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Abstract 

As well known, a horse shoe map, i.e. a special injective reimbedding of the unit 
square J 2 in JR.2 (or more general, of the cube Im in 1Rm) as considered first by S. 
Smale [4], defines a shift dynamics on the maximal invariant subset of J2 (or Im). 
It is shown that this remains true almost surely for non injective maps provided the 
contraction of the mapping in the stable direction in sufficiently strong. 
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1 Definitions and results 

For an integer e 2:: 2 the set :Ee of all doubly infinite sequences i = ( ... , i_i, i 0 , i 1 , ... ), 

where iz E {1, ... , B}, equipped with the metric 
CXJ 

d(( ... ,i_1,io,i1, ... ),( ... ,j_1,jo,j1, ... )) = L 2-IZI (liz-jzl) 
l=-CXJ 

is a Cantor set. the shift mapping a : :E9 -+ :E9 given by 

with jz = iz+i 

is a homeomorphism which defines a simple but nevertheless non trivial dynamics on :E9 : 

the periodic points are dense, and there are dense orbits e.g. Therefore, to ask whether 
or not a given diskrete dynamical system contains a subsystem conjugate to a shift space 
of this kind is a natural question. 

Let R be a topological space with metric d, R* a compact subset of R and f : R* -+ R 
continuous. For k 2:: 1 we define the compact sets 

R'k = {p E RI fk (p) is defined} 
Ak = fk(R~). 

Then Rr = R* =:) R2 =:) R3 ... , A1 =:) A2 =:) ••• , and we consider the compact sets 

CXJ 

A= n Ak, 
k=l 

Z = R~ nA. 

The set A can be regarded as the global attractor of k. Indeed, f(A n R*) =A, and there 
is a sequence c1 > c2 > . . . of real numbers tending to 0 such that for any k > 1 and any 
p E R'k we have d(jk(q), A) :::; ck· The set Z is the maximal invariant subset of R, i.e. the 
maximal set on which f is defined, and f(Z) = Z. 

A subset S of R* will be called a shift space in R, if for some () 2:: 2 there is a 
homeomorphisms h : :Ee -+ S such that ha = f h. Obviously, if S is a shift space in R 
then S C Z. If Z itself is a shift space in R then we say that f concentrates to a shift 
space. 

Among the best known examples of mappings which concentrate to a shift are the so 
called horse shoe mappings which can be defined as follows. Let R0 = JRm+l (m > 1) and 
R0 = Im+l = Ix Im the (m + 1)-dimensional unit cube in JRm+l which is regarded as 
the cartesian product of the unit interval I= [O, 1] with them-dimensional unit cube. To 
define a horse shoe mapping we fix disjoint subintervals Ii, ... , I 9 in I ( e 2:: 2) and choose 
f : R0 -+Ro so that the following conditions are satisfied, where I* = I1 U · · · U Io. 

(ii) For some A E (0, 1) there are 0 1 a mapping cp : I* -+ I whose restriction to 
each component Ii of I* is an expanding 0 1 mapping onto I and a 0 1 mapping 
'l/; : I* -+ [O, 1 - .xr such that 

f ( t, x) = ( <p ( t) , 'l/; ( t) + ,\ · x) ( ( t, x) E I* x Im). 
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(iii) f is injective on I* x Im. 

(see Fig. 1, where m = 2, e = 3.) 

Figure 1 

It is well known (and not hard to prove) that f concentrates to a shift space Z. 
Moreover, the global attractor A off is homeomorphic to the cartesian product Ix c0 

of I with a Cantor set C0 , and each component of A is a C1 arc running upwards from 
the bottom { 0} x Im of R0 to the top { 1} x Im. These facts remain true for more general 
mappings f (see [3] Ch. III, e.g.), but they may fail to hold if (iii) is dropped from our 
assumptions (see Fig. 2, where m = 2, e = 2). 

Figure 2 

This paper is concerned with mappings f satisfying (i), (ii). If e, r.p are fixed we shall 
show that for "almost all" 'lj; the mapping f concentrates to a shift space and A has the 

3 



structure mentioned above even if f is not injective on I* x Im, provided A is sufficiently 
small. 

A natural technical simplification in the definition is obtained by neglecting the part 
of R0 == IRm+l outside R0 == I x Im, i.e., we shall start with R == I x Im, R* == I* x Im 
and the restriction of the original f to f : R* -+ R. Moreover, to avoid considerably 
technical difficulties as piecewise linear approximations of cp and 'lj; e.g. we assume that 
the restrictions of cp and 'lj; to the components Ii of I* are affine mappings onto I or into 
[O, 1-.Xr, respectively. (See [1], where for nonlinear mapppings in a similar situation the 
attractor A is considered. Indeed, using the techniques applied there, facts analogous to 
tho~e stated an Corollary 1 and Corollary 2 can be proved in the nonlinear case provided 
"full measure in J26m" is replaced by "open and dense in the space of all 0 1 mappings 
'lj; : I* -+ Jm" . ) 

So we define R, R*, f as follows. R == I x Im, R* == I* x Im, where I* == I 1 U · · · U I8 is 
the union of()~ 2 disjoint closed subintervals of I and f : r* -+ R is given by 

f(t, x) == (cp(t), 'l/;(t) +A· x) ((t, x) EI x Im), (1) 

where A E (0, 1), cp : I* -+ I is a mapping whose restrictions to the intervals Ii are affine 
mappings onto I, and 'lj; : I* -+ [O, 1- .xr is a mapping whose restrictions to the intervals 
Ii are affine. The interval [O, 1 - .X] will be denoted by J. 

The maximal subset IZ of I on which cpk is defined (k == 0, 1, 2, ... ) consists of ()k 
disjoint intervals, where I0 ==I~ I{ ==I* ~ I2 ~ I;, ~ · · · , and 

is a Cantor set in I. The Hausdorff dimension dimH I~ of I~ coincides with the box 
counting dimension dimB I~ (see [2]) and will be denoted by d*. It is determined by 
II1 ld* + · · · + IIeld* == 1, where !Iii denotes the length of h 

We assume that B, I*, cp: I* -+I and A E (0, 1) are fixed while 'lj; is variable. Then the 
mapping fin (1) is determined by 'lj; and will sometimes be denoted by f"'1· 

Let si, ti be the end points of Ii which are chosen so that cp(si) == 0, cp(ti) == 1, and 
let ai == 'l/;(si), bi == 'l/;(ti)· Then, since 'lj; is piecewise affine, it is determined by these 
points ai, bi E Jm or, equivalently, by the point (a1 , b1 , a2 , b2 , ••• , ae, be) in J 28m. So all 
possible mappings 'lj; are in 1-to-1 correspondence with the points in J2Bm, and we shall 
not distinguish between 'lj; and the corresponding point. 

The following sets will play an important role. (A denotes the global attractor off "'1.) 

W == { 'lj; E J 28m If ,,p does not concentrate to a shift space} , 

WA == { 'lj; E J 28
m If 1/J IAnR* is not injective} . 

In Section 2 (Proposition 3) we shall see that W, WA are compact, W C WA and that 
for 'lj; E J 28m\ WA the global attractor A off ,,p is homoeomorphic to the cartesian product 
of an interval with a Cantor set. Moreover, since An R* is compact and f,,p(A n R*) ==A, 
for each 'lj; E J 20mw A the restriction !IAnR* : An R* -+ A is a homeomorphism. The 
main results of this paper as stated in the following two theorems concern the Hausdorff 
dimensions of W and WA. 
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Theorem 1 If ;\ < ~ then 

. 2 loge 
dimH W < Wm - m + d* + . 

- log 1/..:\ 

Theorem 2 If ;\ < ~ then 

. 2 loge 
dimH WA < Wm - m + 1 + / . - log 1 ;\ 

Corollary 1 If;\ < e-2/(m-d*)' ;\ < ~' then the set of all those cp E J2Bm for which f 'ljl 
concentrates to a shift space is open in J2Bm and has full measure (l - ,,\)20m. 

Corollary 2 If m > 1, A< e-2/(m-l) and;\< ~, then for all 'lj; in an open subset of J2Bm 
with full measure (l - ;\)20

m the global attractor A off 1/J is the cartesian product of an 
interval with a Cantor set, and f1fJIAnR* : An R*-+ A is a homeomorphisms. 

Proof of the corollaries. In these cases dimH W < Wm or dimH '11 A < Wm, respectively, 
and, by Proposition 3, '11, '11 A are compact. D 

Propositions 1 and 2· in Section 2 will yield some further details. 

Remark 1 Our condition;\< ~ is void unless 

* 2 loge 2 loge 
-m + d + log l/ ;\ < 0 or - m + 1 + log l/ ;\ < 0, 

respectively, i.e. 
m > 210g e - d* or m > 210g e - 1. 

log2 log2 
This condition reflects the fact that two m-dimensional cubes inlm of edge length at least 
1/2 and with edges parallel to those of Im must intersect. We do not know whether it is 
necessary. (Here it is essentially used only in the proof of Lemma 1.) 

Remark 2 We do not know whether the bounds for dimB W, dimB WA in the theorems 
are sharp. As easily seen all points 

belong to W if t EI~ \{O} and to WA if t E (0, l]. Therefore 

dimH W 2: 20m - 2m + d*, 
dimH WA 2: 20m - 2m + 1, 

but these lower bounds are rather weak, and they don't depend on..:\. 

The following fact concerning Corollary 2 seems to be more interseting. If m 2: 3 is 
odd and ;\ > 120-2/(m-l), then the set WA contains interior points, i.e. the exponent 
-2 / ( m - 1) in Corollary 2 is sharp at least for m odd. This can be proved by modifying 
the proof of a similar fact (Theorem 2) in [1]. 
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2 Preliminaries 

For integers B ~ 2, k' ::; k" let B[k' ,k"] be the set of all sequences ( ik', ik'+l' ... , ik") where 
iz E {1, ... , B}, and let B[-oo,k"], B[k',oo], B[-oo,oo] consists of the sequences which are infinite 
to the left, the right or in both directions, respectively. So B[-oo,oo] coincides with the 
Cantor set ~8 of Section 1, and B[-oo,k"], B[k',oo] have a natural Cantor set structure too. 
The shift map a : B[k' ,k"] -+ e[k'-l,k" - 1] is defined in the obvious way. 

As in Section 1 we assume that I* = 11 u · · · u 18 ( e ~ 2) is the union of e disjoint closed 
subintervals of I and that cp : I* -+ I is a mapping whose restrictions to the intervals Ji are 
affine mappings onto I. Moreover, for some 'lj; E J28m let f : R* = I* x Im -+ R = I x Im 
be defined by ( 1). 

The Ok components of the domain IZ of <pk (k ~ 1) will be denoted by h (i E (l[l,k]) 
where the indices are chosen so that fork > 1 

l(i1, ... ,ik) c l(i1, ... ,ik-1) 

cp ( l(i1, ... ,ik)) = lui,···,ik-i), where jz = iz+i · 

00 

For i = (i1, i2, ... ) E (j[O,oo] the intersection n l(i1, .. ,,ik) contains exactly one point which 
k=l 

will be denoted by ti. The sets ~ = Ii x Im (i E (l[l,k 1, 1 ::; k < oo) are slices of R = I x Im 
while for i = (i1, i 1 ,~ .. ) E (l[l,oo] - -

00 

D_ - n R(· . ) .L 'i - i1 , ••• ,ik 
k=l 

is the m-dimensional cube {ti} x 1m. 

For i E (l[l,k"] (1 ::; k" ::; oo) and 1 ::; k' ::; k",k' < oo the image Jk'(~) is well 
defined and will be denoted by Ruk' W. So ~ is now defined for all i E e[k' ,k"] provided 
k' ::; k", -oo < k' ::; 1, 0 ::; k" ::; oo. By 

-oo 
D. - n R(· . ) .L'i - ik,. .. ,io, ... 

k=O 

for i = ( ... , L 1 , i 0 , ... ) E (l[-oo,k"] (0 ::; k" ::; oo) we include the case k' = -oo into our 
definition. 

, , , 
, , , , 

I 
I 
I ... ----- ----

,' I 

)---N/1-------------- -

R(· . ) "k' , ... ,io 

Figure 3 
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For k', k" finite, k' :::; 0 the set ~ is an ( m+ 1 )-dimensional prism over an m-dimensional 
cube with edge length _A-k'+l which fork"== 0 has its bottom in {O} x Im and its top in 
{1} x Im, while for k' :::; 0, k" 2:: 1 

R( · · ) - R( · · ) n R( · · ) "'k' , ••• ,ik" - "k' , ••• ,io i1, ••• ,ik" 

(see Fig. 3). For i E e[-oo,o] the set ~ is a straight segment running from a point in 
{O} x Im to a point on {1} x Im, and if i E e[-oo,oo] then ~contains exactly one point 
which will be denoted by Pi: As easily seen 

f (~ == Ru(i) (2) 

holds wherever Rj_ and Ru(i) are defined. Moreover, Ri C ~ holds if and only if i is a 
part. of j, i.e., if i can be obtained from j by cancellin£ digits on one or both ends. The 
domain of Jk (k 2:: 1) is -

RZ == iz x Im == U ~, 
iEO[l,k] 

and 
00 

R~==I~xim== nRZ 
k=l 

is the maximal set on which all iterations r (k 2:: 1) are defined. 
The global attractor off is given by 

A== LJ ~-
iEO[-oo,ooJ 

The maximal invariant set of f is 

z == LJ R1, 
iEO[-oo,ooJ 

i:e. Z consists of the points Pi (i E e[-oo,oo]), and by h(i) = Pi we get a surjective mapping 
h : :E0 = e[-oo,oo] --+ Z. As easily seen h is continuous, and (2) implies ha = f h. For 
t E I, i E B[-oo,o] we define g( t, i) to be the intersection point of { t} x Im and ~. So we 
get a surjective continuous mapping g : I x e[-oo,O] --+ A. -

Proposition 1 The following conditions are equivalent. 

{i} f concentrates to a shift space. 

{ii} h: :E0 --+ Z is a homeomorphism. 

{iii} If i, j_ E e[-oo,o], i =j:. j_ then 

Proof. The equivalence between {ii} and {iii} is an immediate consequence of the follow-
ing fact. If C = ( ... , L1, io) E B[-oo,o] then the mapping hi- : B[l,oo] --+ Ri- n R~ given 
by hi-(ii, i 2 , .•. ) = h( ... , Li, i 0 , ii, ... ) is a homeomorphism. 

The implication {ii} :::} {i} follows from (2). 

To complete the proof we assume {i) and prove {ii}. Since :Eo is compact and h is 
surjective it is sufficient to show that h is injective. 
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If .c • - ( • • • ) • - ( • • • ) (}[-oo,oo] th · · h 1 1or 1 - ... , L1, io, i1, ... , J - ... , J-1, Jo, Ji,... E e pos1t1ve aves 
i+ = ( i1' i2' ... ) 'j_+ = U1' j2' ... ) are different, then h(i) E Ri+' h(j_) E Rj+' Ri+ n Rj+ = 0 
implies h(i) # h(j). If i+ = j+ but i # j then for some k < 0 th~ positive halves 
O"k (i) +, O"k (j_) + of O"k (i), O"k (j_) will differ, and -;,e get 

By (i) flz : Z -+ Z is a homeomorphism, and (f lz)kh = hO"k holds for our negative 
exponent k. So we get (flz)kh(i) # (flz)kh(j_) and therefore h(i) # h(j_). D 

Proposition 2 The following conditions are equivalent. 

{i) flAnR* : An R*-+ A is a homeomorphism. 

{ii) g: Ix (}[-oo,o]-+ A is a homeomorphism. 

{iii) If i, j_ E (}[-oo,oJ, i # j_ then Ri n Rt.= 0. 

Proof. Since g maps each interval Ix {i} injectively onto~' the equivalence of {ii) and 
{iii) is obvious. 

Now we prove {i) ==> {iii). By {i) for k 2:'.: 1 the mapping Jk : An R'k -+ A is a 
homeomorphism. To prove {iii) we show that for i = ( ... , L 1 , io), j = ( ... , j_1 , jo) E 
(}[-oo,o] the existence of a common point p = (t, x) of~ and Rt_ (t E-I, x E Im) implies 
!=J_. 

For k 2:'.: 1 there is a unique p* = ( t*, x) E An R'ic such that Jk (p*) = p. Here t* E Ii*, 
where i* = (ii, ... , i'ic) E (}[l,k] with ii = iz-k = jz-k (1 ~ l ~ k). Since k 2:'.: 1 is arbitrary 
this shows in = jn for all n ~ 0. 

To prove {iii) ==> {i) we assume that all segments ~ (i E (}[-oo,o]) are disjoint. Then 
each component of An R* is a segment ~ n R;, (i = ( ... , i_1, i0) E (}[-oo,o], 1 ~ i ~ B), 
and f maps this segment injectively onto Rj, where j_ = ( ... , j_1 , j 0 ) E &[-oo,o] is given 
by j1 = jz+i if l < 0, j0 = i. So f is injective-on each component of An R*, and by {iii) 
different components have disjoint images. Since An R* is compact injectivity together 
with f (An R*) =A of flAnR* implies {i). D 

Proposition 3 W and WA are compact. 

Proof. Since the proofs in both cases are similar we consider W only. For 'lj; E JWm, f = 
f1fJ : R* -+ R the corresponding mapping and 1 ~ i ~ B let Zi('l/;) denote the union of all 
~nR~, where i == ( ... , i_1 , i0) E &[-oo,o], i0 = i. Obviously Z1 ('l/;), ... , Ze('l/;) are compact 
and their union is the set Z belonging to f 1/J. 

We show that f-,p concentrates to a shift space provided the B sets Zi('l/;) are disjoint. 
L t . ( . . . ) . ( . . . ) E (}[-oo oo] . -1- • b . ·n:r h t e 1 = ... , i_1, i0, i1, ... ,J = ... ,J-i,Jo,Ji,... ' ,! -r- J e given. vve ave o 
show h(i) # h(j). If iz # j1 for some l 2:'.: 1, then h(i) and h(j) lie hi different components 
of R~, and h(i) # h(j) is obvious. Now we assume that l0 { 0 is the maximal index with 
i10 # jz0 • Then for i'- ( ... , i~1 , i~, i~, ... ) = 0"10 (i),j' = ( ... ,/_1,jb,jfi ... ) = 0"10 (j) we 
have i~ # jb but iz = jf if l 2:'.: 1. The points h(i'), h(j') lie in the same component {tf x Im 
of R~ but in different and therefore disjoint sets Zi~ ( 'lj;), Zi~ ( 'lj;). So h(i') # h(j_'), and 
since f- 10 is injective on { t} x Im this gives 

h(i) = hO"-lo (i') = 1-lo h(i) =/:- 1-l h(j_') = hO"-lo (j_') = h(j_). 
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To prove that W is compact we show that each point 1./J E J28m\ W has a neighbour-
hood which does not intersect W. If 1./J ~ W, by Proposition 1 the corresponding sets 
Z1 (¢), ... , Z0 (1f;) are disjoint and since they are compact there is a positive c such that 
the distance between each two of them is at least c. As easily seen the end points of the 
segments Ri (i E O[-oo,o]) depend continuously on ¢, and this continuity is uniform with 
respect to { Therefore, if 1./J' E J 20

m is sufficiently close to 1./J the sets Zi ( ¢') belonging to 
¢' will still be mutually disjoint and ¢' ~ W. D 

3 Proof of the two theorems 

We assume that cp : I* ~ I and ,.\ E (0, ~) and therefore B, IZ (1 ~ k ~ oo ), h, ~ (i E 
O[l,kJ, 1 ~ k ~ oo ), t1 (i E O[l,oo]) are fixed. Let H denote one of the sets I~ or I, and let 
q* = dimH H = dimB H. We define 

'11* = { 1./J E J20ml~(¢) n Rt_(1./J) n (H x Im) =f. 0 for at least one pair i =f. j_ E O[-oo,o]}, 

where ~( 1./J) denotes the set ~ which is constructed with the mapping ¢. Looking at 
the equivalences between (i) and (iii) of the propositions in section 2 we see that both 
theorems of section 1 are combined in 

ffr* n * 2 log B 
dimH ';!! ~ 2um - m + q +log l/,.\. (3) 

We shall prove (3) at the end of this section after some lemmas are stated and proved. 
· * .c k · ( · · ) · ( · · ) n[l k] · -1- • h 11 Besides W ior 1 ~ < oo, 1 = ii, ... , ik , J_ = J1, ... , Jk E u ' , 1 / J_ we s a 

consider the sets · 

Wi,t_ = { 1./J E J20mlRcrk(i)( ¢) n Rcrk(i.)( ¢) n (H x Im) =f. 0} 
'11~ = LJ Wi,t 

.f,jEB[l,k] 
ik=Fik 

Since R(l_k,. .. ,Zo) C R(l_k+1 , ... ,z0 ), we have '11! :) w; :) · · ·, and 
00 

w*= n u 
k=l .f,jEB[l,k] 

- .i=Fi 

together with the proof of Proposition 3 implies 
00 

w* = n w~. 
k=l 

For k ~ 1, i, j_ E O[l,kJ, i =f. j_ we define the mapping 

7r !,i_ : J20m ~ J4m = (Im) 4 

by 
7r!_,t_(1./J) =(a, b, c, d), 

where the points a, b, c, d E Im are determined by 

f~(s1, o) = (0, a), 
f~(st_, o) = (0, c), 

9 

!~(ti, o) = (1, b), 
f~(tt_, o) = (1, d), 

(4) 

(5) 



with si, ti the end points of h such that cl(s1) = 0, cl(t1) = 1 and o = (0, ... , 0) E Im. 
Therefore (0, a), (1, b) are the end points of the segment Jj(I1 x {o}) and (0, c), (1, d) those 
of fj(Ii x { o} ). Moreover the segments [(O, a), (1, b)], [(O, c), (1, d)] are edges of the prisms 
Jk(~) - Ruk(i)' Jk(Ri) = Ruk(j)' respectively, such that for (t, y) E [(O, a), (1, b)], (t, z) E 
[(O, c), (1, d)] we have -the cubes 

Ruk(i) n ({t} x Im)= {t} x (y+ [O,,\k]m), 
Ruk(i) n ( {t} x Im)= {t} x (z + [O, ,\kr). 

For (a, b, c, d) E (Im) 4 = J4m we define 

·7r(a,b,c,d) = (c-a,d-b) 

and get a mapping 
7r : J4m -t [-1, 1] 2m. 

Finally we consider the composition 

P . . _ 7r7r ... J2Bm -t J2m !,l - !,l. . 

(6) 

Lemma 1 There is a real a 1 > 0 not depending on k, i = (ii, ... , ik), j = (ji, ... , jk) E 
e[l,k] such that for any measurable set X in 14m -

vol28
m ( 7rf:J(X)) ::; a1 vol4m(X), 

provided ik =f. jk. (By volP we denote the p-dimensional Lebes~ue measure in JRP.) 

Lemma 2 There is a real a 2 > 0 such that for any measurable set in [-1, 1]2m 

Corollary There is a real a > 0 not depending on k, i = (ii, ... , ik), j = (j1, ... , jk) E 
e[i,k] such that for any measurable set X in [-1, 1]2m -

provided ik =/:- jk. 

Since the proof of Lemma 2 is trivial it is sufficient to prove Lemma 1. 

Proof of Lemma 1. We start with the remark that 7ri,j_ can be extended to a linear 
mapping 

7f !,i_ : JR 26m -t JR 4m. 

The proof will proceed as follows. We define a 4m-dimensional linear subspace L of JR26m 

(depending on i, j_) such that 7fu IL : L -t JR 4m is a linear isomorphism and for any 
measurable set X in JR 4m we have-

vol4m (('if 4IL )-
1 

(X)) ~ a* vol4m(X), 

10 
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where a*= (t~2~)
4

m. (This is the point where we need A< -2
1 !) Obviously 7fi · = 7fi ·IL7r* _,J _,J 

with a linear projection 7r* : JRWm ----t- L, and therefore, if X c J4m - -

volwm ( 7r;_:J (X)) = volwm ( wz1 (X) n J 2em) 

= volwm ( 1f•-l (w1.tfL rl (X) n 12em) 

:S: (diam 12em )2°m-4m vol4m ( (w1,,t_[L r1 (X)) 

( e )
Wm-4m 

::::; diam ] 2 m a* vol4m(X), 

such that the lemma will be proved with a 2 =(diam JWm)2em-4m( 11-=;~) 4m, provided (7) 
is proved. 

Thinking at our identification of the mappings 'if; : J* ----t- Jm with the points in pem 
we regard JWm as (Jm)w and its points as sequences (a1 , b1 , ... , ae, be), where ai, bi E Jm. 
Let 1£'1j denote the 4m-dimensional face of pem consisting of all (a1 , b1 , ... , ae, be) with 
ai = b~ = o for ik # i # jk. (Here ik, jk are the last digits of i., j, respectively, and o 
denotes the point (0, ... , 0) in lRm.) Then L is defined to be the 4m-dimensional linear 
subspace of lR2em which contains JtT. 

Since 1f i,i is linear there is a real 8 such that for any measurable Y in L we have 

vol4m (wi,t(Y)) = 8 vol4m(Y), 

and, since vol4m JtT = (1 - A)4m, to prove (7) it is sufficient to show that 

vol4m (w·. (J~r:")) > (1 - 2A)4m (1 - A)4m 
1'l.. 1'l - 1- A 

= (1- 2A)4m 

or that 1fi,i(JtT) contains the cube 

Q = [A, 1 - A ]4m. 

It will be convinient to identify L with lR4m via the mapping L ----t- lR4m which is obtained 
by neglecting in points 

(x1, ... , Xwm) = (a1, b1, ... , ae, be) EL 

(ai, bi E lRm) all coordinates not belonging to aik' bik' aik' bik· Then JtT = J 4m and we 
have to show 

Starting with the cube 
Q* = [O, A]4m 

for each vertex 'if; of J 4m we define the cube 

Q~ = 'l/J+Q*. 

(8) 

By a simple geometric argument illustrated in Figure 4 it can be proved that any convex 
set which intersects all 24m cubes Qt must 'contain Q. Therefore to prove (8) it is sufficient 
to show that for any vertex 'if; of J m 

or, equivalently 
(9) 
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~~+Q* 

J4m Q 

Figure 4 

Let us assume ik < jk. For a vertex ~ = (aik' bik' aik' bik) of J4
m we shall write 

1fi,j_(~) = 7ri,t_(~) =(a, b, c, d). To prove (9) it is sufficient to prove 

We consider a - aik; the remaining cases are analoguous. Our identification 
~ = (a1 , b1 , ... , ae, be) made in Section 1 implies for 1 :::; i:::; (} 

f 1f;(R) n ( {O} x Im) = f 1f; ( {Si} x Im) = {O} x (ai + [O, ,.\]m). 

Therefore we have by the definition of 7ri,j_ 

and, since cp(s(i1 , ••• ,ii)) = S(i2 , ... ,iz) ((i2, ... , iz) regarded as element of ()[l,Z-l]) 

Therefore 

Jj-1(s1, o) E { cpk-1(sJ} x Im 
= {siJ X Im 
cRk. 

(0, a) E f1f;(Rk) n ( {O} x Im) 
= {o} x (aik + [o, ..\r) 

which proves (10) for a - aik and the lemma. 

We consider the compact subset 

K = {(a, b) E ([-1, 1r)2 =[-1,1]2ml(l - t)a + tb = o for some t EH} 

of [-1, 1]2m. 

(10) 

D 

Lemma 3 Let (a, b, c, d) E I 4m. Then the segments [(O, a), (1, b)], [(O, c), (1, d)] intersect 
in a point (t, x) with t EH, x E Im if and only if 7r(a, b, c, d) EK. 

12 



This lemma is an immediate consequence of the definitions of 7r and of K. D 

Lemma 4 There is a real (3 > 0 such that for any k 2:: 1, i, j_ E e(i,k], i =I= j_ we have 

where N>.k('I!';_) denotes the A_k-neighbourhood of 'I!'J.,j in pem while Nf3>.k(K) is the (3A.k-
neighbourhooi of K in [-1, 1]2m. -

Proof. For an arbitrarily given 'ljJ 
(ai, bi,. .. , a~, b~) E W'J.,;j_ so that 

(1 :::; i :::; e). 

A simple geometric argument (by induction with respect to k) shows that for 

(a', b', c', d') = 7ri_,;j_('l/;') 

each of the distances la' - al, lb' - bl, le' - cl, Id' - di is at most 

(11) 

(The last inequality is a. consequence of our assupmtion A. < ~. Instead of applying this 
assumption we could proceed with 1 ~>. instead of 2 and choose f3 = 4/(1..,... A.)+ 4fo. 
Therefore in this proof A. < ~ is inessential.) As an immediate consequence of (11) we 
have 

l7r1,t_('l/J') - 7ri_,;j_('l/J)I < 4A.k 

and by 17r(p) - 7r(q)j < 2lp - qi we get 

IP1,t_('l/J') - P1,t_('l/J)I < 8A.k. 

Since 'l/;' E w;_,i_, we can find points t E H, x E Im such that 

(12) 

(13) 

Let ( t, y), ( t, z) be the points at which { t} x Im intersects the segments f j, (Ji x { o}), f j, (It_ x 
{ o} ), respectively. The end points of these segments are (0, a'), (1, b'); (0, c'), (1, d') respec-
tively. 

Moreover, (6) together with Jj,(h x {o}) C Ruk(i)('l/;'), Jj,(It_ x {a}) C Ruk(;j_)('l/J') and 
(13) implies 

.(14) 

Let a*= a'+x-y, b* = b'+x-y, c* = c'+x-z, d* = d'+x-z. Then (a*,b*,c*,d*) E J 4m, 

and since (t, x) E [a*, b*] n [c*, d*], t EH by Lemma 3 we have 7r(a*, b*, c*, d*) EK. 

Applying (14) we get 

l(a', b', c', d') - (a*, b*, c*, d*)I :::; 2fo >.k 
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and therefore 

dist(Pi,t(1fl'),K):::; 17r(a',b',c',d')-7r(a*,b*,c*,d*)I 
:::; 4Vrri ..\k. 

This together with (12) shows 
Pi,i ( 1/J) E Nf3·>.k ( K), 

where /3 = 8 + 4Vrn. 

Lemma 5 dimB K = m + q*. 

D 

Proof. K is the intersection of a cone with [-1, 1]2m, i.e., if v E K, I E JR and 1v E 
[-1, 1]2m, then {VE K. The full cone is 

K = {1vlv E K,1 E lR} 
= {(a, b) E (1Rm)2 =1R2ml(l - t)a + tb = 0 for some t EH}, 

and K = K n [-1, 1 ]2m. So it is sufficient to prove 

dimB K = m + q*. 

To describe K we consider the boundary 8(lDm x IDm) = ($m-i x IDm) u (IDm x $m-1) of 
the ball IDm x IDm in 1R2m, where IDm ={a E 1Rml !al :::; 1}, 3m-l ={a E 1Rmj jaj = 1}. 
Then, since 

it is sufficient to show 

max [dimB ( ($m-l x IDm) n K) , dimB ( (IDm x $m-l) n K) J = m - 1 + q*. (15) 

We consider the first term 

($m-l x IDm) n K = { (a, t~1 a) la E $m-1, t EH n [~, 1]}. 

Let F = $m-l x [~, 1], and let 

X: F-+ $m-1X10m 

be the mapping given by 
x(a, t) =(a, t~1 a). 

Obviously, x is a C 00 embedding which is injective on $m-l x (~, 1], and since for H n 
[~, 1] # 0 

dimB ($m-l x (H n [~, 1])) = m - 1 + dimB (H n (~, 1]), 
we have 

In the same way we get 
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Since 

this implies ( 15). D 
To prove (3) we apply the following result of C. Tricot Jr. [5], in which dimB, dimB 

denote the upper and the lower box counting dimension, respectively, (see [2] e.g.). 

Lemma 6 If X is a bounded subset of lRP then 

-d. X 1. . f logvolP Ne(X) ImB == p - Im lil l , 
e-+0 og c (16) 

d. X 1. logvolP Ne(X) ImB == p - Im sup 
1 

, 
e-+0 og c (17) 

where N6 (X) denotes the €-neighbourhood of X in lRP. D 

Proof of (3). Lemma 6 for X == K together with lemma 5 implies 

2 _ 1. logvol2
m Ne(K) _ * m Im 1 -m+q, 

e-+0 og c 

1. logvol2
m Ne(K) * 

Im ==m-q. 
e-+O log c (18) 

Applying Lemma 4 and the corollary to Lemma 1 and Lemma 2 we get fork 2:: 1, i == 
( . . ) · ( · · ) e[1 k] • • i1, ... '1,k 'l == J1' ... 'Jk E ' 'Zk == Jk 

vol 28m N >..k ( wz,J ~ a vol 2m Nf3>..k ( K), 

where a, f3 do not depend on k, i, j_. By ( 4), (5) we have for k 2:: 1 

Ne ('11*) C Ne (-Wk) == LJ Ne ( '111,t) 
.f,Jee[l,k] 
i.khk 

and therefore, since there are less than B2k summands on the right hand side, 

vol28m N>..k("W*) ~ B2kavol2m (Nf3>..k(K)). 

Since ,\ < 1, i.e. log,\ < 0, this together with (18) implies 

. logvol20
m N>..k("W*) 2logB 1 .. loga 1. logvol2

m Nf3>..k(K) 
hmsup > + Im -- +Im sup 

k-+oo log ,\ k - log,\ k-+oo log ,\ k k-+oo log ,\ k 

2logB 
1
. logvol2

m Nf3>..k(K) == + Im .;...__;_ __ __:___;_..:.. 
log ,\ k-+oo log ,\ k - log f3 
2 logB * 
log,\ + m - q' 

and a fortiori 
. logvol20

m Ne(-W*) 2 log B * 
hm sup 1 2:: 1 ,\ + m - q · 

e-+O ogc og 
Then 

log vol20m N ('11*) 2 log B 
2Bm - lim sup 

1 
e ~ 2Bm - m + q* -

1 
,\ , 

e-+0 ogc og 
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and, since -W* lies in lR20m, (17) implies 

. 2 logB 
d1mB-W*:::; Wm - m + q* +log l/.:\. 

Now (3) is a consequence of the well known inequality dimH :::; dimB, and the theorems 
are proved. • 
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