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Abstract

As well known, a horse shoe map, i.e. a special injective reimbedding of the unit
square I? in R? (or more general, of the cube I™ in R™) as considered first by S.
Smale [4], defines a shift dynamics on the maximal invariant subset of I? (or I™).
It is shown that this remains true almost surely for non injective maps provided the
contraction of the mapping in the stable direction in sufficiently strong.
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1 Definitions and results

For an integer 6 > 2 the set Xy of all doubly infinite sequences ¢ = (...,7_y,%,11,...),
where 4; € {1,...,0}, equipped with the metric

d((-rionyd0y81,- 0 )y (oo v oty oo s o)) = D 27M (Ji — 7))
I=—c0

is a Cantor set. the shift mapping o : ¥y — X4 given by

U(...,’i_l,io,’il,...) —_—-(...,j_l,jo,jl,...) Withjl=i1+1

is a homeomorphism which defines a simple but nevertheless non trivial dynamics on g :
the periodic points are dense, and there are dense orbits e.g. Therefore, to ask whether
or not a given diskrete dynamical system contains a subsystem conjugate to a shift space
of this kind is a natural question.

Let R be a topological space with metric d, R* a compact subset of Rand f: R* -+ R
continuous. For k > 1 we define the compact sets

R} = {p € R| f*(p) is defined}
A = fH(R}).

Then R =R*D R; D R;..., A1 D Ay D ..., and we consider the compact sets

R =) R},
k=1

A=) 4,
k=1
Z =R.NA.

The set A can be regarded as the global attractor of k. Indeed, f(ANR*) = A, and there
is a sequence &1 > €9 > ... of real numbers tending to 0 such that for any £ > 1 and any
p € R; we have d(f*(q), A) < &¢. The set Z is the maximal invariant subset of R, i.e. the
maximal set on which f is defined, and f(Z) = Z.

A subset S of R* will be called a shift space in R, if for some 8 > 2 there is a
homeomorphisms A : ¥y — S such that ho = fh. Obviously, if S is a shift space in R
then S C Z. If Z itself is a shift space in R then we say that f concentrates to a shift
space.

Among the best known examples of mappings which concentrate to a shift are the so
called horse shoe mappings which can be defined as follows. Let Ry = R™*! (m > 1) and
Ry = I™*! = I x I™ the (m + 1)-dimensional unit cube in R™*! which is regarded as
the cartesian product of the unit interval I = [0, 1] with the m-dimensional unit cube. To
define a horse shoe mapping we fix disjoint subintervals I1,...,Is in I (6§ > 2) and choose
[+ R — Ry so that the following conditions are satisfied, where [* = I; U--- U I,.

() f(R)NEg = f(I* x I™).

(ii) For some A € (0,1) there are C' a mapping ¢ : I* — I whose restriction to
each component I; of I* is an expanding C' mapping onto I and a C* mapping
¥ : I* = [0,1 — A]™ such that -

£t,2) = (o)), ¥(®) + A-2) ((t,2) € I" x I™).



(iii) f is injective on I* x I™.

(see Fig. 1, where m = 2,6 = 3.)

Figure 1

It is well known (and not hard to prove) that f concentrates to a shift space Z.
Moreover, the global attractor A of f is homeomorphic to the cartesian product I x C°
of I with a Cantor set C°, and each component of A is a C! arc running upwards from
the bottom {0} x I™ of R§ to the top {1} x I™. These facts remain true for more general
mappings f (see [3] Ch. III, e.g.), but they may fail to hold if (iii) is dropped from our
assumptions (see Fig. 2, where m = 2,6 = 2).

Figure 2

This paper is concerned with mappings f satisfying (i), (ii). If 6, ¢ are fixed we shall
show that for “almost all” ¢ the mapping f concentrates to a shift space and A has the
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structure mentioned above even if f is not injective on I* x I™, provided A is sufficiently
small.

A natural technical simplification in the definition is obtained by neglecting the part
of Ry = R™! outside Ry = I x I™, i.e., we shall start with R =1 x I™ R* = I* x I™
and the restriction of the original f to f : R* — R. Moreover, to avoid considerably
technical difficulties as piecewise linear approximations of ¢ and 1 e.g. we assume that
the restrictions of ¢ and 9 to the components I; of I* are affine mappings onto I or into
[0,1—A]™, respectively. (See [1], where for nonlinear mapppings in a similar situation the
attractor A is considered. Indeed, using the techniques applied there, facts analogous to
those stated an Corollary 1 and Corollary 2 can be proved in the nonlinear case provided
“full measure in J2™” is replaced by “open and dense in the space of all C* mappings
Y I*— J™)

So we define R, R*, f as follows. R=1I x I™ R*=1*x I™, where [* =1 U---Uly is
the union of # > 2 disjoint closed subintervals of I and f : r* — R is given by

ftz) = (@), v(@) +A-2)  ((tz) eI xI™), (1)

where A € (0,1),¢ : I* — I is a mapping whose restrictions to the intervals I; are affine
mappings onto I, and 9 : I* — [0,1— A]™ is a mapping whose restrictions to the intervals
I; are affine. The interval [0,1 — A] will be denoted by J.

The maximal subset I} of I on which ¢F is defined (k = 0,1,2,...) consists of §*
disjoint intervals, where If =I D If =I*D> I3 DI D---, and

=Nk
k=0

is a Cantor set in /. The Hausdorff dimension dimg I3 of I% coincides with the box
counting dimension dimp I (see [2]) and will be denoted by d*. It is determined by
|| + -+ |[4|* = 1, where |I;| denotes the length of I;.

We assume that 6, 1*,¢ : I* — I and A € (0,1) are fixed while % is variable. Then the
mapping f in (1) is determined by % and will sometimes be denoted by f.

Let s;,¢; be the end points of I; which are chosen so that ¢(s;) = 0,¢(;) = 1, and
let a; = ¥(s;),b; = ¥(£;). Then, since v is piecewise affine, it is determined by these
points a;, b; € J™ or, equivalently, by the point (ay,b;,as,bs,...,as,bs) in J2™. So all
possible mappings 1 are in 1-to-1 correspondence with the points in J?™, and we shall
not distinguish between 1 and the corresponding point.

The following sets will play an important role. (A denotes the global attractor of fy.)

¥ = {'¢ eJ 26’"‘I fy does not concentrate to a shift space} ,
Uy = {'911 eJ 2amlf,;,' e 15 1O injective} :

In Section 2 (Proposition 3) we shall see that ¥, ¥4 are compact, ¥ C ¥4 and that
for ¢ € J**™\ ¥4 the global attractor A of fy is homoeomorphic to the cartesian product
of an interval with a Cantor set. Moreover, since AN R* is compact and fy,(ANR*) = A,
for each ¥ € J?™U, the restriction f|snr- : AN R* — A is a homeomorphism. The
main results of this paper as stated in the following two theorems concern the Hausdorff
dimensions of ¥ and W4.



Theorem 1 If A < % then

. 2log6
dimg ¥ < 20m — d* .
gES®momtdt log1/A
Theorem 2 If A < % then
: ' 2log6
d U,y < 20m — 1 .
myg Wy <20m—m-+ +Iog1/)\'

Corollary 1 If A < §72/(m=d") X < %, then the set of all those ¢ € J¥®™ for which fv
concentrates to a shift space is open in J*™ and has full measure (1 — X)26™.

Corollary 2 Ifm > 1,A < 6-%(m=1 and X\ < L, then for all % in an open subset of J2™
with full measure (1 — X\)2*™ the global attractor A of fy is the cartesian product of an
interval with a Cantor set, and fy|ang : AN R* — A is a homeomorphisms.

Proof of the corollaries. In these cases dimy ¥ < 20m or dimy ¥4 < 20m, respectively,
and, by Proposition 3, ¥, ¥4 are compact. O

Propositions 1 and 2 in Section 2 will yield some further details.

Remark 1 Our condition A < % is void unless

2log6 2log6
— d"+ —=<0or —
m + +log1/A or m+1+log1/A<0’
respectively, i.e. | g ;
log log
2—— —d* 2—— —
log 2 > log 2 1

This condition reflects the fact that two m-dimensional cubes in I™ of edge length at least
1/2 and with edges parallel to those of I™ must intersect. We do not know whether it is
necessary. (Here it is essentially used only in the proof of Lemma 1.)

Remark 2 We do not know whether the bounds for dimg ¥,dimp ¥4 in the theorems
are sharp. As easily seen all points

'l/) = (ah ay, Gz, %a'ly +(1 - ’]t;)a% as, b37 <.+, 09, be)
belong to ¥ if ¢ € I*,\{0} and to ¥4 if t € (0, 1]. Therefore

dimg ¥ > 20m — 2m + d*,
dimg ¥4 > 20m — 2m + 1,

but these lower bounds are rather weak, and they don’t depend on A.

The following fact concerning Corollary 2 seems to be more interseting. If m > 3 is
odd and A > 120~2/(m=1) then the set U, contains interior points, i.e. the exponent
—2/(m — 1) in Corollary 2 is sharp at least for m odd. This can be proved by modifying
the proof of a similar fact (Theorem 2) in [1].



2 Preliminaries

For integers § > 2,k' < k" let 9F'*"] be the set of all sequences (ix, %11, ..., ign) Where
i € {1,...,0}, and let gl=o>F"] gl¥'] gl-=0: consists of the sequences which are infinite
to the left, the right or in both directions, respectively. So 6! coincides with the
Cantor set Ty of Section 1, and §=>*"] gI¥,> have a natural Cantor set structure too.
The shift map o : %'*'1 — g¥=1¥"=1] is defined in the obvious way.

As in Section 1 we assume that I* = I;U---UI (8 > 2) is the union of § disjoint closed
subintervals of I and that ¢ : I* — I is a mapping whose restrictions to the intervals I; are
affine mappings onto I. Moreover, for some 9 € J¥™ let f : R* =[*xI™ - R=1 x I™
be defined by (1).

The 6% components of the domain I} of ¢* (k > 1) will be denoted by I; (i € 9i*#])
where the indices are chosen so that for k > 1
I(ila'-'aik) - I(ila"-aik—-l)
© (I('il,...,ik)) = I(jg,...,jk_1)7 Where jl = Z.H-l'

(o ]
For i = (41,4s,...) € 0% the intersection N I, contains exactly one point which
k=1

will be denoted by ¢;. Thesets R; = ; xI™ (i € gl 1 <k < co) are slicesof R =IxI™

while for 3 = (i1,41,...) € 61
R = () Ry, ...i)
k=1 ’
is the m-dimensional cube {¢;} x I™.
For i € %1 (1 < k" < o0) and 1 < k' < K" k' < oo the image f¥(R;) is well

defined and will be denoted by Rak:(i). So R; is now defined for all ; € gk k"] provided
K <K' —oco <k <1,0< k' <oco. By

R; = [ R,..jio..)
k=0

fori = (...,5_1,%g,...) € 17°F"1 (0 < k" < o) we include the case ¥’ = —co into our
definition.

R(ik/ yeers0)

Figure 3



For k', k" finite, ¥’ < 0 t%le set R; is an (m+1)-dimensional prism over an m-dimensional
cube with edge length A™*'* which for " = 0 has its bottom in {0} x I™ and its top in
{1} x I, while for ¥’ < 0,k" > 1

R(ikl,...,‘iku) = R(ik/,...,io) N R(‘il,...,ikn)

(see Fig. 3). For i € 870 the set R; is a straight segment running from a point in
{0} x I™ to a point on {1} x I™, and if i € 1= then R; contains exactly one point
which will be denoted by p;. As easily seen

F(Ry) = Rq() (2)

holds wherever R; and R,; are defined. Moreover, R; C R; holds if and only if i is a
part of j, i.e., if i can be obtained from j by cancelling digits on one or both ends. The
domain of f* (k > 1) is o
Ri=LxI"= |J R,
16011k
and

R, =I,xI"=(\E;
=1

is the maximal set on which all iterations f* (k > 1) are defined.

The global attractor of f is given by

A= |J R.
ieg[-oo,oo]
The maximal invariant set of f is
z= U B,
ieg[-—oo,oo]

i.e. Z consists of the points p; (¢ € 81==l), and by h(i) = p; We get a surjective mapping
h: %y = 0=l — Z. As easily seen h is continuous, and (2) implies ho = fh. For
t € I,i € -0 we define g(t,i) to be the intersection point of {¢} x I™ and R;. So we
get a surjective continuous mapping g : I x 6170 — A, )

Proposition 1 The following conditions are equivalent.

(i) f concentrates to a shift space.
(11) h: Xy — Z is a homeomorphism.

(iii) Ifi,j € gl=o=0l i £ j then
RiNR; N RY, = 0.

Proof. The equivalence between (%) and (i )kis an immediate consequence of the follow-
ing fact. If i~ = (...,i_1,%) € 07> then the mapping h;- : 64> — R;- N RY, given
by h;-(i1,2,...) = h(...,%-1,%,%1,...) is a homeomorphism.

The implication (%) = (i) follows from (2).

To complete the proof we assume (i) and prove (i). Since T is compact and A is
surjective it is sufficient to show that A is injective.
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If for i = (...,i1,80,%1,...),5 = (--+,J-1,70,J1,---) € =l the positive halves
it = (i1,%2,...),J7 = (J1, Jo, . . . ) are different, then h(i) € R;+,h(j) € Rj+, R+ NR;+ =0
‘implies h(d) # h(j). If i¥ = j* but i # j then for some k¥ < 0 the positive halves
o*(i)*, o*(4)* of o*(2),0"*(j) will differ, and we get

h(o*(@)) # h (o*(9)) -
By (4) flz : Z — Z is a homeomorphism, and (f|z)*h = ho* holds for our negative
exponent k. So we get (f|z)*h(z2) # (f|z)*h(j) and therefore k(i) # h(j). a

Proposition 2 The following conditions are equivalent.

(i) flanr : AN R* — A is a homeomorphism.
(i) g: I x 8- — A is a homeomorphism.

(i) Ifi,j € 6170, i # j then RN R; = 0.

Proof. Since g maps each interval I x {¢} injectively onto R;, the equivalence of (7) and
(i11) is obvious. ‘ '

Now we prove (i) = (iii). By (i) for k > 1 the mapping f* : ANR} — Ais a
homeomorphism. To prove (iii) we show that for i = (...,4_1,%),5 = (-..,j-1,00) €
gl=>% the existence of a common point p = (¢,z) of R; and R; (t € I,z € I"™) implies
L=J.

For k > 1 there is a unique p* = (¢*,z) € AN R} such that f*(p*) = p. Here t* € I+,
where ¢* = (¢},...,4}) € 05H with if =4, = ji_4 (1 1 < k). Since k > 1 is arbitrary
this shows i, = j, for all n < 0.

To prove (i) = (i) we assume that all segments R; (i € 8-°%) are disjoint. Then
each component of AN R* is a segment B; N R; (i = (-..,i_1,49) € 60 1 < § < §),
and f maps this segment injectively onto R;, where j = (..., j_1,J0) € 6l=0 is given
by 51 = 5141 if I < 0,50 = i. So f is injective on each component of AN R*, and by (i)
different components have disjoint images. Since A N R* is compact injectivity together
with f(AN R*) = A of f|ang- implies (7). O

Proposition 3 : ¥ and ¥4 are compact.

Proof. Since the proofs in both cases are similar we consider ¥ only. For ¢ € J¥™, f =
fy : R* — R the corresponding mapping and 1 < % < 8 let Z;(¢) denote the union of all
R;NR:,, where i = (...,i_1,4) € 8- 45 = i. Obviously Z;(¢),..., Zs(x) are compact
and their union is the set Z belonging to fy.

We show that f, concentrates to a shift space provided the § sets Z;(¢) are disjoint.
Let Z'. = ( .. ,i_l, ’1:0,1:1, v ),l = ( .. ,j_.l,jo,jl, .o .) € 9[_00’001,.’1; 7é l be given. We have to
show h(g) # h(j). If 4 # j; for some [ > 1, then h(z) and A(j) lie in different components
of Ry, and h(i) # h(j) is obvious. Now we assume that [y < 0 is the maximal index with
ity # fior Then for = (..., Ly, i) = 00(0), 5 = (.. J' gy dby s ) = 9(5) we
have i # j} but 4 = j; if | > 1. The points h(¢'), h(j") lie in the same component {t} x I"™
of R%, but in different and therefore disjoint sets Zy (4), Z; (%). So h(i) # h(j'), and
since f~% is injective on {t} x I™ this gives

h(i) = ho™ (&) = F°h(d) # F7'R(F") = ha™"(§) = h(3)-

8



To prove that ¥ is compact we show that each point ¢ € J**™\¥ has a neighbour-
hood which does not intersect ¥. If ¢ ¢ ¥, by Proposition 1 the corresponding sets
Zy (), ..., Zs(¢) are disjoint and since they are compact there is a positive € such that
the distance between each two of them is at least €. As easily seen the end points of the
segments R; (2 € 6[‘°°’°]) depend continuously on ¥, and this continuity is uniform with
respect to i. Therefore, if 9’ € J**™ is sufficiently close to 1 the sets Z;(¢') belonging to
1! will still be mutually disjoint and ¢’ & V. ‘ O

3 Proof of the two theorems

We assume that ¢ : I* — I and X € (0, 1) and therefore 6, I} (1 < k < o0), [, R; (i €
O 1 < k < 00),t; (3 € 91) are fixed. Let H denote one of the sets I*, or I, and let
- ¢* =dimg H = dimg H. We define

U* = {7,1) € ngm[Ri(@b) N R;(y) N (H x I™) # 0 for at least one pair i # j € 9[‘°°’°]} ,

where R;(1) denotes the set R; which is constructed with the mapping 7. Looking at
the equivalences between (i) and (iii) of the propositions in section 2 we see that both
theorems of section 1 are combined in

2log0
Tog L/’ (3)

dimg ¥* < 20m —m + ¢* +

We shall prove (3) at the end of this section after some lemmas are stated and proved.
Besideé U* for1 <k < 00,8 = (il,...,ik),i = (jl,...,jk) € 9[1’k]7i ;é l we shall
consider the sets
)5 = {9 € J*™| Ry () N Ryr (W) N (H x I™) # 0}
= U ¥ (4)

i,jeell,k]
i #ik

Since Ru_y,..t0) C B is1,000), W€ have 1 D ¥3 5 .-+, and

(o]

r=0 U 9%
k=1 13169[1’"] A
i

together with the proof of Proposition 3 implies

=) L | 5)
k=1

For k > 1,4,j € 6,4 # j we define the mapping
Wiyi: J26’rn N I4m — (Im)4

by
m3,5(%) = (a,b,¢,d),

where the points a, b, c,d € I™ are determined by

f:bc(sb 0) = (O,CL), f!;(tia 0) - (17b)a
fz(siu 0) = (0, C)’ fg’Z(tJ_': 0) = (Ld)’



with s;,t; the end points of I; such that ©*(s;) = 0,¢*(t;) =1 and 0 = (0,...,0) € I™.
Therefore (0, a), (1, ) are the end points of the segment f,’f, (Iix {o}) and (0, ¢), (1, d) those
of f5(I; x {0}). Moreover the segments [(0, a), (1,b)], (0, ), (1, d)] are edges of the prisms
F*(R:) = Ror), fF(R;) = Rox(;), respectively, such that for (¢,y) € [(0,a), (1,B)], (t,2) €
[(0,¢), (1,d)] we have the cubes

R”k(i) 0 ({t} X ™) = {t} X (y+ [O: ’\k]m)7 (6)
Ro'k(i) N ({t} X Im) = {t} X (Z -+ [O, Ak]m).
For (a,b,c,d) € (I™)* =I*™ we define
‘w(a,b,c,d) = (c—a,d—b)

and get a mapping
m I*™ — [—1, 1™

Finally we consider the composition

. 7120m 2m
Pij =TTy J — ™.

Lemma 1 There is a real oy > 0 not depending on k,i = (i1,...,%),j = (J1,.--,Jx) €
0Ll such that for any measurable set X in I*™

vol2ém (ﬂ'; HX )) < oy vol*™(X),

provided i # jr. (By vol? we denote the p-dimensional Lebesgue measure in R?.)

Lemma 2 There is a real ap > 0 such that for any measurable set in [—1,1]*™

vol*™ (71"1 (X )) < ay vol*™(X).

Corollary There is a real o > 0 not depending on k,i = (i1,...,%),7 = (j1,...,J&) €
61k such that for any measurable set X in [—1,1]*™

vol?®™ (pl‘ ]-1 (X )) < avol™™(X),

provided iy # Ji.
Since the proof of Lemma 2 is trivial it is sufficient to prove Lemma 1.

Proof of Lemma 1. We start with the remark that m;; can be extended to a linear
mapping
ﬁivi : R¥™ 5 Ri™,

The proof will proceed as follows. We define a 4m-dimensional linear subspace L of R?*™
(depending on %, j) such that 7 lr : L — IR*™ is a linear isomorphism and for any
measurable set X in R*™ we have

vol*™ ((‘ﬁi,l- )" (X)) < o* vol*™(X), (7)

10



where o* = (1%__—2’\;) . (This is the point where we need A < !) Obviously 7; d =Tl

with a linear projection 7* : R¥*™ — L, and therefore, if X C I*™
vol™™™ (w7 }(X)) = vol®™ (73 (X) N J”m)

— V0129m (ﬂ_*—l (ﬁ.—i,ilL) (X) N J28m>

< (diam J#m) """ yopim ((ﬁf,z ) (X ))

)26m—4m

< (diam J2m a* vol'™(X),

such that the lemma will be proved with ap = (diam J26m)20m—dm(1=dyim provided (7)

is proved.

Thinking at our identification of the mappings ¢ : I* — J™ with the points in J%*™
we regard J2™ as (J™)?? and its points as sequences (ay, by, .. ., ag, by), where a;, b; € J™.
Let J4m denote the 4m-dimensional face of J?™ consisting of all (ay,b1,...,aq,bp) with

= b = o for iy # 1 # jr. (Here iz,j; are the last digits of i, J, respectively, and o
denotes the point (0,...,0) in R™.) Then L is defined to be the 4m-dimensional linear
subspace of R?™ which contains J;7".

Since 7;; is linear there is a real § such that for any measurable Y in L we have
vol*™ (7;,4(Y)) = dvol*™(Y),
and, since vol*™ J#T = (1 — A)*™, to prove (7) it is sufficient to show that

vol*™ (73 (JE7)) > (11"_2/\’\)% (1= N

= (1-2))*"

or that 7;,;(J£]") contains the cube
Q=[\1-)"
It will be convinient to identify L with R*™ via the mapping L — IR*™ which is obtained
by neglecting in points
(:C]_, .. .,:ngm) = (al,bl, .. .,ag,bg) €L
(a;,b; € R™) all coordinates not belonging to a;,, bi,, @j,,b;,. Then J¥* = J*™ and we
have to show B

T3,i(J*™) D Q. | (8)
Starting with the cube

Q* — [0, )\]4m
for each vertex 7 of J*™ we define the cube

Qy=v+Q".

By a simple geometric argument illustrated in Figure 4 it can be proved that any convex
set which intersects all 2*™ cubes fo must contain Q. Therefore to prove (8) it is sufficient
to show that for any vertex ¢ of J*™

Tii(¥) € Q3
or, equivalently

fiyi(d))‘ - € [0, )\]4"". ) (9)

11



Figure 4

Let us assume i; < ji. For a vertex ¥ = (ai,bi,,aj,,b;) of J*™ we shall write
T3,5(¥) = mi;() = (a,b,¢,d). To prove (9) it is sufficient to prove

a— Q;, b—bik, C— aj, d—bjkE[O,)\]m. (10)

We consider a — a;,; the remaining cases are analoguous. Our identification
¥ = (a1, b1,. .., ap, bg) made in Section 1 implies for 1 <7< 6§

fo(Re) N ({0} x I'™) = fy ({s:} x I™) = {0} x (a; + [0, A]™).

Therefore we have by the definition of m;;

(01 a’) = f:{f(sb 0) = f1/)f1/lj—1(si1 0)

and, since @((,...in) = S(iz,.iy (12, - - -, %) regarded as element of gi~4)
f57 (s5,0) € (M (s} x I
= {Sik} x I™
C R;,.
Therefore

(0,a) € fy(Rs) N ({0} x I™)
= {0} x (@i, +[0,A™)

which proves (10) for a — a;, and the lemma. O

We consider the compact subset

K= {(a, b) € ([-1,1]™)* = [-1, 1]2"‘](1 —t)a+1tb = o for some ¢t € H}

of [-1, 1]°m.

Lemma 3 Let (a,b,c,d) € I*™. Then the segments [(0, a), (l,b)], [(O, ¢), (1,d)] intersect
in a point (t,z) with t € H,z € I™ if and only if n(a,b,¢,d) € K

12



This lemma is an immediate consequence of the definitions of 7 and of K. O

Lemma 4 There is a real 8 > 0 such that for any k > 1,4, € 0", i  j we have

Ny (III;l) C py; (Nﬁ,\k(K))

where Ny« (9 l) denotes the X¥-neighbourhood of U, in J*™ while Ngye(K) is the BAF-
neighbourhood of K in [—1,1]*™. )

Proof. For an arbitrarily given ¢ = (a1,d1,...,a9,b5) € Nye(¥})) i dhoode W =
(a1, 8}, ..., a, b) € T} so that .

i —a <X, i -b <X (1<i<9).

A simple geometric argument (by induction with respect to k) shows that for

(a'y bc, d) = ﬂ-i,_i(w); (ala b’y C’, d’) = Wg,z(W)

each of the distances |a' — al, |b' — b|,|c —¢|, |d' — d| is at most

AF Z X< (11)

(The last inequality is a. consequence of our assupmtion A < — . Instead of applying this
assumption we could proceed with 25 instead of 2 and choose B =4/(1-X) +4y/m.
Therefore in this proof A < % is 1nessent1a1) As an immediate consequence of (11) we
have

mi3 () — 75 ()] < NF
and by |7(p) — 7(g)| < 2|p — q| we get

pii (W) — pij(w)] < 8AX. (12)

Since ¢’ € U¥.

ij) We can find points t € H,z € I™ such that

(t, :E) S Ro'k(i) ('(/)’) N Ra.k(i) (’l,b,) (13)

Let (t,9), (t, 2) be the points at which {t} x I™ intersects the segments f}; (I;x{o}), £ (I; x
{0}), respectively. The end points of these segments are (0, a'), (1,%'); (0 ), (1,d’) respec-
tively.

Moreover, (6) together with fJ.(I; x {0}) C Roky(¥'), fg (I x {o}) C Rk (') and
(13) implies

e~y SVm A,z -2 < Vm AR (14)

Let a* = a’'+z—y, b* = b +z—y, ¢* = +z—2, d* = d'+z—2. Then (a*, b*, c*,d*) € I*™,
and since (t,z) € [a*,6*] N [c*,d"],t € H by Lemma 3 we have n(a*,b", c*,d") € K.

Applying (14) we get
|(a', ¥, ¢, d) — (a*,b% c*, d*)| < 2¢/m AF

13



and therefore
dist(p;,;(¥"), K) < |7(d', ¥, ¢, d') — w(a®, b*, ", d*)|
< 4v/m N*.

This together with (12) shows
pi,i (V) € Np.ax(K),

where 8 = 8 + 4,/m. ’ O
Lemma 5 dimp K = m + ¢*.

Proof. K is the intersection of a cone with [-1,1]>™, ie,ifv € K,y € Rand yv €
[-1,1]?™, then yv € K. The full cone is

K= {'yv'v e K,ve IR}

= {(a, b) € (R™)? = ]Rzml(l —t)a +tb = 0 for some ¢ G‘H} )

and K = K N[-1,1]>™. So it is sufficient to prove |
dimpg K=m + q*.
To describe K we consider the boundary (D™ x D™) = ($™1 x D™) U (D™ x $™!) of
the ball D™ x D™ in R*", where D™ = {a € R™| |a| < 1},5™ ! = {a € R™| |a| = 1}.
Then, since ' . '
dimp K =1+ dimp (8(D™ x D™) N K)
it is sufficient to show ,
max [dimB ((S"“1 x D™) 07) ,dimp ((]Dm x $™ 1N T(—)] =m-—1+g¢*. (15)

We consider the first term

(8™ xD™)NK = {(a,552a) s € 5™, t e HN [4,1]}.
Let F = 3™ x [2,1], and let _

x:F—=8™1xD™
be the mapping given by
x(a,t) = (a, &l ) :

Obviously, x is a C* embedding which is injective on $™* x (%, 1], and since for H N
5,1 #0

dimp (8™ x (HN[4,1])) =m—1+dimp (Hn (},1]),
we have

dimp (($™' xD™)NK) =m—1+dimp (HN [},1]), if Hn [3,1] #0.

In the same way we get

(o xsm) K = ({5 pesm, terno ),

dimp (D™ x $™) NK) =m — 1+dimg (En[0,1]), i B [0,1] #0.
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Since ‘

¢" = max (dimp (H N [0,3]) ,dims (H N [4,1]))

this implies (15). 0
To prove (3) we apply the following result of C. Tricot Jr. [5], in which dimg, dimp

denote the upper and the lower box counting dimension, respectively, (see [2] e.g.).

Lemma 6 If X is a bounded subset of R? then

_— P
Timp X = p — lim inf 28727 Me(X) (16)
e—0 loge
p
dimyX = p — lim sup log vol? N(X) (17)
e—0 loge ;
where N.(X) denotes the e-neighbourhood of X in R?. O
Proof of (3). Lemma 6 for X = K together with lemma 5 implies
k 2m
omm — lim log vol*™ N,(K) —mt
e—0 logg
. logvol®™ N,(K) .
lg% oge =m—q". (18)

Applying Lemma 4 and the corollary to Lemma 1 and Lemma 2 we get for k£ > 1,i =
(ila v aik)ai = (jl) s 7jk) € g[l’k];’ik - jk

vol®™ Ny () < avol®™ Ny (K),
where «, 8 do not depend on k,3,j. By (4), (5) we have for & > 1

N.(T)CN(e)= U N()
i,jee[lvk]
T Ak

and therefore, since there are less than #* summands on the right hand side,
vol®™ Ny (%) < 8% arvol*™ (N (K)) .
Since A < 1, i.e. logA < 0, this together with (18) implies

log vol**™ Ny (¥*) _ 2logf .  loga . log vol*™ Ngxx(K)
. - _
lim sup Tog \F Z Toga AR ogak T lmsu log A¥
_2 log 6 4+ lim log vol*™ N« (K)
logA k=0  logA* —logf

_ 2logd tm—d*
~ Tog A 7
and a fortiori | 2o 7 (g o los 8
lim sup A (%) > 287 g
£—0 loge log A
Hhen log vol**™ N, (T* 2log
20m — lim sup OB VO (%) <20m—m+q* — °8 ,
N loge log A
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and, since U* lies in R?*™, (17) implies

. 2logh
dimg¥* < 20m — e —
Cmp™ S Om=mE S+
Now (3) is a consequence of the well known inequality dimg < dimp, and the theorems
are proved. [ |
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