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Abstract

We consider a system of two viscoelastic bodies attached on one edge by an adhesive where a
delamination process occurs. We study the dynamic of the system subjected to external forces,
suitable boundary conditions, and an unilateral constraint on the jump of the displacement
at the interface between the bodies. The constraint arises in a graph inclusion, while the
delamination coefficient evolves in a rate-independent way. We prove the existence of a weak
solution to the corresponding system of PDEs.

1 Introduction

The mathematical problem. Within this paper we show the existence of solutions to the
following evolution problem: we consider a system of two sufficiently smooth open and connected
sets Ω1 and Ω2 in Rd, with d ≤ 3, which have Γ as common boundary. Let us denote by ν the
normal versor on Γ oriented in such a way that it points outside Ω2 (inside Ω1), and by n the
unit outer normal to ∂Ω = ∂DΩ ∪ ∂NΩ. Given an external force f : [0, T ]× Ω → Rd, a boundary
traction g : [0, T ]×∂NΩ→ Rd, and a boundary datum w : [0, T ]×∂DΩ→ Rd, we look for functions
u : [0, T ]× (Ω = Ω1 ∪ Ω2)→ Rd, z : [0, T ]× Γ→ [0, 1], and η : [0, T ]× Γ→ R, satisfying

ρü− div σ = f on Ω, (1.1a)

σ = C0e(u) + µC1e(u̇), (1.1b)
σν = K[u]z + ην on Γ, (1.1c)
ż ≤ 0, (1.1d)
1
2

K[u] · [u] < α ⇒ ż = 0, (1.1e)

and

ż(
1
2

K[u] · [u]− α) = 0 on {z > 0} ⊂ Γ, (1.1f)

1
2

K[u] · [u]− α ≤ 0 on {z > 0} ⊂ Γ, (1.1g)

coupled with boundary conditions

u = w on ∂DΩ,
∂u

∂n
= g on ∂NΩ, (1.1h)

and with the constraint

η ∈ ∂I[0,+∞)([u] · ν). (1.1i)

Here ∂I[0,+∞) denotes the subdifferential of the indicator function I[0,+∞) of the interval [0,+∞),
defined as the map that takes the value 0 on such interval, and +∞ outside it. In the equations
above [u] := u2− u1 represents the jump of u at Γ, i.e., the difference between the two traces of u,
respectively from Ω2 and Ω1. The real function α ≥ 0 on Γ is assumed constant in time, and C0, C1,
and K, are positive definite and symmetric tensors mapping Rd×d into itself, e(u) := 1

2 (∇u+∇uT )
is the symmetrized gradient of u, and ρ and µ are positive constants.

The system of equations above describes the evolution of a delamination process. Here Ω1

and Ω2 are the reference configurations of two visco-elastic bodies whose displacement is represented
by u. The tensors C0 and C1 are the elasticity tensor and the visco-elasticity tensor, respectively.
The variable σ represents the Cauchy stress tensor, so that the quantity σν is the force that the
body Ω2 acts on Ω1. The two bodies are glued along the interface Γ, and the efficacy of the adhesive
is represented by the variable z. An high value of z provides a great effect of the glue, while a
small value means that deterioration of the adhesive, consequence of high stresses and movements
of the bodies, has taken place and hence the glue is less effective. In particular z = 1 means that
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the adhesive is perfectly sane, and z = 0 corresponds to the status when all its macromolecular
links have been broken and no resistance to bodies separation is observed. This dependence arises
in the equation for the interaction force between the bodies (1.1c). The variable η in this equation
represents a reaction which must avoid interpenetration of the bodies. Specifically, the constraint
of interpenetration

[u] · ν ≥ 0, (1.2)

provides an instantaneous normal reaction at Γ as soon as [u] ·ν = 0, forcing the bodies to separate.
Equation (1.1i) is equivalent to the conditions

[u] · ν > 0 ⇒ η = 0, (1.3)
[u] · ν = 0 ⇒ η ≤ 0, (1.4)

which might formally describe such phenomenon. Notice that such description is only formal, since
the variable η, as we will see, is not defined in a pointwise sense (both in time and in space), but it
will be well defined only in the dual of a suitable Sobolev space. This unilateral constraint is the
classic Signorini frictionless condition, and a process satisfying it is also referred to as evolution in
MODE I, in contrast with evolutions in MODE II, where the constraint is bilateral, i.e., [u] ·ν = 0.
The latter corresponds to processes where only shear displacements are allowed at the interface.

We study this process in the setting of a dynamic evolution, arising in the hyperbolic
equation (1.1a) (that, to be precise, turns out to be parabolic due to the presence of the damping
term e(u̇) in (1.1b)). Here ρü is the inertial term, ρ being the mass density of the body, assumed
constant, and the constant µ in (1.1b) is the viscosity of the material.

Delamination framework and main result. Delamination models are more and more
studied in the recent years. As an introduction to evolution in delamination, see, e.g., [11] where
the quasistatic model is considered, and [16] for a dynamic model where also thermal effects are
considered (for evolution problems in delamination we also quote, among many, [14], [4], [15], [17],
and references therein). The evolution of the internal variable z is based on the concept of Frèmond
delamination (see [9]). The model we consider was previously introduced by T. Roubicek, who
proves existence of solution of evolution in MODE II (i.e., with the bilateral constraint [u] · ν = 0)
in [20]. Then the same model was considered with the addition of viscosity of the adhesive in the
subsequent papers [21] and [22]. Notice that in our equations no spacial derivatives of z appear,
even if some space regularity of z can be derived by the equation (1.1c), since the value of z at x ∈ Γ
depends implicitly on the values at the neighbor points, by such equation. However there exist
other models of delamination where partial derivatives of z enter in the equations (see, e.g., [4] and
references therein). In our model it is remarkable the presence of the viscosity term µC1e(u̇), that
provides more regularity of the displacement. Without this, it seems not possible, at the present
stage, to provide solutions to systems (1.1) with the unilateral constraint (1.2), not even in a very
weak sense.

The main result of the paper states the existence of weak solutions to (1.1), thus extending
the results of existence in [20] to evolutions in MODE I. In order to prove existence of a solution
to problem (1.1) for every initial data for u, u̇, and z in suitable spaces, we need to reformulate the
equations in a weaker sense. In particular such weak formulation is needed to treat the unilateral
constraint (1.2), which in turn represents the principal difficulty for the proof of existence. The
main tool to face it is inspired by the pioneer paper [5], whose arguments we adapt to our situation.
Different approaches to unilateral constraints for contact problems in the framework of dynamic
evolutions (i.e., of hyperbolic systems of PDEs) exist and can be found in [2]. Here the obstacle is
treated in an implicit way, by the use of variational inequalities.

The simplified model. To study problem (1.1) we first make some nonrestrictive sim-
plifications. In what follows we assume that the constants ρ and µ are equal to 1. Moreover, since
we treat homogeneous materials, the elasticity tensors C0, C1, and K, are assumed constant, and
without lose of generality we suppose they are all equal to Id, the identity matrix. Since we always
fix a Dirichlet boundary datum, the Korn inequality ensures that we can replace the symmetrized

2



gradient by the full gradient ∇u. The resulting model and the original one, apparently different,
are instead mathematically equivalent, the technicalities involved in the simplified problem being
exactly the same, and all the results can be trivially adapted to the original case. On the other hand
we want to study a large class of unilateral constraints for the normal jump of the displacements,
so that we are led to replace the function I[0,+∞) by a general lower semicontinuous and convex
function j : R → [0,+∞), with j(0) = min j = 0. After simplifications, the resulting system of
equations reads

ü−∆u−∆u̇ = f on Ω, (1.5a)
(∇u+∇u̇)ν = [u]z + ην on Γ, (1.5b)
ż ≤ 0, (1.5c)

ż(
1
2
|[u]|2 − α) = 0, (1.5d)

and, on the set {z > 0} ⊂ Γ,

1
2
|[u]|2 − α ≤ 0, (1.5e)

with the constraint

η ∈ ∂j([u] · ν). (1.5f)

Such system is coupled with the boundary conditions

u = w on ∂DΩ, ∇u · n = g on ∂NΩ, (1.5g)

for some boundary datum w : ∂DΩ → Rd and boundary force g : ∂NΩ → Rd. Equation (1.5d)
implies the threshold condition

1
2
|[u]|2 < α ⇒ ż = 0. (1.6)

In Section 3 we reformulate Problem (1.5) in a weak sense. Such weak form is reminiscent
of the energetic formulations for rate-independent systems (see [12], [13], and [19]; for the general
theory of rate-independent systems, see [11]). The energetic formulation of a rate-independent
system that evolves in a time interval [0, T ] usually arises in a equilibrium condition which holds
at every time t ∈ [0, T ], and an energy equality, which provides that the energy stored and dis-
sipated by the system balances the work done on the system by the external forces. Actually
our formulation does not provide an energy balance, but only an energy inequality, since at this
stage we are not able to prove that the additional dissipation due to the presence of the unilateral
constraint (1.5f) exactly balances the external work. We can only show that the energy dissipated
by the constraint, which provokes instantaneous reaction at Γ and then discontinuities in time of
the velocity field u̇, is less or equal to the external work. On the other hand, we prove that the
flow rule for the variable z is still satisfied in a weak sense, condition expressed by property (b’) of
Definition 3.1 below. Let us emphasize that this equation is not needed in presence of an energy
balance, since it can be readily deduced from it and the other weak equations of motion.

The approximate problem. In order to prove our existence result (Theorem 4.1), we
proceed approximating the Problem (1.5) by a regularized one. Specifically, we fix ε ∈ (0, 1), and
denote by jε the Moreau-Yosida regularization of j. Denoting the subdifferential of jε by βε := ∂jε,
i.e., the Yosida approximation of ∂j, we study the approximate problem

üε −∆uε −∆u̇ε = f on Ω, (1.7a)
(∇uε +∇u̇ε)ν = [uε]zε + βε([uε] · ν)ν on Γ, (1.7b)
żε ≤ 0, (1.7c)

żε(
1
2
|[uε]|2 − α) = 0, (1.7d)
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and, on the set {zε > 0} ⊂ Γ,

1
2
|[uε]|2 − α ≤ 0. (1.7e)

The constraint is implicit in (1.7b), where, noting by ηε the reaction term (thus replacing βε([uε]·ν)
by ηε), it reads

ηε ∈ ∂jε([uε] · ν). (1.7f)

Also in this approximate problem, the existence of a solution is provided in the framework
of an energetic-type formulation. This consists of a weak equation of motion, a weak formula for
the flow rule, and an energy balance. The former reads

〈üε, ϕ〉+ (∇u̇ε,∇ϕ) + (∇uε,∇ϕ) + 〈βε([uε] · ν), [ϕ]〉 = 〈f, ϕ〉 − 〈z[uε], [ϕ]〉, (1.8)

for all test function ϕ in an appropriate space, and where the duality product 〈·, ·〉 are intended
in the respective topology. The first part of the flow rule is expressed by the condition that the
function zε is nonincreasing in time, and that at every time t ∈ [0, T ] it holds

either
1
2

[uε(t, x)] ≤ α(x) or zε(t, x) = 0 for a.e. x ∈ Γ. (1.9)

As already mentioned, equation (1.7d) can be deduced from the previous two conditions and the
energy balance

1
2
‖u̇ε(t)‖2 +

∫

Γ

jε([uε(t)] · ν) +
1
2

∫

Γ

zε(t)[uε(t)]2dx+
1
2
‖∇uε(t)‖2

+
∫ t

0

‖∇u̇ε‖2dt−
∫

Γ

αzε(t)dx =
1
2
‖v0‖2 +

∫

Γ

jε([u0] · ν)dx+
1
2

∫

Γ

z0[u0]2dx

+
1
2
‖∇u0‖2 −

∫

Γ

αz0dx+
∫ t

0

〈f, u̇ε〉dt, (1.10)

valid for every time t ∈ [0, T ].
Benefiting of the regularity of jε, the existence of an energetic solution to the approximate

problem is readily obtained by adapting standard results in delamination theory. For this we
mainly refer to [20] and references therein.

Then we pass to the limit as ε tends to 0. Thanks to standard a-priori estimates it is
possible to show that the triple (uε, zε, βε([uε] ·ν)) tends to a triple (u, z, η) with respect to suitable
topologies, the latter being an energetic solution to Problem (1.5) as in Definition 3.1 below. In
particular, it is seen that condition (1.9) passes to the limit, while in order to let (1.8) pass to
the limit we have still to integrate it with respect to time, and thus getting rid of the second time
derivative of u by parts integration. The resulting weak equation is

− ((u̇, ϕ̇)) + (u̇(T ), ϕ(T )) + ((∇u̇,∇ϕ)) + ((∇u,∇ϕ)) + 〈〈η, [ϕ] · ν〉〉Γ

= (u1, ϕ(0)) + 〈〈L, ϕ〉〉 − ((z[u], [ϕ]))Γ, (1.11)

where the duality products are intended in appropriate spaces (see Section 2). As for the energy
balance, as said, we prove that an energy inequality holds at the limit. In order to guarantee that
(1.7d) is still valid at the limit, we prove an additional condition, obtained from (1.5d) integrating
by parts in time, namely

∫

Γ

z(t2)(
1
2
|[u(t2)]|2 − α)dx−

∫

Γ

z(t1)(
1
2
|[u(t1)]|2 − α)dx−

∫ t2

t1

∫

Γ

z([u] · [u̇])dxdt = 0, (1.12)

for every time interval [t1, t2] ⊂ [0, T ].
The main difficulty in the proof of Theorem 4.1 relies in the lack of compactness of the

family of functions βε([uε] · ν) in L2([0, T ] × Γ). Indeed it is possible to prove that these terms
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are only uniformly bounded in the larger space H−1([0, T ], H−
1
2 (Γ)). Therefore, since the limit

function η only belongs to H−1([0, T ], H−
1
2 (Γ)), in order that (1.5f) makes sense, we have to

relax the notion of subdifferential ∂j. This relaxation is described in Section 2.1 where we first
extend the operator j to a new operator J defined on the space L2([0, T ] × Γ), then we restrict
it on H1([0, T ], H

1
2 (Γ)) and consider its subdifferential with respect to this new topology, noted

by βw. Within this weaker notion of constraint, it is no longer true that (1.5f) is satisfied in
a pointwise sense. Nevertheless it is still possible to recover some regularity from the condition
η ∈ βw([u] · ν)., and a finer description of it also elucidates the link between the strong pointwise
inclusion (1.5f) and that intended in the weak sense. This is a standard procedure which has been
adapted from [23], [5], and is based upon convex analysis results contained in [6] and [10]. Similarly
defining the correspondent operators J ε on L2([0, T ] × Γ), it is shown that their subdifferentials
∂J ε, still noted by βε, tend in the sense of graphs to the weak operator βw (see Lemma 2.3). Then,
adapting standard results of the theory of maximal monotone operators allows us to prove that
the limit constraint is satisfied, namely,

η ∈ βw([u] · ν). (1.13)

The previous argument, synthesized in Section 2.2 and Step 3 of the proof of Theorem 4.1 was
previously used in [5], where the authors consider a general obstacle acting on the whole Ω. The
argument turns out to be very general and can be easily adapted to the present situation.

Structure of the paper. The paper is organized as follows: in Section 2 we introduce
the notation and all the preliminaries on the mechanical setting of the problem. Moreover, in
Subsections 2.1 and 2.2 we describe the general procedure to relax and approximate the constraint.
In Section 3 we introduce our notion of weak solution to Problem 1.5a and provide the existence of
approximate solutions. The last Section 4 is devoted to the proof of the existence result, Theorem
4.1.

2 Preliminaries

Setting. The apparatus for the delamination process consists of two elastic bodies, whose reference
configuration is represented by the disjoint bounded open sets Ω1 and Ω2. We assume that Ω1

and Ω2 are connected, and that their common boundary Γ := ∂Ω1 ∩ ∂Ω2 has positive (d − 1)-
dimensional Hausdorff measure, i.e., Hd−1(Γ) > 0. We denote by ν the unit normal vector to Γ,
oriented in such a way that it points from Ω1 into Ω2. We set

Ω := Ω1 ∪ Ω2 while Ω̃ := int(Ω1 ∪ Ω2),

the latter being the inner part of the closure of Ω. The external boundary of Ω, i.e. ∂Ω̃, splits
as ∂Ω̃ = ∂DΩ ∪ ∂NΩ, representing the parts of the boundary where we will impose Dirichlet and
Neumann conditions, respectively. We also denote by ∂DΩ1 := ∂DΩ∩∂Ω1 and ∂DΩ2 := ∂DΩ∩∂Ω2,
and we will make the geometric assumptions that both ∂DΩ1 and ∂DΩ2 have positive (d − 1)-
dimensional Hausdorff measures. We denote by n the external unit normal to ∂Ω̃. Crucial will be
the hypothesis that

d(∂DΩ,Γ) > 0. (2.1)

The latter, where d(·, ·) is the Hausdorff distance between sets, ensures that there exists a smooth
function ψ on Rd that takes the value 0 on ∂DΩ and 1 on Γ.

Notation. We introduce the space

V := {u ∈ H1(Ω) : u = 0 on ∂DΩ}, (2.2)

with dual V ′. Note that in general u ∈ V does not belong to H1(Ω̃), since it might have nonzero
jump on the interface Γ. The jump of u ∈ V on Γ, denoted by [u], is defined by [u] := u2− u1, the
difference between the traces of u on Γ, from Ω2 and Ω1 respectively. With this convention the

5



scalar product [u] ·ν represents the normal displacement between the two bodies, which in turn will
be positive if they are a positive distance far, while a negative value means that interpenetration
is occurring.

We also introduce the following space

V := H1([0, T ], V ). (2.3)

Similarly, for all t ∈ [0, T ], we introduce the space Vt := H1([0, t], V ). Let

Z := L2(Γ, [0, 1]). (2.4)

The following space will play a crucial role in the following discussion.

H := H1([0, T ], H
1
2 (Γ)), (2.5)

and its counterpart Ht := H1([0, t], H
1
2 (Γ)) for all t ∈ [0, T ]. Sometimes we will deal with

H̃2(Ω) := {u ∈ H2(Ω,Rd) : u = 0 on ∂Ω̃}, (2.6)

and with its dual space, denoted by H̃−2(Ω).
The scalar products in L2(Ω,Rd) and L2(Γ) are noted by

(·, ·) (·, ·)Γ,

respectively, while the scalar products in L2([0, T ]× Ω,Rd) and L2([0, T ]× Γ) are

((·, ·)) ((·, ·))Γ.

This convention reflects the idea that integration only in space is represented by only one bracket,
while double brackets are used for integration both in time and space. When we integrate in a
subinterval [0, t] ⊂ [0, T ] we will add a label t, namely,

((·, ·))t ((·, ·))Γ
t ,

are the scalar products in L2([0, t]×Ω,Rd) and L2([0, t]×Γ), respectively. The symbol ‖ ·‖ usually
denotes both the norms in L2(Ω,Rd) and L2(Γ). The norm in a general Banach space X is denoted
by ‖ · ‖X .

The duality pairing between a Banach space of functions on Ω and its dual (for instance
the duality between V ′ and V ) is denoted by 〈·, ·〉, whereas if the functions are defined on Γ we will
use the notation 〈·, ·〉Γ (for instance the duality between H

1
2 (Γ) and H

1
2 (Γ)′). We use the double

brackets when we deal with a space of functions in the time-space. For instance, the duality pairing
between L2([0, T ], V ′) and L2([0, T ], V ) is denoted by 〈〈·, ·〉〉, and for any t ∈ (0, T ), the symbol
〈〈·, ·〉〉t denotes the duality pairing between L2([0, t], V ′) and L2([0, t], V ). The duality pairing in H
and Ht are denoted by 〈〈·, ·〉〉Γ and 〈〈·, ·〉〉Γt , respectively.

We define, for all u ∈ H1(Ω),

V (u) :=
1
2
|[u]|2. (2.7)

It is also convenient to define the operator T : Z × V → V ′ as

〈T (z, u), ϕ〉 =
∫

Γ

z[u] · [ϕ]dx (2.8)

for all ϕ ∈ V . Since 0 ≤ z ≤ 1, by the continuity of the trace operator from V in L2(Γ) (whose
norm is denoted by C > 0), we have

∫

Γ

z[u] · [ϕ]dx ≤ ‖[u]‖‖ϕ‖ ≤ C‖u‖V ‖ϕ‖V , (2.9)
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which implies T (z, u) ∈ V ′ with ‖T (z, u)‖V ′ ≤ C‖u‖V , for all (z, u) ∈ Z × V .

Extension operators. We also need to introduce the linear operators Si : H
1
2 (Γ,Rd)→

V , i = 1, 2, defined as follows. For all ϕ ∈ H
1
2 (Γ,Rd) we define u(ϕ) as the unique harmonic

function in H1(Ω1 ∪ Ω2,Rd) with boundary condition u = ϕ on Γ, u = 0 on ∂ΩD, and ∂u
∂n = 0 on

∂ΩN . Then we define

Si(ϕ) := u(ϕ)χΩi (2.10)

for i = 1, 2, where χΩi is the characteristic function of Ωi. It is easy to check that the operator Si
is linear and continuous, i.e., there exists a constant c > 0 such that

‖Si(ϕ)‖V ≤ c‖ϕ‖
H

1
2 (Γ,Rd)

, (2.11)

for i = 1, 2, and that [S1(ϕ)] = −[S2(ϕ)] = ϕ.

External forces. If there are external forces f ∈ L2(Ω,Rd) and g ∈ L2(∂NΩ,Rd) the
total external load is defined as

〈L, ϕ〉 := (f, ϕ) +
∫

∂NΩ

g · ϕdx,

for all ϕ ∈ V . It easily follows that L ∈ V ′. The weak equation for the stress field σ ∈ L2(Ω,Rd×d),
that is

(σ,∇ϕ) = (f, ϕ) +
∫

∂NΩ

g · ϕdx,

for all ϕ ∈ V , implies that
div σ = f a.e. on Ω,

and
σ · n = g a.e. on ∂NΩ.

In what follows, we will only assume that there exists an external load L ∈ V ′, so that, considering
also the inertial term, the equation of motion becomes

〈ü, ϕ〉+ (σ,∇ϕ) = 〈L, ϕ〉, (2.12)

for all ϕ ∈ V . Equations (1.5a) and (1.5b), when coupled with homogeneous Dirichlet and Neu-
mann conditions, thanks to notations (2.12) and (2.8), can be expressed in weak form as

〈ü, ϕ〉+ (∇u̇,∇ϕ) + (∇u,∇ϕ) + 〈β([u] · ν), ϕ〉 = 〈L, ϕ〉 − 〈T (z, u), ϕ〉. (2.13)

for all ϕ ∈ V . Unfortunately we are not able to provide a solution of (2.13) for all times t ∈ [0, T ],
but we will further need a weaker formulation (see Section 3).

As far as the evolution of the delamination variable z is concerned, we assume it satisfies
equations (1.5c), (1.5d), and (1.5e). Here α ∈ L∞(Γ) is a positive function that represents the
delamination threshold, defined as the potential that the elastic stored energy of the adhesive
V ([u]) must reach to start the delamination process (equation (1.6)). We assume that

α > c a.e. on Γ, (2.14)

for a fixed positive constant c > 0.

2.1 The unilateral constraint

We assume that j : R → [0,+∞] is a convex and lower semicontinuous function such that j(0) =
min j = 0. We denote by β := ∂j the subdifferential of j, which turns out to be a maximal
monotone operator from R to 2R.
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We introduce the functional J on L2(Γ) as

J(v) :=
∫

Γ

j(v)dx v ∈ L2(Γ), (2.15)

where the value of the integral may well be +∞ if j(v) /∈ L1(Γ). The subdifferential of J in H is
defined as the multivalued operator ∂J from L2(Γ) to 2L

2(Γ) such that, given u ∈ L2(Γ),

L2(Γ) 3 v belongs to ∂J(u)⇔ J(w)− J(u) ≥ (v, w − u)Γ ∀w ∈ L2(Γ). (2.16)

It is well-known that ∂J coincides with the operator β in L2(Γ), in the sense that, v ∈ ∂J(u) if
and only if v(x) ∈ β(u(x)) for a.e. x ∈ Γ. In a similar way we introduce the functionals J and Jt
on L2([0, T ], L2(Γ)) and L2([0, t], L2(Γ)), respectively, by

J (v) :=
∫ T

0

∫

Γ

j(v)dxds Jt(v) :=
∫ t

0

∫

Γ

j(v)dxds. (2.17)

The multivalued operator ∂J on L2([0, T ]×Γ) into 2L
2([0,T ]×Γ), subdifferential of J , is defined as

follows:

L2([0, T ]× Γ) 3 v belongs to ∂J (u)⇔ J (w)− J (u) ≥ ((v, w − u))Γ, (2.18)

for all w ∈ L2([0, T ]×Γ). As for J , the subdifferential of J (and the analogue Jt) is still interpreted
in the pointwise form β, and we will still adopt the notation β = ∂J .

Relaxation of the constraint. We want now to introduce a relaxed notion for the
operator β, seen as an operator on the space H ⊂ L2([0, T ], L2(Γ)). To this aim, we first set
JH := J xH, the restriction of J to H. Hence we can consider its subdifferential ∂JH with respect
to the duality pairing between H and H′. Namely, if ξ ∈ H′ and u ∈ H, we say that

ξ ∈ ∂JH(u) ⇔ JH(w)− JH(u) ≥ 〈〈ξ, w − u〉〉Γ ∀w ∈ H. (2.19)

Consistently with the definition of β, we will denote the operator ∂JH by βw (w standing for
“weak”). Similarly proceeding for the functional Jt, we are led to define the subdifferential ∂Jt,H
of the operator Jt,H := JtxH, and thus using equivalently the notation βw,t.

In this general setting it is not true anymore that βw coincides with the operator β in
a pointwise sense. Indeed if v ∈ βw(u), the pointwise value of v is not anymore defined when
v ∈ H′ \ L2(Q). However we can still recover some regularity of v from the condition v ∈ βw(u).
Following the argument of [23, Prop. 2.1] (which, in turn, is based on the results of [7]), it is easily
seen that if ξ ∈ βw(u) then there exists a bounded Borel measure T such that 〈〈ξ, ϕ〉〉 =

∫ T
0

∫
Γ
ϕdT

for all ϕ ∈ H ∩ C([0, T ] × Γ). We thus say that the measure T represents ξ on C([0, T ] × Γ).
Moreover, we obtain the following relation between the measure T and the original constraint β
(cf. [7, Thm. 3] for further detail): noting as T = Ta+Ts the Radon-Nikodym decomposition of T ,
where Ta (Ts, respectively) is the absolutely continuous (singular, respectively) part with respect
to the L1 ×Hd−1 measure on [0, T ]× Γ, we then have

Tau ∈ L1([0, T ]× Γ), (2.20)
Ta(t, x) ∈ β(u(t, x)) for a.e. (t, x) ∈ [0, T ]× Γ, (2.21)

〈〈ξ, u〉〉 −
∫ T

0

∫

Γ

Tau dxdt = sup
{∫ T

0

∫

Γ

η dTs, η ∈ C([0, T ]× Γ), η ∈ [−1, 1]
}
. (2.22)

In other words, the absolutely continuous part Ta of T satisfies the constraint pointwise (in view
of (2.21)), while the singular part Ts is characterized by (2.22).

Moreover, it could be said more about condition (2.22), in the case that j = I[0,+∞).
Namely, denoting by Ts = ρ|Ts| the polar decomposition of Ts, where |Ts| is the total variation of
Ts, following the lines of [10, Thm. 3] one may prove that

ρ ∈ ∂I[0,+∞)([u] · n) |Ts| − a.e. in [0, T ]× Γ. (2.23)
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This means that the singular part of T is supported on the set where [u] · n = 0 and that here it
holds ρ = −1. In some sense, also the singular part of T is partially reminiscent of the expression
of the operator β.

Actually, the characterization (2.23) is proved in [10] in the case when H is replaced by
H1

0 (Ω), with Ω a bounded domain of RN , and may be likely extended to the present situation. We
drop the proof since it would be much technical and of low interest.

2.2 Approximation of J

For all ε ∈ (0, 1), we introduce the convex and lower semicontinuous map jε, the Moreau-Yosida
regularization of j. As for j, we set

βε := ∂jε,

the Yosida approximation of β, and recall that βε is globally ε−1-Lipschitz continuous
Similarly to J , we introduce the functional Jε on L2(Γ) as

Jε(v) :=
∫

Γ

jε(v)dx v ∈ L2(Γ), (2.24)

where again the value may well be +∞ if jε(v) /∈ L1(Γ). Similarly the functionals J ε and J εt on
L2([0, T ], L2(Γ)) and L2([0, t], L2(Γ)) are defined by

J ε(v) :=
∫ T

0

∫

Γ

jε(v)dxds J εt (v) :=
∫ t

0

∫

Γ

jε(v)dxds, (2.25)

respectively. The operator ∂J ε, subdifferential of J ε, is readily defined as

L2([0, T ]× Γ) 3 v belongs to ∂J ε(u)⇔ J ε(w)− J ε(u) ≥ ((v, w − u))Γ, (2.26)

for all w ∈ L2([0, T ] × Γ), and similarly ∂J εt , the subdifferential of J εt . Also in this situation the
operators ∂Jε, ∂J ε, and ∂J εt , coincide with the operator βε pointwise, that is, v ∈ ∂J ε(u) if and
only if v(t, x) ∈ βε(u(t, x)) for a.e. (t, x) ∈ [0, T ]× Γ.

Lemma 2.1. The operators Jε (J ε, and J εt ) converge to J (J and Jt, respectively) in the sense
of Mosco-convergence in L2(Γ) (L2([0, T ]× Γ) and L2([0, t]× Γ), respectively).

The proof of this is a consequence of the fact that jε ↗ j pointwise and of [1, Theorem
3.20].

We are now interested in restricting the operators J ε to the space H and looking at their
subdifferential in this new topology. First, the following can be said.

Lemma 2.2. There holds:

(a) The function βε is a monotone operator from H into H′.

(b) For all u ∈ H, the function βε(u) belongs to the subdifferential of J ε at u (denoted by ∂HJ ε),
seen as an operator from H into H′ (actually, ∂HJ ε is univalued and ∂HJ ε = βε).

Proof. To prove (a), we see that if v ∈ H it results βε(v) ∈ L2([0, T ], L2(Γ)) ⊂ H′ thanks to the
Lipschitz continuity of βε. Moreover, βε is a monotone operator on L2([0, T ], L2(Γ)), so that for
all u, v ∈ H

〈〈βε(u)− βε(v), u− v〉〉Γ = ((βε(u)− βε(v), u− v))Γ ≥ 0.

Let us prove (b). By definition, βε(u) belongs to the subdifferential of J ε at u as an
operator on L2([0, T ], L2(Γ)). Thus we have

〈〈βε(u), v − u〉〉Γ = ((βε(u), v − u))Γ ≤ J ε(v)− J ε(u),

for all v ∈ H, and the thesis follows.
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Now the desired approximation property of J ε is expressed by the following fact.

Lemma 2.3. The monotone operators βε = ∂HJ ε converge to the maximal monotone operator
∂HJ = βw in the sense of graphs, i.e.,

∀[x, y] ∈ βw ∃[xε, yε] ∈ βε such that [xε, yε]→ [x, y],

where the convergence is intended with respect to the strong topology of H×H′.
The proof is obtained thanks to the monotonicity of the functionals J ε, and then owing

to [1, Theorem 3.20] and [1, Theorem 3.66].
It is straightforward that Lemmas 2.2 and 2.3 apply also the the operators βεt and βt,w, for

every fixed t ∈ [0, T ].

The following Lemma will be crucial to prove our main result:

Lemma 2.4. Let the monotone operators An tends to the maximal monotone operator A in the
sense of graphs (operators from H into 2H

′
). Let vn ⇀ v weakly in H, ξn ⇀ ξ weakly in H′, and

assume ξn ∈ An(vn). If
lim sup〈〈ξn, vn〉〉Γ ≤ 〈〈ξ, v〉〉Γ,

then ξ ∈ A(v).

Proof. The proof is an adaptation of [1, Proposition 3.59]. Since An tends to A in the graphs
sense, for all [x, y] ∈ A there exists a sequence [xn, yn] tending to [x, y] strongly in H×H′. Then,
by monotonicity of An, we have

〈〈ξn − yn, vn − xn〉〉Γ ≥ 0. (2.27)

Passing to the limit we get

lim sup〈〈ξn, vn〉〉Γ ≥ 〈〈y, x〉〉, (2.28)

and so by hypothesis, 〈〈ξ, v〉〉Γ ≥ 〈〈y, x〉〉Γ, which is equivalent to

〈〈ξ − y, v − x〉〉Γ ≥ 0.

Now the thesis follows by the arbitrariness of [x, y] ∈ A and the maximality of A.

Remark 2.5. Let us remark that all the previous results do not appeal to the specific definition
of the space H. Indeed they hold true for a general Hilbert space H, provided that H ⊂ L2 ⊂ H′
is an Hilbert triple, i.e., the duality pairing between H′ and H satisfies 〈〈v, u〉〉 = ((v, u)) whenever
v ∈ L2.

3 Weak formulation

We are now in position to define the notion of energetic solution to Problem (1.5).

Definition 3.1. Let T > 0, let u0, v0 ∈ V , z0 ∈ Z, and L ∈ L2([0, T ], V ′). Then we say that a
triple (u, z, η) is an weak solution to (1.5) (of energetic type) on [0, T ] with initial conditions u0,
v0, and z0, if

u ∈ H1([0, T ], V ) ∩W 1,∞([0, T ], L2(Ω)), (3.1a)

u̇ ∈ H1([0, T ], H−1(Ω̃)) ∩BV ([0, T ], H̃−2(Ω)), (3.1b)

z ∈ L∞([0, T ],Z) ∩BV ([0, T ], L1(Γ)), (3.1c)
η ∈ H′, (3.1d)

is such that u(0) = u0, u̇(0) = v0, z(0) = z0, and satisfies conditions (a), (a’), (a”), (b), (b’), and
(c) below.
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(a) The following weak equation of motion holds: for all ϕ ∈ V we have

− ((u̇, ϕ̇)) + (u̇(T ), ϕ(T )) + ((∇u̇,∇ϕ)) + ((∇u,∇ϕ)) + 〈〈η, [ϕ] · ν〉〉Γ

= (v0, ϕ(0)) + 〈〈L, ϕ〉〉 − ((z[u], [ϕ]))Γ. (3.2)

Moreover

〈〈ü, ϕ〉〉+ ((∇u̇,∇ϕ)) + ((∇u,∇ϕ)) = 〈〈L, ϕ〉〉, (3.3)

for all ϕ ∈ H1([0, T ], H1
0 (Ω̃)), for all t ∈ [0, T ].

(a’) The following restricted weak equations of motion holds: for all t ∈ [0, T ] there exists ηt ∈
H′t ∩H′ such that

− ((u̇, ϕ̇))t + (u̇(t), ϕ(t)) + ((∇u̇,∇ϕ))t + ((∇u,∇ϕ))t + 〈〈ηt, [ϕ] · ν〉〉Γt
= (v0, ϕ(0)) + 〈〈L, ϕ〉〉t − ((z[u], [ϕ]))Γ

t , (3.4)

for all ϕ ∈ Vt. Moreover ηt satisfies the property that, for all ϕ ∈ Ht with ϕ(t) = 0, we have

〈〈ηt, ϕ〉〉Γt = 〈〈η, ϕ̃〉〉Γ, (3.5)

where ϕ̃ denotes the extension to H of ϕ ∈ Ht such that ϕ(s) = 0 for s ∈ [t, T ].

(a”) We have
η ∈ βw([u] · ν), (3.6)

and for all t ∈ [0, T ] it also holds

ηt ∈ βw,t([ux[0,t]] · ν). (3.7)

(b) for almost every x ∈ Γ the function t 7→ z(t, x) is nonincreasing and

either
1
2
|[u(t, x)]|2 ≤ α(x) or z(t, x) = 0 for a.e. x ∈ Γ (3.8)

for all t ∈ [0, T ].

(b’) for all times t1 and t2 with 0 ≤ t1 < t2 ≤ T it holds

∫

Γ

z(t2)(
1
2
|[u(t2)]|2 − α)dx−

∫

Γ

z(t1)(
1
2
|[u(t1)]|2 − α)dx−

∫ t2

t1

∫

Γ

z[u] · [u̇]dxdt = 0. (3.9)

(c) the following energy inequality holds

1
2
‖u̇(t2)‖2 + J([u(t2)] · ν) + (V (u(t2)), z(t2))Γ +

1
2
‖∇u(t2)‖2

+
∫ t2

t1

‖∇u̇‖2ds− (α, z(t2))Γ + (α, z(t1))Γ ≤

1
2
‖u̇(t1)‖2 + J([u(t1)] · ν) + (V (u(t1)), z(t1))Γ +

1
2
‖∇u(t1)‖2 +

∫ t2

t1

〈L, u̇〉ds, (3.10)

for a.e. t1, t2 ∈ [0, T ], t1 < t2.
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3.1 The approximate problem

In this section we introduce the energetic formulation of the approximate problem (1.7). Also for
the approximate problem we restrict our attention to the homogeneous Dirichlet condition

uε = 0 on ∂DΩ× [0, T ]. (3.11)

Definition 3.2. Let us fix ε ∈ (0, 1), let (u0, v0, z0) ∈ V ×V ×Z, and L ∈ L2([0, T ], V ′). A couple
(uε, zε) satisfying

uε ∈ H1([0, T ], V ) ∩W 1,∞([0, T ], L2(Ω)), (3.12a)

u̇ε ∈ H1([0, T ], V ′), (3.12b)

zε ∈ L∞([0, T ],Z) ∩BV ([0, T ], L1(Γ)), (3.12c)

is called an weak (energetic) solution to Problem (1.7) if uε(0) = u0, u̇ε(0) = v0, zε(0) = z0, and
the three following conditions hold:

(aε) for every time t ∈ [0, T ], it holds

− ((u̇ε, ϕt))t + (u̇ε(t), ϕ(t)) + ((∇u̇ε,∇ϕ))t + ((∇uε,∇ϕ))t + ((βε([uε] · ν), ϕ))Γ
t

= (u1, ϕ(0)) + 〈〈L, ϕ〉〉t − ((zε[uε], [ϕ]))Γ
t , (3.13)

for all ϕ ∈ Vt.

(bε) for almost every x ∈ Γ the function t 7→ zε(t, x) is nonincreasing and

either V ([uε(t, x)]) ≤ α(x) or zε(t, x) = 0 for a.e. x ∈ Γ (3.14)

for all t ∈ [0, T ].

(cε) the following energy balance holds

1
2
‖u̇ε(t)‖2 + Jε([uε(t)] · ν) + (V ([uε](t)), zε(t))Γ +

1
2
‖∇uε(t)‖2 +

∫ t

0

‖∇u̇ε‖2ds− (α, zε(t))Γ

=
1
2
‖v0‖2 + Jε([u0] · ν) + (V ([u0]), z0)Γ +

1
2
‖∇u0‖2 − (α, z0)Γ + 〈〈L, u̇ε〉〉t (3.15)

for all t ∈ [0, T ].

Note that, thanks to (3.12a) and (3.12b), equation (3.13) can also be written in the standard
form

〈〈üε, ϕ〉〉+ ((∇u̇ε,∇ϕ))t + ((∇uε,∇ϕ))t + ((βε([uε] · ν), [ϕ]))Γ
t = 〈〈L, ϕ〉〉t − ((zε[uε], [ϕ]))Γ

t , (3.16)

for all ϕ ∈ V, for all t ∈ [0, T ].

Remark 3.3. Condition (bε) only ensures that (1.7c) and (1.7e) hold. Equation (1.7d) is not
explicit, but the presence of both (bε) and (cε) ensures that it is satisfied in a weak sense. In fact
(bε) and (cε) imply that for all times t1 and t2 with 0 ≤ t1 < t2 ≤ T it holds

∫

Γ

zε(t2)(
1
2
|[uε(t2)]|2 − α)dx−

∫

Γ

zε(t1)(
1
2
|[uε(t1)]|2 − α)dx−

∫ t2

t1

∫

Γ

zε[uε] · [u̇ε]dxdt = 0.

(3.17)

Equation (3.9) can be seen exactly as the integration by parts in time of (1.7d).

The existence of energetic solutions to problem (1.5) is standard. It can be carried out
following the lines of the proof of existence of energetic solutions of the problem in [20, Definition
2.1]. We do not give a detailed proof, referring to [20, Appendix] and references therein for further
detail. Here we just recover some fundamental steps in order to highlight the small differences
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between the cited case and the ours. The argument consists in a time discretization procedure and
a variational implicit scheme as described below. To simplify notation in the rest of this section
we drop the label ε.

For all integer n > 0 we divide the interval [0, T ] in n equal subintervals of length τ := T/n.
We set tni := iτ ,

un0 = u0, un−1 := u0 − τv0, zn0 := z0,

and define Lni := 1
τ

∫ tni+1
tni
L(s)ds for all n > 0. Then for 1 ≤ i ≤ n we recursively define uni ∈ V as

a minimizer of

Uni (u) :=
1
2
‖u− u

n
i−1

τ
− uni−1 − uni−2

τ
‖2 +

1
2
‖∇u‖2 +

1
2τ
‖∇u−∇uni−1‖2

+ Jε([u] · ν) + (V ([u]), zni−1)Γ − 〈gni , u〉, (3.18)

and zni ∈ Z as the minimizer of

Wn
i (z) := (V ([uni ]), z)Γ − (α, z − zni−1)Γ, (3.19)

among the class of all z ∈ L2(Γ, [0, 1]) such that z ≤ zni−1. Computing variations at these minimizers
we find out

(
uni − uni−1

τ
− uni−1 − uni−2

τ
, ϕ) + (∇uni ,∇ϕ) + (

∇uni −∇uni−1

τ
,∇ϕ)

+ (βε([uni ] · ν), [ϕ])Γ + ([uni ] · [ϕ], zni−1)Γ − 〈Lni , ϕ〉 = 0, (3.20)

for all ϕ ∈ V , while
∫

Γ∩{zni >0}
V ([uni ])ηdx−

∫

Γ∩{zni >0}
αηdx ≥ 0, (3.21)

for all η ∈ L2(Γ), η ≤ 0, and

(V ([uni ]), η)Γ − (α, η)Γ = 0, (3.22)

if η is such that, for some ε > 0, zni ± εη ∈ [0, zi−1] a.e. in Γ. The minimality of zni implies also

(V ([uni ]), zni − zni−1)Γ − (α, zni − zni−1)Γ ≤ 0. (3.23)

Now, standard a-priori bounds are provided for the functions uτ , zτ , and vτ , defined as the unique
piecewise affine (on [tnj−1, t

n
j ] for all j = 1, . . . , n) maps satisfying uτ (tnj ) = unj , zτ (tnj ) = znj , and

vτ (tnj ) = vnj := 1
τ (unj − unj−1), for all j = 1, . . . , n. In particular we find

uτ ⇀ u weakly in H1([0, T ], V ), (3.24a)
uτ (t) ⇀ u(t) weakly in V, for every t ∈ [0, T ], (3.24b)

zτ ⇀ z weakly* in L∞([0, T ], L2(Γ)), (3.24c)

as τ → 0. Moreover u̇ ∈ H1([0, T ], V ′), z ∈ BV ([0, T ], X ′) for any Banach space X such that
L1(Γ) ⊂ X ′, t 7→ z(t, x) is nonincreasing, and

vτ ⇀ u̇ weakly* in L∞([0, T ], H), (3.24d)

v̇τ ⇀ ü weakly in L2([0, T ], V ′), (3.24e)
zτ ⇀ z weakly* in BV ([0, T ], X ′), (3.24f)
zτ (t) ⇀ z(t) weakly* in L∞(Γ) for every t ∈ [0, T ], , (3.24g)

To deduce (3.24e) we argued by comparison in (3.20) and used the fact that, for fixed ε, the
function |βε(s)| has linear growth in s. Condition (3.20) is easily seen to pass to the limit in an
integral form, thus providing condition (aε). Condition (bε) is proved in the following Lemma:
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Lemma 3.4. Condition (bε) holds for (u, z) in (3.24).

Proof. Since uτ · uτ is bounded in H1([0, T ],W 1,q(Ω)) for q < d
d−1 , we can assume

[uτ ] · [uτ ]→ [u] · [u] strongly in L2([0, T ], Lr(Γ)), (3.25)

for r < d−1
d−2 = 2 if d = 3, or r < +∞ if d ≤ 2. Let ûτ and ẑτ be the piecewise constant maps on

[0, T ] such that ûτ (t) = uni−1 and ẑτ (t) = zni−1 for all t ∈ [ti−1, ti) and i = 1, . . . , n− 1. Hence it is
not difficult to see that, up to a further subsequence, it holds

[ûτ ] · [ûτ ]→ [u] · [u] strongly in L2([0, T ], Lr(Γ)), (3.26a)

ẑτ ⇀ z weakly* in L∞([0, T ], L2(Γ)), (3.26b)
ẑτ ⇀ z weakly* in BV ([0, T ], X ′), (3.26c)
ẑτ (t) ⇀ z(t) weakly* in L∞(Γ) for every t ∈ [0, T ]. (3.26d)

Conditions (3.21) and (3.22) are equivalent to
∫

Γ∩{ẑτ (t)>0}
V ([ûτ (t)])ηdx−

∫

Γ∩{ẑτ (t)>0}
αηdx ≥ 0, (3.27)

for all η ∈ L2(Γ), η ≤ 0, and

(V ([ûτ (t)]), η)Γ − (α, η)Γ = 0, (3.28)

if η is such that, for some ε > 0, zni ± εη ∈ [0, zni−1], for t ∈ [ti−1, ti).
Moreover there exists ζ ∈ L∞([0, T ]× Γ) such that

χ{ẑτ>0} ⇀ ζ weakly* in L∞([0, T ]× Γ). (3.29)

Thus from this, (3.26a), and (3.27), we infer

((V ([u]), ζψ))Γ − ((α, ζψ))Γ,≥ 0 (3.30)

for all ψ ∈ L2([0, T ], L2(Γ)), ψ ≤ 0. Let us show that {ζ > 0} ⊇ {z > 0}; from this and the
arbitrariness of ψ we will obtain that

V ([u(t, ·)]) ≤ α(·) a.e. on the set {z(t) > 0}, (3.31)

for a.e. t ∈ [0, T ]. To this aim set A := {(t, x) ∈ [0, T ] × Γ : 0 = ζ(t, x) < z(t, x)}. Using (3.26b),
by Fubini and the Dominated Convergence Theorem, and then by the fact that ẑτ ≤ 1, we find

0 ≤
∫

A

zdxdt = lim
τ→0

∫

A

ẑτdxdt ≤
∫

A

χ{ẑτ>0}dxdt =
∫

A

ζdxdt,

which proves that |A| = 0 and the claim follows.

To prove (cε) we first test (3.20) by ϕ = uni −uni−1, then sum the obtained expression with
(3.23). Hence, summing over i = 1, . . . , n, we obtain the approximate energy inequality

1
2
‖vτ (T )‖2 − 1

2
‖v0‖2 +

τ

2

∫ T

0

‖v̇τ‖2dt+
1
2
‖∇uτ (T )‖2

− 1
2
‖∇u0‖2 +

τ

2

∫ T

0

‖∇u̇τ‖2ds+
∫ T

0

‖∇u̇τ‖2ds+ Jε([u(T )] · ν)− Jε([u0] · ν)

− (α, zτ (T ))Γ + (α, z0)Γ + (V ([uτ (T )]), zτ (T ))Γ − (V ([u0]), z0)Γ

≤ 〈〈Lτ , u̇τ 〉〉+ (([uτ ] · [u̇τ ]− [ûτ ] · [u̇τ ], ẑτ ))Γ. (3.32)

Passing to the limit in the last formula, where it is easily seen that the third and sixth terms in
the left-hand side, and the last term in the right-hand side, tend to 0, we get (cε) with ≤. To
prove the opposite inequality the arguments are standard and we address to [20, Appendix] and
references therein.
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4 Existence result

In this section we state and prove our main result, which provides the existence of solutions as in
Definition 3.1.

Theorem 4.1. Let T > 0, u0, v0 ∈ V , z0 ∈ L2(Γ, [0, 1]), L ∈ L2([0, T ], V ′), then there exists
(u, z, η) an energetic solution of (1.5) in the sense of Definition 3.1.

For all ε ∈ (0, 1) let (uε, zε) be an approximate solution of Problem (1.5), as given in Defi-
nition 3.2. Now we divide the proof in several steps.

Step 1. The following apriori estimates for the approximate solutions (uε, zε) hold true.
There exists a constant M > 0 such that

‖uε‖H1([0,T ],V ) ≤M, (4.1a)
‖u‖W 1,∞([0,T ],H) ≤M, (4.1b)
‖u̇ε‖W 1,1([0,T ],H̃−2(Ω)) ≤M, (4.1c)

‖üε‖L2([0,T ],H−1(Ω̃)) ≤M, (4.1d)

‖zε‖L∞([0,t],Z) ≤M, (4.1e)
‖zε‖BV ([0,T ],L1(Γ)) ≤M. (4.1f)
‖βε([uε] · ν)‖L1([0,T ],L1(Γ)) ≤M, (4.1g)

for all ε ∈ (0, 1). Moreover

‖βε([uε] · ν)‖H′ + ‖βε([uε] · ν)‖V′ ≤M, (4.2)

and for all t ∈ [0, T ]

‖βε([uε] · ν)x(0,t)‖H′t + ‖βε([uε] · ν)x(0,t)‖V′t ≤M, (4.3)

for all ε ∈ (0, 1).

Proof. For all ε ∈ (0, 1) the energy balance (cε) of Definition 3.2 implies

1
2
‖u̇ε(t)‖2 + Jε([uε(t)] · ν) + (V ([uε](t)), zε(t))Γ +

1
2
‖∇uε(t)‖2 + ‖∇u̇ε‖2L2([0,t]×Ω)

+ (α, z0 − zε(t))Γ = C0 + 〈〈L, u̇ε〉〉t ≤ C0 +
1
2
‖L‖2L2([0,t],V ′) +

1
2
‖u̇ε‖2L2([0,t],V )

= C1 +
1
2
‖u̇ε‖2L2([0,t]×Ω) +

1
2
‖∇u̇ε‖2L2([0,t]×Ω), (4.4)

where C0 := 1
2‖u1‖2 + (V ([uε0]), zε0)Γ + Jε([u0] · ν)dx + 1

2‖∇u0‖2, and C1 := C0 + ‖L‖2L2([0,t],V ′).

From (4.4) we obtain ‖u̇ε(t)‖2 ≤ C(1 + ‖u̇ε‖2L2([0,t]×Ω)), and the Gronwall Lemma implies that
there exists a constant M > 0 such that

‖u̇ε(t)‖2 ≤M for all t ∈ [0, T ], (4.5a)

for all ε ∈ (0, 1), and hence (4.1b) holds. Note that M is a positive constant depending on the
problem data, but independent of ε. From (4.4) we also get

‖uε‖H1([0,T ],V ) ≤M, (4.5b)
Jε([uε(t)] · ν) ≤M for all t ∈ [0, T ], (4.5c)
(V ([uε](t)), zε(t)) ≤M for all t ∈ [0, T ], (4.5d)
‖zε‖L∞([0,t],Z) ≤M, (4.5e)
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for all ε ∈ (0, 1). Thanks to the monotonicity of zε and (2.14), the boundedness of the term
(α, z0 − z(t)) =

∫ t
0
(α, żε)ds, implies (4.1f). Moreover we find

‖T (zε(t), uε(t))‖V ′ ≤M for all t ∈ [0, T ], . (4.5f)

Let now ψ ∈ H 1
2 (Γ; Rd) be a test function such that ψ ·ν = 1 on the whole Γ. Let ϕ be the

extension of ψ on Ω1 defined as ϕ := S1(ψ) (see (2.10)), so that ϕ ∈ V . Let us set Ψ(t, x) := ϕ(x)
for all t ∈ [0, T ] and x ∈ Ω. Then we test (3.2) by ϕ = u+ δΨ, with δ ∈ (0, 1). We obtain (recall
ϕ = 0 on Ω2)

(u̇ε(T ), uε(T ))− (uε1, u
ε
0)−

∫ T

0

‖u̇ε‖2dt+
∫

Ω1

δuε(t) ·Ψdx−
∫

Ω1

δuε0 ·Ψdx+
∫ T

0

‖∇uε‖2dt

+
1
2
‖∇uε(T )‖2 − 1

2
‖∇uε0‖2 +

∫ T

0

∫

Ω1

δ∇uε · ∇Ψdxdt+
∫

Ω1

δ∇uε(T ) · ∇Ψdxdt−
∫

Ω1

δ∇uε0 · ∇Ψdxdt

+
∫ T

0

∫

Γ

βε([uε] · ν)([uε] · ν − δ)dxdt+ ((zε, |uε|2 − δuε · ν))Γ = 〈〈L, uε〉〉+ 〈〈L, δΨ〉〉.

Thus, since |βε(x)| ≤ δ−1|βε(x)(x− δ)| for ε ∈ (0, 1), it follows

δ

∫ T

0

∫

Γ

|βε([uε] · ν)|dxdt ≤
∫ T

0

‖zε‖2dt+
1
2

∫ T

0

‖[uε]‖4L4(Γ)dt+
1
2

∫ T

0

‖[uε] · ν‖2dt

1
2
‖u̇ε(T )‖2 +

1
2
‖uε(T )‖2 +

∫ T

0

‖u̇ε‖2dt+
∫ T

0

‖∇uε‖2dt+
1
2
‖∇uε(T )‖2 +

1
2

∫ T

0

‖∇uε‖2dt

+
1
2
‖∇uε(T )‖2 +

1
2

∫ T

0

‖L‖2V ′dt+
1
2

∫ T

0

‖uε‖2V dt+
∫ T

0

〈L, δΨ〉dt+ C1 ≤ C2, (4.6)

for some constant C1, C2 > 0 independent of ε ∈ (0, 1). Here we have used the Young inequality
in the first estimate and the estimates obtained so far in the last one. This entails (4.1g). Thanks
to the continuity of the embedding L1(Γ) ⊂ H−

3
2 (Γ), valid for d ≤ 3, the continuity of the trace,

together with (3.13), implies that

‖üε‖L1([0,T ],H̃−2(Ω)) ≤M, (4.7)

so that (4.1c) follows. Moreover, arguing by comparison in (3.16) with ϕ ∈ H1([0, T ], H1
0 (Ω̃)) (i.e.,

[ϕ] = 0), estimate (4.1a) implies (4.1d).

Let us now prove (4.2) and (4.3). For every ϕ ∈ H let Φ(t, ·) := S1(ϕ(t)) ∈ V , so that
Φ ∈ H1([0, T ], V ). Since Φ ∈ V, from (3.13) we write

|〈〈βε([uε] · ν), ϕ〉〉t| ≤ ‖u̇ε‖L2([0,t]×Ω)‖Φ̇‖L2([0,t]×Ω) + ‖u̇ε(t)‖‖ϕ(t)‖H + ‖uε1‖‖Φ(0)‖
+ ‖∇u̇ε‖L2([0,t]×Ω)‖∇Φ‖L2([0,t]×Ω) + ‖∇uε‖L2([0,t]×Ω)‖∇Φ‖L2([0,t]×Ω)

+ ‖T (zε, uε)‖L2([0,t],V ′)‖Φ‖L2([0,t],V ) + ‖L‖L2([0,t],V ′)‖Φ‖L2([0,t],V )

≤ C1‖Φ‖Vt ≤ C‖ϕ‖Ht , (4.8)

for all ϕ ∈ H, where we have used (4.1b), (4.1a), (4.5f), and the continuity of the map S1. This
shows that

‖βε([uε] · ν)x(0,t)‖H′t ≤M for all t ∈ [0, T ], (4.9)

and in particular

‖βε([uε] · ν)‖H′ ≤M, (4.10)

for all ε ∈ (0, 1). If we repeat the argument in (4.8) with an arbitrary extension Φ ∈ V of ϕ, we
see that estimates (4.9) and (4.10) hold also in the spaces V ′t and V ′, respectively, i.e.

‖βε([uε] · ν)x(0,t)‖V′t ≤M for all t ∈ [0, T ], (4.11)

‖βε([uε] · ν)‖V′ ≤M, (4.12)

for all ε ∈ (0, 1). This concludes the proof of Step 1.
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Step 2. There exist (u, z, η) satisfying (3.1) such that, for a subsequence of ε→ 0,

uε ⇀ u weakly in H1([0, T ], V ) and weakly* in W 1,∞([0, T ], H), (4.13a)

u̇ε → u̇ strongly in L2([0, T ], H) and weakly in H1([0, T ], H−1(Ω̃)), (4.13b)

u̇ε(t) ⇀ u(t) weakly in H̃−2(Ω) for all t ∈ [0, T ], (4.13c)
zε(t) ⇀ z(t) weakly* in L∞(Γ) for all t ∈ [0, T ], (4.13d)
βε([uε] · ν) ⇀ η weakly in H′ and V ′, (4.13e)

with

z ∈ BV ([0, T ], L1(Γ)). (4.13f)

Moreover (a) is satisfied, and for all t ∈ [0, T ) there exists ηt ∈ Ht such that, for the same
subsequence,

βε([uε] · ν)x(0,t)⇀ ηt weakly in H′t and V ′t, (4.14)

with ηt satisfying (a’).

Proof. From (4.1a), (4.1d), (4.1e), and (4.1f), we deduce that there exist u ∈ H1([0, T ], V ) and
z ∈ L∞([0, T ],Z) ∩BV ([0, T ];L1(Γ)) such that, for a subsequence of ε tending to 0,

uε ⇀ u weakly in H1([0, T ], V ), (4.15a)

uε ⇀ u weakly* in W 1,∞([0, T ], H), (4.15b)

u̇ε ⇀ u̇ weakly* in H1([0, T ], H−1(Ω̃)), (4.15c)

zε ⇀ z weakly* in L∞([0, T ], L2(Γ)), (4.15d)

z ∈ BV ([0, T ], L1(Γ)), (4.15e)

and in particular

uε(t)→ u(t) strongly in H for all t ∈ [0, T ], (4.15f)
uε(t) ⇀ u(t) weakly in V for all t ∈ [0, T ]. (4.15g)

Moreover, the continuity of the trace from V to H
1
2 (Γ,Rd) and the compactness of the embedding

H
1
2 (Γ,Rd) ⊂ Lr(Γ,Rd), for all r < 2(d−1)

d−2 , imply that

[uε]→ [u] strongly in L2([0, T ], L2(Γ,Rd)), (4.15h)

[uε(t)]→ [u(t)] strongly in Lr(Γ,Rd) for all t ∈ [0, T ]. (4.15i)

Similarly, by (4.15g), we find that

T (zε, uε)→ T (z, u) weakly in V ′,
T (zε(t), uε(t))→ T (z(t), u(t)) weakly in V ′ for all t ∈ [0, T ]. (4.15j)

Condition (4.1c) implies that u̇ε are functions uniformly bounded in BV ([0, T ], H̃−2(Ω)). We
can then employ a generalization of Helly Theorem [8, Lemma 7.2], providing a function v ∈
BV ([0, T ], H̃−2(Ω)) such that

u̇ε(t) ⇀ v(t) weakly in H̃−2(Ω) for all t ∈ [0, T ].

Since (4.15c) holds, we can identify v with u̇, everywhere on [0, T ]. Moreover condition (4.1b)
entails that such convergence must hold in H, i.e.,

u̇ε(t) ⇀ u̇(t) weakly in H for all t ∈ [0, T ]. (4.15k)
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By (4.1f), again the Helly selection principle implies

zε(t) ⇀ z(t) weakly* in L∞(Γ) for all t ∈ [0, T ]. (4.15l)

Since V is compactly embedded in H, thanks to condition (4.1a) and (4.1c), we can apply
[24, Corollary 4] with X = V , B = H, Y = H̃−2(Ω), and p = 2, in order to obtain that

u̇ε → u̇ strongly in L2([0, T ], H). (4.15m)

Besides, condition (4.10) and (4.12) imply that, up to a subsequence,

βε([uε] · ν) ⇀ η weakly in H′ and in V ′, (4.15n)

for some η ∈ H′. We have obtained (4.13).
Let us now define ηt as the element of H′ ∩H′t such that

〈〈ηt, ϕ〉〉 := ((u̇, Φ̇))t − (u̇(t),Φ(t)) + (u1,Φ(0))− ((∇u̇,∇Φ))t
− ((∇u,∇Φ))t + 〈〈T (z, u),Φ〉〉t + 〈〈L,Φ〉〉t, (4.16)

where again Φ := S1(ϕ) is the extension of ϕ to Ω × [0, T ] obtained by the map S1 in (2.10), in
such the way that Φ ∈ V and [Φ(t)] = ϕ(t) for all t ∈ [0, T ]. It is easy to check that, by the same
estimates as in (4.8), the map ηt belongs to H′ ∩ H′t and it can be identified as an element of
V ′ ∩ V ′t. Now, convergences (4.15) imply that we can pass to the limit in (3.13), so that (with no
need of extracting a further subsequence)

βε([uε] · ν)x(0,t)⇀ ηt weakly in H′ and V ′ for all t ∈ [0, T ]. (4.17)

Moreover the same limit takes place in the weak topology of H′t and V ′t. In particular we have
obtained equations (3.2) and (3.4). In the case that ϕ ∈ H1([0, T ], H1

0 (Ω̃)) also equation (3.16)
passes to the limit thanks to (4.15c), providing (3.3).

Step 3. Conditions (b) and (b’) hold.

Proof. Let us first see that condition (bε) of Definition 3.2 passes to the limit. Since |uε|2 is bounded
in H1([0, T ],W 1,q) for q < d

d−1 , we can assume, by (4.13a), that

|[uε]|2 ⇀ |[u]|2 weakly in H1([0, T ],W 1−1/q,q(Γ)), (4.18)

so by Sobolev embedding

|[uε]|2 → |[u]|2 strongly in L2([0, T ], Lr(Γ)), (4.19)

for r < d−1
d−2 = 2 if d = 3, or r < +∞ if d ≤ 2. Moreover, since for all t ∈ [0, T ] it holds

|[uε(t)]|2 ⇀ |[u(t)]|2 weakly in W 1−1/q,q(Γ), we also get

|[uε(t)]|2 → |[u(t)]|2 strongly in Lr(Γ). (4.20)

Thus we argue as in the proof of Lemma 3.4, obtaining (b).
We prove that also condition (3.17) passes to the limit. Thanks to (4.13d) and (4.20) it is

easily seen that for all t ∈ [0, T ] the convergence holds
∫

Γ

zε(t)(
1
2
|[uε(t)]|2 − α)dx→

∫

Γ

z(t)(
1
2
|[u(t)]|2 − α)dx.

In order to prove that for all t1 < t2 it holds
∫ t2

t1

∫

Γ

zε[uε] · [u̇ε]dxdt→
∫ t2

t1

∫

Γ

z[u] · [u̇]dxdt,
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we first note that by (4.1f) we may apply the generalized Aubin-Lions Lemma [18, Corollary 7.9]
obtaining

zε → z strongly in L2([0, T ],W 1−1/q,q(Γ)′), (4.21)

for some q < d
d−1 , where we have used that the compact and dense embedding W 1−1/q,q(Γ) ⊂ Lr

implies Lr/(r−1) ⊂W 1−1/q,q(Γ)′ compactly for all 1 < r < dq−q
d−q . Thus the thesis follows from this

and from (4.18).

Step 4. Condition (a”) holds true. Moreover we have

uε → u strongly in L2([0, T ], V ), (4.22)
uε(t)→ u(t) strongly in V for all t ∈ [0, T ]. (4.23)

Proof. In order to prove (a”) we apply Lemma 2.4 with vε = [uε] · ν, ξε = βε([uε] · ν), v = [u] · ν,
and ξ = η. Thanks to (4.13a) and (4.13e) it is sufficient to check that

lim sup
ε→0

〈〈βε(uε), uε〉〉Γ ≤ 〈〈η, u〉〉Γ. (4.24)

Using (3.13), we write

〈〈βε([uε] · ν), [uε] · ν〉〉Γ =
∫ T

0

‖u̇ε‖2dt− (u̇ε(T ), uε(T )) + (v0, u0)− 1
2
‖∇uε(T )‖2 +

1
2
‖∇u0‖2

−
∫ T

0

‖∇uε‖2dt− 〈〈T (zε, uε), uε〉〉+ 〈〈L, uε〉〉. (4.25)

It is seen that

lim
ε→0
〈〈T (zε, uε), uε〉〉 =

∫ T

0

(zε(t), |[uε(t)]|2)Γdt =
∫ T

0

(z(t), |[u(t)]|2)Γdt

= 〈〈T (z(t), u(t)), [u(t)]〉〉Γ, (4.26)

thanks to (4.13d) and (4.19). Therefore thanks to (4.13a), (4.15g), (4.15k), (4.13b), and (4.26), we
see that the lim sup of (4.25) is less or equal to

∫ T

0

‖u̇‖2dt− (u̇(T ), u(T )) + (v0, u0)− 1
2
‖∇u(T )‖2 +

1
2
‖∇u0‖2 −

∫ T

0

‖∇u‖2dt

+ 〈〈T (z, u), [u]〉〉+ 〈〈L, u〉〉 = 〈〈η, [u] · ν〉〉Γ, (4.27)

by (3.2), and (4.24) is proved, i.e.,

η ∈ βw([u] · ν). (4.28)

If we fix any t ∈ [0, T ] and repeat the previous limit (4.25) with T = t, thanks to (4.14), the same
argument shows that

ηt ∈ βtw([ux(0,t)] · ν). (4.29)

Now, thanks to the monotonicity of the operators βε we have

〈〈βε([uε] · ν)− η, [uε] · ν − [u] · ν〉〉Γ ≥ 0,

hence passing to the limit we infer the opposite inequality in (4.24). In particular this implies that
the limit of the expression (4.25) is exactly (4.27), and then we obtain

lim
ε→0
‖∇uε‖2L2([0,T ]×Ω) = ‖∇u‖2L2([0,T ]×Ω)

lim
ε→0
‖∇uε(t)‖2 = ‖∇u(t)‖2 for all t ∈ [0, T ],

getting (4.22).
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Step 5. The energy inequality (c) holds.

Proof. In order to obtain this we first write the approximate energy balance (3.15) for a couple of
times t1, t2 ∈ [0, T ], t1 < t2, and then let ε → 0. The convergences obtained so far show that all
the terms pass to limit but Jε(uε(t)) and

∫ T
0
‖∇u̇ε‖dt. Convergence (4.13a) readily infer

∫ T

0

‖∇u̇‖dt ≤ lim inf
ε→0

∫ T

0

‖∇u̇ε‖dt,

and then it remains to prove the convergence of the term Jε(uε(t)) to J(u(t)) for a.e. t ∈ [0, T ].
The inequality

J([u(t)] · ν) ≤ lim inf
ε→0

Jε([uε(t)] · ν). (4.30)

is true thanks to (4.15f) and to Lemma 2.1. Moreover it can be proved that the liminf in the right
hand side is actually a limit and that equality holds for a.e. t ∈ [0, T ]. The proof of this fact is
identical to the one in [5, Step 5], which we refer to. Therefore we can pass to the limit in (3.15)
for a.e. t1, t2 ∈ [0, T ], t1 < t2.

4.1 Existence result: nonhomogeneous case

We describe here how to obtain existence of energetic dynamic solutions as in Theorem 4.1 satis-
fying a nonhomogeneous boundary condition. In order to impose a Dirichlet condition, we fix a
map w satisfying the following hypotheses

w ∈ H1([0, T ], H1(Ω̃)) ∩W 1,∞([0, T ], L2(Ω)), (4.31a)

ẇ ∈ H1([0, T ], H−1(Ω̃)) ∩BV ([0, T ], H̃−2(Ω)), (4.31b)
w(0) = u0 ẇ(0) = v0 on ∂DΩ. (4.31c)

Note that the condition w ∈ H1(Ω̃) implies [w] = 0. Then the following Theorem holds true.

Theorem 4.2. Let u0, v0 ∈ H1(Ω), z0 ∈ L2(Γ, [0, 1]), L ∈ L2([0, T ], V ′), then for any w satisfying
hypotheses (4.31), there exists a triple (u, z, η) with

u− w ∈ H1([0, T ], V ) ∩W 1,∞([0, T ], L2(Ω)), (4.32a)

u̇ ∈ H1([0, T ], H−1(Ω̃)) ∩BV ([0, T ], H̃−2(Ω)), (4.32b)

z ∈ L∞([0, T ],Z) ∩BV ([0, T ], L1(Γ)), (4.32c)
η ∈ H′, (4.32d)

such that u(0) = u0, u̇(0) = v0, z(0) = z0, satisfying the conditions (a), (a’), (a”), (b), (b’) of
Theorem 4.1, and the following energy inequality

(c’) for a.e. t1 < t2 ∈ [0, T ] it holds

1
2
‖u̇(t2)− ẇ(t2)‖2H + J([u(t2)] · ν) + (V (u(t2)), z(t2))Γ +

1
2
‖∇u(t2)‖2

+
∫ t2

t1

‖∇u̇‖2ds− (α, z(t2))Γ ≤
1
2
‖u̇(t1)− ẇ(t1)‖2 + J([u(t1)] · ν) + (V (u(t1)), z(t1))Γ

+
1
2
‖∇u(t1)‖2 − (α, z0)Γ +

∫ t2

t1

(σ,∇ẇ)ds+
∫ t2

t1

〈L − ẅ, u̇− ẇ〉ds, (4.33)

with σ = ∇u+∇u̇.
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Let us remark that the boundary condition

u(t) = w(t) a.e. on ∂DΩ, for all t ∈ [0, T ], (4.34)

is implicit in condition (4.32a).
The technique of the proof is standard and we only sketch it. We apply Theorem 4.1 with

external force L replaced by L̃ := L − ẅ + ∆w + ∆ẇ ∈ L2([0, T ], V ′), hence providing a triple
(ũ, z̃, η) which is an energetic solution as in Definition 3.2, with homogeneous Dirichlet condition.
Setting u := ũ + w and observing that [u] = [ũ] since [w] = 0, conditions (a), (a’), (a”), (b), (b’)
readily follow, as far as (4.32), and then (4.34). In order to obtain (c’) we must argue in a different
way, following the lines of the proof of (c) in Theorem 4.1. This relies in letting ε go to 0 in the
energy balance of the approximate solution ũε, and dealing with some elementary algebra.

5 Concluding remarks

Within this paper we have proved the existence of a solution to Problem 1.5 in a weak form.
In particular, as we have seen, this weak form involves an equation of motion written in duality
with test functions in the space V := L2(0, T ;V ) ∩H1(0, T ;H). Notice that this space is a space
of functions in both the time and space variables. To the present stage, it seems very difficult
to find a stronger formulation involving the duality with a space of test functions independent
of time. This is due to the fact that the reaction term η is found only as an element of V ′,
and in particular might be a measure concentrated in some discrete time set. The presence of
such concentration phenomenon is quite intuitive in the one dimensional case, where we might
imagine that the two bodies (strings) are separate and collide in a precise instant, after which
they separate again. The instant of collision is the only one where the reaction is nonzero, and
then concentrated. On the other hand, the presence of such concentration points being the only
responsible for the discontinuities of the velocity field u̇, cannot be apriori ruled out, as shown in
the example of [5, Remark 2.4]. In this paper the authors treat a general evolution driven by a
damped wave equation with unilateral constraint, which, neglecting the internal variable z, overlap
also the situation considered in the present paper.

Another consequence of this concentration phenomenon, and then of the discontinuities of
the velocity field, is the difficulty to establish an energy balance. This is somehow due to the fact
that we cannot test equation (3.2) by ϕ = u̇, since this does not belong to V. On the other hand
it is reasonable to claim the existence of solutions satisfying the energy balance, and to consider
them as the “physically admissible“ ones (in the specific example in [5, Remark 2.4] it is shown as
there exist more then one solutions, some of whose satisfying the energy balance). It seems to us
that the method provided here of approximating the solution by regularized ones fails if we wish
to prove the energy balance, since it does not give sufficiently strong compactness criterion for
the approximating evolutions. The proof of the energy balance is, at the present stage, the most
challenging open question left by the argument proposed so far.

Let us finally remark that the method of approximation has been firstly proposed in [5]
and then adapted to a problem of delamination in [22]. In this last paper the author consider a
problem similar to (1.5), but with the addition of viscosity in the adhesive which provide different
difficulties in order to argue by approximation. Some other techniques to treat second order
evolutionary problems with unilateral constraints, based on the use of variational inequality, exist
and can be found, for instance, in [2].
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