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ABSTRACT. We analyze a model of relay-augmented cellular wireless networks. The network users, who move
according to a general mobility model based on a Poisson point process of continuous trajectories in a bounded
domain, try to communicate with a base station located at the origin. Messages can be sent either directly or
indirectly by relaying over a second user. We show that in a scenario of an increasing number of users, the
probability that an atypically high number of users experiences bad quality of service over a certain amount of
time, decays at an exponential speed. This speed is characterized via a constrained entropy minimization problem.
Further, we provide simulation results indicating that solutions of this problem are potentially non-unique due to
symmetry breaking. Also two general sources for bad quality of service can be detected, which we refer to as
isolation and screening.

1. MODEL DEFINITION AND MAIN RESULTS

In classical cellular networks users communicate directly with a base station over a wireless channel. This net-
work paradigm has been the foundation of modern cellular telecommunication and, so far, electrical engineers
have managed to adapt this model to new technological developments. However, as the growing number of
user devices makes it increasingly difficult to provide adequate quality of service (QoS) to all users within a
certain cell, LTE-A is the first standard to allow for augmenting the classical cellular set-up by the concept of
relays [1]. That is, instead of communicating directly with a possibly distant base station, user devices can now
connect to the base station indirectly by routing via a nearby relay. Hence, using relays allows for extension of
the coverage area of the base station and for offloading traffic from direct connections.

In this paper, we investigate a probabilistic model for the effect of relaying in a single cell in the asymptotic
setting of a large number of mobile users. Note that this is different from the thermodynamic limit considered
in [11] where both, the number of users and the size of the domain, tend to infinity. For related work in various
non-asymptotic settings, we refer the reader to [9, 18, 12, 19]. We assume the existence of a single base
station located at the origin. The mobile users in the associated cell are given by a Poisson point process Xλ

of trajectories with intensity function λµ̄(·), where λ > 0. We assume that the distribution of the initial points
of trajectories is absolutely continuous with respect to the Lebesgue measure. Moreover, µ̄ is assumed to be a
finite Borel measure on the set of Lipschitz-continuous trajectories L = LJ1(I,W ), with Lipschitz parameter
J1, from the time interval I = [0, T ) to a window W . Here L is equipped with the supremum norm and W
is of the form W = [−r, r]d for some integer r ≥ 1. For instance these conditions would be satisfied for a
random-waypoint model with bounded velocities, as described in [11].

For the network model, we follow the classical approach based on the signal-to-interference ratio (SIR) [3]. To
be more precise, we let ` : [0,∞) → (0,∞) denote the path-loss function, which is a Lipschitz-continuous
function, with parameter J2, that describes the decay of the signal strength over distance, hence it can be quite
general as long as there is no singularity. Additionally, the ability of a receiver to decode a message is reduced
by interference coming from other users. In the literature, it is often assumed that interference caused by relays
can be neglected [17, 20] since it is small when compared to the interference generated by actively transmitting
users. In contrast, in this paper we consider a scenario where extensive relaying may occur and therefore we
also take the relay-induced interference into account. Hence, our approach is related to the scenario considered
in [8]. Moreover, let us mention, that in our model we do not consider any form of medium access control, which
would attempt to reduce interference by coordinating the periods of active user transmissions. In other words,
in our model, the interference is generated by all users.

To be more precise, at time t ∈ I consider a fixed location η ∈W . Then the interference at η is given by

I(η,Xλ
t ) =

∑
Xi∈Xλ

`(|Xi,t − η|)

where Xi,t denotes the i-th trajectory in Xλ at time t. Introducing the empirical measures

Lλ =
1

λ

∑
Xi∈Xλ

δXi and Lλ,t =
1

λ

∑
Xi∈Xλ

δXi,t
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respectively as a random element inM(L), the space of finite Borel measures on L, and inM(W ), space
of finite Borel measures on W . We note that the interference I(η,Xλ) can be conveniently expressed as

I(η,Xλ
t ) = λLλ,t(`(| · −η|)).

Now, at time t ∈ I we define the SIR of a transmitter at ξ ∈W and measured, at the same time, at a receiver
η ∈W as

SIRλ(ξ, η, Lλ,t) =
`(|ξ − η|)

λLλ,t(`(| · −η|))
.

Note that the denominator consists of the superposition of signal strengths coming from all network users, even
if the transmission originates at some user x = Xi ∈ Xλ. This does not comply with the standard convention
of omitting the signal of interest from the interference in the denominator. However, as we work in the limit where
λ tends to infinity, contributions from a finite number of users can be removed or added without influencing the
final result. For the same reason, our model does not include noise.

By Shannon’s formula [4, Section 16], minimum data transmission rate requirements are equivalent to lower
bounds on the SIR. That is, a connection between ξ, η ∈W is useful only if

SIRλ(ξ, η, Lλ,t) =
`(|ξ − η|)

λLλ,t(`(| · −η|))
≥ ρ.

In particular, if ρ is of the form ρ = λ−1ρ′, then this requirement can be re-expressed as SIR(ξ, η, Lλ,t) ≥ ρ′,
where SIR(ξ, η, Lλ,t) = λSIRλ(ξ, η, Lλ,t).

This mathematical setting can model different types of telecommunication systems. First, it can be interpreted
in the setting of machine-to-machine networks, where the number of devices is large but the amount of data
in each transmission is small [18]. Hence, a comparatively small SIR threshold can be sufficient to transmit
messages successfully. Second, our model can also be considered within a spread-spectrum setting with inter-
ference cancellation factor λ−1. Hence, the limit λ tending to infinity describes a scenario approaching perfect
interference cancellation. We refer the reader to [12, 21, 22, 5] for further investigations of scenarios with sub-
stantial interference cancellation.

In the following, we conduct level-2 large-deviation analysis of certain frustration events. In particular, we will
see that the most likely option for a rare event to occur can be described by a certain finite Borel measure ν ∈
M(W ) that describes the asymptotic configuration of users under conditioning on the rare event. Therefore,
we extend the definition of SIR to arbitrary finite, positive Borel measures ν ∈M(W ) and also write

SIR(ξ, η, ν) =
`(|ξ − η|)
ν(`(| · −η|))

for any ξ, η ∈W .

In order to keep the model flexible, we assume that the QoS of the direct link between ξ and η is given by

D(ξ, η, Lλ,t) = g(SIR(ξ, η, Lλ,t)),

where g : [0,∞)→ [0,∞) is a Lipschitz-continuous function which is strictly increasing on [0, ρ+) and con-
stant equal to c+ on [ρ+,∞) for some ρ+, c+ > 0. In particular, a quick calculation shows thatD(ξ, η, Lλ,t) =

c+ if Lλ,t(W ) ≤ βo = min{1, ρ−1
+ `min`

−1
max}, where we put `min = minξ,η∈W `(|ξ − η|) and `max =

maxξ,η∈W `(|ξ − η|). As for the SIR we define D for general ν ∈M(W ) by D(ξ, η, ν) = g(SIR(ξ, η, ν)).
Moreover, we set D(ξ, η, ν) = c+ if ν(W ) = 0. For instance, possible choices of g include g(r) =
min{r,K} or, motivated by Shannon’s capacity formula, g(r) = min{log(1+r),K} for some fixedK > 0.

If, a message is sent out from a user ξ to a user η by routing via a relay at ζ , then the quality of the relayed
message transmission depends on both, the SIR from ξ to ζ as well as on the SIR from ζ to η. We will assume
that message transmissions are successful if the SIR of both links are above a certain threshold. In other words,
we assume that the connection quality experienced when relaying from x via z to y can be expressed as

Γ(ξ, ζ, η, Lλ,t) = min{D(ξ, ζ, Lλ,t), D(ζ, η, Lλ,t)}.
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On the technical level of relays, this definition means that we consider full-duplex relaying. That is messages
are sent and received over the same frequency channel. Although half-duplex relays are often used today,
advances in techniques for canceling self-interference indicate that full-duplex relays will become an important
component in fifth-generation networks [23].

In Figure 1 we give a snap-shot illustration of this communication model using relays at time zero.

FIGURE 1. Realization of the network model. Points connected to the origin via blue solid
lines represent users with direct connection to the base station. Black dashed lines indicate
possible connections of users that cannot directly communicate with the base station but can
communicate with users with direct connection to the base station.

In the following we introduce several characteristics that describe the QoS in a relay setting.

1.1. Uplink and downlink quality of service. In the uplink scenario, the destination of messages sent out
from Xi ∈ Xλ by routing via a relay Xj ∈ Xλ is the origin o. Under an optimum relay decision, the QoS for
the relayed uplink communication can be expressed as

R(Xi,t, o, Lλ,t) = max{D(Xi,t, o, Lλ,t), max
Xj∈Xλ

Γ(Xi,t, Xj,t, o, Lλ,t)} (1)

In other words in (1), the user Xi has the possibility to try to connect to the base station also directly. However,
if there is any other userXj such that relaying viaXj offers a better connection, then relaying leads to a higher
QoS. A similar criterion has also been suggested in the engineering literature, see [6, 7, 20].

Similarly, if a message is sent out from the origin o to a user Xi ∈ Xλ, at time t, by routing via a relay
Xj ∈ Xλ, then the quality of the relayed message transmission depends on both SIR(o,Xj,t, Lλ,t) and
SIR(Xj,t, Xi,t, Lλ,t) via Γ(o,Xj,t, Xi,t, Lλ,t). Assuming an optimum relay decision, the QoS for the relayed
downlink communication can then be expressed as

R(o,Xi,t, Lλ,t) = max{D(o,Xi,t, Lλ,t), max
Xj,t∈Xλ

t

Γ(o,Xj,t, Xi,t, Lλ,t)}. (2)
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We can further extend the definition of R to arbitrary finite Borel measures ν ∈M(W ) and write

R(ξ, η, ν) = max{D(ξ, η, ν), ν- ess sup
ζ∈W

Γ(ξ, ζ, η, ν)}

for any given ξ, η ∈ W . Here ν- ess sup denotes the essential supremum w.r.t. ν. Let πt : L → W, x 7→ xt
denote the projection at time t ∈ I , then for the trajectory of QoS, i.e. for ν̄ ∈M(L) and x, y ∈ L we define

R̄(x, y, ν̄) = (R(xt, yt, ν̄t))t∈I

and similarly SIR and D̄ where ν̄t = ν ◦ π−1
t . Note that R̄,SIR and D̄ are elements of the space of bounded

measurable functions B = B(I, [0,∞)) equipped with the supremum norm and the associated Borel sigma
field. We will show in Lemmas 3.4 and 3.5 that the path t 7→ R(xt, o, ν̄t) is continuous and also the map
x 7→ R̄(x, o, ν̄) is continuous.

1.2. Statement of results. The point processes of users that are frustrated due to failing to attain certain
types of QoS is the principal object of investigation of this paper. For the uplink, the rescaled random measure
associated with this point process is defined as

Lup
λ [τ ] =

1

λ

∑
Xj∈Xλ

δXjτ(R̄(Xj , o, Lλ))

where τ : B → [0,∞) is a bounded and measurable function. In particular Lup
λ [τ ] ∈M(L). More generally,

if ν̄ ∈M(L) then ν̄up[τ ] is defined as a measure inM(L) via

dν̄up[τ ]

dν̄
(x) = τ(R̄(x, o, ν̄)).

Note that ν̄upt [τ ] does not suffice to describe traffic overflow arising from a large number of users communicating
via a small number of relays. In practice, users communicating via the same relay have to share its bandwidth.
Consequently, even if a user has good QoS but no direct connection to the base station, communication at full
bandwidth cannot be guaranteed. In other words, the system can have many connected users but still suffer
from small throughput. In that sense, also the random measure of users that have bad QoS, with respect to
direct communication with the base station

Lup−dir
λ [τ ] =

1

λ

∑
Xj∈Xλ

δXjτ(D̄(Xj , o, Lλ))

is an important quantity. Again for ν̄ ∈M(L), ν̄up−dir[τ ] is defined via

dν̄up−dir[τ ]

dν̄
(x) = τ(D̄(x, o, ν̄)).

For the downlink we define
dν̄do[τ ]

dν̄
(x) = τ(R̄(o, x, ν̄)).

and analogously for ν̄do−dir[τ ]. Since our main theorem will be about large deviations of all the four above
quantities, let us introduce the following short hand notation

Lλ[τ ] =
(
Lup
λ [τ1], Lup−dir

λ [τ2], Ldo
λ [τ3], Ldo−dir

λ [τ4]
)

and, more generally,

ν̄[τ ] =
(
ν̄up[τ1], ν̄up−dir[τ2], ν̄do[τ3], ν̄do−dir[τ4]

)
(3)

where τ = (τi)i∈{1,...,4}.

LetK = K(I,W ) denote the space of measurable trajectories with values inW , equipped with the supremum
norm. We are interested in random variables F (Lλ[τ ]) where F : M(K)4 → [−∞,∞) and τi : B →
[0,∞), i ∈ {1, . . . , 4}, exhibit some appropriate monotonicity properties. More precisely, τi is assumed to be
a decreasing in the sense that for all γ, γ′ ∈ B with γt ≤ γ′t for all t ∈ I we have τ(γ) ≥ τ(γ′). Moreover,
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F is assumed to be increasing in the sense that for all ν̄, ν̄ ′ ∈ M(K) with ν̄ ≤ ν̄ ′ we have F (ν̄) ≤ F (ν̄ ′).
Here we write ν̄ ≤ ν̄ ′ if ν̄(A) ≤ ν̄ ′(A) for all measurable A ⊂ K. We also put ν̄ < ν̄ ′ if ν̄ ≤ ν̄ ′ and ν̄ 6= ν̄ ′.

For example, consider the measurable functions Fb :M(K)4 → [−∞,∞),

(ν̄i)i∈{1,...,4} 7→

{
0 if ν̄i(K) > bi for all i ∈ {1, . . . , 4}
−∞ otherwise

(4)

for some b ∈ R4 and τa,c : B → [0,∞),

γ 7→

{
1 if

∫ T
0 1{γt < c}dt > a,

0 otherwise.
(5)

Note that τa,c is measurable. In particular, for τa,c = (τai,ci)i∈{1,...,4},

E exp(Fb(Lλ[τa,c])) = P(Lλ[τa,c](L) > b),

where we put a < b for vectors a = (a1, . . . , a4), b = (b1, . . . , b4) ∈ R4 if ai < bi for all i ∈ {1, . . . , 4}.
This describes the probability that more than λbi users experience a quality of connection of at most ci for a
period of time of more than ai for all i ∈ {1, . . . , 4}.

In the following, it will be convenient to consider functions F : M(K)4 → [−∞,∞) that are compatible with
suitable discretizations ofK. To be more precise, we work with triadic discretizations of W and I and therefore
introduce the sets B = {3−m : m ≥ 1}. A triadic discretization is chosen to ensure that spatially, the origin
is at the center of a sub-cube and that W is a union of sub-cubes of the form Λδ(ζ) = ζ + [−δr, δr]d with
ζ ∈ δ2rZd. The space and time discretizations are given by

Wδ = δ2rZd ∩W and Iδ = δT (Z + 1
2) ∩ I.

Now consider two operations relating the discretized path space Πδ = W Iδ
δ of functions mapping from Iδ to

Wδ to the continuous space K. Note thatM(Πδ) can be identified with [0,∞)Πδ . We discretize x ∈ K by
evaluating x at discrete times in Iδ and spatially moving x to the centers of sub-cubes, i.e. let us denote the
discretized path %(x) ∈ Πδ by

% : K → Πδ x 7→ (%(xt))t∈Iδ
where %(xt) denotes the shift of xt ∈W to its nearest sub-cube center in Wδ . For ν̄ ∈M(K), the mappings
% also induces an image measure, which we will denote by

ν̄% = ν̄ ◦ %−1 ∈M(Πδ). (6)

Second, we can embed a discretized path z ∈ Πδ as a step function into K. That is,

ı : Πδ → K u 7→
(∑δ−1T−1

i=0
1[iδT,(i+1)δT )(t)u2i+1

2 δT

)
t∈Iδ

. (7)

Again, for ν̄ ∈M(Πδ), the mapping ı induces an image measure, which we will denote by

ν̄ı = ν̄ ◦ ı−1 ∈M(K).

For δ ∈ B we say that a function F : M(K)4 → [−∞,∞) is δ-discretized if F ((ν̄%)ı) = F (ν̄) holds for all
ν̄ ∈M(K)4. For instance, the functions F (ν̄) as defined in (4) are δ-discretized for every δ ∈ B.

Our main result is a large deviation analysis of the quantities F (Lλ[τ ]). Since this result is a level-2 large
deviation result, the relative entropy plays an important rôle. For ν̄, ν̄ ′ ∈ M(L) the relative entropy is defined
by

h(ν̄|ν̄ ′) =

∫
f(x) log f(x)µ̄(dx)− ν̄(L) + ν̄ ′(L)

if the density dν̄/dν̄ ′ = f exists and h(ν̄|ν̄ ′) = ∞ otherwise. Let us write u.s.c. for upper semicontinuous
and l.s.c. for lower semicontinuous.
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Theorem 1.1. Let τi : B → [0,∞), for i ∈ {1, . . . , 4}, be bounded, measurable and decreasing functions
that map trajectories γ to zero if γt ≥ c+ for all t ∈ I . Further, let F : M(K)4 → [−∞,∞) be an increasing
function that is δ-discretized for some δ ∈ B, bounded from above, and maps the vector of zero measures to
−∞. If the τi ◦ ı are u.s.c. as functions on [0,∞)Iδ and ν̄ 7→ F (ν̄ı) is u.s.c. as a function onM(Πδ)

4, then

lim sup
λ→∞

1

λ
logE exp(F (Lλ[τ ])) ≤ − inf

ν̄∈M(L)

{
h(ν̄|µ̄)− F (ν̄[τ ])

}
,

whereas if the τi ◦ ı are l.s.c. as functions on [0,∞)Iδ and ν̄ 7→ F (ν̄ı) is l.s.c. as a function onM(Πδ)
4, then

lim inf
λ→∞

1

λ
logE exp(F (Lλ[τ ])) ≥ − inf

ν̄∈M(L)

{
h(ν̄|µ̄)− F (ν̄[τ ])

}
.

Let us note that the semicontinuity properties of ν̄ 7→ F (ν̄ı) and τi ◦ ı can be checked on finite-dimensional
spaces due to our discretization assumption. This is much simpler than considering F and τi on their infinite-
dimensional domains.

As a special case of Theorem 1.1 we obtain the rate of decay for the frustration probabilities P(Lλ[τa,c](L) >
b) where τa,c is defined as in (5). Furthermore, we put [0,T) = [0, T )4 and [0, c+) = [0, c+)4.

Corollary 1.2. Let a ∈ [0,T), b ∈ R4 and c ∈ [0, c+). Then,

lim
λ→∞

1

λ
logP(Lλ[τa,c](L) > b) = − inf

ν̄: ν̄[τa,c](L)>b
h(ν̄|µ̄).

Finally, we provide a formalization of the observation that the probability of unlikely frustration events decays at
an exponential speed.

Corollary 1.3. Let a ∈ [0,T), b ∈ R4, c ∈ [0, c+) and assume that ((1 + ε)µ̄)[τa,c](L) ≤ b for some
ε > 0. Then,

lim sup
λ→∞

1

λ
logP(Lλ[τa,c](L) > b) < 0.

The remainder of the paper is organized as follows. First, Section 2 provides an outline of the proof of The-
orem 1.1 by stating two important auxiliary results, Propositions 2.1 and 2.2. They are proved in Section 4.
One important ingredient in the proof of Theorem 1.1 is a sprinkling argument that is established in Section 3.
Section 5 concludes the proof of Theorem 1.1, whereas Corollaries 1.2 and 1.3 are established in Section 6.
Finally, Section 7 provides selected simulation results.

2. OUTLINE OF THE PROOF OF THEOREM 1.1

The mathematical analysis of relay-based communications is substantially less technical if we discretize the
possible user locations. To be more precise, users are no longer distributed according to µ̄ but according to µ̄%

as defined in (6). In other words, we subdivide the path space into cylinder sets and assume that at times Iδ all
users are located at the sites in Wδ . By the assumptions on µ̄ we have that

κδ = max
u∈Πδ

µ̄%(u)

tends to zero as δ tends to zero.

Let us introduce the analogue of ν̄[τ ], as given in (3), in the discretized setting. For a general ν̄ ∈ M(Πδ)
and a general bounded τ : [0,∞)Iδ → [0,∞), ν̄up[τ ] is given as a measure inM(Πδ) via

dν̄up[τ ]

dν̄
(u) = τ((R(ut, o, ν̄t))t∈Iδ)

and similarly for ν̄up−dir[τ ], ν̄do[τ ] and ν̄do−dir[τ ]. Finally we put,

ν̄[τ ] =
(
ν̄up[τ1], ν̄up−dir[τ2], ν̄do[τ3], ν̄do−dir[τ4]

)
where τ = (τi)i∈{1,...,4}.

6



The following proposition establishes dominance relationships between τ -frustrated users with respect to ν̄ and
ν̄% for small values of the discretization parameter δ.

Proposition 2.1. Let ε > 0, then there exists δ′ = δ′(ε) ∈ B such that for all δ ∈ B ∩ (0, δ′), ν̄ ∈ M(L),
and τi : B → [0,∞) bounded and decreasing for all i ∈ {1, . . . , 4},

[(1− ε)ν̄%][τ ◦ ı] ≤ (ν̄[τ ])% ≤ [(1 + ε)ν̄%][τ ◦ ı].

Working in the discrete setting simplifies the situation substantially. Instead of Poisson point processes on L,
we can consider independent Poisson random variables attached to every element of the path grid Πδ . In
particular, the relative entropy for the discretized setting is given by

h(ν̄|µ̄%) =
∑
u∈Πδ

h
(
ν̄(u)|µ̄%(u)

)
.

where for a ≥ 0 and b > 0 we write h(a|b) = a log a
b − a+ b.

Proposition 2.2. Let 0 < α < 2 and τi : [0,∞)Iδ → [0,∞), for i ∈ {1, . . . , 4}, be bounded, measurable
and decreasing functions which map trajectories γ to zero if γt ≥ c+ for all t ∈ Iδ . Further, letF :M(Πδ)

4 →
[−∞,∞) be any increasing measurable function that is bounded from above. Furthermore, assume that F
maps the vector of zero measures to −∞. If F and τi are u.s.c., then

lim sup
λ→∞

1

λ
logE exp(F ((αL%λ)[τ ])) ≤ − inf

ν̄∈M(Πδ)

{
h(ν̄|µ̄%)− F ((αν̄)[τ ])

}
whereas if F and τi are l.s.c., then

lim inf
λ→∞

1

λ
logE exp(F ((αL%λ)[τ ])) ≥ − inf

ν̄∈M(Πδ)

{
h(ν̄|µ̄%)− F ((αν̄)[τ ])

}
.

The difficulty of the proof of Proposition 2.2 lies in the discontinuity of the function ν 7→ ν[τ ]. Indeed, if the
number of users on a certain site tends to zero, then in the limit other users cannot relay via this site. This might
lead to a sudden drop in the QoS and therefore to a sudden increase of frustrated users. Hence, we have to
deal with the continuity problems arising from configurations that exhibit sites with a small but positive number
of users. A standard approach to deal with such pathological events would be to use the method of exponential
approximations [10, Section 4.2.2]. However, on an exponential scale, having a small but positive number of
users on a certain site is not substantially less probable then having no users on this site. Therefore, exponential
approximation does not seem to be an appropriate tool. We will use instead the sprinkling technique from [2].
That is, by increasing the Poisson intensity slightly, we add a small number of additional users in a way that
after the sprinkling every occupied site contains a number of users that is of the same order as the Poisson
intensity. We show that the assumption of observing a sprinkling of the desired kind comes at negligible cost on
the exponential scale and that on the resulting configurations the map ν 7→ ν[τ ] exhibits the desired continuity
properties.

3. PRELIMINARIES

Before we come to the proof of Proposition 2.1 and Proposition 2.2, we establish some preliminary results.

3.1. Monotonicity and continuity properties of QoS trajectories. In the first lemma, we show certain mono-
tonicity properties of D(ξ, η, ν) and R(ξ, η, ν) with respect to the measure ν ∈ M(Wδ) for the sites of Wδ

that have measure zero under ν. In the following, we write Xλ
δ = λL%λ and V (ν) = {ζ ∈Wδ : ν(ζ) = 0}.

Lemma 3.1. Let δ ∈ B and ξ, η ∈Wδ be arbitrary.

(i) If ν, ν ′ ∈M(Wδ) are such that ν ≤ ν ′, then D(ξ, η, ν ′) ≤ D(ξ, η, ν).
(ii) If ν, ν ′ ∈M(Wδ) are such that ν < ν ′ and D(ξ, η, ν ′) < c+, then D(ξ, η, ν ′) < D(ξ, η, ν).
(iii) If ν, ν ′ ∈M(Wδ) are such that ν ≤ ν ′ and V (ν) = V (ν ′), then R(ξ, η, ν ′) ≤ R(ξ, η, ν).
(iv) If ν, ν ′ ∈ M(Wδ) are such that ν < ν ′, V (ν) = V (ν ′) and R(ξ, η, ν ′) < c+, then R(ξ, η, ν ′) <

R(ξ, η, ν).
7



(v) If λ′ ≥ λ > 0 and σ ∈ (0, 1) are such that
Xλ′
δ (Πδ)

Xλ
δ (Πδ)

≤ 1 + `min(1−σ)
`maxσ

, then, almost surely,

D(ξ, η, L%λ,t) ≤ D(ξ, η, σL%λ′,t) for every t ∈ Iδ .

Proof. First, we note that
SIR(ξ, η, ν ′)

SIR(ξ, η, ν)
=
ν(`(| · −η|))
ν ′(`(| · −η|))

,

so that the monotonicity properties of g imply the first two claims. Clearly, this monotonicity also extends to
expressions of the form Γ(ξ, η, ζ, ν) with ξ, η, ζ ∈ Wδ . Moreover, under the additional condition V (ν) =
V (ν ′) the measures ν and ν ′ have the same zero-sets, which gives claims (iii) and (iv).

Finally, the last of the asserted inequalities is equivalent to

L%λ′,t(`(| · −η|))− L
%
λ,t(`(| · −η|))

L%λ,t(`(| · −η|))
≤ 1− σ

σ
.

This time, we obtain that

L%λ′,t(`(| · −η|))− L
%
λ,t(`(| · −η|))

L%λ,t(`(| · −η|))
=

λ
λ′X

λ′
δ,t(`(| · −η|))−Xλ

δ,t(`(| · −η|))
Xλ
δ,t(`(| · −η|))

≤ `max

`min

Xλ′
δ,t(Wδ)−Xλ

δ,t(Wδ)

Xλ
δ,t(Wδ)

,

as required. �

In the next lemma, we relate essential suprema w.r.t. path measures and their time projections. We will write
Ac to indicate the complement of a set A.

Lemma 3.2. Let ν̄ ∈M(L), x ∈ L and t ∈ I , then

ν̄t- ess sup
η∈W

Γ(xt, η, o, ν̄t) = ν̄- ess sup
y∈L

Γ(xt, yt, o, ν̄t).

Proof. We first show ≥. Let Nt be such that ν̄t(Nt) = 0 and define N = {γ ∈ L : γt ∈ Nt}. In particular
ν̄(N) = 0 and it suffices to show that

sup
η∈(Nt)c

Γ(xt, η, o, ν̄t) ≥ sup
y∈Nc

Γ(xt, yt, o, ν̄t).

But this is trivially true. For the converse, ≤, let N be such that ν̄(N) = 0. We define Nt = (πt(N
c))c and

note that π−1
t (Nt) ⊂ N . Indeed, suppose that γ ∈ N c, then γt ∈ πt(N c) and thus γt /∈ Nt which implies

that γ /∈ π−1
t (Nt). Since πt is continuous, by [13, Theorem 13.2.6], Nt is a universally measurable set and

there exist Borel measurable sets A,B ⊂ W such that A ⊂ Nt ⊂ B and ν̄(π−1
t (A)) = ν̄(π−1

t (B)). This
implies, that ν̄t(B) = ν̄t(A) ≤ ν̄(N) = 0. From this it follows that Nt is a ν̄t nullset. Hence, it suffices to
show that

sup
η∈Bc

Γ(xt, η, o, ν̄t) ≤ sup
y∈Nc

Γ(xt, yt, o, ν̄t).

But this is also true since by construction, for every η ∈ Bc ⊂ (Nt)
c = πt(N

c) there exists a y ∈ N c such
that η = yt. �

Remark 3.3. Lemma 3.2 remains true if the uplink Γ is replaced by the downlink Γ.

Next, we transfer regularities of paths supported by ν̄ ∈M(L) to the QoS trajectories D̄ and R̄.

Lemma 3.4. Let ν̄ ∈M(L), then for any x ∈ L we have that

(i) t 7→ D(xt, yt, ν̄t) is Lipschitz continuous for all y ∈ L and
(ii) t 7→ R(xt, o, ν̄t), t 7→ R(o, xt, ν̄t) are Lipschitz continuous.
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Proof. First note that if ν̄(L) = 0, then by the definition of g, D̄ and R̄ are constant and hence Lipschitz
continuous. Let ν̄(L) > 0. Next we show that t 7→ SIR(xt, yt, ν̄t) is Lipschitz continuous. Indeed, since x, y
and ` are assumed to be Lipschitz continuous, comparing the numerator in SIR gives

|`(|xs − ys|)− `(|xt − yt|)| ≤ J2(|xs − xt|+ |ys − yt|) ≤ 2J2J1|s− t|

which tends to zero as s tends to t. For the denominator, using the above, we have

|ν̄s(`(| · −ys|))− ν̄t(`(| · −yt|))| = |ν̄(`(|πs(·)− ys|))− ν̄(`(|πt(·)− yt|))| ≤ 2J2J1ν̄(L)|s− t|.

Using this we can conclude

|SIR(xs, ys, ν̄s)− SIR(xt, yt, ν̄t)| ≤ (
`max

`min
+ 1)

2J2J1

ν̄(L)`min
|s− t|

where the Lipschitz constant depends on ν̄ but not on x and y. Now, since g is assumed to be Lipschitz
continuous, (i) follows from the definition of D̄. For R̄(x, o, ν̄) in (ii) we note that taking maxima is Lipschitz
continuous. Hence, it suffices to show that t 7→ ν̄t- ess supη∈W Γ(xt, η, o, ν̄t) is Lipschitz. Let ε > 0 be
arbitrary. We can use Lemma 3.2 to lift the essential suprema to the path level and estimate

ν̄- ess sup
y∈L

Γ(xt, yt, o, ν̄t)− ν̄- ess sup
y∈L

Γ(xs, ys, o, ν̄s) ≤ Γ(xt, yt, o, ν̄t)− Γ(xs, ys, o, ν̄s) + 2ε (8)

for some y = y(xt) ∈ N c where N = N(xs) is a ν̄-nullset. Since Γ is given as a maximum of Lipschitz
continuous functions, with parameter independent of x and y, in the r.h.s. of (8) we can further estimate

Γ(xt, yt, o, ν̄t)− Γ(xs, ys, o, ν̄s) ≤ α|s− t|

for some constant α > 0. Sending ε to zero and using the symmetry in s and t, this gives the Lipschitz
continuity. For R̄(o, x, ν̄) the proof is analogous. �

Note that by the above lemma, for x, y ∈ L and ν̄ ∈ M(L), D̄(x, y, ν̄), R̄(x, o, ν̄) and R̄(o, x, ν̄) are
elements of B. The following lemma establishes continuity and in particular Borel measurability for the QoS
quantities as functions of Lipschitz paths. Let us write ‖ · ‖ for the supremum norm.

Lemma 3.5. Let y ∈ L and ν̄ ∈M(L). Then, as mappings from L to B

(i) x 7→ D̄(x, y, ν̄) is Lipschitz continuous and
(ii) x 7→ R̄(x, o, ν̄) and x 7→ R̄(o, x, ν̄) are Lipschitz continuous.

Proof. As above, note that if ν̄(L) = 0, then by the definition of g, D̄ and R̄ are constant and hence continuous.
Let ν̄(L) > 0. Next we show that x 7→ SIR(x, y, ν̄) is continuous. Indeed, for any x, x′ ∈ L, we have

‖SIR(x, y, ν̄)− SIR(x′, y, ν̄)‖ ≤ 1

`minν̄(L)
sup
t∈I
|`(|xt − yt|)− `(|x′t − yt|)| ≤

J2

`minν̄(L)
‖x− x′‖

where the Lipschitz parameter is independent of y. Now, since g is assumed to be Lipschitz continuous,
part (i) follows from the definition of D̄. For R̄(x, o, ν̄) in part (ii) it suffices to show that the function x 7→
(ν̄t- ess supη∈W Γ(xt, η, o, ν̄t))t∈I is Lipschitz continuous. Let ε > 0 be arbitrary, t ∈ I and x, x′ ∈ L then
we have

ν̄t- ess sup
η∈W

Γ(xt, η, o, ν̄t)− ν̄t- ess sup
η∈W

Γ(x′t, η, o, ν̄t) ≤ Γ(xt, η, o, ν̄t)− Γ(x′t, η, o, ν̄t) + 2ε (9)

for some η = η(xt) ∈ N c where N = N(x′t) is a ν̄t-nullset. Since Γ is given as a maximum of Lipschitz
continuous functions, with parameter independent of η, in the r.h.s. of (9) we can further estimate

Γ(xt, η, o, ν̄t)− Γ(x′t, η, o, ν̄t) ≤ α|xt − x′t|

for some constant α > 0. Sending ε to zero, using the symmetry in x and x′ and taking suprema over t, gives
the Lipschitz continuity. For R̄(o, x, ν̄) the proof is analogous. �
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The following results are for the discretized setting. Note, that in case of relayed communication, the QoS
of a given user is very sensitive to the distribution of the surrounding users. This is due to the fact, that the
disappearance of possible relays might lead to a sudden decrease in QoS. This is captured by the fact, that the
function ν̄ 7→ R̄(x, o, ν̄) is only l.s.c.

Lemma 3.6. For all u, v ∈ Πδ , the maps ν̄ 7→ D̄(u, v, ν̄), ν̄ 7→ R̄(u, o, ν̄) and ν̄ 7→ R̄(o, u, ν̄) from
M(Πδ)→ [0,∞)Iδ are continuous, l.s.c. and l.s.c. respectively.

Proof. It suffices to show that the maps ν 7→ D(ξ, η, ν), ν 7→ R(ξ, o, ν) and ν 7→ R(o, ξ, ν), as maps from
M(Wδ) to [0,∞), are continuous, l.s.c. and l.s.c., for all ξ ∈ W . Let νn be a sequence inM(Wδ) which
tends to ν∗. First note that if ν∗(Wδ) = 0, then there exists m ∈ N such that νn(Wδ) ≤ βo for all n ≥ m,
which implies that R(o, ξ, νn) = R(o, ξ, ν∗) = R(ξ, o, νn) = R(ξ, o, ν∗) = D(ξ, o, νn) = D(ξ, o, ν∗) =
c+ for all n ≥ m. Second, assume that ν∗(η) > 0 for some η ∈Wδ , then the continuity of ν 7→ SIR(ξ, η, ν)
at ν∗ implies the continuity of D and Γ at ν∗. This is the first part of the statement. Moreover, since we work in
the discrete setting, the essential supremum in the definition ofR(ξ, o, ν) andR(o, ξ, ν) can always be written
as a maximum and, for the uplink, it suffices to prove that ν 7→ maxη∈W 1{ν(η) > 0}Γ(ξ, η, o, ν) is l.s.c.
Furthermore, sinceM(Wδ) is finite dimensional, there exists m ∈ N such that νn(η) > 0 for all n ≥ m and
all η with ν∗(η) > 0. For such n we have

max
η∈W

1{νn(η) > 0}Γ(ξ, η, o, νn) ≥ max
η∈W

1{ν∗(η) > 0}Γ(ξ, η, o, νn)

where the r.h.s. tends to maxη∈W 1{ν∗(η) > 0}Γ(ξ, η, o, ν∗) by continuity. But this is lower semicontinuity.
For the relayed downlink, analogue arguments apply. �

Let us call a function f : [0,∞)m → [−∞,∞) decreasing, if f is decreasing w.r.t. the partial order on
[0,∞)m given by x ≤ y if and only if xi ≤ yi for all 1 ≤ i ≤ m. f is called increasing if −f is decreasing.
Further we call a function g : [0,∞)n → Rm u.s.c if g is u.s.c. as a mapping in every coordinate 1 ≤ i ≤ m
in the image space. g is called l.s.c. if −g is u.s.c. We will need the following general auxiliary result on the
composition of semicontinuous functions.

Lemma 3.7. Let f : [0,∞)m → [−∞,∞) and g : [0,∞)n → [0,∞)m, where g maps bounded sets to
bounded sets and n,m ∈ N.

(i) If g is l.s.c. and f is decreasing and u.s.c., then f ◦ g is u.s.c.
(ii) If g is u.s.c. and f is decreasing and l.s.c., then f ◦ g is l.s.c.
(iii) If g is u.s.c. and f is increasing and u.s.c., then f ◦ g is u.s.c.
(iv) If g is l.s.c. and f is increasing and l.s.c., then f ◦ g is l.s.c.

Proof. We only prove the first claim, since the others can be shown using similar arguments. Assume that
νk ∈ [0,∞)n are such that limk→∞ νk = ν∗ for some ν∗ ∈ [0,∞)n. Then, we have to show that
lim supk→∞ f(g(νk)) ≤ f(g(ν∗)). After passing to a subsequence, we may replace the lim sup on the
l.h.s. by a lim. Since g maps bounded sets to bounded sets, we may pass to a further subsequence and
assume that g(νk) converges to some ν ′ ∈ [0,∞)m. Since g is l.s.c. ν ′i = limk→∞ gi(νk) ≥ gi(ν∗)
for all 1 ≤ i ≤ m and thus, since f is decreasing, we have f(ν ′) ≤ f(g(ν∗)). Hence, using the upper
semicontinuity of f , we arrive at

lim
k→∞

f(g(νk)) ≤ f(ν ′) ≤ f(g(ν∗)).

as required. �

Remark 3.8. By part (i) of the above lemma we have, under the assumptions that τ is u.s.c. and decreasing,
the map ν̄ 7→ τ(R̄(u, o, ν̄)) is u.s.c., where we also use Lemma 3.6. Moreover, by part (iii) of the above lemma
can be used also to show that the map ν̄ 7→ F (ν̄[τ ]) appearing in Proposition 2.2 is u.s.c. for any increasing
and u.s.c. function F .
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3.2. Sprinkling construction. As mentioned in the paragraph after Proposition 2.2, the main difficulty in ana-
lyzing the empirical measures L%λ[τ ] comes from the discontinuity of the indicators 1{L%λ(u) > 0}, u ∈ Πδ .
In other words, the configurations that constitute obstructions in applying the contraction principle from large-
deviation theory [10, Theorem 4.2.1] are those exhibiting δ-discretized trajectories with a small but non-zero
number of users. Now, we show that a small increase in the intensity of the Poisson point process provides us
with a sufficient amount of additional randomness allowing us to exclude such pathological configurations. In
other words, we make use of a sprinkling argument in the spirit of [2].

In order to perform the sprinkling operation with parameter ε0 ∈ (0, 1), we define Xλ
δ and Xλ′

δ as above with
λ′ = (1 + ε1)λ, where we put ε1 = 2ε0κ

−1
δ . In the following, we always assume that δ ∈ B is sufficiently

small to ensure that κδ ≤ 1. Now, for u ∈ Πδ we put

Q = {u ∈ Πδ : L%λ′(u) ≤ ε0} and V = {u ∈ Πδ : L%λ(u) = 0}

denote the sets of all quasi-empty and virtual sites of Πδ , respectively. We write

Eε0 = {Q ⊂ V }

for the event that all quasi-empty sites are virtual. Similarly, we introduce the event

E′ε0 = {Xλ
δ (Πδ) ≥ (1− ε2)Xλ′

δ (Πδ)},

where ε2 = 4ε1β
−1
o #Πδ(1 + µ%(Πδ)) and #Πδ denotes the number of space-time sub-cubes in the dis-

cretization Πδ . Now, the following two auxiliary results, formalize the sprinkling heuristic described above.

Lemma 3.9. For all sufficiently small ε0 ∈ (0, 1) there exists λ0 = λ0(ε0) such that

P(Eε0 ∩ E′ε0 |X
λ′
δ ) ≥ exp(−

√
ε0λ)1{L%λ′(Πδ) ≥ βo/2}

holds almost surely for all λ ≥ λ0.

Proof. The proof is based on the observation that Xλ
δ is obtained from Xλ′

δ by independent thinning with
survival probability 1/(1 + ε1), see for example [16, Section 5.1]. In other words, for every u ∈ Πδ there exist
N ′u = Xλ′

δ (u) independent Ber(1/(1 + ε1))-distributed random variables {Uk(u)}1≤k≤N ′u such that

Xλ
δ (u) =

N ′u∑
k=1

Uk(u).

In terms of the Bernoulli variables,Eε0 is the event thatUk(u) = 0 holds for all u ∈ Q and 1 ≤ k ≤ N ′u. Now,
we let E′′ε0 denote the event that Xλ

δ (u) ≥ (1 − ε1)Xλ′
δ (u) holds for all u ∈ Πδ \ Q. Since #Q ≤ #Πδ ,

this implies that Xλ
δ (Πδ) is bounded below by

(1− ε1)Xλ′
δ (Πδ \Q) = (1− ε1)(Xλ′

δ (Πδ)−Xλ′
δ (Q)) ≥ (1− ε1)(Xλ′

δ (Πδ)−#Πδε0λ
′).

If additionally {L%λ′(Πδ) ≥ βo/2} occurs, then we may extend the above estimation as follows

Xλ
δ (Πδ) ≥ (1− ε1)(1− 2#Πδε0β

−1
o )Xλ′

δ (Πδ) ≥ (1− ε2)Xλ′
δ (Πδ).

Therefore, E′′ε0 ∩ {L
%
λ′(Πδ) ≥ βo/2} ⊂ E′ε0 and it remains to bound P(Eε0 ∩ E′′ε0 |X

λ′
δ ) from below. First

note that

P(E′′ε0 |X
λ′
δ ) ≥ P

(
Uk(u) = 1 for all u ∈ Πδ \Q and 1 ≤ k ≤ N ′u|Xλ′

δ

)
≥ (1 + ε1)

−
∑
u∈Πδ

N ′u .

By the law of large numbers, if the N ′u in Xλ′
δ is large, P(Xλ

δ (u) ≥ (1 − ε1)Xλ′
δ (u)|Xλ′

δ ) is close to one.

Together, this implies that there exists c1 > 0 such that P(E′′ε0 |X
λ′
δ ) ≥ c1 holds almost surely for every λ ≥ 1.

Hence, since conditioned on Xλ′
δ , Eε0 and E′′ε0 are independent, we obtain that

P(Eε0 ∩ E′′ε0 |X
λ′
δ ) = P(Eε0 |Xλ′

δ )P(E′′ε0 |X
λ′
δ ) ≥ (ε12−1)

∑
u∈QN

′
uc1 ≥ (ε12−1)ε0λ

′#Πδc1.

In particular, observing that −ε0 log(ε12−1) ∈ o(√ε0) concludes the proof. �
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In the following, we extend the definition of V to measures on Πδ and define V (ν̄) = {u ∈ Πδ : ν̄(u) = 0}.
Furthermore, we put

E∗ε0 = Eε0 ∩ {V (L%λ) = V (L%λ′)}.

Lemma 3.10. For all sufficiently small ε0 ∈ (0, 1) there exists λ0 = λ0(ε0) such that

P(E∗ε0 |X
λ
δ ) ≥ exp(−

√
ε0λ)

holds almost surely for all λ ≥ λ0.

Proof. First, we note that Hε0 ⊂ Eε0 , where Hε0 denotes the event that N ′′u ≥ ε0λ
′ holds for all u ∈

Πδ \V (L%λ). Here N ′′u = Xλ′
δ (u)−Xλ

δ (u) is independent of Xλ
δ (u) and Poisson distributed with parameter

(λ′ − λ)µ̄δ(u) > ε0λ
′. In particular, similarly to the proof of Lemma 3.9, there exists c1 > 0 such that

P(Hε0 |Xλ
δ ) ≥ c1 holds almost surely for every λ ≥ 1. Therefore, conditioned on Xλ

δ , the independence of
{V (L%λ) = V (L%λ′)} and Hε0 gives that

P({V (L%λ) = V (L%λ′)} ∩Hε0 |Xλ
δ ) = P(V (L%λ) = V (L%λ′)|X

λ
δ )P(Hε0 |Xλ

δ ).

Since, the r.h.s. is bounded below by exp(−µ̄%(Πδ)(λ
′ − λ))c1, we conclude the proof. �

3.3. Relative entropies under linear perturbation. Finally, it will be convenient to quantify the impact of
multiplication of measures by scalars on relative entropies.

Lemma 3.11. Let a > 0 and ν̄ ∈M(L) be arbitrary. Then,

h(aν̄|µ̄) = ah(ν̄|µ̄) + a log(a)ν̄(L) + (1− a)µ̄(L).

Proof. The claim is trivial if ν̄ is not absolutely continuous with respect to µ̄. Otherwise, writing f = dν̄/dµ̄ we
have that

h(aν̄|µ̄) = a
(∫

log fν̄(dx)− ν̄(L) + µ̄(L)
)

+ a log(a)ν̄(L) + (1− a)µ̄(L),

as required. �

As a corollary, we obtain the following bounds on h(aν̄|µ̄).

Corollary 3.12. Let ν̄ ∈M(L) and ε ∈ (0, 1/2) be arbitrary. Then,

h((1 + ε)ν̄|µ̄) ≤ (1 + 3ε)h(ν̄|µ̄) + 3εµ̄(L).

and

h((1− ε)ν̄|µ̄) ≥ (1− 3ε)h(ν̄|µ̄)− 3εµ̄(L).

Proof. By Lemma 3.11 the claims are equivalent to

(1 + ε)ν̄(L) log(1 + ε) ≤ 2ε(h(ν̄|µ̄) + 2µ̄(L)).

and

(1− ε)ν̄(L) log(1− ε) ≥ −2ε(h(ν̄|µ̄) + 2µ̄(L)).

First, by Jensen’s inequality and an elementary optimization exercise,

ν̄(L) ≤ h(ν̄(L)|µ̄(L)) + 2µ̄(L).

Combining this inequality with the bounds (1 + ε) log(1 + ε) ≤ 2ε and (1− ε) log(1− ε) ≥ −2ε completes
the proof. �

Remark 3.13. Lemma 3.11 and Corollary 3.12 remain true if L and µ̄ are replaced by Πδ and µ̄%, respectively.
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4. PROOF OF PROPOSITION 2.1 AND PROPOSITION 2.2

4.1. Proof of Proposition 2.1. First note, that for all u ∈ Πδ with ν̄%(u) = 0 we have ((1±ε)ν̄%)[τ ◦ı](u) =
0 and (ν̄[τ ])%(u) = 0 and hence the inequalities are trivially satisfied. Now, fix ε > 0 and assume u ∈ Πδ

with ν̄%(u) > 0.

Let us introduce C(η, ν) ∈ {D(η, o, ν), R(η, o, ν), D(o, η, ν), R(o, η, ν)} for the different forms of com-
munication where η ∈W and ν ∈M(W ). Denote C̄(x, ν̄) the associated trajectory.

We first prove the the upper bound. It suffices to find δ′ = δ′(ε) ∈ B such that for all δ ∈ B ∩ (0, δ′) and all
C we have

sup
x∈%−1(u)

τi(C̄(x, ν̄)) ≤ τi(ı(C(ut, (1 + ε)ν̄%t )t∈Iδ))

for all i ∈ {1, . . . , 4}. Since the τi are decreasing, it suffices to find δ′ = δ′(ε) ∈ B such that for all
δ ∈ B ∩ (0, δ′) and x ∈ %−1(u)

C̄(x, ν̄) ≥ ı(C(ut, (1 + ε)ν̄%t )t∈Iδ). (10)

Let us first show that for all x ∈ %−1(u) and y ∈ %−1(v) with u ∈ Πδ we have

SIR(x, y, ν̄) ≥ ı(SIR(ut, vt, (1 + ε)ν̄%t )t∈Iδ) (11)

for sufficiently small δ. Using the definition of SIR this is equivalent to showing for all t ∈ Iδ that

`(|ut − vt|)ν̄s(`(| · −ys|))
`(|xs − ys|)ν̄%t (`(| · −vt|))

− 1 ≤ ε

for all t− δT
2 ≤ s < t+ δT

2 . Note, the left hand side can be estimated as follows∣∣∣ `(|ut − vt|)ν̄s(`(| · −ys|))
`(|xs − ys|)ν̄%t (`(| · −vt|))

− 1
∣∣∣ ≤ ∣∣∣`(|ut − vt|)ν̄s(`(| · −ys|))− `(|xs − ys|)ν̄%t (`(| · −vt|))

`(|xs − ys|)ν̄%t (`(| · −vt|))

∣∣∣
≤ `(|ut − vt|)
`(|xs − ys|)

∣∣∣ ν̄s(`(| · −ys|))− ν̄%t (`(| · −vt|))
ν̄%t (`(| · −vt|))

∣∣∣+
∣∣∣`(|ut − vt|)− `(|xs − ys|)

`(|xs − ys|)

∣∣∣
≤ `max

`2min

∑
w∈Πδ

∫
%−1(w) ν̄(dz)|`(|zs − ys|)− `(|wt − vt|)|

ν̄(L)
+

J2

`min
|ut − vt − xs + ys|

≤ J2`max

`2min

sup
w∈Πδ

sup
z∈%−1(w)

|zs − ys − wt + vt|+
J2

`min
|ut − vt − xs + ys|

≤ α1 sup
w∈Πδ

sup
z∈%−1(w)

|zs − wt| ≤ α2 δ

(12)

where α1, α2 are some constants involving also r, T and J1. Since g is assumed to be increasing, (11) implies

D̄(x, y, ν̄) ≥ ı(D(ut, vt, (1 + ε)ν̄%t )i∈Iδ) (13)

for all x ∈ %−1(u) and y ∈ %−1(v). Now, for every C , the inequality (10) can be derived from the inequality
(13). Indeed, for the direct up- and downlink cases (10) are implied by (13) setting y = v = o respectively
x = u = o. For the relayed uplink case C(η, ν) = R(η, o, ν) we have to prove (10) only for the relaying
component inR(η, o, ν) since the direct communication part we already verified. In other words, using Lemma
3.2, we show that for all t ∈ Iδ and x ∈ %−1(u) we have

ν̄- ess sup
y∈L

Γ(xs, ys, o, ν̄s) ≥ ν̄%- ess sup
v∈Πδ

Γ(ut, vt, o, (1 + ε)ν̄%t )

for all t− δT
2 ≤ s < t+ δT

2 . Let us assume the supremum on the right hand side is attained in v ∈ Πδ where
necessarily ν̄%(v) > 0. Then it suffices to find δ′ = δ′(ε) ∈ B such that for all δ ∈ B ∩ (0, δ′), x ∈ %−1(u),
y ∈ %−1(v) and t− δT

2 ≤ s < t+ δT
2

min{D(xs, ys, ν̄s), D(ys, o, ν̄s)} ≥ min{D(ut, vt, (1 + ε)ν̄%t ), D(vt, o, (1 + ε)ν̄%t )},

but this can be done using (13).
13



Similarly, in the case of relayed downlink communication C(η, ν) = R(o, η, ν), using the same argument as
in the relayed uplink case, we need to show

min{D(o, ys, ν̄s), D(ys, xs, ν̄s)} ≥ min{D(o, vt, (1 + ε)ν̄%t ), D(vt, xt, (1 + ε)ν̄%t )}.

for all x ∈ %−1(u), y ∈ %−1(v), t− δT
2 ≤ s < t+ δT

2 and sufficiently small δ ∈ B. But this is also true using
(13).

For the lower bound, it suffices to find δ′ = δ′(ε) ∈ B such that for all δ ∈ B ∩ (0, δ′), x ∈ %−1(u) and all C
we have

C̄(x, ν̄) ≤ ı(C(ut, (1− ε)ν̄%t )t∈Iδ). (14)

Again, we first show that for all x ∈ %−1(u) and y ∈ %−1(v) with u ∈ Πδ we have

SIR(x, y, ν̄) ≤ ı(SIR(ut, vt, (1− ε)ν̄%t )t∈Iδ)

for sufficiently small δ, which is equivalent to showing for all t ∈ Iδ that

1− `(|ut − vt|)ν̄s(`(| · −ys|))
`(|xs − ys|)ν̄%t (`(| · −vt|))

≤ ε

for all t− δT
2 ≤ s < t+ δT

2 . But this is true using again the estimate (12). This implies

D̄(x, y, ν̄) ≤ ı(D(ut, vt, (1− ε)ν̄%t )i∈Iδ) (15)

for all x ∈ %−1(u) and y ∈ %−1(v).

For the direct up- and downlink cases (14) are implied by (15) setting y = v = o respectively x = u = o. For
the relayed uplink case C(η, ν) = R(η, o, ν) we have to prove (14) only for the relaying component. In other
words, we show that for all x ∈ %−1(u) and t ∈ Iδ

ν̄- ess sup
y∈L

Γ(xs, ys, o, ν̄s) ≤ ν̄%- ess sup
v∈Πδ

Γ(ut, vt, o, (1− ε)ν̄%t )

for all t− δT
2 ≤ s < t+ δT

2 . Note that for all x ∈ %−1(u) and t ∈ Iδ
ν̄- ess sup

y∈L
Γ(xs, ys, o, ν̄s) = ν̄%- ess sup

v∈Πδ

(
ν̄- ess sup
y∈%−1(v)

Γ(xs, ys, o, ν̄s)
)

and assume that this supremum is attained in v ∈ Πδ where necessarily ν̄%(v) > 0. Then it suffices to find
δ′ = δ′(ε) ∈ B such that for all δ ∈ B ∩ (0, δ′), x ∈ %−1(u), y ∈ %−1(v) and t ∈ Iδ

min{D(xs, ys, ν̄s), D(ys, o, ν̄s)} ≤ min{D(ut, vt, (1− ε)ν̄%t ), D(vt, o, (1− ε)ν̄%t )}

for all t− δT
2 ≤ s < t+ δT

2 . But this can be done using (15).

Similar, in the case of relayed downlink communication C(η, ν) = R(o, η, ν), using the same argument as in
the relayed uplink case, we need to show

min{D(o, ys, ν̄s), D(ys, xs, ν̄s)} ≤ min{D(o, vt, (1− ε)ν̄%t ), D(vt, ut, (1− ε)ν̄%t )}

for all x ∈ %−1(u), y ∈ %−1(v), t ∈ Iδ , t − δT
2 ≤ s < t + δT

2 and sufficiently small δ. But this is also true
using (15). This finishes the proof.
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4.2. Proof of Proposition 2.2. The idea for the proof of Proposition 2.2 is to apply Varadhan’s lemma [10,
Lemmas 4.3.4, 4.3.6] to a suitable functional on L%λ. More precisely, [10, Exercise 4.2.7] implies that the inde-
pendent random variables {L%λ(u)}u∈Πδ satisfy a large deviation principle with good rate function

{au}u∈Πδ 7→
∑
u∈Πδ

h(au|µ̄%(u)).

Upper bound. In Remark 3.8 we have seen that for every u ∈ Πδ the map

ν̄ 7→
(
τ1(R̄(u, o, αν̄)), τ2(D̄(u, o, αν̄)), τ3(R̄(o, u, αν̄)), τ4(D̄(o, u, αν̄))

)
is u.s.c. Hence, also the map ν̄ 7→ (αν̄)[τ ] is u.s.c. Finally, another application of Lemma 3.7 shows that
F ((αν̄)[τ ]) is u.s.c. as a function of ν̄, so that the upper bound in Proposition 2.2 is an immediate consequence
of Varadhan’s lemma [10, Lemma 4.3.6].

In contrast, the lower bound requires a substantial amount of additional work.

Lower bound. Since the map ν̄ 7→ ν̄[τ ] is not l.s.c. the proof of the lower bound in Proposition 2.2 is substan-
tially more involved than the proof of the upper bound. Therefore, we first introduce a l.s.c. approximation of the
mapping ν̄ 7→ ν̄[τ ]. As we will see, the cost of this approximation is negligible on the exponential scale. To be
more precise, for the uplink, we introduce the approximating measure

ν̄up[τ, ε](A) =
∑
u∈A

ν̄(u)τ({Rε(ut, o, ν̄)}t∈Iδ), A ⊂ Πδ,

where
Rε(ut, o, ν̄) = max

{
D(ut, o, ν̄t),max

v∈Πδ
Γε(ut, vt, o, ν̄t)

}
,

is defined using Γε(ut, vt, o, ν̄t) = min{1, ε−1ν̄t(vt)}Γ(ut, vt, o, ν̄t). In particular,

Γε(ut, vt, o, ν̄t) ≤ 1{ν̄t(vt) > 0}Γ(ut, vt, o, ν̄t),

where equality holds if and only if ν̄t(vt) ∈ {0} ∪ [ε,∞). Similarly, for the downlink we introduce the approxi-
mating empirical measures ν̄do[τ, ε] and ν̄do−dir[τ ] and put

ν̄[τ , ε] =
(
ν̄up[τ1, ε], ν̄

up−dir[τ2], ν̄do[τ3, ε], ν̄
do−dir[τ4]

)
.

The following result formalizes the approximation property under the event Eε0 ∩ E′ε0 from Section 3.2.

Lemma 4.1. Let 0 < α− < α < 2 and τi : [0,∞)Iδ → [0,∞), i ∈ {1, . . . , 4} be decreasing measurable
functions such that τi(γ) = 0 for every i ∈ {1, . . . , 4} if γt ≥ c+ for every t ∈ Iδ . Then, for every sufficiently
small ε0 > 0 there exists λ0 = λ0(ε0) with the following properties. If λ ≥ λ0, then, almost surely, for every
u ∈ Πδ and t ∈ Iδ ,

1{Eε0 ∩ E′ε0}R(ut, o, αL
%
λ,t) ≤ Rε0α−(ut, o, α−L

%
λ′,t),

and
1{Eε0 ∩ E′ε0}R(o, ut, αL

%
λ,t) ≤ Rε0α−(o, ut, α−L

%
λ′,t)

where λ′ = (1 + 2ε0κ
−1
δ )λ. In particular,

1{Eε0 ∩ E′ε0}(α−L
%
λ′)[τ , ε0α−] ≤ αL%λ[τ ].

Proof. First, as the eventE′ε0 occurs, we may apply part (v) of Lemma 3.1 and deduce thatD(ut, vt, αL
%
λ,t) ≤

D(ut, vt, α−L
%
λ′,t) holds for all u, v ∈ Πδ and t ∈ Iδ . Now, it suffices to show that under the eventEε0 ∩E′ε0

Γ(ut, vt, wt, αL
%
λ,t) ≤ min{1, ε−1

0 L%λ′,t(vt)}Γ(ut, vt, wt, α−L
%
λ′,t)

holds for all u, v, w ∈ Πδ and t ∈ Iδ with L%λ,t(vt) > 0. We claim that L%λ′,t(vt) ≥ ε0 under the event Eε0 .

Indeed, otherwise ε0 > L%λ′,t(vt) =
∑

u∈Πδ:ut=vt
L%λ′(u) and thus 0 =

∑
u∈Πδ:ut=vt

L%λ(u) = L%λ,t(vt).
Now we conclude by applying the inequality for D. �

Next, we show that Lemma 4.1 implies closeness in the exponential scale.
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Lemma 4.2. Let 0 < α− < α < 2. Let τi : [0,∞)Iδ → [0,∞), i ∈ {1, . . . , 4} and F : M(Πδ)
4 →

[−∞,∞) be measurable functions such that the τi are decreasing and F is increasing. Furthermore, assume
that τi(γ) = 0 for every i ∈ {1, . . . , 4} if γt ≥ c+ for every t ∈ Iδ and that F maps the vector of zero
measures to −∞. Then, for every sufficiently small ε0 ∈ (0, 1) there exists λ0 = λ0(ε0) such that for all
λ ≥ λ0

E exp
(
F (αL%λ[τ ])

)
≥ exp(−

√
ε0λ)E exp

(
F ((α−L

%
λ′)[τ , ε0α−])

)
.

Proof. First, Lemma 4.1 implies that

E
(

exp
(
F (αL%λ[τ ])

))
≥ E

(
1{Eε0 ∩ E′ε0} expF

(
(α−L

%
λ′)[τ , ε0α−]

))
.

Note that if L%λ′(Πδ) < βo/2, then (α−L
%
λ′)[τ , ε0α−] = 0. Hence, using the assumption that F maps the

vector of zero measures to −∞, we may apply Lemma 3.9 to deduce that

E exp
(
F (αL%λ[τ ])

)
≥ E

(
P(Eε0 ∩ E′ε0 |X

λ′
δ ) exp

(
F ((α−L

%
λ′)[τ , ε0α−])

))
≥ exp(−

√
ε0λ)E

(
1{L%λ′(Πδ) ≥ βo/2} exp

(
F ((α−L

%
λ′)[τ , ε0α−])

))
= exp(−

√
ε0λ)E exp

(
F ((α−L

%
λ′)[τ , ε0α−])

)
,

as required. �

Now, we can proceed with the proof of the lower bound of Proposition 2.2. As a first step, we note that the map
ν̄ 7→ ν̄[τ , ε0] is continuous. Hence for 0 < α− < α, combining Lemma 4.2 with Varadhan’s lemma shows
that

lim inf
λ→∞

1
λ logE exp

(
F ((αL%λ)[τ ])

)
≥ −
√
ε0 + lim inf

λ→∞
1
λ logE exp

(
F ((α−L

%
λ′)[τ , ε0α−])

)
≥ −
√
ε0 − (1 + 2ε0κ

−1
δ ) inf

ν̄∈M(Πδ)
{h(ν̄|µ̄%)− F ((α−ν̄)[τ , ε0α−])}.

Moreover, since τ1 is decreasing, we have

τ1({R(ut, o, α−ν̄t)}t∈Iδ) ≤ τ1({Rε0α−(ut, o, α−ν̄t)}t∈Iδ)
for all u ∈ Πδ and ν̄ ∈M(Πδ). Similarly for the other communication cases. Hence,

(α−ν̄)[τ , ε0α−] ≥ (α−ν̄)[τ ]

and sending ε0 to zero yields

lim inf
λ→∞

1
λ logE exp

(
F (L%λ[τ ])

)
≥ − inf

ν̄∈M(Πδ)
{h(ν̄|µ̄%)− F ((α−ν̄)[τ ])}.

Therefore, it remains to verify that

inf
ν̄∈M(Πδ)

{h(ν̄|µ̄%)− F (ν̄[τ ])} ≥ lim sup
α−↑α

inf
ν̄∈M(Πδ)

{h(α−1
− ν̄|µ̄%)− F (ν̄[τ ])}.

In order to prove this claim, let ν̄ ∈ M(Πδ) be arbitrary. If ν̄ is not absolutely continuous with respect
to µ̄%, then the left-hand side is infinite and there is nothing to show. Otherwise, Lemma 3.11 shows that
limα−↑α h(α−1

− ν̄|µ̄%) = h(αν̄|µ̄%), as required.

5. PROOF OF THEOREM 1.1

After having established Propositions 2.1 and 2.2, the proof of Theorem 1.1 is reduced to the following result
on the behavior of the rate functions in Proposition 2.2 as δ tends to zero.

Lemma 5.1. Let F :M(K)4 → [−∞,∞) and τi : B → [0,∞), i ∈ {1, . . . , 4} be measurable functions
that are respectively increasing and decreasing. Furthermore, assume that F is δ0-discretized for some δ0 ∈ B
and bounded from above. Then,

lim
ε→0

lim sup
δ→0

inf
ν̄∈M(Πδ)

{
h(ν̄|µ̄%)− F (((1− ε)ν̄)ı[τ ])

}
≤ inf

ν̄∈M(L)

{
h(ν̄|µ̄)− F (ν̄[τ ])

}
,
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and
lim
ε→0

lim inf
δ→0

inf
ν̄∈M(Πδ)

{
h(ν̄|µ̄%)− F (((1 + ε)ν̄)ı[τ ])

}
≥ inf

ν̄∈M(L)

{
h(ν̄|µ̄)− F (ν̄[τ ])

}
,

where in the limits it is assumed that δ ∈ B.

Before we provide a proof of Lemma 5.1, let us show how it can be used to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. We only provide a proof for the lower bound, the proof for the upper bound is analogous.
Let ε ∈ (0, 1) be arbitrary. Then, Propositions 2.1 and 2.2 show that for all sufficiently small δ ∈ B

lim inf
λ→∞

1
λ logE exp

(
F (Lλ[τ ])

)
= lim inf

λ→∞
1
λ logE exp

(
F (((Lλ[τ ])%)ı)

)
≥ lim inf

λ→∞
1
λ logE exp

(
F ((((1− ε)L%λ)[τ ◦ ı])ı)

)
≥ − inf

ν̄∈M(Πδ)

{
h(ν̄|µ̄%)− F ((((1− ε)ν̄)[τ ◦ ı])ı)

}
= − inf

ν̄∈M(Πδ)

{
h(ν̄|µ̄%)− F (((1− ε)ν̄)ı[τ ])

}
.

Hence, applying Lemma 5.1 yields that

lim inf
λ→∞

1
λ logE expF (Lλ[τ ]) ≥ − inf

ν̄∈M(L)

{
h(ν̄|µ̄)− F (ν̄[τ ])

}
,

as required. �

Now, we prove Lemma 5.1.

Proof of Lemma 5.1. First, we consider the upper bound. Let ε0 ∈ (0, 1) and ν̄0 ∈ M(L) be arbitrary. Then,
we need to show that

lim sup
δ→0

inf
ν̄∈M(Πδ)

{
h(ν̄|µ̄%)− F (((1− ε)ν̄)ı[τ ])

}
≤ ε0 + h(ν̄0|µ̄)− F (ν̄0[τ ]),

holds provided that ε ∈ (0, 1) is sufficiently small. Since F is bounded from above, we may focus on the case
where ν̄0 is absolutely continuous with respect to µ̄.

First, Proposition 2.1 shows that if δ is sufficiently small, then (ν̄0[τ ])% ≤ ((1 + ε)ν̄%0 )[τ ◦ ı]. In particular,

F (ν̄0[τ ]) = F (((ν̄0[τ ])%)ı) ≤ F (((1 + ε)ν̄%0 )ı[τ ]).

Hence, putting 1 + ε′ = (1 + ε)(1− ε)−1, it suffices to show that

lim sup
δ→0

h((1 + ε′)ν̄%0 |µ̄
%) ≤ ε0 + h(ν̄0|µ̄)

holds for all sufficiently small ε. First, note that Jensen’s inequality yields h(ν̄0|µ̄) ≥ h(ν̄%0 |µ̄%). Hence, by
Corollary 3.12,

h((1 + ε′)ν̄%0 |µ̄
%)− h(ν̄%0 |µ̄

%) ≤ 3ε′h(ν̄%0 |µ̄
%) + 3ε′µ̄%(Πδ) ≤ 3ε′h(ν̄0|µ̄) + 3ε′µ̄(L).

Since this upper bound tends to zero as ε tends to zero, we conclude the proof.

Next, we consider the lower bound. Let ε0 ∈ (0, 1) be arbitrary. Then, we have to show that

lim inf
δ→0

inf
ν̄∈M(Πδ)

{
h(ν̄|µ̄%)− F (((1 + ε)ν̄)ı[τ ])

}
≥ −ε0 + inf

ν̄∈M(L)

{
h(ν̄|µ̄)− F (ν̄[τ ])

}
.

holds provided that ε ∈ (0, 1) is sufficiently small. First, for any ε ∈ (0, 1) we choose a suitable sequence
{δk
}
k≥1

in B such that limk→∞ δk = 0 and such that the lim infδ→0 above is replaced by limδk→0. More-

over, for ε ∈ (0, 1) and k ≥ 1 choose ν̄k,ε ∈M(Πδk) such that

h(ν̄k,ε|µ̄%δk )− F (((1 + ε)ν̄k,ε)
ı[τ ]) ≤ ε0/2 + inf

ν̄∈M(Πδ)

{
h(ν̄|µ̄%δk )− F (((1 + ε)ν̄)ı[τ ])

}
.

Hence, it remains to show that

lim inf
ε→0

lim inf
k→∞

h(ν̄k,ε|µ̄%δk )− F (((1 + ε)ν̄k,ε)
ı[τ ]) ≥ inf

ν̄∈M(L)

{
h(ν̄|µ̄)− F (ν̄[τ ])

}
,
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In particular, we may assume that ν̄k,ε is absolutely continuous with respect to µ̄%δk . Then, we define ν̄ ′k,ε ∈
M(L) by

ν̄ ′k,ε(·) = (1 + 2ε)
∑
u∈Πδk

ν̄k,ε(u)

µ̄%δk (u)
µ̄(%−1

δk
(u) ∩ ·),

so that h(ν̄ ′k,ε|µ̄) = h((ν̄ ′k,ε)
%δk |µ̄%δk ). Moreover, Proposition 2.1 implies that

(ν̄ ′k,ε[τ ])%δk ≥ ((1− ε′′)(1 + 2ε)ν̄k,ε)[τ ◦ ı] = ((1 + ε)ν̄k,ε)[τ ◦ ı]

for all sufficiently small δk ∈ B where 1− ε′′ = (1 + ε)(1 + 2ε)−1. Hence, by Corollary 3.12,

h((ν̄ ′k,ε)
%δk |µ̄%δk )− h(ν̄k,ε|µ̄%δk ) ≤ 6εh(ν̄k,ε|µ̄%δk ) + 6εµ̄(L). (16)

The boundedness of F implies that if

lim inf
ε→0

lim inf
k→∞

h(ν̄k,ε|µ̄%δk ) =∞,

then there is nothing to show. Otherwise, (16) gives

lim inf
ε→0

lim inf
k→∞

h((ν̄ ′k,ε)
%δk |µ̄%δk )− h(ν̄k,ε|µ̄%δk ) ≤ 0,

as required. �

6. PROOF OF COROLLARIES 1.2 AND 1.3

First, defining the maps Fb : M(K)4 → [−∞,∞) and τa,c : B4 → [0,∞)4 as in (4) and (5), we see
that the maps ν̄ 7→ Fb(ν̄ı) and τa,c ◦ ı are l.s.c. on M(Πδ)

4 and ([0,∞)Iδ)4, respectively. Hence, by
Theorem 1.1, only the upper bound requires a proof. In the following, we restrict to the case b ≥ 0. This
is no substantial loss of generality, as negative coordinates of b translate into putting no constraints on the
corresponding component of Lλ[τa,c].

We first derive the upper bound in Corollary 1.2 in the discretized model. As before, we fix δ ∈ B such that
κδ ≤ 1.

Proposition 6.1. Let 0 < α < 2, a ∈ [0,T), b ≥ 0 and c ∈ [0, c+). Then,

lim sup
λ→∞

1
λ logP((αL%λ)[τa,c ◦ ı](Πδ) > b) ≤ − inf

ν̄∈M(Πδ)
(αν̄)[τa,c◦ı](Πδ)>b

h(ν̄|µ̄%).

The lack of upper semicontinuity in the maps ν̄ 7→ Fb(ν̄ı) and τa,c◦ı prevents us from applying Proposition 2.2
directly. However, if we define τusca,c : [0,∞)Iδ → [0,∞) by

γ 7→

{
1 if

∫ T
0 1{ı(γ)t ≤ c}dt > a,

0 otherwise,
(17)

then τusca,c is u.s.c. For a ∈ [0,T) and c ∈ [0, c+) we put τ usc
a,c = (τuscai,ci)i∈{1,...,4}.

If we knew that b > 0, then L%λ[τ usc
a,c ](Πδ) ≥ b would be a useful u.s.c. approximation of the considered

event. However, to deal with the general case where certain entries of b may be zero, it will be convenient to
introduce further quantities describing the worst QoS that is experienced by any user in the system for a period
of time of length larger than ai. To be more precise, for ξ ∈Wδ and ν ∈M(Wδ) we put

Φ(ξ, ν) = (R(ξ, o, ν), D(ξ, o, ν), R(o, ξ, ν), D(o, ξ, ν))

and note that for fixed ξ ∈ Wδ , ν 7→ Φ(ξ, ν) is l.s.c, see Lemma 3.6. Here the discontinuities come from the
effect that sites can become unavailable as possible relay locations if the limiting number of users at certain
sites is zero. Further, for c ∈ [0, c+), u ∈ Πδ and ν̄ ∈M(Πδ), we define

Φ(c, u, ν̄) =
(∑

t∈Iδ
δT1{πi(Φ(ut, ν̄t)) ≤ ci}

)
i∈{1,...,4}
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as the total amount of time that a user u experiences bad QoS of at most ci. Finally, we define

Φ(c, ν̄) = max
u∈Πδ
ν̄(u)>0

Φ(c, u, ν̄),

as the maximum amount of time that a user from ν experiences bad QoS of at most ci. For instance, the event
{ν̄up[τ usc

a,c ](Πδ) > 0} can now be rewritten as {π1(Φ(c, ν̄)) > a1} and analogous relationships are true for
the other three components.

Unfortunately, Φ(c, ν̄) does not satisfy any semicontinuity properties. For example discontinuities can come
from the effect that users along trajectories with bad QoS become irrelevant if the number of these users tends
to zero. Let us therefore introduce the approximations

Φε(c, ν̄) = max
u∈Πδ

{
Φ(c, u, ν̄) min{1, ε−1ν̄(u)}

}
.

In particular, Φ(c, ν̄) ≥ Φε(c, ν̄).

In the following, for ε > 0, a ∈ [0,T), b ≥ 0, c ∈ [0, c+), i ∈ {1, . . . , 4} we define

Ci(a,b, c, ε) =

{
{ν̄ ∈M(Πδ) : πi(Φε(c, ν̄)) > ai} if bi = 0,

{ν̄ ∈M(Πδ) : πi(ν̄[τ usc
a,c ]) ≥ bi} if bi > 0.

Moreover, we put

C(a,b, c, ε) =

4⋂
i=1

Ci(a,b, c, ε).

Note that C(a,b, c, ε) is a closed set, since the maps ν̄ 7→ ν̄[τ usc
a,c ] and ν̄ 7→ Φε(c, ν̄) are u.s.c. Note that

by Lemma 3.1 parts (ii) and (iv), for every ε > 0 and α+ > α > 0 we have an inclusion

{αL%λ ∈ C(a, (1 + ε)b, c, ε)} ⊂ {(α+L
%
λ)[τa,c ◦ ı](Πδ) > b}.

Now we show that under the event E∗ε0 introduced in Section 3, for α+ > α > 0 the inclusion

{αL%λ ∈ C(a,
√
α+α−1b, c, α+ε0)} ⊂ {(α+L

%
λ)[τa,c ◦ ı](Πδ) > b}

is not far from being an equality.

Lemma 6.2. Let α+ > α > 0, a ∈ [0,T), b ≥ 0 and c ∈ [0, c+) be arbitrary. Then, for every sufficiently
small ε0 ∈ (0, 1) there exists λ0 = λ0(ε0) with the following properties. If λ ≥ λ0, then

E∗ε0 ∩ {(αL
%
λ)[τa,c ◦ ı](Πδ) > b} ⊂ {α+L

%
λ′ ∈ C(a,

√
α+α−1b, c, α+ε0)},

where λ′ = (1 + 2ε0κ
−1
δ )λ.

Proof. First, recall that the event E∗ε0 guarantees that by passing from λ to λ′ users can only be added along
occupied trajectories. Hence, under the event E∗ε0 parts (i) and (iii) of Lemma 3.1 give that

D̄(u, v, α+L
%
λ′) ≤ D̄(u, v, αL%λ) and R̄(u, v, α+L

%
λ′) ≤ R̄(u, v, αL%λ)

for all u, v ∈ Πδ provided that ε0 is sufficiently small. Therefore, under the event E∗ε0 , πi((αL
%
λ)[τa,c ◦

ı](Πδ)) > bi implies that

πi((α+L
%
λ′)[τ

usc
a,c ](Πδ)) ≥

α+λ

αλ′
bi ≥

√
α+α−1bi.

In particular, α+L
%
λ′ ∈ Ci(a,

√
α+α−1b, c, α+ε0) if bi > 0.

For the case bi = 0, let u ∈ Πδ with L%λ(u) > 0 be arbitrary. Since the event E∗ε0 occurs, we have L%λ′(u) ≥
ε0 and therefore

min{1, (α+ε0)−1α+L
%
λ′(u)} = 1.

Moreover, by parts (i) and (iii) of Lemma 3.1, we have that Φ(c, α+L
%
λ′) ≥ Φ(c, αL%λ). Therefore,

πi(Φα+ε0(c, α+L
%
λ′)) = πi(Φ(c, α+L

%
λ′)) ≥ πi(Φ(c, αL%λ)) > ai,

i.e., α+L
%
λ′ ∈ Ci(a,

√
α+α−1b, c, α+ε0). �
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Now, we can conclude the proof of Proposition 6.1.

Proof of Proposition 6.1. First, by Lemmas 3.10 and 6.2,

P((αL%λ)[τa,c](Πδ) > b) ≤ exp(
√
ε0λ)P(E∗ε0 ∩ {α+L

%
λ′ ∈ C(a,

√
α+α−1b, c, α+ε0)})

≤ exp(
√
ε0λ)P(α+L

%
λ′ ∈ C(a,

√
α+α−1b, c, α+ε0)).

In particular, combining the large deviation principle for L%λ with the observation preceding Lemma 6.2 yields

lim sup
λ→∞

1
λ logP((αL%λ)[τa,c](Πδ) > b) ≤

√
ε0 − (1 + 2ε0κ

−1
δ ) inf

ν̄∈M(Πδ)

(α+ν̄)∈C(a,
√
α+α−1b,c,α+ε0)

h(ν̄|µ̄%)

≤
√
ε0 − (1 + 2ε0κ

−1
δ ) inf

ν̄∈M(Πδ)
(α2

+α
−1ν̄)[τa,c◦ı](Πδ)>b

h(ν̄|µ̄%).

Hence, after sending ε0 to zero,

lim sup
λ→∞

1
λ logP(L%λ[τa,c ◦ ı](Πδ) > b) ≤ − inf

ν̄∈M(Πδ)
(α2

+α
−1ν̄)[τa,c◦ı](Πδ)>b

h(ν̄|µ̄%).

Furthermore, by Corollary 3.12,

− inf
ν̄∈M(Πδ)

(αν̄)[τa,c◦ı](Πδ)>b

h(α2α−2
+ ν̄|µ̄%) ≤ −(1− 3ε′) inf

ν̄∈M(Πδ)
(αν̄)[τa,c◦ı](Πδ)>b

h(ν̄|µ̄%) + 3ε′µ̄%(Πδ),

where ε′ > 0 is chosen such that 1− ε′ = α2α−2
+ . Sending α+ to α completes the proof. �

Next, we can conclude the proof of Corollary 1.2.

Proof of Corollary 1.2. Let ε ∈ (0, 1) be arbitrary. First, recall that Proposition 2.1 yields

P(Lλ[τa,c](L) > b) ≤ P(((1 + ε)L%λ)[τa,c ◦ ı](Πδ) > b)

for all sufficiently small δ ∈ B. Hence, Proposition 6.1 implies that

lim sup
λ→∞

1
λ logP(Lλ[τa,c](L) > b) ≤ − inf

ν̄∈M(Πδ)
((1+ε)ν̄)[τa,c◦ı](Πδ)>b

h(ν̄|µ̄%).

Now, Lemma 5.1 gives that

lim
ε→0

lim inf
δ→0

inf
ν̄∈M(Πδ)

((1+ε)ν̄)[τa,c◦ı](Πδ)>b

h(ν̄|µ̄%) ≥ inf
ν̄∈M(L)

ν̄[τa,c](L)>b

h(ν̄|µ̄),

as required. �

Finally, we prove Corollary 1.3.

Proof of Corollary 1.3. First, by Lemma 3.1 parts (ii) and (iv) and Proposition 2.1,

πi(((1 + ε
2)µ̄%)[τ usc

a,c ](Πδ)) ≤ πi(((1 + 3
4ε)µ̄

%)[τa,c ◦ ı](Πδ)) ≤ bi
holds for all sufficiently small δ ∈ B. Moreover, again by Proposition 2.1, it suffices to show that

lim sup
λ→∞

1
λ logP(((1 + ε

3)L%λ)[τ usc
a,c ](Πδ) > b) < 0 (18)

holds for all sufficiently small δ ∈ B. Next, Proposition 6.1 reduces (18) to the verification of

inf
ν̄∈M(Πδ)

((1+
ε
3 )ν̄)[τ usc

a,c](Πδ)>b

h(ν̄|µ̄%) > 0.

In order to derive a contradiction, we assume that there exist ν̄k ∈M(Πδ) such that ((1+ ε
3)ν̄k)[τ

usc
a,c ](Πδ) >

b and limk→∞ h(ν̄k|µ̄%) = 0. In particular, after passing to a subsequence, the lower semicontinuity of
h(·|µ̄%) implies that the measures ν̄k converge weakly to µ̄%. Hence, the upper semicontinuity of the function
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ν̄ 7→ ν̄[τ usc
a,c ] implies that ((1 + ε

3)µ̄%)[τ usc
a,c ](Πδ) ≥ b. If bi > 0, then this together with parts (i) and (iii)

of Lemma 3.1 implies that πi(((1 + ε
2)µ̄%)[τ usc

a,c ](Πδ)) > bi. But this is a contradiction to our assumption
πi(((1 + ε

2)µ̄%)[τ usc
a,c ](Πδ)) ≤ bi. On the other hand, if bi = 0, then we apply the above argument with the

u.s.c. function ν̄ 7→ Φκδ(c, (1+ ε
3)ν̄). More precisely, since Φκδ(c, ·) takes values in a discrete set, and since

Φκδ(c, (1 + ε
3)ν̄k) > ai, we conclude that also Φκδ(c, (1 + ε

3)µ̄δ) > ai. In particular,

πi(Φ(c, (1 + ε
2)µ̄%)) ≥ πi(Φ(c, (1 + ε

3)µ̄%)) = πi(Φκδ(c, (1 + ε
3)µ̄%)) > ai,

where we used parts (i) and (iii) of Lemma 3.1 in the first inequality. Hence we obtain a contradiction to the
assumption πi(Φ((1 + ε

2)µ̄%)) ≤ ai. �

7. SIMULATION RESULTS

In this section we provide some simulation results complementing the large-deviation analysis developed above.
We restrict ourselves to a setting without mobility, where the state space of the point processes is W rather
then L. Already in this static situation a number of surprising effects, for example symmetry breaking, can
be observed. Recall that in Theorem 1.1 four different types of communication are considered, direct uplink
communication, direct downlink communication, relayed uplink communication and relayed downlink communi-
cation. In this section, we consider the specific frustration event

Eλ,c,b = {Lλ[τ0,c](W ) > b},

also considered in the Corollaries 1.2 and 1.3, where the proportion of users with a bad QoS is unexpectedly
high. As we will see in the numerical analysis, for the different types of communication, different effects can lead
to a configuration being an element of Eλ,c,b. Since we only consider a static scenario, we write τc = τ0,c in
the following.

Asymptotically, these configurations are characterized by the minimizers of the rate function presented in Corol-
lary 1.2. For a network operator it is interesting to identify the reasons or bottlenecks behind bad connection
quality, so that specific action may be taken to reduce these effects. For a large number of users, i.e., for large
parameter λ, the minimizers can be used to obtain qualitative information about the behavior of the system in
such cases. More specifically, the set of minimizers represents the typical user distributions in the frustration
event.

Most prominently we can observe a certain breaking of rotational symmetry in all cases except for the direct
uplink communication where the interference is only measured at the base station at the origin. This symmetry
breaking is to be understood in the following sense. As is true in general, the set of minimizers of the rate
function must exhibit the same symmetries as the underlying system. In particular, if the a priori density µ is
rotationally invariant, this must be true for the set of minimizers representing the typical user distribution in the
frustration event. Symmetry breaking here means the existence of at least one element in the set of minimizers
which is rotationally non-symmetric.

7.1. Direct uplink communication. We assume that the a priori measure is given by the restriction of the
Lebesgue measureH2 on the disk of radius r centered at the origin. That is,

µ(·) = H2(· ∩Br(o)).

First, let us denote the minimum direct-communication QoS c0 of users distributed according to a Poisson point
process with intensity measure λµ in the high-density limit when λ tends to infinity. This minimum quality of
service is attained at the boundary of the disk and can be computed as

c0 =
`(r)∫

Br(o)
`(|x|)dx

.

Now, we consider the frustration event

Eup−dir
λ,c,b = {Lup−dir

λ [τc](Br(o)) > b},
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which describes the existence of at least λ b users in Br(o) that experience a connection quality that is less
than c. Here the empirical measure of frustrated users for the case of direct communication is given by

Lup−dir
λ [τc] =

1

λ

∑
Xj∈Xλ

1{SIR(Xj , o, Lλ) < c}δXj .

According to Corollary 1.2 the probability for the eventEup−dir
λ,c,b is exponentially decaying at a rate λJup−dir(c, b)

where
Jup−dir(c, b) = inf

ν: νup−dir[τc](Br(o))>b
h(ν|µ).

Here we used the definition νup−dir[τc](Br(o)) =
∫
Br(o)

1{SIR(x, o, ν) < c}ν(dx). Now we show that all
minimizers preserve the rotational symmetry in the direct uplink scenario.

Proposition 7.1. Let µ be a rotation-invariant intensity measure on Br(o) that has a strictly positive density
with respect to the Lebesgue measure on Br(o). In the direct-communication case, all minimizers in Jup−dir

are rotationally invariant.

Proof. Let f(r) denote the radial density of µ with respect to the restriction of H2 on Br(o). Further, let
ν ∈ M(Br(o)) be absolutely continuous with respect to µ, where the density will be denoted by g. Then, we
define a new measure ν ′ ∈M(Br(o)) whose density g′ w.r.t. µ is given by

g′(x) = g′(|x|) =
1

2π|x|

∫
∂B|x|(o)

g(y)H1(dy)

whereH1 denotes the one-dimensional Hausdorff measure. Note that

νup−dir[τc](Br(o)) = (ν ′)up−dir[τc](Br(o)). (19)

We claim that if ν is not rotation invariant, i.e.,H2({g 6= g′}) > 0, then∫
Br(o)

g(x)f(|x|) log g(x)dx >

∫
Br(o)

g′(x)f(|x|) log g′(x)dx. (20)

But this, together with (19), would imply that ν can not be a minimizer of Jup−dir. In order to show (20), let

R = {0 < s ≤ r : there exists x ∈ ∂Bs(o) with g(x) 6= g′(x)}
be the set of radii such that g is not constant on ∂Bs(o). Note that also

H2({x ∈ Br(o) : |x| ∈ R}) ≥ H2({g 6= g′}) > 0.

Then, by the coarea formula, which allows the disintegration into radii and angles (see [14]), it suffices to show
that

1

2πs

∫
∂Bs(o)

g(x) log g(x)H1(dx) > g′(s) log g′(s),

for all s ∈ R, whereH1 denotes the 1-dimensional Hausdorff measure. This is equivalent to

1

2g′(s)πs

∫
∂Bs(o)

g(x) log g(x)H1(dx) > log g′(s),

for all s ∈ R. Now, using the convexity of the function − log, an application of Jensen’s inequality shows that

− 1

2g′(s)πs

∫
∂Bs(o)

g(x) log
1

g(x)
H1(dx) ≥ log g′(s),

where equality occurs if and only if g(x) is almost surely constant on ∂Bs(o). �

Next, we provide an approximate description of the minimizers in the direct uplink communication case. First
note that the decay of the path-loss function implies that it is entropically more efficient to increase the interfer-
ence at the origin by placing more users close to the base station. Second, if the interference at the origin is
held fixed, then the SIR decays with the distance of the user to the base station. Hence, users with bad QoS
will be located at the boundary rather than the center of the cell. The idea for the approximation is the following.
We fix a radius r ≥ ρ ≥ 0 and compute the minimizer of the relative entropy under the constraint that a given
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SIR-threshold c is met precisely at radius ρ. In particular, this implies that in the region {x ∈ Br(o) : |x| > ρ}
every user is disconnected. In order to achieve the desired proportion of disconnected users b we use a flat
profile in the outer annulus, since it is entropically favorable. The optimization has to be performed now over
the radius ρ to balance the entropic costs of creating interference at the origin and increasing the number of
disconnected users in the outer annulus.

Let µ be again the two-dimensional Lebesgue measure restricted to Br(o). Using variational calculus, as
presented for example in [15], we derive an expression for minimizers of

inf
ν: SIR((ρ,0),o,ν)=c

h(ν|µ)

where r ≥ ρ ≥ 0 is a prescribed radius. The constraint under the infimum forces ν to have precisely `(ρ)/c
interference at the origin. As we have seen before, we can assume that a minimizer ν has a radial symmetric
density f w.r.t. µ. Since ν is an extremal point of h under the constraint∫ r

0
2πsf(s)`(s)ds =

`(ρ)

c

using [15, Theorem 1], there exists a constant αρ such that the minimizing density has the form

fρ(s) = exp(αρ`(s)).

Using this density in the region {x ∈ Br(o) : |x| ≤ ρ} creates entropic costs of the form

γint(ρ) = h(ν�Bρ(o)|µ�Bρ(o)) = 2π

∫ ρ

0
sfρ(s)[log fρ(s)− 1]ds+ ρ2π

= 2π

∫ ρ

0
seαρ`(s)[αρ`(s)− 1]ds+ ρ2π.

In order to have b users in the outer annulus using a flat profile, the density must be b/(π(r2 − ρ2)). The
entropic costs of using this density in the outer annulus are given by

γout(ρ) = h(ν�Br(o)\Bρ(o)|µ�Br(o)\Bρ(o))

= 2π

∫ r

ρ

sb

π(r2 − ρ2)
[log

b

π(r2 − ρ2)
− 1]ds+ π(r2 − ρ2)

= b log
b

π(r2 − ρ2)
− b+ π(r2 − ρ2).

Hence, we need to numerically compute αρ from the equation
∫ r

0 2πseαρ`(s)`(s)ds = `(ρ)
c and then optimize

ρ 7→ 2π

∫ ρ

0
seαρ`(s)[αρ`(s)− 1]dr − b log[π(r2 − ρ2)].

For the minimizing value ρmin this leads to an approximate minimizing density of the form

f(s) = eαρmin`(s)1s≤ρmin +
b

π(r2 − ρ2
min)

1r≥s>ρmin .

In Figure 2, we compare this density with the density observed by numerical simulations in a specific parameter
set. This is the content of the next paragraph.
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FIGURE 2. Plot of the spatial intensity as a function of the radius in black. The corresponding
approximation result is shown in red.

In order to compare the asymptotic results, as λ tends to infinity, with situations with finitely many users we
present here some numerical simulations. Let us fix r = 5, `(s) = min{1, s−4}, b = 0.1, λ = 50 and

c = c0 and consider the event Eup−dir
50,c0,0.1

. In Figure 3 we present two realizations of the process where the left

one is a typical configuration of users and the right one is a configuration which is an element of Eup−dir
50,c0,0.1

.
In accordance with Proposition 7.1, in the rare configuration, no breaking of the rotational symmetry can be
observed. Under further inspection, a slightly higher intensity of users close to the origin can be detected. This
higher intensity has the effect to create more interference around the origin leading to a screening effect. In
such a situation it is more likely for users to be unable to communicate with the base station.

FIGURE 3. Realizations of the direct communication network model. The typical realization
on the left side shows no points unable to communicate with the base station at the origin. In
the rare realization on the right side, the red users are unable to communicate with the base
station.
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Besides screening there is another possibility for the process to create an unexpectedly large number of users
with bad connection quality. That is, to increase the number of users close to the boundary of the disk, since
they become isolated more easily.

We have performed N = 108 simulation runs. Using these simulations we obtained an estimate probability of
the event Eup−dir

50,c0,0.1
given by approximately 1.8 × 10−6. The black line in Figure 2 shows the radial intensity

after performing a kernel-density estimate. In particular, we see that the intensity is substantially larger close to
the origin, accounting for the screening effect, and the intensity is larger close to the cell boundary, accounting
for isolation.

We want to mention that the plot of the density function in Figure 2 depends to a certain extent on the parameters
of the kernel-density estimates. In particular, since there can not be any users below zero and above 5, the
kernel-density estimate tends to obscure the actual observations very close to the boundaries. In the plot we
compensate for these effects by first mirroring users in our observations at the boundaries and then applying the
kernel-density estimates. Another practical issue we want to address is the following. For the radial density plot,
every observed user at radius s must be given a weight proportional to 1/s. This leads to a certain instability
very close to the origin.

7.2. Direct downlink communication. Also in this case, we want to analyze configurations in the rare event,
where an unexpected proportion of users experiences a bad QoS. More precisely we look at the event

Edo−dir
λ,c,b = {Ldo−dir

λ [τc](Br(o)) > b},

which describes the existence of at least λ b users inBr(o) that experience a connection quality that is less than
c. In the direct downlink case, under a flat a priori intensity µ, the expected minimum QoS is not necessarily
attained at the boundary of the disk Br(o), but close to boundary. This is due to the fact, that for users at
the boundary, although the numerator in the SIR is minimum, there are fewer users in the vicinity, so that
the expected interference for users away from the boundary is higher. Hence, the denominator of the SIR
is not minimal for users at the boundary and the two competing effects balance each other at some radius
0 < s0 < r.

Set r = 5 and `(s) = min{1, s−4}. The expected minimum QoS is close to the expected QoS c0 at the
boundary, which is much easier to compute

c0 =
5−4∫

B5(o) min{1, |x− 5e1|−4}dx
≈ 5.5× 10−4.

InEdo−dir
λ,c,b we set c = 0.91c0 to compensate for the non-minimality of c0 and for the fact, that in our simulations

we have to work with a finite intensity λ, but c0 is a limiting quantity as λ tends to infinity. In particular for large
enough λ and b > 0, Edo−dir

λ,c,b is a rare event.

In Figure 4 we present two realizations of the process where the left one is a typical configuration of users and
the right one is a configuration which is an element of Edo−dir

100,c,0.02. In the atypical configuration, the group of
users with bad QoS forms a single localized cluster at the cell boundary. Here bad QoS is a consequence of a
mutual screening effect due to too much interference at the user locations. This indicates a breaking of rotational
invariance in the set of minimizers. Heuristically multiple minimizers, ordered by the angle of the cluster of users
with bad QoS, can be constructed in the following way. LetX be a realization and σ(X) the angle of the cluster
centroid. Further let fα : R2 → R2 be the rotation by the angle α, then f−σ(X)+α(X) normalizes the angle
of the cluster centroid of X to α. Now let ν be a minimizer, then the rotational invariance of the objective
function implies that also να = ν(f−1

−σ(·)+α(·)) is a minimizer for all angles α. But since να(σ) = α, we have

constructed multiple minimizers indexed by α ∈ (0, 2π].
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FIGURE 4. Realizations of the direct downlink communication network model. All users and
the base station contribute to the interference. Only green users can be reached directly from
the base station.

7.3. Relayed communication. As illustrated by our simulations discussed above, in direct-communication net-
works the event of observing a large number of frustrated users who cannot attain a desired QoS is often caused
by a large number of users close to the cell boundary. Indeed, the path-loss of those users is so pronounced
that even a small increase of the interference at the target can lead to the event of not achieving the desired
QoS. In case of relayed communication there can be similar effects observed as in direct communication, but
new phenomena also arise. Still the effect are similar in case of relayed up- and relayed downlink, so we will
focus only on the uplink case. As in the case of direct communication, a way to create configurations in the
frustration event

Eup
λ,c,b = {Lλ[τc](Br(o)) > b},

where the parameters c and b are chosen appropriately, is to screen the origin or to increase isolated users far
away from the origin.

In contrast to the direct-communication case, in relayed communications, bad QoS can be a consequence of
the absence of relays. This can be seen in the following setup using simulations. Assume the a priori density
µ to be rotational invariant with high density in a small circle around the origin and close to the boundary of
the disk. Additionally, assume that µ is zero everywhere else except for a small strip at approximately half the
radius of the disk, here it is positive but low. Users close to the boundary are too far away from the base station
to establish direct communication but can connect via users in the strip serving as relays. The left image in
Figure 5 shows a typical realization according to λµ. In order to see a configuration in Eup

λ,c,b it is entropically
not very costly to avoid placing users in the strip, and even cheaper to do that in a small section of the strip only.
Such a realization is shown on the right side of Figure 5.
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FIGURE 5. Realizations of the relayed communication network model for an inhomogeneous
intensity µ. The typical realization on the left side shows green points, able to communicate
with the base station at the origin and blue points, able to communicate with the base station
using green points as relays. In the rare realization on the right side, the asymmetrically dis-
tributed red users are unable to communicate with the base station due to missing relays in
the strip.
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