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Noise is a common issue for all Magnetic Resonance Imaging (MRI) techniques
and obviously leads to variability of the estimates in any model describing the data.
A number of special MR sequences as well as increasing spatial resolution in MR
experiments further diminish the signal-to-noise ratio (SNR). However, with low
SNR the expected signal deviates from its theoretical value. Common modeling
approaches therefore lead to a bias in estimated model parameters. Adjustments
require an analysis of the data generating process and a characterization of the
resulting distribution of the imaging data. We provide an adequate quasi-likelihood
approach that employs these characteristics. We elaborate on the effects of typical
data preprocessing and analyze the bias effects related to low SNR for the exam-
ple of the diffusion tensor model in diffusion MRI. We then demonstrate that the
problem is relevant even for data from the Human Connectome Project, one of the
highest quality diffusion MRI data available so far.

1 Introduction

Many recent advances in Neuroscience are closely related to imaging techniques that allow for
an in-vivo examination of the human brain. Magnetic Resonance Imaging (MRI) has played and
is playing an essential role in this process due to its inherent non-invasiveness. This property is
in contrast to other imaging techniques like Positron Emission Tomography (PET) or Computer
Tomography (CT) that require potential harmful high energy radiation during imaging. Further-
more, MRI, unlike, e.g., electroencephalography (EEG) or magnetoencephalography (MEG),
provides a reasonable temporal and spatial resolution. And last but not least, its versatile im-
age contrasts enable many different looks into the brain focusing on different tissues and their
properties. For an excellent introduction into the physics of MRI see, e.g.,|Callaghan|[1991].

MRI like any imaging technique suffers from specific artifacts, that affect data analysis in neuro-
scientific research or clinical applications. Among those the most important are magnetic sus-
ceptibility artifacts, registration problems or eddy-current distortions for sequences with large,
rapidly switched magnetic field gradients [Johansen-Berg and Behrens, [2009]. Artifact correc-
tion of MRI data can be performed by various methods, see, e.g.,[Mohammadi et al.[[2010] or
Ruthotto et al.| [2012] and the references therein for recent developments. In this paper we are
focusing on the influence of image noise as one of the limiting factors for increasing the spatial
resolution in MRI [Edelstein et al.,[1986]. Despite introducing variability into the estimates in any
model describing the data low signal-to-noise ratio (SNR) leads to the deviation of the expected
signal from its theoretical value which induces also a bias.

One of the MR image contrasts that is especially prone to low SNR is diffusion weighted imag-
ing [dMRI; lJones, 2010] which examines the diffusional properties of the omnipresent water



in the brain. The experimental setup allows for probing different diffusion directions and thus
accessing the anisotropy which has shown to be directly related to the underlying tissue geom-
etry, see, e.g., [Johansen-Berg and Behrens| [2009]. From dMRI data a lot of interesting mea-
sures based on a number of different diffusion models describing the directional dependence of
the data have been derived [Assemlal et al., 2011]. Examples include scalar maps of the local
diffusion anisotropy or vector fields of main diffusion directions pointing along elongated tissue
structures in the brain [Johansen-Berg and Behrens|, 2009, Jones| 2010]. These measures have
been shown to be relevant not only for research on the normal brain but also for clinical decision
making on neurological diseases, like epilepsy or Multiple Sclerosis [Deppe et al., (2007, [Kleffner
et al.| 2008, Deppe et al., [2013].

Another recent acquisition protocol potentially susceptible to low SNR is quantitative multi-
parameter mapping [MPM; Weiskopf et al., 2013, [2014], which is designed to provide stan-
dardized information about tissue microstructure. It relates measurements with different MR
contrasts and at multiple echo times within a model derived from MR physics. The model pa-
rameters are supposed to be comparable across time points and imaging sites enabling the
search for diagnostic markers for neuronal diseases in group studies, see, e.g., [Weiskopf et al.,
2013|] and references therein. As for dMRI increasing image resolution inherently lowers the
SNR. If not accounted for, the resulting bias compromises the comparability of estimated model
parameters.

Without loss of generality we will in this paper focus on diffusion MRI and use corresponding
models and acquired data in our discussion. However, the conclusions apply to any other MR
acquisition with low SNR and any other common modelling approach for the data.

It is long known, that noise in dMRI leads to a bias in the estimates of diffusion model param-
eters [Gudbjartsson and Patz, 1995, |Pierpaoli and Basser, {1996, Basser and Pajevicl 2000,
Jones and Basser, 2004]. The effect gets more severe with diminishing signal-to-noise ratio
(SNR), e.g., as a consequence of increased spatial resolution and/or higher diffusion-weighting
of the dMRI data. In this paper, we want to shed further light into the “bias problem” in dMRI
data analysis and its possible solutions from a statistical perspective. We provide a statistical
approach to characterize and correctly treat the noise when modeling MRI data. We will analyze
the influence of data processing, e.g., for artifact correction, on such solutions and argue, how
the noise properties of the original unprocessed data are relevant to the treatment of the bias
problem. This is important as data processing generally increases the SNR by means of local av-
erages such that the problem is often not recognized in practice. We will demonstrate the issues
using one of the highest quality dMRI data available so far, namely the data from the Human
Connectome Project (HCP), see http://www.humanconnectomeproject.org/.
In this sense, it is a generic problem for all dMRI data.

2 Statistical properties of MRI data

In the process of data acquisition for MRI a receiver coil basically receives radio-frequency sig-
nals related to precessing nuclear spins; the frequency domain of these signals is usually de-
noted as k-space. The generation of images in the spatial domain is then performed by inverse


http://www.humanconnectomeproject.org/

Fourier-transform of the complex-valued k-space data, followed by the formation of a magnitude
image, see |Callaghan| [1991] for an introduction. The manner in which k-space is sampled is
subject of intense research, in this paper we consider for simplicity Cartesian acquisitions in
k-space, only.

k-space data from a single receiver coil is commonly considered to be complex Gaussian dis-
tributed; the signal in the magnitude image then has a Rician distribution [Rice, (1944, |Gudbjarts-
son and Patz, [1995], which is a re-scaled non-central -distribution with 2 degrees of freedom.
The skewness of this distribution leads to a difference between the expectation value of the
signal and the true noise-less signal [Henkelman|, [1985|; consequently the mean signal in the
background of an MR image with no spins at all does not vanish.

To increase the sensitivity of the data acquisition parallel imaging methods have been intro-
duced [Roemer et al.}|1990]. There, data from multiple receiver coils are combined for increased
SNR and homogeneous coverage. To speed up acquisition several modifications are used in
parallel imaging protocols, e.g. subsampling in K-space, reduced field of view, multi slice acqui-
sitions, partial parallel acquisitions, e.t.c.. All these methods introduce different types of spatial
correlation in the acquired image data, see e.g.[Bruce et al.[[2011], Bruce et al.|[2012], or|Bruce
and Rowel[2014], and together with the image reconstruction methods determine the statistical
distribution of the image data.

The reconstruction of the image from multiple coil data can be done using various methods.
As an example a sum-of-squares (SoS) combination of the k-space data from multiple re-
ceiver channels [Roemer et al., [1990] simply calculates a quadratic mean of the amplitudes
derived from each channel. The distribution of the image signal .S then becomes a non-central
x-distribution with 2 degrees of freedom:

S/J ~ X2L(C/0)>

where L is the number of receiver coils, ( is the true noise-less signal and ¢ is the standard
deviation of the complex Gaussian distribution of the k-space data. While this provides a simple
statistical description the reconstruction does not efficiently use the available information on the
data from the receiver coils.

In general, data from the different receiver coils is correlated [Hayes and Roemer,|1990]. Signal
intensity varies with the distance to the respective receiver coil. As a consequence the image
signal distribution obtained by image reconstruction methods that account for these properties
is still approximately non-central x, however, with a smaller effective number 2L, degrees
of freedom [Aja-Fernandez and Tristan-Vegal 2012]. A similar result has been obtained [Aja-
Fernandez et al., 2011] for MRI data using Generalized Autocalibrating Partially Parallel Ac-
quisition [GRAPPA; Griswold et al., 2002] that reconstructs images from sub-sampled k-space
data in each coil.

Alternatively, a SENSE (Sensitivity Encoding for Fast MRI) [Pruessmann et al., [1999] recon-
struction is a weighted mean of the single coil data using location dependent sensitivity maps
as weights with an undersampling factor R. A special refinement for R = 1 is known as
SENSE1 [Sotiropoulos et al.,[2013b] and used as standard protocol in the Human Connectome
Project [Sotiropoulos et al., |2013a]. As the combination of the multiple coil data is performed
linearly in k-space already, the signal distribution of the image data can be expected to be of



Rician form.

In this paper we will henceforth consider a non-central x-distribution for the signal with 2L ¢
degrees of freedom using an effective, and location-dependent, number of coils. When consider-
ing HCP data in our example section, we will be able to specify L.¢; = 1. The magnitude signal
distribution is restricted to the positive axis and hence possesses skewness, i.e., ( < ES. The
difference between the parameter ¢ and the expectation of the signal increases with decreasing
SNR of the data.

In a typical dMRI sequence multiple volumes of data are acquired for a suitable sample of dif-
fusion gradient directions to probe the directional dependence of the diffusion signal [Jones|
2010]. This automatically generates an image registration problem, as the subject is in general
constantly moving in the scanner during data acquisition, at least due to physiological pulsation.
In a similar manner discontinuities of bulk magnetic susceptibility and eddy currents caused by
the rapid switching of magnetic field gradients produce spatial distortions in the images. If not
corrected for, strong artifacts of this kind diminish the quality of the data and hinder data anal-
ysis. The correction methods for spatial distortions in the data, however, automatically involve
signal interpolations, that along the way reduce the signal variability. These interpolations gen-
erally preserve the relation between expected and the theoretical (noise-free) signal, which is
determined by the SNR of the unprocessed data.

3 Modeling of dMRI data

3.1 Diffusion tensor model

A diffusion model for dMRI data is a model that explains the directional dependence of the
data acquired for a single voxel. For an overview over many of such models see, e.g., /Assemlal
et al.[[2011]. Such models are typically based on intra-voxel tissue properties. As a well-known
example we will, in this paper, consider the diffusion tensor model [DTI;|Basser et al., |1994alb].
However, the statements in this paper can be easily transferred to other diffusion models like
tensor-mixture models [Assaf and Basser, 2005, Behrens et al., 2003, [Tabelow et al., [2012],
higher-order tensor models [Ozarslan and Mareci, 2003, |Liu et al., 2004, Jensen and Helpern,
2010], or models related to the orientation-distribution function [ODF; [Tuchi 2004].

The DTI model describes the directional dependence of the diffusion signal by an anisotropic
Gaussian diffusion of water molecules within a voxel. For a given diffusion gradient direction ¢
and b-value b (combining gradient strength and diffusion time etc. [Jones), |2010]) the model for
a voxel 7 prescribes an exponential decay of the theoretical (noise-free) signal (3 4 ; in relation
to a base intensity (p; acquired without diffusion weighting gradients:

Chg(6i) = Cosi 9 Pig (3.1)

The relation is characterized by the diffusion tensor D; that belongs to the space of positive-
definite symmetric 3 x 3 matrices PD(3). We denote the parameters of this model as 0; =

—

(COJ-, Di) including the base intensity ¢ ; and the vector of the six independent components of



D;. As we only consider modeling within a single voxel ¢ we will henceforth drop the index : for
the simplicity of notation.

Let A1, A2, A3 > 0 denote the eigenvalues of D. Based on these, the fractional anisotropy (FA)
as the most popular anisotropy measure

FA = @ D=/ 3N (3.2)

i=1

can be defined [Basser and Pierpaoli, [1996], where () is the mean eigenvalue.

The expected value of the observed signal .Sy, 4 in the diffusion tensor model for a b-value b and
a gradient direction g is given by

T+ (L-1) Cig(e)
ESyg = 11(Cg(0), 0v,9) = by §L1/2 T2 |- (3.3)
b,g
Here, ( / )
(L-1) - I'L+1/2 _

denotes a generalized Laguerre polynomial that can be expressed using the confluent hyperge-
ometric function M. The variance of the preprocessed signal is

Vbg = Cg [ZLUg,g + Cb,g(e)Q - M2(Cb,g('9)a Ub,g)}

where Ch, < 1 is characterizing the variance reduction due to preprocessing.

For the signal distributions emerging in dMRI their expected value (3.3) differs from the noise-
free parameter (. Table [1| specifically illustrates that (4((p4(6), 0b4) > (bg(0) and that the

difference is decreasing with increasing ratio %(9) i.e. increasing SNR.
g
¢/o 00 | 1.0 | 20 3.0 4.0 6.0 8.0
(u(¢,0)—(¢)/o | 125|055 | 0.27 | 0.17 | 0.13 | 0.084 | 0.063
(u(¢,0) —¢)/C | oo |0.55|0.14 | 0.058 | 0.032 | 0.014 | 0.008

Table 1 — Absolute and relative discrepancy between expected value and signal depending on the
ratio of signal and scale parameter for L = 1.

3.2 Diffusion tensor estimation by nonlinear regression

Estimation of the true parameters 6 is usually performed in the nonlinear regression model

Sb,g = th(el) + Eng, E Eb,g =0 Var Eb,g < 0 (3.4)



solving the optimization problem

~ ~ = /12
0 = ((o, D) = argmin, Z Wh,g |:Sb,g — Gpg(8) (3.5)

b,g

for some weights wy, 4. In case of small (; 4(0) /0,4, at least for some pairs (b, g) of b-values
and gradient directions with strong signal attenuation by the diffusion weighting the model
becomes inadequate, cf. Table [1] Solving effectively means to compute an (weighted)
inadequate least squares approximation (WILSA) of the expected signal (. 4(0), 0p,4) Within
the class of functions F = {(,,(0'10 € ©)} with © = {({y, D)|¢o € RT, D € PD(3)}.
The properties of the weighted inadequate least squares estimate 0 are studied, e.g., inlZwanzig
[1980] and Bunke and Bunke|[1989]. We use the framework developed therein to investigate the
effects of low SNR in dMRI for the special case of the diffusion tensor model (3.1).

Let n be the cardinality of the set of pairs (b, g) of b-values and gradient directions. Let u denote
a set of positive numbers such that 0 < £ < w4, < p < 00 with maxy, 4 [wp g — Up,g| £550.
We use the following notation introduced in Bunke and Bunke|[1989] to formulate their result in
our specific situation:

¢
kc<b7 g) :w(bu g) |0'=0_7

“ly = [l =n"" Zwb,gwb,g - fb7g|2a

b,g

w(k7l>n = <TL_1 Zwb,gki(b7 g)l](ba g))
b.g

i=1,7

=17

Under mild regularity conditions Theorem 1.1.2 in|Bunke and Bunke|[1989] provides the asymp-
totic normality of the inadequate least squares approximation (WILSA) as

£ {20~ 6~ 26 ()™ (e, w(C(6), 7) — C(B))n b — N(0,4G () Ce(w)Gw) ).
(3.6)

The parameter 8 in is the projection parameter defined as
0 = argming “|u(¢(0),0) — C(0)]* (3.7)

The asymptotic covariance matrix depends on

Ce(u) :T}LIEOvaygug,gkc(b, 9)kc(b, g)T and
b,g

1=1,7
. ,
Glu) = (W lim “14(a(6), ) = Gr(6 >\2J|H>

n—oo
j=1,7

The term 2G(u) =t “(k, u(¢(0), o) — ((0)),, is needed to obtain a vanishing expectation in the
limiting distribution. [Bunke| [1981], see also Remark 1.1.2 in|Bunke and Bunke|[1989], provided



a refinement of
c {nl/Q(é - én)} — N(0,4G(w) "' O (w)G () ™). (3.8)

using -
0, = argming “|u(¢(0), ) — ¢(0')]”
instead of § that avoids the correction term 2G'(u) ™" “(k, u(¢(6), 0) — ((0)), in @.6).

The difference 6,, — @ between the projection parameter and the true value 6 in Eqn. (37)
characterizes the non-vanishing bias due to model misspecification.

3.3 Quasi-Likelihood estimation

Unfortunately, a likelihood approach can not be used since the distribution of the preprocessed
signals depends on the interpolation weights used in susceptibility correction, eddy current cor-
rection and image registration. All these interpolation steps keep the expected value of the signal
in unchanged. In this equation 2L are the degrees of freedom and o the scale parameter
of the distribution of the unprocessed data. The variance of the observed signal is reduced by
spatial interpolation at the cost of additional spatial correlation. The model is adequate
under the assumption of a homogeneous Gaussian diffusion within the voxel. The parameter
vector  can be estimated by iteratively weighted least squares comparing the observed signal
with its expectation

_ , 2
§ = argming, Z Wy g [Sbvg — 11(Cpg(8), 0bg) (3.9)

b,g

Choosing wy, 4, = 1/vb,g this corresponds to a quasi-likelihood approach that employs the vari-
ance of the unprocessed data. An alternative choice is wy , = 1. The asymptotic distribution of
the WLSE @ is, under mild regularity conditions, see e.g. |Bunke and Schmidt/[1980] or Theorem
1.1.2 in|Bunke and Bunke|[1989], given by

c {W?(é - 9)} — N(0, B(u)"'C,y(u) B(u)™) (3.10)
with

o
ku(ba g) :W(ba g) |6/:67
B(u) = lim “(k,, ku)n

n—oo

Culu) = nh_g)lo Z Ub,gug,gku(ba 9k (0. g)".
bg

The WLSE is a consistent estimate of the true parameter 6.



4 Simulations in the diffusion tensor model

In this Section we compare the estimates 0 and 0 from 3.5) and (3.9), respectively, in a con-
trolled situation. To simulate parameter estimates that obey the assumption of a Gaussian diffu-
sion profile (diffusion tensor model) we re-parametrized the model (3.1) using

9 = (¢, log D) (4.1)

with log D = U diag(log()\))U? for an eigenvalue decomposition D = U diag(A\)U”. This
corresponds to using a log-Euclidean metric in the space of diffusion tensors PD(3), see e.g.
Pennec et al.| [2006], [Fletcher and Joshi [2007], or |Arsigny et al.|[2006] and has the advantage
that affine Euclidean operations on 1 preserve the tensor properties for D.

We considered an experiment that resembles the design used for the data in the Human Con-
nectome project [Van Essen et al., 2013, |Sotiropoulos et al., 2013al, [Ugurbil et al., [2013]. The
matrices B(w), C,,(w), G(w) and C¢(w) were generated employing the 90 diffusion gradient
direction used in the HCP on each of 3 shells, i.e., b-values of 1000 s/mm?, 2000 s/mm?, and
3000 s/mm? and assuming 18 non-diffusion weighted volumes corresponding to a b-value of
0 s/mm?.

The diffusion tensor D was assumed to be prolate, i.e., A\oa = A3, with a maximal eigenvalue
A1 = 1.4 x 1073 mm?/s. The signal was scaled such that {;, = 1. We further assumed
the preprocessed signal to be a weighted average of Rician distributed variables (L.sy = 1
as in the HCP) with scale parameter 0. The averages were assumed to mimic the effects of
interpolation in the preprocessing steps and to lead to a variance reduction by a factor of 4. This
resembles the variance reduction observed when analyzing the unprocessed and preprocessed
Human Connectome data, see Section

In the following simulations we sampled 100000 realizations from the asymptotic distributions (3.8)
and (3.10) with covariance matrices 4G/ (w) ' C¢(w)G (w) ™" and B(w) ™ C,,(w) B(w) ™", re-
spectively, and projection parameter v} calculated numerically under the re-parametrization (4.7).

We investigated the properties of the estimated eigenvalues and fractional anisotropy for vary-
ing (true) tensor anisotropy (FA) and SNR (1/0). In general there are two causes of bias in the
estimation of FA. The first comes from the variability of the tensor estimates and can be con-
trolled, e.g., by increasing the number of diffusion weighted images. The second contribution
is due to the use of the inadequate nonlinear regression model or a misspecification of o. In
Tablewe report the FA values calculated from the projection parameter 0, see Eq. (3.7). The
difference between the reported values and the true FA in the first row is the bias part of the FA
estimate obtained from nonlinear regression that is due to model misspecification.

Figure [1] provides the boxplots of errors in estimated FA for true FA values ranging from 0.1
to 0.9 obtained from nonlinear regression as well as from quasi-likelihood estimates
from the simulated datasets. We observed a severe negative bias in case of nonlinear regres-
sion that is, as expected, decreasing with increasing SNR (/. This effect is mainly due to the
bias in the nonlinear regression estimate. For small SNR and small true FA values we also
observed a positive bias in the quasi-likelihood FA estimate that is caused by the variability of
the tensor estimate.



o True FA
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2 | 0.0446 | 0.0963 | 0.1583 | 0.2324 | 0.3215 | 0.4287 | 0.5563 | 0.7016 | 0.8534
0.1 | 0.0783 | 0.1598 | 0.2456 | 0.3378 | 0.4375 | 0.5451 | 0.6584 | 0.7740 | 0.8884
0.05 | 0.0921 | 0.1859 | 0.2815 | 0.3800 | 0.4815 | 0.5848 | 0.6890 | 0.7933 | 0.8970
Table 2 — FA values for the projection parameter 6 in the nonlinear regression model.
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Figure 1 — Asymptotic distribution of FA estimated by Quasi-Likelihood (black) and Nonlinear re-
gression (red) in the diffusion tensor model with the b-value and gradient direction
scheme used in the Human Connectome Project. Results are provided for FA values
varying from 0.1 to 0.9 and a signal to noise in the non-diffusion weighted signal of 5, 10
and 20.

Figure [2| provides relative errors of the estimated tensor eigenvalues for the same settings. In
case of the nonlinear regression estimates we see a negative relative error in the estimated
eigenvalues, with errors most severe for the largest eigenvalue and low SNR.

We also investigated the case were the data is generated by a tensor mixture model [Tabelow
et al} 2012] within a voxel instead of a single diffusion tensor model (DTI). Then, both the
nonlinear regression and the quasi-likelihood estimates were obtained in an inadequate model.
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Figure 2 — Relative errors of tensor eigenvalues estimated by Quasi-Likelihood and Nonlinear re-
gression in the diffusion tensor model with the b-value and gradient direction scheme
used in the Human Connectome Project. Results are provided for FA values varying
from 0.1 to 0.9 and a signal to noise in the non-diffusion weighted signal of 5, 10 and 20.

In all considered situations (not reported here) we saw a negative bias in estimated FA that was
significantly larger in case of nonlinear regression.

5 Analysis of HCP data

To illustrate our findings with experimental MR data we used dMRI data from the Q1/Q2-release
of the Human Connectome Project [Van Essen et al.}, [2013] \Sotiropoulos et al.| [2013a, [Ugurbil
et al.l [2013].

5.1 Description of data and preprocessing

Data were generated on a customized Siemens 3T "Connectome Skyra” using a Spin-echo EPI
Sequence, T'R = 5520 ms, T'E = 89.5 ms, flip angle 78°, refocusing flip angle 160°, field
of view 210 mm x 180 mm (RO x PE), matrix size 168 x 144, slice thickness 1.25 mm,
with a total of 111 slices, leading to 1.25 x 1.25 x 1.25 mm? isotropic voxels. The acquisition

10



employed a multiband factor of 3, echo spacing of 0.78 ms, bandwidth 1488 Hz/Px, phase
partial Fourier factor of 6/8, and b-values 1000 s/mm?, 2000 s/mm?, and 3000 s/mm?. A
total of 576 image volumes were obtained in six runs each utilizing three different gradient
tables of 90 gradient directions plus 6 non-diffusion weighted acquisitions. Each gradient table
was used once with right-to-left and left-to-right phase encoding. Image reconstruction of the
raw data used SENSE1 [Sotiropoulos et al., 2013b].

Data preprocessing included intensity normalization across runs, EPI distortion (susceptibility)
correction using FSL-TOPUP [Andersson et al., 2003, [Smith et al., 2004], eddy-current and
motion correction by FSL-EDDY, gradient nonlinearity correction, including calculation of b-value
and gradient direction deviation and registration of the mean non-diffusion-weighted image to a
native volume T1w image. A brain mask is available based on a freesurfer segmentation [Dale
et al., [1999]. See also [Hum|, |2013allb] for more details on image acquisition and processing.
We analyzed both the unprocessed as well as the preprocessed data.

5.2 Estimation of the local scale parameter for the unprocessed data

We estimated the local scale parameter o for 192 of the 576 images (two out of the six runs)
using the local adaptive noise estimation (LANE) algorithm from [Tabelow et al.,|2015] as imple-
mented in the R package dti [Tabelow and Polzehl, 2015]. LANE was applied specifying Rician
noise which is appropriate for the SENSE1 reconstructed images in the considered dataset. In
this method voxelwise estimates of the scale parameter o and the intensity ( are obtained by
weighted local likelihood. To do so the procedure employs an assumption of local homogene-
ity for ¢ and spatial smoothness of ¢ in an iterative multi-scale procedure, see [Tabelow et al.
[2015] for details. This approach is designed to recover the local homogeneity structure of ¢ and
describe this structure in terms of local weighting schemes that are employed in the weighted
likelihood approach.

Figure [3] illustrates the results for the unprocessed data, i.e., for the data after image recon-
struction before applying any artifact correction method. In the left part of the figure we provide
images of estimated scale parameters for one slice of a non-diffusion weighted image and im-
ages at b-values 1000 s/mm?, 2000 s/mm? and 3000 s/mm?. The scale parameter o is
approximately constant within the brain mask and depends on the b-value. The central part of
the figure provides densities of the estimated scale parameters within the brain mask for each
analyzed image volume. Phase encoding direction and b-values are color-coded. The right plot
in Figureprovides densities of the estimated SNR (/o for the 192 analyzed image volumes.

We consistently observe low SNR for parts of all diffusion weighted images. The effect is most
severe for high b-values leading to a high percentage of voxel with low estimated SNR, see
Table 3Bl

5.3 Estimation of the local scale parameter for the preprocessed data

Data preprocessing, i.e., susceptibility distortion, eddy current and motion correction effectively
lead to interpolation between neighboring voxel. While this does not significantly change the ex-
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Figure 3 — Left: Estimated local scale parameter o in a slice of a non-diffusion weighted and three
diffusion weighted images with approximate b-values 1000 s/mm?, 2000 s/mm? and
3000 s/mm?. Center: Densities of estimated o obtained from 2 out of 6 runs (a to-
tal of 192 image volumes, 96 with right-to-left (RL) and 96 with left-to-right (LR) phase
encoding directions). Right: Densities of estimated SNR (/o for same volumes.

b-value in s/mm2 0 | 1000 | 2000 | 3000
run with LR phase encoding | 4% | 14% | 38% | 71%
run with RL phase encoding | 3% | 13% | 37% | 71%

Table 3 — Percentage of voxel in brain mask with SNR less than 4.

pected value of the local intensities it reduces, due to averaging, their variance. It also changes
the signal distribution from Rician to an approximately Gaussian with expected value L.

We estimated the local noise standard deviation and the SNR /o in all 288 volumes |'| of the
preprocessed data using LANE [Tabelow et al.,[2015]. The results are summarized in Figure [4]
Compared to the unprocessed data analyzed in the previous subsection we observed a reduc-
tion of the standard deviation by a factor of approximately 2 due to preprocessing. The SNR
/o is significantly increased for all b-values.

5.4 Nonlinear regression versus quasi-likelihood

We also estimated the parameters ¢ in the diffusion tensor model (3.1). We computed both the
inadequate nonlinear regression estimate and the quasi-likelihood estimate from the
preprocessed data using method dt i Tensor from the R-package dti [Tabelow and Polzehl,
2015]. There, we used the estimated scale parameter o determined with the unprocessed data,
as it determines the distributional properties of the signal.

Figure 5| provides a comparison of both estimates in terms of FA differences and relative changes
of the eigenvalues. We observed a significant increase in the estimated FA with the quasi-
likelihood estimation in white matter together with tissue specific changes in the tensor eigen-
values. This indicates the presence of a severe bias in the nonlinear regression estimates even

"There, the RL and LR phase encoding acquisitions have been combined to a single image that is corrected for
the susceptibility artifact.
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Figure 4 — Left: Estimated local scale parameter o in a slice of a non-diffusion weighted and three
diffusion weighted images with approximate b-values 1000 s/mm?, 2000 s/mm? and
3000 s/ mm?. Center: Densities of estimated ¢ obtained from a total of 288 prepro-
cessed image volumes. Right: Densities of estimated SNR /o for same volumes.

CCFA (QL) slice=70 FA difference rel. change 1st EV rel. change 2nd EV rel. change 3rd EV
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Figure 5 — Color coded FA obtained by quasi likelihood estimation of 6, FA difference between
quasi-likelihood and nonlinear regression estimates, relative changes of the three eigen-
values (from left to right). The bottom row provides densities (over voxel within the brain
mask) of FA (nonlinear regression estimates in blue, quasi-likelihood estimates in green),
as well as the FA difference and the relative changes of the eigenvalues.

for high quality diffusion weighted data.

6 Discussion and Conclusion

In this paper, we considered statistical problems in modeling MRI data related to low signal-to-
noise ratio. Low SNR is typically observed in MR experiments with very high spatial resolution
but also, e.g., in diffusion MR experiments with strong signal attenuation at high b-values. Then,
the signal distribution becomes skewed with the signal expectation exceeding the nominal noise-
less signal, see Table [T} Commonly applied models based on linearized (not considered here)
or nonlinear regression rely on the assumption that the expected and nominal signal ¢ coincide
and therefore introduce a bias in the estimated model parameters.
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Adequate handling of the problem requires the characterization of the distribution of signals ob-
tained from image reconstruction by, e.g. SENSE or GRAPPA. This distribution can be usually
approximated by a rescaled non-central y-distribution, with the non-centrality parameter /o
corresponding to the SNR. Preprocessing, i.e., correction for artifacts and image registration,
essentially leads to a spatial signal interpolation. These are generally designed to preserve im-
age intensity, i.e., they preserve the gap between expected and nominal signal. The resulting
signal distribution depends on the interpolation weights, and is more concentrated and closer
to a Gaussian distribution. An adequate model can be established matching the signal with the
expected instead of the nominal signal leading to a quasi-likelihood approach. This approach
relies on a reliable estimate of the scale parameter o. The quasi-likelihood approach provides
an alternative to procedures that transform the unprocessed data to achieve approximate Gaus-
sianity as proposed in, e.g.,|Koay et al.|[2009], [Foi| [2011], or [Bai et al.[[2015].

Using results for weighted inadequate nonlinear regression approximations from Bunke and
Bunke| [1989] we established an asymptotic framework to investigate both the nonlinear re-
gression and the quasi-likelihood approach. We used the diffusion tensor model for diffusion
weighted MR data to illustrate and analyze results for both approaches. Our simulations show
that the bias of estimated FA and eigenvalues in the nonlinear regression approach can be se-
vere in case of low SNR. This bias consists of two parts, a contribution from the variability of
tensor estimates that could be controlled by using more diffusion weighted images and a SNR
and parameter dependent bias due to model misspecification.

We then analyzed unprocessed and preprocessed data from the Human Connectome Project.
We showed that the scale parameter o can be reproducibly (over all diffusion weighted images)
estimated by LANE. For the unprocessed data we observed, especially for the larger b-values,
that a high percentage of voxel exhibits low SNR. The problem is hidden when analyzing the pre-
processed data. We also showed that FA estimates by quasi-likelihood and nonlinear regression
show substantial tissue dependent differences.

The methodology can be easily generalized to other diffusion models [Assemlal et al., 2011] or
other MR acquisition protocols like MPM [Weiskopf et al., 2013].

While the bias observed in non-linear regression may be ignored in the interpretation of results
for a single MR data set it severely limits interpretation in repeated time, multi-subject, and
multi-side studies where scanner properties can be expected to vary.
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