have an outer Newton iteration Cr+1 = Cr + δCr, which utilizes an inner CG
iteration in order to solve Q̂′′(Cr)δCr = −Q̂′(Cr).

The primary question in designing a realistic optoelectronic optimization problem is to find a cost
functional, which combines the desired optimality with mathematical simplicity. Furthermore the
cost functional should be feasible from a optimization point of view, for which it might be nec-
essary to add regularizing terms to the cost. Here we study the influence of such regularizing
terms Q2 in (28b) of tracking type on the optimal solution. We study the influence of tracking
the values in L2(Ω) or the gradients in H1(Ω) with respect to a reference doping C̄ . Further-
more we study the influence of the corresponding regularization parameter γ and the boundary
condition on the control space C.
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Figure 1: (Left) optimal doping densities Copt for different regularization parameters γ and
reference doping C̄ and (Right) corresponding modal net gain −Q1 = (g − `)|Ψ|2 com-
pared to mode intensity |Ψ|2 (arbitrary scaling). The values of the cost functional are Q1 =
{0.05, 0.25, 0.30, 0.31} for γ = {10−3, 10−4, 10−5, 10−6} andQ1 = −0.24 for C = C̄

In the left panel of Fig. 1 we show the optimal doping Copt for various regularization parameters
γ for gradient regularization without a fixed boundary condition, i.e. the case of H1

0 (Ω). As
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Figure 2: (Left) optimal doping densities Copt for different regularization functionals and spaces
H1(Ω), H1

0 (Ω), L2(Ω) for γ = 10−6 and reference doping C̄ and (Right) optimal doping
densities Copt for γ = 10−6 and two different reference dopings C̄1 = 10 tanh

(
25(1

2
− x)

)
and C̄2 = 5 tanh

(
25(0.3− x)

)
+ 5 tanh

(
25(0.7− x)

)
γ → 0 we observe that the optimal solution stabilizes/converges where the major part of the
support of |Ψ|2 is located (as indicated by the dotted light gray vertical lines), whereas the
doping still increases where |Ψ|2 ' 0. For larger regularization parameters γ > 10−5 the
shape is still affected by the single-step reference doping, whereas for smaller regularization
parameters there is very little dependence on the reference. At the same time one can see that
−Q1 = (g − `)|Ψ|2 converges to a mostly positive solution as γ → 0, whereas for γ > 10−3

large parts of −Q1 are still negative.

This can also be observed in Fig. 2. In its left panel the optimal doping is shown for H1(Ω)
regularization with γ = 10−6 and two different reference dopings, e.g. a smoothed single-
step and a smoothed double-step doping. Where |Ψ|2 is located both optimal dopings agree
and where |Ψ|2 ' 0 the solutions are close. Even for entirely different regularization, the left
panel shows that the optimal dopings are basically the same for H1(Ω), L2(Ω), and H1

0 (Ω)
regularization. The main effect can be observed near the boundary, where |Ψ|2 ' 0. TheL2(Ω)
regularization is only a slight restriction on the doping and hence the solution is largest near the
boundaries. In this case also Q2 is slightly larger than for the H1(Ω) regularization, which, in
turn, is slightly larger than for the H1

0 (Ω) regularization. However, since the gains in all three
cases are very similar, we can conclude also here that for sufficiently small γ also the influence
on Q1 is very small. We observed that when the regularization parameter is sufficiently small,
then the choice of the regularization mechanism has an effect on the optimal solution but only
small effect on the optimal gain.

We conclude that, in 1D the choice regularization of the optimization problem has little influence
on the optimizer in regions, where the main part of the optical mode is located.
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