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Zusammenfassung 

Vorgestellt wird eine Methode der nicht stationaren linearen tragenden Linie zur Bestim­
mung der Zirkulation und der Auftriebsverteilung entlang der Spannweite eines gekriimm­
ten Tragfliigels unter den Bedingungen harmcnischer Schwingungen kleiner Amplitude. 
Die Methode beruht auf der sogenannten · Dreiviertelpunktmethode von Pistolesi­
Weissinger und deren Kopplung mit der nicht stationaren Theorie von Possio fiir die 
Bewegung von Tragflachen. Dies fiihrt auf eine singulare Integro-Differentialgleichung 
vom modifizierten Prandtl'schen Typ mit der Zirkulation als gesuchte Losung. Diese 
Gleichung wird eingehend analysiert, insbesondere werden alle Singularitaten der ver­
schiedenen Kernfunktionen, die fiir die Losung der Gleichung von entscheidender Be­
deutung sind, untersucht. Die numerische Losungsmethode ist eine auf Tschebyscheff­
scher polynomialer Approximation fiir die gesuchte Losung beruhende Kollokation unter 
Benutzung der Gauss'schen Quadraturtechnik. Die Methode wird getestet <lurch Ver­
gleich der numerischen Losungen fiir verschiedene Tragfliigelkonfigurationen mit bekann­
ten Losungen, die auf der Theorie der tragenden Flache basieren. 

Abstract 

An unsteady linear lifting line method for the determination of the circulation and lift dis­
tribution along the span of a curved wing subject to harmonic small amplitude oscillations 
is presented. The method relies on the Pistolesi-Weissinger 3 / 4-chord steady lifting line 
theory and couples it to the unsteady theory developed by Possio for the motion of lifting 
surfaces. It leads to an integro-differential equation of a modified Prandtl's type, where 
the unknown is the circulation. This equation has been carefully analysed in order to ev­
idence all the singularities and to treat them in the most convenient way. The numerical 
procedure consists of a gaussian quadrature technique based on Chebyshev's polynomial 
approximation of the unknown function. The method has been appraised through the 
comparison of a number of solutions, pertaining to different wing configurations, with 
existing solutions based on lifting surface theory. 

List of symbols 

a 
/R 
b 
CL 
E 
h 
he 
l(Y) 
lo 
le 
L 
p 

=wing sweep at tips [m] 
=wing aspect ratio, /R = (2b) 2 

/ S 
= wing semis pan [ m] 
= wing lift coefficient 
= spanwise integration variable [m] 
= sectional wing deflection (referred to b) 
= wing tip deflection (referred to b) 
= wing chord [ m] 
= wing chord at midspan [m] 
=tip wing chord [m] 
= wing overall lift [N] 
=pressure [Pa] 
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s 
t 
u 
v 
x 
x 
XA(Y) 
Xz(Y) 
Xz(y) 
Xr(Y) 
y 

y 
w 
w 
z 
z 

,...., 
....... 

~ 
p 

w 
w* 
w* 

0 

Subscripts 

s steady 
u unsteady 

= area of wing planform [m2
] 

=time [s] 
= streamwise velocity perturbation [m/s] 
= flow velocity [m/s] 
= streamwise coordinate [m] 
= like X, but referred to b 
= reference line for wipg motions (referred to b) 
= lifting line coordinate [m] 
= like Xz (Y), but referred to b 
= coordinate of the 3 / 4-chord line (referred to b) 
= spanwise coordinate [m] 
= like Y, but referred to b 
=wing induced downwash [m/s] 
=like W, but referred to V00 

=coordinate normal to the XY-plane [m] 
=reduced integration variable, z = y - 'T/ 
=wing tip rotation [rad] 
= like T, but referred to V00b 
= Xr - XA (at fixed y) 
= reduced integration variable, ( = ~ - xz( 'TJ) 
= like E, but referred to b 
= streamwise integration variable [m] 
= like B, but referred to b 
=fluid density [kg/m3]. Also Jacobi weight 

function, see Eq.32 
=reduced streamwise coordinate, a(y, 'TJ) = x(y) - xz('TJ) 
= value assumed by a when y = 'TJ 
= sectional wing circulation [m/s] 
= phase angle [deg, rad] 
= acceleration potential [m2 /s2

] 

=circular frequency [rad/s] 
=reduced frequency, w* = wb/V00 

= like w*, but referred to l0 

oo undisturbed free stream 

An overbar always denotes a complex amplitude. 

2 



1 Introduction 

This work presents a theoretical study on the determination of the circulation and lift 
distributions along the span of a curved wing subject to unsteady harmonic motions of 
small amplitudes in an otherwise uniform free stream. According to the classical model of 
Prandtl [1] the wing is substituted by a single bound vortex of variable intensity followed 
by a wake, i.e. a sheet of trailing vortices whose mean shape in a linear approximation 
can be assumed as planar. Introduced to deal with steady flows, this scheme has been 
very successful, leading to satisfactory results even for aspect ratios .iR = (2b )2 / S unex­
pectedly lower than those for which the theory was originally proposed. Mathematically, 
the problem reduces to a singular integro-differential equation in the unknown circula­
tion distribution r(y) displaying the finite Hilbert transform of the derivative dr I dy as 
singular term. 

However, this method fails for oblique or swept wings because of the appearance of a 
new (logarithmic) singular term, a problem overcome by Pistolesi's [2] and Weissinger's 
[3] "3/4-chord" theory, where the bound vortex is assumed to lie on the 1/4-chord line of 
the wing and the induced velocities are computed on the 3/4-chord line instead of on the 
vortex itself. So doing the wing-stream tangency condition can be explicitely enforced 
on the 3/ 4-chord line, differently as in Prandtl's model; more important, the additional 
singularity is avoided and also the circulation distribution on swept wings can be predicted 
by solving an equation of the same type as Prandtl's one. An extension of the 3/ 4-chord 
theory to curved wing in steady flow (with lunate or crescent-moon planforms) has been 
recently proposed by Pr6f3dorf and Tordella [4] together with an efficient mathematical 
procedure to treat the singularity of the equation (basically still of Prandtl's type) and 
to solve it. The extension of that procedure to the equation describing the more complex 
unsteady case is one of the objects of the present work. 

Beginning from the mid-thirties many research articles studied the flow field on a wing 
in accelerated motion. Unsteady simplified lifting-line theories for straight wings were 
proposed by Cicala [5] [6] and Borbely [7]; a later theory, due to Reissner [8] [9], starts 
form a lifting-surface assumption but the equation is reduced to the lifting-line form 
thanks to the adoption of suitable chord integrated quantities. A similar reduction was 
operated by Possio [10] [11] [12] [13] [14] in his works where, however, the derivation of 
the starting equation followed an indipendent path. Among the unsteady lifting surface 
theories, the most remarkable ones are that by Kiissner [15], which holds for compressible 
subsonic flows as well and provided the basis for the later procedure by Laschka [16], and 
that by Krienes and Schade [17] [18]. The latter is confined to the circular planform but 
up to now it is the only one able to lead to fully analytical computations of the forces 
acting on a wing in harmonic motion. The related results are of great value as benchmarks 
to test more general theories; unfortunately the excessively low aspect ratio makes them 
basically unsuited to the comparison with the results of lifting-line theories. 

As a consequence of the increasing computing capabilities the rather simple lifting-line 
models were progressively abandoned and replaced with lifting-surface theories like the 
well-known doublet-lattice method of Albano and Rodden [19]. However, the implemen­
tation of the related procedures is expensive and the results, deprived of analytical nature, 
may be more attractive for applied engineers than for theoretical researchers. A trend 
inversion made itself noticeable only during the last decades, when articles progressively 

3 



appeared [20] [21] [22] [23] [24] [25] in which Prandtl's lifting-line scheme was regarded 
as an "outer solution" of the general problem to be asymptotically matched to an "in­
ner solution", i.e. the two-dimensional flow field around each wing section. The method 
is powerful, providing not only the spanwise circulation distribution, but also the load 
distribution along each chord: the latter results from the two-dimensional one corrected 
through the matching to the outer solution. Furthermore, such theories are able to high­
light the several interactions between the inner and the outer fields. Nevertheless these 
interactions greatly contribute to their complexity, being often concealed in matching 
terms at first neglected and only discovered in later works. 

In the context of the aforementioned theories, the 3/4-chord method is neither an outer 
nor an inner approximation, even if it is certainly nearer to the former. As a matter 
of fact in a matched asymptotic expansion procedure the far-field boundary conditions 
are enforced on the outer solution and the wall-stream tangency condition on the inner 
one. All free and unknown terms are therafter determined through the matching. In 
Weissinger's scheme all conditions are directly enforced on the outer solution, though in 
an approximate way, and matching is no more needed. One should here remark that the 
inner solution disappears (therefore no load distributions along the different chords can 
be computed); however, all of the unsteady influences from the whole outer solution to 
the local wing sections are taken into account. This is the case, for instance, of the gust 
term detected by Ahmadi and Widnall [24], which is implicitely considered in the present 
theory because the unsteady lifting line field on the 3 / 4-chord line is exactly computed. 
From this standpoint Weissinger's method can be regarded as an approximate closure of 
the overall problem as regard to the inner boundary conditions, rather then an 'incomplete 
calculation of the outer solution' as stated by Cheng and Murillo [23]. 

The 3 / 4-chord theory in unsteady flow has been questioned also from another, more 
physical point of view by Van Holten [22] observing that Pistolesi's theorem does not 
hold even in the two-dimensional case if the flow is not steady and therefore it cannot 
be extended to the spatial one. This is true. However, one of the present authors [26] 
assessed the error implicit in the use of the 3/4-chord assumption in the plane flow around 
a flat plate in harmonic motion and found that, in spite of an expected increase with the 
reduced frequency w~ (based on the chord), it can be tolerated up tow~~ 1. Moreover, a 
remarkable improvement can be obtained by using two bound vortices together with their 
wakes instead of only one: this could be done also for a finite span wing through a simple 
extension of the present theory. An inherent restriction of the one-lifting-line theory, 
namely its inadequacy to predict also the aerodynamic pitch moment distribution, could 
then be removed and the model could find application also for preliminary aeroelastic 
computations. 

Being basically an outer solution based on the wing semispan b as length scale, the 
governing parameter of the present theory is the reduced frequency w* based on b. As 
in the plane case considered in [26], it must be expected that the quality of the results 
deteriorates when the distance from the steady conditions increases, i.e. with increasing 
values of w*. Indeed, the computed cases display acceptable results (with regard to the 
simplicity of the physical model) up to w* ~ 1. It is important here to emphasize that 
this boundary is by no means implicit in the mathematical model, being never introduced 
in it: as a consequence all computations are stable also for very high values of w*. The 
limitation is rather of pure physical nature, in that the model assumptions fail to reflect 
reality if one moves too far away from the steady conditions. On the other hand it can 
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be remarked that w* :::; 1 (i.e. the very-low and low frequency domains among the five 
identified by Cheng [27]) is also the validity range of the more complete theories above 
quoted, with the exception of [25]: their results in fact diverge from the reference ones 
(generally obtained through lifting-surface models) for w* > 1 (for w* < 1 they are of 
course more exact than those here presented). As a consequence of stating an upper 
limit to w* instead of w and b separately, a moderate value of w* can be obtained either 
through a large aspect ratio coupled to a low mechanical frequency or through the reverse: 
therefore acceptable results for higher frequency can still be obtained, provided the aspect 
ratio is hold as low as allowed by the lifting line model (actually the 3 / 4-chord theory 
extends the validity range of Prandtl's original scheme down to aspect ratios as low as 2). 

Apart from the adoption of the 3/4-chord model, two other significant points characterize 
this work. First, the unsteady lifting-line equation for a curved wing has been derived 
from the steady one by applying the ingenious procedure due to Possio already referred 
to as "an indipendent path". So doing, the deduction of the unsteady equation becomes 
a rather formal matter and errors are avoided which could easily occur when dealing 
with curved wings. Secondly, the obtained integro-differential equation is no more of 
Prandt1's type, because it displays two additional singular terms besides the finite Hilbert 
transform of the derivative of r(y): the finite transforms with logarithmic kernel of r(y) 
and that of its derivative. To isolate these singularities a careful analysis of the terms 
of the main equation has been performed. A special procedure which extends that of [4] 
has been developed to numerically solve the problem by means of a gaussian quadrature 
method where the unknown function I'(y) is represented through a sum of Chebyshev 
polynomials of the second kind. After assessing the convergence of the method, circulation 
distributions and overall lift coefficients have been computed for some of the geometrical 
and kinematical configurations already studied by Laschka [16] and results are compared. 

Finally the method is applied to present results for a crescent-moon wing, a geometry 
for which no chordwise integrated circulation distributions along the span could be found 
in the literature and therefore no direct comparison is possible. This set of results, like 
those obtainable for analogous wing planforms, may find application in the physics of the 
animal locomotion (bird flight and fish propulsion), where the parameter w* effectively 
does not exceed unity. 

2 Brief outline of Possio's theory and derivation of 
the lifting line equation 

Startpoint for Possio's theory was the quantity '11 introduced by L.Prandtl [28] in 1936 to 
express through a gradient the acceleration of a fluid particle: 

DV 
grad '11 = Dt 

and therefore called acceleration potential (here D / Dt is the material derivative operator). 
If perturbations are small, '11 satisfies the Laplace equation 

(1) 

exactly as the velocity potential, but with the important advantage of being everywhere 
continuous in a subsonic flow field: in fact, there exists a direct relation between '11 and 
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the pressure disturbance, reducing to 

W = _P - Poo 
p 

(2) 

if the flow is incompressible, or compressible but only weakly disturbed. In this case also 
the operator D / Dt can be linearized; then the Z-component of grad W gives 

8w 8W 8W 
8Z = 8t + v00 8X 

a relation which can be inverted to obtain the downwash W from a known W: 

1 j_x 8'11 (,... X - 3) ,... 
W(X, Y, Z, t) = Voo _

00 8
z .::., Y, Z, t - Voo d.::. (3) 

In 1938 C.Possio [10] [11] [12] [13] [14] observed that no time derivatives appear in Eq.l, 
neither the boundary conditions for w depend from the motion being steady or unsteady. 
In other words, a solution w(X, Y, Z, t) representing the instantaneous picture of the 
unsteady field at time t, describes as well a steady field having the same configuration of 
the former at that instant. Then, if w s is the acceleration potential of the steady field 

w(X, Y, Z, t) = w s(X, Y, Z; t) 

where the argument t in W s has been retained to remember that W s has been obtained 
from the steady motion formulae, but with all boundaries at the position they assume in 
the unsteady field at time t (for such a field the name quasi-steady is often used). For 
W s all properties of the steady fields hold: in particular, the linearized Bernoulli theorem 
gives p-p00 = -pV00 U8 where Us is the X-component of the velocity perturbation. Then 
Eq.2 becomes W8 = V00U8 in the steady field, where also the irrotationality condition 
8U8 /8Z = 8W8 /8X holds (note that here W 8 is the steady flow downwash). From these 
.relations: 

8'118 _ v;: 8U8 _ v;: 8W8 

8Z - 00 8Z - 00 8X 

Looking back now to Eq.3 it appears that the derivative of w with respect to Z, there 
required, can be substituted by that of w 8 , provided the latter is evaluated at the same 
(retarded) time r = t - (X - 3)/V00 at which both fields coincide. Thanks to the last 
relation above, Eq.3 assumes then a form in which the unsteady downwash is related only 
to the steady one and any reference to the acceleration potential disappears: 

W(X,Y,Z,t)= 1: 8~·(B,Y,Z,r)dB 
By further observing that 

8Ws ('= Y. Z ) = dWs _ ~ 8Ws 
83 ._., ' ''T d3 V

00 
8r 

Eq.3 takes finally the form 

W(X, Y, Z, t) = Ws(X, Y, Z; t) - T~ j_X 8

8
Ws (3, Y, Z; r) d3 

Yoo -oo 'T 
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When the motion is harmonic the time dependence is known 

W(X, Y, Z, t) = W(X, Y, Z) eiwt; 

where Ws differs from W only for heing obtained from the steady motion theory with solid 
boundaries at the position of instant r: hence the presence of exp(iwr) in the 'steady' 
downwash. The last equation reduces then to one relating the amplitudes 

W(X, Y, Z) = Ws(X, Y, Z) - Ti~ jX Ws(S, Y, Z) eiw~:,s dS 
Voo -oo 

(4) 

This is main Possio's result: it is noteworthy that it alone does not solve the problem of 
finding the forces acting on a solid immersed in a fluid in unsteady motion. Eq.4 gives 
rather in simple form the unsteady velocity if the steady one on a 'frozen' configuration 
of the same field is known; the unsteady boundary conditions are still to be imposed on 
the velocity distribution so determined. Pressures and forces, however, can be computed 
with reference to the steady flow fields which at every instant coincide with the successive 
configurations of the real unsteady field: but this is an easier task than the original 
one. An example was provided by Possio himself in [10], where the unsteady downwash 
generated by a pulsating vortex of circulation K exp iwt located on the axes origin in a 
uniform stream V 00 was corn pu ted. In this case W s ( X, 0, 0) = - K / 27r X and the integral 
term of Eq.4 completely describes the contribution to W of the vorticity which has been 
shed into the wake in order to satisfy Lagrange's theorem. Imposition of a value for W 
in one field point would determine K: the unsteady force acting on the pulsating vortex 
could then be simply computed from the steady Kutta - Joukowsky formula pV00K. 

In the present work Possio's theory has been used to derive the unsteady donwwash past 
a curved wing of finite aspect ratio in oscillatory motion. The configuration is represented 
in Fig.1: the lifting line is placed on the first quarter chord locus of the wing along the 
curve of equation 

Xz(Y) =a(~) n (5) 

where a is the tip sweep (Y = b) and n an exponent governing the curvature distribution 
along the span: if for n = 2 the lifting line is parabolic and the wing shape resembles that 
of a swallow, while a higher value of n makes the maximum sweep region move outboard 
and the resulting planform remind of that of sea-gull. The wing itself is supposed to be 
planar and without thickness, but the extension to the case of a thin slightly cambered 
wing would be immediate. The spanwise chord distribution is assigned through the law 

(6) 

which is rather general: for instance all rectangular, trapezoidal and triangular chord 
distributions are described by p = q = 1 and by different ratios of the tip chord le to 
the midspan one l 0 ; alternatively, the popular elliptical distribution is given by p = 2, 
q = 0.5 and le = 0 (actually a zero value for le should be avoided because it would imply 
the computation of the induction of the bound vortex on itself at wing tip; a sufficiently 
small value satisfies the same practical requirements). 

A second important curve is the locus of the three quarter chord points, given by Xr (Y) = 
Xz(Y) + l(Y)/2: in the Pistolesi - Weissinger model developed for the steady case this 
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is the line along which the flow - wall tangency condition is enforced, so determining 
the bound circulation per unit span T (Y). Thanks to Possio's theory the results of this 
steady model can be exploited to obtain the unsteady equations. For the described wing 
the steady case has been studied in [ 4], where the expression of the down wash can be 
found: 

1 /_b X - Xz(E) + Xf (E)(E - Y) 
Ws(X, Y) - 47r -b {[X - Xz(E)]2 + (Y - E)2}3/2 T(E) dE + (7) 

1 /_b [l X - Xz(E) ] 1 dT dE 
+ 47r -b + ,j[x - Xz(E)]2 + (Y - E)2 y - E dE 

being Xf = dXz/ dY. In. this equation the first integral gives the velocity induced on any 
point of the Z = 0 plane by the curved bound vortex, while the second one describes the 
contribution of the trailing wake vortices originated because of the spanwise variation of 
T(Y). If the motion is unsteady Ws and T depend also on time; furthermore, the 'true' 
unsteady downwash W makes its appearance. Considering the harmonic case: 

W(X, Y, t) = W(X, Y) eiwt; Ws(X, Y, t) = Ws(X, Y) eiwt 

T(Y, t) = T(Y) eiwt (8) 

Eq.4 can then be immediately applied to give 

W(X, Y) = Ws(X, Y) - Ti~ /_x Ws(S, Y) e-iwt~== dS 
Voo -oo 

(9) 

where using complex amplitudes means that phase shifts between the bound circulation 
T(Y, t) and all other field quantities are taken into account. 

Imposing the tangency condition at Xr(Y) on the downwash obtained from Eq.9 leads to 
an equation in T(Y) whose manipulation and solution will be the object of the remainder 
of this work. Important is here that Possio's theory provides a simple relation between 
the spanwise lift distribution and that of bound circulation: as already stated, in fact, 
force computations can be performed in the istantaneous field configurations by means of 
steady formulae. This allows to use the steady Kutta - Joukowsky theorem and to write 
for the complex amplitude of the lift 8L(Y, t)/8Y per unit span: 

(10) 

3 Mathematical formulation 

Let us introduce the following nondimensional variables 

y E X Xz S 
y,'f/ b' b' x,xz,e = b' b' b; 

w Ws w Ws 
W,W8 -

Voo' Voo' w,Ws = Voo; Voo' (11) 

r T * wb -
Voob' 

w =-
Voo 
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where the semispan b and the free stream velocity V00 have been selected as reference 
quantities. As a consequence the reduced frequency w* spontaneously arising from the 
equations is defined with respect to band not to the midspan chord l0 as in most classical 
works on this topic. However, also the more traditional form w~ = w*l0 /b will later be 
us8d to present the numerical results. 

Eq.9 shows that the overall induced downwash in the unsteady case can be represented 
as the superposition of a steady part Ws to a totally unsteady one given by the integral 
term. In normalized form: 

w(x, y) = W 8 (x, y) + wu(x, y) (12) 

with W 8 and Wu given by Eqs.7 and 9, respectively, 

Ws(x, y) = 
1 11 x - xz(11) + x~(77)(77 - y) -

47r -1 {[x - Xz(7J)]2 + (y - 77)2}3/2 f(77) d77 + (13) 

+ 1 11 [l x - xz(11) ] _1_ df d7] 
47f -1 + ,j[x - X1(17)]2 + (y -17)2 y -17 d17 

(14) 

being now x~ = dxz/ dy (an analogous but not identical splitting can be found in [25)). 
All this can be written in more compact form after introducing the following reduced 
variables: 

z y- 7] 

( e-xz(11) (15) 
a(y, 71) ' x(y) - xz(11) 

where a isn't but the nondimensional downstream coordinate measured from a lifting line 
point lying a distance z aside. Its special value for z = 0 is hereafter called a 0 : 

aa(Y) = x(y) - xz(y) 

Eqs.13 and 14 assume then the form: 

W8 (X, y) 1 11 a- x~z -
- 47r -1 (a2 + z2)3/2 f(77) d77 + 

+ _!._ 11 [1 + a ] ! df d77 
47r -1 vf a2 + z2 z d77 · 

(16) 

- iw* 11 [e-iw*u 1u ( - x~z eiw*( d(] f(77) d77 -
47r _1 _ 00 ( (2 + z2)3/2 

iw* 11 [e-iw*u 1u (1 + ( . ) eiw*( d(] ! df d77 
47r -1 -oo vf ( 2 + z2 z d77 

Both Eqs.16 are singular for z = 0 and must be modified before attempting their numerical 
solution. This can be done in a uniform way, first by evidencing their singular term 
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1 J_l df + - Ms(a, z) -d d77 
7r -1 7] 

. * (df) 4wu(x, y) (1 + sgna0 )( e-iw <To - 1) H d
77 

+ 

+ ~ j_1 

Lu(a, z) f(77) d77 + ~ j_1 
Mu(a, z) ddf d77 

7r -1 7r -1 77 

where the operator H is given by the integral 

HJ (y) = ~ /_1 f (77) d77 
7r -1 y - 77 

(17) 

(18) 

to be interpreted as its Cauchy principal value and is called the finite Hilbert transform 
of the function f. The other functions are so defined: 

I 
O" - XzZ 

( a2 + z2)3/2 

. * -iw*u j_u ( - x~z iw*C di" 
-1w e -oo ( (2 + z2)3/2 e ~ 

~ (-sgna 0 + a ) 
z va2 + z2 

1[ ( "* ) "* ] - -~ (1 + sgnu0 ) e-iw uo - 1 + iw* e-iw u S(a, z) 

where S is the integral: 

Then let us perform by parts the third integrals of both Eqs.17. After recalling that 
f(-1) = f(l) = 0 there results: 

/_

1 dr 
Ms(a, z) -d d17 

-1 77 /_
1 8Ms -

- -r(77)d11 
-1 877 

J_
l df 

Mu(a, z) -d d17 -
-1 77 

/_
1 8Mu -

- -r(11)d11 
-1 877 

But 8z/817 = -1 and 8a/877 = -xl(77); furthermore, as it can be easily verified: 

as iz · * . / -
8 

= - e1w uLu(a, z) - 1w*xz(77) S(a, z) 
77 w* 

Then the derivatives with respect to 77 of Ms and Mu are 

1 + Ls(a, z) 
va2 + z2 (a+ sgnaova2 + z2 ) 

. * e-lW <To - 1 iw* -iw*u 
-(1 + sgna0 ) 

2 
- -

2 
e S(a, z) + Lu(a, z) 

z z 
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and consequentely Eqs.17 assume the forms: 

4w.(x, y) (1+ sgnao) H( ~~) +; £1
1 

T,(a, z) 1'(77) d77 (19) 

4wu(x, y) = (1+ sgna0 ) ( e-iw*<r. -1) H(~~) +; L>:(a, z) 1'(77) d77 

Two new functions have been here introduced: 

1 
(20) 

(21) 

In the last relation 11 , K1 and L_1 are modified Bessel and Struve functions and the 
integral S(o-, z) has been splitted in a first part running from -oo to 0 and a second one 
running from 0 too-. While the evaluation of the second part can occur only numerically, 
the first integral has been analytically performed (see Appendix A for details). So far as 
the fuctions T s and T: are concerned, the first one is the same already arising from the 
study of the steady case [4] and is fully regular for z = 0 (i.e. 'f/ = y), where it takes the 
value 

T ( O) = sgno-0 

s a, 2 2 
O"o 

(actually this result is singular for o-0 = 0, but this occurrence is excluded by the Pistolesi 
- Weissinger wing theory, which never requires the induced velocities to be computed on 
the lifting line). The computation of T:, conversely, indicates that its values become 
unbounded in the neighbourhood of z = 0 and that therefore some other singularities 
exist, which have still to be isolated. This can be done by expanding the quantity in 
curly brackets of Eq.21 in the neighbourood of lzl = 0 up to the order of z2 • As a result 
two new singular terms appear, respectively of order z-1 and ln lzl, allowing Eq.21 to be 
rewritten as 

. * [ iw* w*
2 

] T:(o-, z) = Tu(o-, z) + (1 + sgno-o) e-iw o-o x~(y)~ - 2 ln lzl 

where Tu is the function regular for z = 0: 

(22) 
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Inserting T: in the second of Eqs.19 leads to a form for the unsteady downwash equation 
in which all singularities are properly isolated: 

4wu(x, y) = (1+ sgna0 ) [ ( e-iw*u. - 1) H ( ~~) + 

+ iw*'x~(y) e-iw*cr0 H(f) - w*
2 

e-iw*cro~ j_1 
ln lzl f(77) d71] + 

2 7r -1 

+ ~ I>u(a,z)f'(ry)dry (23) 

Although regular, the function Tu(a, z) as given by Eq.22 is difficult to evaluate for small 
z, because it takes there the form (0/0) 2

• For this reason the expansion of the term in 
curly brackets of Eq.21 has been extended up to the order of z4

: so doing, a second order 
approximation of Tu(a, z) to be used in the computations at small lzl has been obtained. 
This is: 

Tu(a, z) =To+ Tlz + T2z2 + L0 z In lzl + O(z3
, z2 ln lzl) 

where the coefficients~ and £ 0 are given by 

. * To = lW sgnao + 
2 O"o 

+ e-iw*u. { sgna0 w;
2 

[fl1 + Ci(w*lo-0 1) - ln 'YW* + iSi(w*ao)] + 

+ w*
2 (! + ln 2 - lnw*')' - i~) + w* (1 + sgnao)(w*x~2 

- ix~')} 
2 2 2 2 

T * ( * i ) sgna0 / 
1 = W W - - ---Xz-

O"o 2ao 

-iw* e-iw*u. { w;
2 G + ln 2 - lnw*'Y- i~) x;+ 

*2 
+ sgnao w

2 
[01 + Ci(w*laol) - In ')'W* + iSi(w*ao)] x~ 

+ ~(1 + sgna0 ) ( Xr - XJ - iw*x;xr)} 

rri _ • *sgnao [ 1 (2 12 1) 1 (2 11 iw*) (2 12 1) *2] .L2 - lW -- - Xz - - +- Xz - - - Xz - - w -
40-0 a; 2 20-0 2 4 

-iw* e-iw*u0 
{ i~:

3 

[ 8~2 sgna0 + ~ + Ci(w*la0 1) + i ( Si(w*ao) - ~)] 
. *2 n 

-
1~ (w*x;

2 
- ix;') [sgna0 ( -f + Ci(w*la0 1) - ln 'YW* + iSi(w*ao)) 

1 I * . 7r] w* ( * ') ,2 iw* " - - - n2 + lnw ')'-1- - - 2sgna0 w O"o -1 Xz - -Xz -
2 2 4~ 4~ 

- (1 + sgna ) [iw*3 x~4 + w*2 x~2x~' - iw* (x?2 + ~x~x~") - x~"'] .} 
0

. 24 4 4 2 3 24 

iw*3 
. * io = -- e-IW CTo (1 + sgnao) X~ 

2 

12 

(24) 



In these relations all derivatives of Xz are to be evaluated at the constant abscissa y, while 
'Y = 1.7810724 ... is Euler's constant and 0 1 and 0 2 are given by 

n 23_ 2 ~(-1;2) 4k+1 _ 
1 15 ~ k (2k + 3)(2k - 2) - 1.1931471 · .. 

1441 
00 

(-1/2) 4k + 1 
!12 = 1680 + ~ k (2k + 5)(2k - 4) = 0.7286802 ... 

A plot of the regular function Tu(a, z) for the fixed position y = 0 and for the midspan 
region is in Fig.2 for a curved wing of constant chord where also the expansion Eq.24 
is shown for comparison. It· appears that the latter is necessary to compute Tu (a, z) for 
z ~ 10-3

, where Eq.22 leads to unreliable results . 

Finally, after summing Eq.23 to the first of Eqs.19 and recalling Eq.12 an equation for 
the overall induced velocity w(x, y) is obtained. By doing this it is convenient to restate 
the singular term expressing the finite Hilbert transform of f(77) in the form [29]: 

H(f) = .!. / 1 
f(7J) d77 = .!. / 1 

ln 177 - YI dr d77 
7r -1 y - 77 7r -1 d77 . 

and to introduce the total regular function T = Ts +Tu, sum of its steady and unsteady 
parts. Then the equation is obtained: 

. * [ (df) 4w(x, y) = (1 + sgna0 ) e-iw <Fo H d7] + 

1 /1 df w*
2 

1 /1 _ ] + iw*x~(y) - ln 177 - Yl-d d77 - -- ln IY - 771 r(77) d77 + 
7r -1 77 2 7r -1 

1 /1 +- T(a, y - 17) f(77) d77 
7r -1 

(25) 

From this equation it appears that the singular terms only exist if a 0 > 0, i.e. if the 
induced velocities are computed on the wake plane downstream of the lifting line. Since 
the Pistolesi - Weissinger model assumes the tangency condition to be enforced on the 
three-quarter point of each chord, all singular terms must be accounted for: Eq.25 is 
therefore a complex integro-differential equation with one Hilbert and two logarithmically 
singular terms to be solved subject to the conditions f(-1) = f(l) = 0. 

4 Numerical procedure 

The procedure to solve Eq.25 extends the one introduced in [4] to study the steady case. 
An approximate solution rN(7J) is sought in the form: 

-. ( ) -v 2 ~- UN(7J) 
rN 7) - 1 - 7) f;;:i_ 'Y; (7J _ 7); )U~(7J;) (26) 

Here U N(1J) are the Chebyshev polynomials of the second kind 

U ( ) = sin[(N + 1) arccos77] = sin[(N + 1)~] 
N 77 y'l - 172 sin ~ (27) 
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being 'lj; a new variable (0 :::; 'lj; :::; 7r) such that 7J = cos 'lj;. Eq.26 defines the complex 

quantities 7j in such a way that r N( 'T/j) = 7j J1 - 'TJI when 7J = 'T/j. 

In Eq.25 also the derivative of I'N('TJ) with respect to 7J is needed. This can be written 
[30]: 

r;_, ( 77) = - N 
2 

../ ~ 2 f, 'Y; sin 'lj;i f, m sin m'lj;; cos m'lj; ( 28) 
+ 1 1 7J j=l m=l 

Inserting Eqs.26 and 28 into Eq.25 and collocating the latter on the points of abscissa 
y = Yk given by: 

k1r 
'l/Jk = N + 1' 

i.e. on the zeroes of VN(Y), leads to the complex linear algebraic system 

N 

L Eki7i = 4w(x, Yk) 
j=l 

The coefficient matrix Eis 

( 
w*2 ) E = S A+iw*XB- 2 c +D 

where S and X are diagonal matrices whose elements are respectively given by 

sk (l + sgnO"ok) e-iw*crok 

x~ - x~(Yk) 

(29) 

(30) 

being a0 k = x(yk) - xz(Yk)· The four matrices A, B, C and D correspond to the four · 
integrals of the r.h.s. of Eq.25. In the following these matrices are separately illustrated; 
the integrals are evaluated with respect to the variable 'lj; partitioned as in Eq.29 (with y 
substituted through 7J and k through i). 

a) The matrix A is related to the Hilbert term 

( 
-) N dr _, "'"""' 

H -d ~ H(I'N) ~ ~Ak/Yi 
7J J=l 

and is the same of the steady case. Its elements can be found in [4]: 

(N + 1)/2 

0 

sin1/Ji [( 1/Ji+'l/Jk)-2 

2(N +l) sin 1/Jk tan 2 -

b) The matrix B is related to the integral 

if k = i, 

if lk - ii is even, 

(tan ;b; ;"'• r2
] 

if lk - ii is odd 

1 /_1 _1 1 /_1 _1 N 
- . ln l7J - YI r (TJ) d'T] ~ - ln l7J - Ykl r N(7J) d'T] ~ L Bkj7j 
7r -1 7r -1 j=l 
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By noting that 

cos m'lj; = cos(m arccos 77) = Tm(7J) 

where Tm is the Chebyshev polynomial of the first kind, the relation holds [31]: 

_!_ /_
1 

ln 177 - Ykl Tm(7J) d77 = - Tm(Yk) =-~cos ( mk7r ) 
7r -1 vfl - 772 m m N + 1 

giving ultimately, after introduction of Eq.28: 

2 .J ~ . ( mj'Tr ) ( mk'Tr ) Bki = N 1 1 - 77] L..J sm N . cos N . 
+ m=l + 1 + 1 

c) The matrix C is related to the integral 

It can be evaluated by recurring to the formulae (the proof is given in Appendix B): 

_!_ /_
1 

ln 177 - Ykl y'1 - 772 Um(7J) d77 = (31) 
7r -1 

{
-~ln2+~T2(Yk) ifm=O 

- - 2~ Tm(Yk) + 2cm1+2) Tm+2(Yk) if m ~ 1 

and to the representation of the U N's in terms of the fundamental Lagrangian poly­
nomials: 

UN(7J) N-1 
lj,N-1(17) := ( _ ·)U' ( ·) = L CmjUm(7J) 

7J 7J1 N 7J1 m=O 

where the coefficients Cmj are uniquely determined from the solution of the N linear 
systems: 

Hence: 

d) The matrix D is related to the regular integral 

1 /_1 _ 1 /_1 _ N 
; _

1 
T(a, y - TJ) r(TJ) dTJ ~ ; _1 T(yk, TJ) rN(T/) dTJ ~ ~ Dk/'i; 

Applying the Gauss-Chebyshev quadrature formula to the regular 
function T(yk, 17) f N(7J) the integral is evaluated as 

1 ~ ( 2 ) ( ) ~ UN ( 7Jm) _ 
N + 1 L..J 1- 77m T Yk, 7Jm ~(in - in·)U' (in·) lj = 

m=l 1=1 •1m ·11 N ·11 

1 N 
= N + 1 ~(1- TJJ) T(yk, TJ;) "Y3 
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because only the terms with j = m contribute to the sum. Hence: 

It can be remarked that matrices A, B and C are all real. The overall coefficient matrix 
E, however, is complex because such are the matrices D, S and iw*X contained in it. 

The rigid wing geometry is in general symmetrical across midspan, but its motion, de­
scribed by the quantity w(x, Yk) in Eq.30 evaluated on the 3/4-chord line Xr = x(yk), 
may be of any type. However, symmetrical and antisymmetrical motions are the most 
important ones: in these cases also the unknown -;yi vector is symmetrical or antisym­
metrical, according to w. To save computer storage and to reduce execution times it is 
then expedient to solve only for one semispan: so doing the order of the problem reduces 
to N /2 (for even N: note that in this case the used partition Eq.29 excludes the central 
point). The coefficient matrix .E must be replaced through two reduced matrices, say E 8 

and Ea for the symmetrical and antisymmetrical cases respectively, whose elements are 
related to those of Eby: 

with k,j = 1, N/2. 

In order to give error estimates for the outlined procedure, weighted Sobolev-like norms 
are introduced as follows. Let p be the Jacobi weight function (for usage reasons the same 
symbol as for the fluid density has been here adopted): 

p(y) = (1 - y)a(l + y)f3, yE(-1,1), a,/3>-1 

and L~ = L~(-1, 1) be the Hilbert space of all square integrable functions on the interval 
( -1, 1) with respect to the weight p(y), endowed with the scalar product 

1/_1 -u, g)p := - f (y)g(y)p(y) dy 
7r -1 

(32) 

and with the norm llfllp := JU, f)P. Let Pn = P~,.B)(y), n = 0, 1, ... denote the Jacobi 
polynomial of degree n, orthonormal with respect to the scalar product Eq.32 and with 
positive leading coefficients. Furthermore, for any real number s > 0, the subspace 
L~,s = L~,s ( -1, 1) of L~ is defined as 

L;,s := {J E L; : llJ llp,s < 00} 

where ll!llp,s :=JU, f)p,s and 

00 u, g)p,s := L (1 + m)28 U,Pm)p(g,pm)p 
m=O 

Then L~,s is again a Hilbert space, where L~,o = L~, and the set II of algebraic polynomials 
is dense in L~,s. Moreover, it is well known and easy to see that 

L;,s c; L;,t and llJ llp,t ::; llJ llp,s 
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for f E L~,s and all 0 ~ t ~ s. For 0 ~ t < s, the space LP2 s is compactly embedded in 
2 ' Lp,t· 

In particular, let us consider the weights v(y) = ./1 - y2 and µ(y) = l/v(y). Notice that, 
via f(-1) = f(l) = 0, the last integral in Eq.25 can also be rewritten as 

1 /_1 - 1 /_1 - df(77) 
- T(cr, y - 71) I'(77) d77 = - N(y, 71) d d77 
1f' -1 1f' -1 77 

where - 11 N(y, 71) := TJ T(cr, y - r}dr. 

In what follows we make assumptions about the smoothness of the kernel function N(y, 71). 
Suppose 

N(·, 71) E L~,s' uniformly with respect to 71 E [-1, l], and 

- 2 N(y, ·) E Lµ,r' uniformly with respect toy E [-1, l], 

with s > ~ and r ~ s + ~. More precisely, we assume that there are certain positive 
constants C1 and C2 independent of both 71 and y such that 

for all y, 71 E [-1, 1]. Note that the latter conditions are certainly satisfied if the function 
N possesses continuous partial derivatives up to the order r. As visible from Eqs.20 and 
24 where it is always cr0 > 0, the order of r is 2 or more if the coefficient L0 vanishes, 
whereas it cannot exceed 1 if L0 ::/= 0 because of the term z ln lzl in expansion Eq.24. Being 
L 0 proportional to x~ (y), the first case is an important one because it relates to a straight 
wing; also a lunate wing, however, may display a more or less large midspan region in 
which x~ (y) and L 0 are very small and r can be greater than 1. Let now the homogeneous 
Eq.25 have only the trivial solution in the subspace L~,o of all functions u EL~ satisfying 

J_1
1 

u(y) dy = 0. 

Moreover, assume w(x, ·) E L~s· Then the linear algebraic system Eq.30 is uniquely 
' solvable for all sufficiently large N. For the solution r of Eq.25 and the approximate 

solution Eq.26 the error estimates hold: 

II d~~ry) - dr;;ry) L ~ const. Nt-• 11 d~~ry) t. (33) 

for 0 ~ t < s and 

II'(ry) - rN(ry)I + J1 - ry2 d'F(ry) - df'N(ry) ~ const · ~-· d'F(ry) I (34) 
d77 d77 d77 v,s 

if ~ < t < s and -1 ~ 77 ~ 1. 

The proof of the estimate Eq.33 is given in Appendix C. The inequality Eq.34 is an 
immediate consequence of Eq.33, of the estimate 

(35) 
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which is true provided f E L~,s with s > 1/2 (the proof is given in Appendix D), and of 
the obvious inequality 

- - df(ry) dfN('TJ) I 
II'(ry) - rN(rJ)I:::; const · -d- - d . 

'T/ 'T/ v,0 

5 Method appraisal and discussion 

To evaluate the capability and discuss the performances of this method the rigid motion 
simulating the fundamental modes of pitching and heaving have been computed for a few 
representative geometrical configurations. 

If xA(Y) is the equation of a reference line for the vertical displacement h(y, t) and for the 
sectional rotation a(y, t) then the deflection of any point P(x, y) of the wing surface is 
h(y, t)-.6..x(y) a(y, t), being .6..x(y) the downstream distance between P and the reference 
line at fixed y (see Fig.3). In the present model quantities h(y, t) and a(y, t) have been 
given the form 

a(y, t) = aef (y) eiwt 

where he and ae are the complex amplitudes of the harmonic heave and pitch motions at 
wing tips and f (y) is a shape function describing their spanwise distributions. Rigid wing 
motions are represented by f = 1 or f = y, whereas f = sin(7ry/2) describes a possible 
sinusoidal mode. 

To solve Eq.30 in the framework of the Pistolesi - Weissinger theory, the downwash has 
to be evaluated on the 3/4-chord line of the wing described by the equation x = Xr(y). 
This leads to 

W = { iw*he - [1 + iw*.6..xr(Y)] G.e} f (y) 

being now .6..xr(Y) = Xr(Y) - xA(y). In the following computations the reference curve 
x A (y) has been supposed to coincide with the midchord line: therefore .6..xr (y) always 
amounts to one quarter of the local chord. As for the amplitudes he and ae, the first 
one has been given zero reference phase: consequently its values are always real. The 
amplitude ae of the pitch motion, conversely, is generally complex, allowing for in phase 
as well as out of phase components with respect to the heave motion. 

The numerical procedure to solve, described in section 4, allows for the analytical de­
duction of error estimates in terms of Sololev-like norms of the first derivative of the 
circulation distribution, see formula 33 and the inequality Eq.34. More physically, we 
prefer here to present examples of convergence based on a global result such as the com­
plex lift coefficient, that is an integral operator of the unknown function. Its definition is 
the following: 

C = pV00 J~b Y(Y)dY = 2b
2 /1 r( )d 

L 1 v2s s Y Y 
2P oo -1 

Applying the Gauss-Chebyshev quadrature formula to the function I'(y), see formula 26, 
the amplitude of the lift coefficient is given by: 

18 



II N II Straight wing JfR = 2 II Curved wing JfR = 5.1 II 
R(CL) ~(CL) R(CL) ~(CL) 

2 3.385702 2.192085E-Ol 3.794706 l.064616E-01 
4 3.880250 2.391228E-01 4.246472 l.028718E-01 
8 4.040998 2.355483E-01 4.217864 l.027298E-Ol 

16 4.078930 2.305990E-01 4.181500 l.027043E-01 
32 4.095923 2.278647E-01 4.194034 l.011701E-Ol 
64 4.104604 2.264649E-Ol 4.200689 l.005210E-Ol 

128 4.108951 2.257 468E-01 4.204317 l.001976E-01 
256 4.110828 2.254405E-01 4.205995 l.000935E-01 
512 4.111004 2.255132E-01 4.206315 l.002114E-01 

Table 1: Results of the convergence tests 

In table 1 a simple precision convergence test for a straigth and a curved wing configuration 
is presented. The number of collocation points N refers to a wing semispan, as explained in 
section 4. All numerical solutions used to assess the method and described in the following 
have been obtained with N=128, a value arising from table 1 as a good compromise 
between precision and computing time. 

The results of the computations are shown through Figs.4-8. To discuss their propriety 
we chased as reference data the body of results produced by Laschka [16] in 1963. The 
reason of this chaise is manyfold. First they are presented in a suitable way for the kind 
of outcomes we obtain from the present method, because they provide the distribution of 
r along the span. In references [19] to [25] we find instead the, more detailed, plots of the 
pressure distributions along each wing section profile. To obtain r(y) it would then be 
necessary to integrate the functions represented in these plots, an intrinsically inaccurate 
procedure which would not provide reliable reference data. Secondly, Laschka's results 
cover a broad class of exemplar wings and are· relatively recent, having been published 
sixteen years after the other well known comprehensive set of computations by Reissner 
[8] and by Reissner and Stevens [9]. Thirdly, Laschka's results are analytically well based 
and come about a basically more correct lifting-surface theory. 

As already pointed out in the introduction a global feature of this simplified theory, as 
based on the 3/ 4-chord Pistolesi-Weissinger method and on the unsteady Possio theory for 
the motion of lifting surfaces, is that its accuracy lowers with increasing reduced frequency 
w*. Nevertheless, results display generally a satisfying agreement with the reference data 
by Laschka up tow* l"'o.J 1, a boundary which is also found in the planar case [26]. Note 
that this limit value on the w* does not imply an equivalent limit on the pulsation w, 
because w* ::; 1 actually means that the product wb ::; V 00 • Therefore in case of a low 
aspect ratio wing the pulsation migth assume a relatively high value and vice versa. 

Figs.4 and 5 refer to a straight rectangular wing of aspect ratio JfR = 2. Fig.4 shows flap­
ping motion results for reduced frequencies up to w* = 2. The quality of the computations 
turns out to be about uniform in the above range of reduced frequencies, a fact that is 
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beyond expectation. In fact, relative errors are at most about 4%, see part c of Fig.4 
pertaining to the global complex lift coefficient computation. For the same wing the case 
of the pitch motion has been also computed (see Fig.5). In this situation the agreement 
is still good qualitatively as far as the circulation distribution shape is involved, but the 
numerical values of R(r) and S.S(f), compared to those by Laschka, are less accurate with 
respect to the flapping situation. Anyway they are still loosely acceptable up to w* rv 1, 
where the maximum relative error rise to about 153 for R(r) and to about 30% for S.S(f). 
For values of w* of the order of 2 our numerical outcomes must be disregarded, at least in 
so far as the wing bound vorticity distribution remains concentrated in one lumped curved 
vortex placed at the forward quarter of the chord of each wing section. As suggested in 
[26], for the planar case, the ratio between R(f) and S.S(r), for a wing subject to pitch 
oscillations, may be improved by optimizing the position of the bound vortex to respect 
to the chord. For instance in [26] the optimal position has been recognized to be equal to 
the 15% of the chord length (of course, in so doing the aerodynamic moment will no more 
assume the correct value for w* = 0). We did not carry this parametric study because it 
would have been beyond the scope of the present work. Moreover, this would not be the 
only way to raise the general performances of the method: for instance, distributing the 
bound vorticity on two or more discrete vortices, toghether with their wakes, instead of 
on only one, would surely improve results. We did not take advantage of this issue. Here 
we want just to underline that the method still allows for further improvements. 

The ensemble of test cases computed by Laschka includes also a delta wing (~=4) and 
a straight 45° swept wing (~=2) with constant chord. The circulation distributions 
relevant to this two w~ngs in flapping motion have been computed and the results are in 
Figs.6 and 7. The agreement with Laschka outcomes appears to be excellent for the delta 
wing, Fig.6. Such a result is at a first glance beyond expectation; however, a possible 
explanation arises if one considers that the delta configuration allows for a higher aspect 
ratio (~=4) with the same semispan value (b=2) of the previous wing and consequently 
with the same values of w*. Therefore the delta configuration mets better the lifting line 
model requests. The confront of the 45° swept wings, Fig. 7, is very good as the module of 
r is concerned and moderately good as its phase <I> is concerned (in this case the maximum 
relative error is about 13%). 

To conclude with a different wing configuration, we show also the results for a curved 
elliptic wing of aspect ratio 5.1 and a aft-swept of the tips equal to 2 undergoing a flapping 
motion, see Fig.8. This wing has a lunate shape and could be considered of interest in 
the context of animal locomotion. For this very reason and to illustrate the capability of 
the model, we decided to include this case even if we could not find in literature a similar 
numerical solution to compare with our results. 

6 Conclusions 

This theoretical study allows the determination in a conceptually simple way of the circu­
lation distribution along the span of a curved wing exercising small amplitude harmonic 
oscillations. It presents an unsteady lifting line theory based on the Pistolesi-Weissinger 
3 / 4-chord method coupled with the Possio theory for the unsteady motion of a lifting 
surface. It provides an extension to non-steady harmonic conditions of the steady lifting 
line model for a curved wing proposed in [4]. 
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The mathematical formulation is developed rigorously and leads to an integro-differential 
equation that may be loosely classified as of modified Prandtl's type, because, besides the 
finite Hilbert transform of the derivative of the circulation, it displays other singular terms 
represented by finite logarithmic transforms of the circulation and its first derivative. 
These singularities have been accurately analysed and treated. A detailed numerical 
procedure of resolution of that equation, plus relevant boundary conditions, have been 
elaborated, under similar guidelines as those used in [4], through the application of the 
Gauss quadrature method based on Chebyshev second kind polynomial approximation of 
the unknown function. The convergence characteristics are assessed. 

Numerical solutions for several wing configurations and oscillatory motions have been car­
ried out and compared to corresponding results by Laschka [16]. The confront is positive, 
above all in the case ·of flapping harmonic oscillations. It is noticeable that the behaviour 
of the method reflects the physical restrictions of the theory on which it is founded and 
is not subject to any limitation of analytical or numerical nature. Results are good for 
slow and moderately fast pulsating motions, such that the reduced frequency based on 
the wing semispan be less or equal to 1. Remarkably this value, that actually turns out 
to be also a limit of validity for other investigation based on the method of asymptotic 
matched expansions, see [20] to [24], does not appear to be an intrinsic property of the 
mathematical treatment used here. As a consequence the numerical solutions converge 
for any value of the reduced frequency. 

This method is capable of improvement by searching for the optimal values of a few key 
parameters in order to best satisfy the physical constraints relevant to the kind of motion 
and configuration under simulation. Increasing the number of discrete vortices used to 
represent the bound vorticity would be a further possible development able to ameliorate 
the global performances of the method. In such a way, for instance, it would be possible 
to predict also the aerodynamic pitching moment and the method could find application 
in preliminary estimates of wing aero elastic behaviour. In the present form, however, 
the prevailing application field seems to be the naturalistic one. Flapping motions with 
reduced frequencies well in the validity range of the model are in fact a common occurrence 
in many phases of birds flight. 

Appendix A - Evaluation of the integral S(a-, z) 

First S(a, z) is splitted in two integrals 81 and 82 running respectively from -oo to 0 and 
from Oto a. Then the integration boundaries of the former are changed from (-oo, 0) to 
(0, +oo) by substituting the inner variable (through -(; then 81 assumes the form: 

S ( ) _ r'° (1 _ ( ) -iw*C di" 
1 a, z - lo .J (2 + z2 e '=> 

To its evaluation it is expedient to start from the integral 

A*(z) = f ((2 :i::;a/2 d( 

whose analytical form is known (see [32] p.376 and 498 for separate real and imaginary 
parts): 

A*(z) = ~~ { K1(w*Jzl) - i~ [I1(w*Jzl) - L_1(w*Jzl)]} 
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Here I1 is the modified Bessel functions of first kind and order 1, K1 that of second kind 
and order 1 and L_1 the modified Struve function of order -1. Integrating A* by parts 
gives 

A*(z) 
[ 

-iw*( ( ( C( ))]
00 

e z2 .../ (2 + z2 + z o + 

+ iw* f
00 

e-iw*( ( ( + C(z)) d( 
lo z2...j(2 + z2 

The arbitrary function C(z) has been introduced in order to make the result bounded. 
Indeed, by choosing C ( z) = -1 / z2 one obtains: 

1 iw* 
A*(z) = - - -S1 (z) z2 z2 

From this relation 81 can be obtained. After summing it to the integral 82 rewritten as: 

the expression for S (a, z) finally arises 

S(a, z) = 

The integral 
r1' ( eiw*( 

A(a, z) =lo ...)(2 + z2 d( 

can be evaluated only numerically. In the present work this has been done by means 
of Filon's integration formula (see [32] pp.890-891); difficulties arised only at very high 
values of w* because of numerical instability, but it was possible to overcome them by 
using the following expansion valid for w* ~ 1 and z i= 0: 

A(a, z) 
(J' eiw*u 1 [ z2 eiw*u 1 ] 

~ +- -- + iw*.../a2+z2 w*2 (a2+z2)3/2 lzl 

3z2a eiw*u 3 [z2(z2 - 4a2) eiw*u 1 ] 
+ iw*3(a2 + z2)5/2 - w*4 (a2 + z2)7/2 - lzl3 + 

l5z2a(3z2 - 4a2) eiw*u 

+ iw*s ( a2 + z2)9/2 + · · · (A.l) 

In Fig.9 the values of A(z) given by Filon's integration formula are compared to those 
obtained from expansion (A.l) for a curved wing with constant chord and for w~ = 2 (i.e. 
w* = 10, being b/l0 = 5: this is a sufficiently high value for Eq.A.l to hold). Plotted is also 
the fourth order expansion of A(z) for small z which had to be derived as an intermediate 
step to expand the full function Tu (see Eqs. 22 and 24). The excellent agreement between 
these expansions and the results of Filon's formula indicate the good degree of confidence 
with which the latter has been used. 
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Appendix B - Proof of Eqs.31 

Proposition. The Chebyshev polynomial of first and second kind Tk(x) and Vk(x) re­
spectively fulfil the relations: 

111 - In It - sl Vl=-f2Uk(t) dt = 
1f -1 

{ 

-pn2 + ~T2 (s) if k = 0 

= -ATk(s) + Z(k~Z) Tk+2(s) if k 2:: 1 

Proof. First, notice that ([33], (4.1.7)) · 

U ( ) 1 p(~,~)( ) 
k x = -2d k x' 

k+l 

1·3···(2k-1) 
dk=-----

2. 4 ... 2k 

(B.l) 

where P~a,J3)(x), a, f3 > -1, denote the Jacobi polynomials orthogonal on [-1, 1] with 
respect to the weight function (1- x)a(l + x)l'.3, see [33], Chapt.4. Using the relation [33] 
(4.10.1): 

VI=-t2Pf H\t) = - 21k ! ((1- t2)3/2pf!~j)(tl] 
and integrating by parts ([29], Corollary 6.1), we deduce 

1 1 ( 1 1 ) 1 1 1 p ( ~'~) (t) -1 In It - sl Vl=-f2pk 2 '
2 (t) dt = -.,....1 (1 - t2)312 k-l dt 

1f -1 2k 1f -1 t - s 

Combining these relations with the one quoted in [33], ( 4.5.5): 

(1 - t2) p(~,~)(t). = 2k + 1 p(~,~)(t) - 2k p(!,~)(t) 
k-l 2(k + 1) k-l 2k + 3 k+l 

and [30] 
111 

r.;--;;; Uk(t) - v 1- t2 --dt = -Tk+i(t) 
1f -1 t - s 

the proposition can be deduced fork 2:: 1. 

If k = O a separate evaluation is needed. In this case U0(t) = 1 and the integrand on the 
l.h.s. of Eq.B.1 reduces to ln It - sl ~- The expansion (see [31], p.311) 

00 2 
lnlt-sj = -ln2- :E-Tm(s)Tm(t) 

m=l m 

can then be introduced to obtain 

111 - ln It - sl v'l - t 2 dt = 
1f -1 

_ ln 211 Vl - t2 dt - ~ f Tm(s) 11 Tm(t) Vl=-f2 dt 
1f -1 1f m=l m -1 
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The value of the first integral is 7r /2; for the one included in the sum we write t = cos 'ljJ 
and therefore Tm(t) = cos(m'l/;). Then 

/_

1 
Tm(t) v'f=t2 dt = r cos(m'l/;) sin2 'l/;d'l/; 

-1 Jo 
The last integral is different from zero only if m = 2 ([36], p.372 no.7 and p.373 no.12). 
In this case the value is -7r / 4 and therefore the proposition is verified also for k = 0. 

Appendix C - Proof of Eq.33 

Rewrite Eq.25 in the equivalent operator form 

(C.l) 

where u = df / d77 E L~,o is the unknown solution, 

Llu(y) = iw*x~(y)~ /_
1 

ln 177 - YI u(77) d77, 
1f' -1 

w*2 /_1 j_T/ 
L2u(y) = - 21f' -1ln177 - YI -1 u(e) de d77, 

- m(y) /_1 -
Tu(y) = --;- _

1
N(y,77) u(77) d77, 

w = 4mw, and m(y) = (1 + sgncr0 t 1
eiw*u0

• 

Let P N denote the Lagrangian interpolation operator with respect to the Chebyshev 
polynomials of the second kind defined by 

with Yk =cos k1r j(N + 1) = 77k· 

As can be easily seen from the formulas used in the subsections a) throughout d) of Section 
4, Eq.30 is equivalent to the operator equation 

(C.2) 

where uN = vN/v being VN a polynomial (vN E IIN)· Here TNu is defined by the Gauss­
Chebyshev quadrature formula applied to the integral 

m(y) /_
1 

T(cr, y - 77) w(rJ) d7J 
1f' -1 

with w(77) := f~1 u(e) de, i.e. 

TNu(y) = m(y) t T(y, 77k) w((77k)) Ak 
k=l v 77k 

for u E £2,o where 
1.1 ' 

' 1f ( 2) 1f' • 2 k1f' /\ - 1- - sm 
k - N + 1 77k - N + 1 N + 1 
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are the Christoffel numbers of the Chebyshev polynomial UN. 

It is well known that the Hilbert transform H : L~;~ ~ L~,t is a bounded and invertible 

operator with the bounded inverse H-1 == H defined by Hv == _ l Hvv for all v E L2 t and 
v ~ 

0 :::;; t < s, where L~;~ == L~,t n L~,o (see, e.g., [29: 34]). 

Since the operators L ==Li+ L2 and T are co~pact operators in this pair of spaces (see 
[34]) and, by assumption, the equation (H + L+T)u == 0 has only the trivial solution in L~,o 
we conclude that A == H + L + T : L;;~ ~ L~,t is a bounded and invertible operator for all 

t, 0:::;; t < s. We show that this assertion is true for the operators AN== H+PN(L+TN), 
too, provided N is large enough. Indeed, let u E L~,t and v E L~,ti be arbitrary functions 
with 0 :::;; t < t1. From the well known estimates 

(see [34], Lemma 4.4) and 

llv - PN vllv,t:::;; cNt-ti llvllv,t1 

(see [34], Theorem 3.4 (ii)) we derive 

ll(H + L + T) U - (H + PN(L + TN)) ullv,t:::;; 

ll(T- PNTN) ullv,t + llLu-PNLullv,t:::;; 
cNt-s I lull + cNt-(t+l) l!Lull < v,t v,t+l _ 
C1 N- min{ s-t,1} 11U11 v,t 

(C.3) 

(C.4) 

since L : L~,t ~ L~,t+l is a bounded operator (see [34], Lemma 5.1 (iv)). Consequently, 
the norm of the operator A - AN in the space L~t does not exceed c1N-min{s-t,l} which 

tends to zero as N ~ oo. Hence, for N large e~ough, the operators AN : L~;~ ~ L~,t 
are invertible and the norms of their inverses A··;/ are uniformly bounded with respect to 
N. Thus Eq. (C.2) is uniquely solvable. Its solution uN is of the form UN == VN /v with 
v N E II N. This follows from 

uN == H- 1PN(w - LuN -TNuN) 

and the well known formula (see [30]) 

H(vVN_i) == TN 

for the action of the Hilbert transform on the Chebyshev polynomials. Therefore, by 
(C.3) and (C.4) and the relation 

we obtain 

uN - u == A]/(PNw - AN u) 

lluN - ullv,t:::;; c2(llw - PNwllv,t + 

llLu - PN Lullv,t + llTu - PNTNullv,t) :::;; 
C3(Nt-sllwllv,s + Nt-s-lllLullv,s+l + Nt-sllullv,t) :::;; 

C4Nt-s llullv,s 

for all t, 0:::;; t < s, provided w E L~,s· The proof of Eq.33 is complete. 

25 



Appendix D - Proof of Eq.35 

The proof of Eq.35 runs similarly to the proof of Theorem 7 in [35]. 

Assume f E L;,s with s > 1/2 and v(y) = y'l - y2• Setting 

f (y) = v(y)f (y), Pn(Y) = v(y) Pn(Y), µ = 1/v, 

where Pn =Pi~'~) =Un, we obviously have 

Moreover (see Theorem 7.32.2 in [33]), 

IPhll = IPn(v)I ( fl=!;+ ~) ( Ji+v+ ~) · 
v'1+Y y'I-=y < c . 1 . 1 

v'1+Y + ~ y'I-=y + ~ -

with a positive constant c. Hence, 

and, by the Cauchy-Schwarz inequality, 

since 2s > 1. Thus the series ~f=.0 (f, Pi) µPi (y) is uniformly convergent with respect to y, 
-1 :::; y ·:::; 1, and, consequently, its sum is a continuous function Fon [-1, l]. Since this 
series coincides with the Fourier series of f E L! with respect to the orthonormal system 

{Pn}~=o in L~, we have F = f almost everywhere on [-1, l]. Thus 

max If (y)j < c · c'llfllvs 
-1:5Y9 - ' 

which coincides with Eq.35. 
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List of Captions 

Fig.l - Reference scheme of the wing. 

Fig.2 - Function Tu for small z. Solid line: by using Eq.22. Dashed line: approximation 
through z = 0 by means of expansion Eq.24. 

Fig.3 - Motions of a generic wing section. 

Fig.4 - Flapping motion of a straight rectangular wing (m)=2: a) spanwise circulation 
. (real part); b) spanwise circulation (imaginary part); c) complex lift coefficient 
versus reduced frequency w~. Solid lines: present method. Dots: Laschka's results. 

Fig.5 - Pitching motion of a straight rectangular wing (m=2): a) spanwise circulation 
(real part); b) span wise circulation (imaginary part). Solid lines: present method. 
Dots: Laschka's results (not labelled; the sequence in w~ is the same as for the solid 
lines). 

Fig.6 - Flapping motion of a delta wing (m=4): a) spanwise circulation (real part); b) 
spanwise circulation (imaginary part). Solid lines: present method. Dots: Laschka's 
results. 

Fig.7 - Flapping motion of a 45° swept wing (m=2): spanwise circulation (modulus and 
phase). Solid lines: present method. Dots: Laschka's results. 

Fig.8 - Flapping motion of a curved elliptic wing (m=5.1): a) spanwise circulation (real 
part); b) spanwise circulation (imaginary part); c) complex lift coefficient versus 
reduced frequency w~. 

Fig.9 - Function A(z). 
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