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Abstract

We revisit the two-well model for phase transformation in a linearly elastic
body introduced and studied in [MTL02]. This energetic rate-independent
model is posed in terms of the elastic displacement and an internal variable
that gives the phase portion of the second phase. We use a new approach
based on mutual recovery sequences, which are adjusted to a suitable energy
increment plus the associated dissipated energy and, thus, enable us to pass
to the limit in the construction of energetic solutions. We give three distinct
constructions of mutual recovery sequences which allow us (i) to generalize
the existence result in [MTL02], (ii) to establish the convergence of suitable
numerical approximations via space-time discretization, and (iii) to perform
the evolutionary relaxation from the pure-state model to the relaxed mixture
model. All these results rely on weak converge and involve the H-measure as
an essential tool.

1 Introduction

Microstructures occur in many material models and are important for macroscopic ef-
fects such as elastoplasticity or the hysteresis in shape-memory materials. On typical
macroscopic and mesoscopic length scales, such materials are usually modeled by a strain
tensor and some internal variables such as phase indicators, magnetization, plastic ten-
sor, or hardening variables. In most cases, the stored-energy density depends only on
the point values of these variables and thus defines a material model without any length
scale. Thus, even steady states, which occur as minimizers of the energy, may develop
microstructures on arbitrary fine scales. For static problems a rich theory was developed
based on the seminal work [BaJ87], which introduced Young measures as an essential
tool.

For evolutionary problems the situation is much less developed since the temporal
behavior of such microstructures is significantly more difficult. For rate-independent
systems, which do not have an intrinsic time-scale and hence are sufficiently close to
static problems, a major step forward was done using incremental minimization problems,
namely for finite-strain elastoplasticity in [OrR99, ORS00, CHM02], for brittle fracture
in [FrM98, DaT02], and for shape-memory materials in [MiT99, MTL02, GMH02].

All these approaches have in common that they are based on incremental minimiza-
tion problems for an energetic rate-independent systems (ERIS) (Q,E,D), where Q is a
(possibly nonlinear) state space, E : [0, T ]×Q→ R∞ := R∪{∞} is the energy potential,
and D : Q × Q → [0,∞] is the dissipation distance, which measures the minimal energy
needed to change the state from q to q̃. Given an initial state q0 ∈ Q, the approximate
incremental minimization problem then reads:

for j = 1, ..., J find qj with

E(jτ, qj) + D(qj−1, qj) ≤ ετ + E(jτ, q̂) + D(qj−1, q̂) for all q ∈ Q,
(1.1)

where τ = T/J > 0 is the timestep. Here the error level ε = 0 is allowed, if there exist
minimizers of E(t, ·) + D(qj−1, ·). However, in many cases one has to take ε > 0, since
no minimizer exists because of the formation of microstructures. Instead, for every ε > 0
there exists a solution qεj .
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Using a fixed initial condition q0 the static theory can be employed to study the
microstructure that arises in qε1 for ε → 0, see e.g. [CDK13]. However, if one wants to
study the microstructure in qε2, there will be strong dependence on the microstructure of
qε1, and similarly qεj strongly depends on qεj−1. This problem gets even more involved, if
we define the piecewise constant interpolants qτ,ε : [0, T ]→ Q via

qτ,ε(t) = qεj−1 for t ∈ [(j−1)τ, jτ [ and qτ,ε(T ) = qεJ .

Then, the major mathematical task in evolutionary relaxation is to establish convergence
of a suitable subsequence for τn, εn → 0 to a limit q : [0, T ] → Q and to determine an
evolution equation for all such limits.

For nonlinear material models without internal length scale this program is largely
open. There are particular results for brittle fracture, see e.g. [DFT05, DaL10], in damage
modeling [FrG06], and for a very particular plasticity model [CoT05]. The present work
is a continuation of the two-phase model introduced in [MiT99, MTL02], where (i) we
generalize the existence result for the separately relaxed problem postulated there, (ii)
provide a numerical convergence result for space-time discretizations, and (iii) finally show
that the above-mentioned evolutionary relaxation holds true, i.e. that all accumulation
points of approximations qτ,ε are indeed solutions of the separately relaxed model.

All these works lead to so-called energetic solutions (also called quasistatic evolutions
in [DaT02, GaL09, DaL10]) for ERIS, see Definition 2.1. This notion of solutions is
formulated in terms of a global stability condition (S) and an energy balance (E). The
former simply means that the solution q : [0, T ]→ Q satisfies

∀ t ∈ [0, T ] : q(t) ∈ S(t) := S0(t),

where the (approximate) stability sets Sαk (t) for a ERIS (Q,Ek,Dk) are defined via

Sαk (t) :=
{
q ∈ Q

∣∣ Ek(t, q) <∞, ∀ q̂ ∈ Q : Ek(t, q) ≤ α + Ek(t, q̂) + Dk(q, q̂)
}
.

A crucial step in the existence and Γ-convergence theory for ERIS (see Section 3.2) is the
so-called closedness of the stability sets, in the following sense

αk → 0, tk → t∗
qk ∈ Sαkk (tk), qk ⇀ q∗

}
=⇒ q∗ ∈ S0

∞(t),

where S0
∞ refers to the limit system (Q,E∞,D∞). We say that the latter is the sepa-

rately relaxed ERIS for the family (Q,Ek,Dk) if Ek
Γ→ E∞ and Dk

Γ→ D∞ in a suitable
topology on Q. Yet, in general one cannot conclude that accumulation points q of ener-
getic solutions qk : [0, T ]→ Q for (Q,Ek,Dk) are energetic solutions for the limit system
(Q,E∞,D∞).

In this work we want to highlight that the method of mutual recovery sequences (MRS)
(originally called “joint recovery sequences” in [MRS08]) is an ideal tool for existence and
convergence theory for ERIS. This is a general abstract version of the jump-transfer or
crack-transfer lemmas used in [FrL03, DFT05, DaL10]. It can be seen as an evolutionary
counterpart to the classical limsup condition, or condition on the existence of recovery
sequences, for static Γ convergence. However, here the condition is for a sequence of ERIS
(Q,Ek,Dk), its supposed limiting system (Q,E∞,D∞), a sequence of states qk ⇀ q∗, and
an arbitrary test state q̂ ∈ Q. Throughout this work we assume that Q is a weakly or
strongly closed subset of a reflexive Banach space Q and use → and ⇀ to denote strong
and weak convergence, respectively.
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Definition 1.1 (Mutual recovery sequences (MRS)) Given the ERIS (Q,Ek,Dk)
for k ∈ N∞ := N ∪ {∞}, a sequence (tk, qk)k∈N with tk → t∗ and qk ⇀ q∗ in Q, and
q̂ ∈ Q, a sequence (q̂k)k∈N is called a MRS, if q̂k ⇀ q̂ and

lim sup
k→∞

(
Ek(tk, q̂k) + Dk(qk, q̂k)− Ek(tk, qk)

)
≤ E∞(t∗, q̂) + D∞(q∗, q̂)− E∞(t∗, q∗).

The importance here is that we have to recover mutual information on the energy in-
crement E∞(t∗, q̂)−E∞(t∗, q∗) and the dissipation D∞(q∗, q̂) with the help of one sequence
(q̂k)k. This is clearly distinct from separate relaxation, where there is no interaction be-
tween both quantities. In particular, this relates to the obvious fact that for an evolu-
tionary theory we need a recovery condition that couples properties of the energy storage
and the dissipation. Another instance of an explicit coupling occurs in EDP-convergence
for generalized gradient systems (Q,Eε,Rε) defined in [LM∗15].

To highlight the major advantages of MRS, it is sufficient to look at the case Ek = E

and Dk = D for k ∈ N∞, since even for showing existence of energetic solutions for
one ERIS, the concept of MRS is relevant and nontrivial. The simplest case occurs if
D is weakly continuous and E(t, ·) is weakly lower semicontinuous; then we can always
choose the constant MRS q̂k = q̂, since D(qk, q̂) → D(q∗, q̂) and lim infk→∞ E(t, qk) ≥
E(t, q∗). There is a huge literature for nonlocal material models, where the energy is
regularized by gradient terms or some nonlocal terms, while the dissipation remains
local like D((u, z), (ũ, z̃)) =

∫
Ω
D(x, z(x), z̃(x))dx, see [Tim09, MPP09, MaM09, MP∗10,

Han11, HHM12]. Indeed, if Q = U ×Ws,q(Ω) for some s > 0 and q > 1, then weak
continuity of D holds for Caratheodory functions D (because D has at most linear growth
by the triangle inequality). However, in this case the theory of MRS is not really needed.

To see the cancelation effect in the definition of the MRS we consider a Hilbert space
Q = Q, a quadratic energy E(t, q) = 1

2
〈Aq, q〉 − 〈`(t), q〉, and a translation invariant

dissipation distance D(q, q̃) = Ψ(q̃−q), which includes the case of classical linearized
elasticity. Here, the MRS can be chosen as

q̂k = qk−q∗+q̂ implying q̂k ⇀ q̂ and D(qk, q̂k) = Ψ(q̂−q∗) = D(q∗, q̂).

Moreover, using the quadratic structure of E(t, ·) we find

E(t, q̂k)− E(t, qk) =
1

2

〈
A(q̂−q∗), q̂k+qk

〉
− 〈`(t), q̂k−qk〉

→ 1

2

〈
A(q̂−q∗), q̂+q∗

〉
− 〈`(t), q̂−q∗〉 = E(t, q̂)− E(t, q∗).

(1.2)

Note that E(t, q̂k) → E(t, q̂) and E(t, qk) → E(t, q∗) is false in general. Thus, the appro-
priate choice of q̂k leads to a cancelation, and we conclude that q̂k is indeed a MRS.

The full strength of the tool of MRS is seen in material modeling without internal
length scale. There we are able to adjust the microstructure in q̂k suitably to recover
the dissipation as well as the energy increment. Indeed, often (including this work) it is
possible to find q̂k such that

lim
k→∞

Dk(qk, q̂k) → D∞(q∗, q̂) and (1.3a)

lim sup
k→∞

(
Ek(t, q̂k)−E(t, qk)

)
≤ E∞(t, q̂)− E(t, q∗). (1.3b)

After we recall some of the modeling for N -phase materials in Section 2, we concen-
trate on the special two-phase model of [MTL02], which relies on the relaxed two-well
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energy derived in [Koh91]. Here θ : Ω → [0, 1] denotes the mesoscopic volume frac-
tion of phase 2, and ũ = gDir+u : Ω → Rd is the displacement. Thus the states are
q = (u, θ) ∈ Q = U× Z with

U :=
{
u ∈ H1(Ω; Rd)

∣∣ u|ΓDir
= 0

}
and Z =

{
θ ∈ L2(Ω)

∣∣ θ(x) ∈ [0, 1] a.e.
}
.

The particular case has the special structure that E(t, ·) is quadratic, namely

E(t, u, θ) =

∫

Ω

1

2

〈
A
(

e(u)

θ

)
,

(
e(u)

θ

)〉
dx−

〈
l(t),

(
u

θ

)〉
,

where e(u) = 1
2
(∇u +∇u>) is the linearized strain tensor, and A is a symmetric linear

operator. The dissipation distance has the form

D(θ, θ̃) =

∫

Ω

max
{
κ1→2(θ̃−θ) , κ2→1(θ−θ̃)

}
dx,

where κ1→2 and κ2→1 are positive material constants.
Because of the constraint θ ∈ [0, 1], the quadratic trick in (1.2) cannot be used to

construct MRS. However, it is shown in Proposition 3.3 that

θ̂n(x) = θ̂(x) + g(x)
(
θn(x)−θ∗(x)

)
(1.4)

for a suitable g ∈ L∞(Ω; [0, 1]) depending nonlinearly on θ∗ and θ̂ defines a MRS satisfying

(1.3). Indeed, the choice of g gives sign(θ̂n−θn) = sign(θ̂−θ∗), and (1.3a) follows by the
affine structure in (1.4).

To control the energy difference we exploit the quadratic structure of the energy and
the property that the material model is scale invariant. As a consequence the reduced
energy

I(t, θ) := min
{

E(t, u, θ)
∣∣ u ∈ U

}
=

1

2
〈Lθ, θ〉+ 〈β(t), θ〉+ α(t)

is defined by a symmetric bounded linear operator L that is a pseudo-differential operator
with non-negative symbol Λ satisfying Λ(rξ) = Λ(ξ) for all r > 0 and ξ ∈ Rd \{0}. Thus,
as was already done in [MTL02, The02] the H-measure theory can be employed. In

particular, if θn generates the H-measure µ, then θ̂n generates the H-measure g2µ, and
we find

I(t, θ̂n)− I(t, θn) → I(t, θ̂)− I(t, θ∗) +

∫

Ω

∫

Sd−1

(g2−1)dµ(x, ω).

Using g2 ≤ 1 and µ ≥ 0 gives the desired estimate (1.3b), and (θ̂n)n is a MRS. This
provides the major step in the existence of energetic solutions for the two-phase model,
see Theorem 3.1.

In Section 4 we generalize the theory by approximating the spaces U and Z by suit-
able finite-element spaces Uk ⊂ Uk+1 and Zk ⊂ Zk+1. We provide conditions that all
accumulation points of the corresponding approximate minimizers qτ,k : [0, T ]→ Qk ⊂ Q

are indeed solutions for the limiting ERIS (Q,E,D). The MRS is obtained by suitably
projecting the sequence defined in (1.4).

The final Section 5 solves the question of evolutionary relaxation. We start from the
microscopic pure-phase model where θ is restricted to be either 0 or 1, i.e.

θ ∈ P :=
{
θ ∈ L2(Ω)

∣∣ θ(x) ∈ {0, 1} for a.a. x ∈ Ω
}

and Qpure = U× P.

4



In terms of the above theory we set Ek(t, u, θ) = E(t, u, θ) on Qpure and Ek = +∞
otherwise. In [The02] it was shown that the “separately relaxed” ERIS (Q,E,D) is a
lower relaxation of (Qpure,Ek,D) in the sense of [Mie04]. This means that each energetic
solution of (Q,E,D) can be approximated by solutions of the approximate incremental
minimization problem (1.1), but now using the state space Qpure.

Our Theorem 5.1 shows that all accumulation points q of approximate solutions qτ,ε
are indeed energetic solutions for the ERIS (Q,E,D). Thus, we conclude that the lower
relaxation is also an upper relaxation in the sense of [Mie04]. This reveals that the two-
phase model under consideration is very special. In general, one should not expect that
the separate relaxation is also an upper or a lower relaxation. This can only happen if
the macroscopic information kept in the relaxation (here the phase fraction θ) is enough
to characterize all relevant macroscopic quantities. In [MTL02, The02] it was shown that
simple laminates are sufficient to study the separate and the lower relaxation. Interest-
ingly, our method solves the question of upper relaxation even in cases where there are
microstructures that are not laminates.

The difficulty in the construction of MRS lies in the fact that θn(t) ∈ P, while the

weak limit θ∗ ∈ Z in general. Similarly, for general test functions θ̂ ∈ Z we have to
find θ̂n ∈ P with θ̂n → θ̂. This will be done by constructing hierarchical microstructures
based on θn and much finer laminates with normal direction ω∗ such that Λ(ω∗) = 0, see
Proposition 5.2 and Figure 1.

2 Pure and relaxed N-phase models

We start with general N -phase models and then restrict to the two-phase model as
discussed in [MTL02], where also a detailed physical motivation in terms of separate
relaxation is given. We also refer to [CaP01, The02].

2.1 A microscopic model with pure phases

We consider a bounded Lipschitz domain Ω ⊂ Rd, where ΓDir ⊂ ∂Ω with
∫

ΓDir
1 da > 0

is the part of the boundary on which displacement (Dirichlet) boundary conditions are
applied. The displacement ũ(t) will be of the form gDir(t) +u(t), where u lies in the fixed
space

U :=
{
u ∈ H1(Ω; Rd)

∣∣ u|ΓDir
= 0

}
.

In the case of N pure phases we consider N different stored-energy densities

Wi(E) =
1

2
(E−Ai) : Ci(E−Ai) + βi, i = 1, . . . , N,

where E = e(u) = 1
2
(∇u+∇u>) denotes the linearized elastic strain, Ci is the elastic

tensor of the ith phase, Ai is the transformation strain, and βi the height of the ith well.
All these quantities may depend on temperature, but we consider an isothermal setting.

For later purposes we associate the ith phase with the ith unit vector ei ∈ RN and
call the functions z ∈ PN a phase-indicator field, where

PN :=
{
z ∈ L2(Ω; RN)

∣∣ z(x) ∈ PN a.e. in Ω
}

with PN :=
{
ei ∈ RN

∣∣ i = 1, . . . , N
}
.

For characterizing a simple evolutionary model, we add a dissipation distance dN :
PN × Pn → [0,∞[, where κi→j := dN(ei, ej) denotes the energy per unit volume that
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is dissipated when a phase transformation from i to j takes place. The induced dissipa-
tion distance DN on PN is defined via

DN(z0, z1) :=

∫

Ω

dN(z0(x), z1(x))dx.

The associated energetic rate-independent system (ERIS) (QN ,EN ,DN) for the pure
N -phase model is given via the state space QN := U× PN , the dissipation distance DN

from above, and the energy-storage functional

EN(t, u, z) :=

∫

Ω

W(e(gDir(t)+u)(x), z(x))dx− 〈`(t), u〉,

where W(E, ei) = Wi(E) for i = 1, ..., N , and ` : [0, T ] → U∗ includes possible time-
dependent volume or surface loadings. In particular, we assume

gDir ∈ C1
(
[0, T ]; H1(Ω; Rd)

)
, ` ∈ C1([0, T ]; U∗),

with 〈`(t), u〉 =

∫

Ω

fvol(t) · udx+

∫

∂Ω\ΓDir

fsurf · uda.
(2.1)

2.2 Incremental minimization and energetic solutions

Following the seminal work [OrR99, ORS00] it was suggested in [MiT99, MTL02] to
consider incremental minimization problems for ERIS (QN ,EN ,DN) for a given time
discretization which we take equidistant for simplicity, i.e. τ = T/J with J ∈ N. For an
initial state q0 = (u0, z0) ∈ QN we consider approximate minimizers qτ,εj ∈ QN satisfying

Given q0 ∈ QN , find iteratively qτ,εj , j = 1, ..., J, such that
EN(jτ, qτ,εj ) + DN(qτ,εj−1, q

τ,ε
j ) ≤ ετ + EN(jτ, q̂) + DN(qτ,εj−1, q̂) for all q̂ ∈ QN .

}
(2.2)

For positive ε such approximate minimizers always exist, and we can define piecewise
constant interpolants qτ,ε : [0, T ]→ QN via

qτ,ε(t) = qτ ;ε
j−1 for t ∈ [(j−1)τ, jτ [ with j = 1, . . . , J and qτ,ε(T ) = qτ ;ε

J . (2.3)

For ε = 0 one asks for existence of true minimizers, which in the present, non-relaxed
case is not to be expected in general.

The major task is now the characterization of all possible limits, i.e. accumulation
points, of qτ,ε for (τ, ε) → (0, 0) and to derive a suitable evolutionary model (e.g. in the
sense of [Mie04]) having these limits as solutions. In general this task is still much too
difficult; however, we will see in Section 5 that it is solvable for the two-phase model (i.e.
N = 2) with C1 = C2.

The main achievement in [MiT99, MTL02] was the observation of the general fact
that all possible limits of the above approximate incremental minimization problem lead
to so-called energetic solutions for rate-independent systems.

Definition 2.1 (Energetic solutions) A function q : [0, T ]→ Q is called an energetic
solution of the ERIS (Q,E,D), if t 7→ ∂tE(t, q(t) lies in L1([0, T ]) and if for all t ∈ [0, T ]
the stability (S) and the energy balance (E) hold:

(S) E(t, q(t)) ≤ E(t, q̂) + D(q, q̂) for all q̂ ∈ Q;

(E) E(t, q(t)) + DissD(q, [0, t]) = E(0, q(0)) +

∫ t

0

∂sE(s, q(s))ds,
(2.4)
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where the dissipation DissD(q, [0, t]) is defined as the supremum over all partitions 0 ≤
t0 < t1 < · · · < tN−1 < tN ≤ t and all N ∈ N of the sums

∑N
i=1 D(q(ti−1), q(ti)).

We will see in Section 3.2 how under natural conditions the stability and energy
balance arise naturally from the incremental minimization problem. However, in the
present pure-phase model this does not work, since we have to pass to limits in qτn,εn(t)
without any compactness. Thus, we have to work on the weak completion of QN . This
leads to so-called relaxed models.

2.3 A separately relaxed N-phase model

Instead of treating the microscopic phase indicators z with z(x) ∈ PN we may consider a
mixture theory on the mesoscopic level, where z is taking values in the Gibbs simplex

GN := convPN = { z = (z1, .., zN) ∈ [0, 1]N |
N∑

n=1

zn = 1 }.

Here zi(x) ∈ [0, 1] denotes the volume fractions of the ith phase at a mesoscopic material
point x ∈ Ω. With this, we introduce the relaxed state space

Qrlx
N := U× GN with GN :=

{
z ∈ L2(Ω; RN)

∣∣ z(x) ∈ GN a.e. in Ω
}
.

Extending EN(t, ·) : QN → R to EN(t, ·) : Qrlx
N → R∞ := R∪{+∞} by +∞ outside of QN ,

we can define the lower semicontinuous envelope Erlx
N (t, ·) : Qrlx

N → R∞, which is called
the (static) relaxation of EN(t, ·). It has the form

Erlx
N (t, u, z) =

∫

Ω

Wrlx
(
e(gDir(t)+u)(x), z(x)

)
dx− 〈`(t), u〉,

where the relaxed stored-energy density is given in terms of the cross-quasiconvexification

Wrlx(E,Z) := inf
{ ∫

[0,1]d
W(E+e(ũ)(y), z̃(y))dy

∣∣∣ ũ ∈ H1
per((0, 1)d), z̃ ∈ D(Z)

}
,

where D(Z) :=
{
z : (0, 1)d → PN

∣∣ ∫
(0,1)d

z(y)dy = Z
}
,

see [MTL02, Eqn. (4.5)]. For Ci = C1 see also [Mie00, GMH02].
Similarly, by an optimal transport problem based on the weight dN : PN × PN →

[0,∞[, one can define a dissipation distance DN : GN×GN → [0,∞[ which takes the form
DN(z, z̃) = ΨN(z̃−z) for a 1-homogeneous function ΨN : Rn → [0,∞[ (i.e. ΨN(γv) =
γΨN(v) for all γ ≥ 0 and v ∈ RN), see [MTL02, Sect. 4.3]. This leads to the relaxed
dissipation distance Drlx

N : GN × Gn → [0,∞[ defined via

Drlx
N (z, z̃) :=

∫

Ω

ΨN

(
z̃(x)−z(x)

)
dx,

and the so-called separately relaxed ERIS (Qrlx
N ,E

rlx
N ,D

rlx
N ).

So far, the existence of energetic solutions for such relaxed systems is still open.
However, we gained already that the incremental problem (2.2) has solutions for ε =
0. Indeed, since DN(z, ·) is convex and continuous, it is weakly lower semicontinuous.
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Moreover, Erlx
N (t, ·) is weakly lower semicontinuous, because of its construction as a cross-

quasiconvexification, cf. [FKP94]. We refer to [BC∗04, GHH07, BaJ87] for such static
relaxations in the context of material modeling.

However, for passing to the limit of timesteps τ → 0 it remains open how to show
the closedness of the stability sets in the weak topology. Nevertheless there is some hope
that energetic solutions for (Qrlx

N ,E
rlx
N ,D

rlx
N ) exist. Unfortunately we are only able to show

that this is true for the case N = 2 if C1 = C2, see Theorem 3.1. We emphasize that
showing existence of energetic solution for the ERIS (Qrlx

N ,E
rlx
N ,D

rlx
N ) is a first step only.

The more important step is to show that accumulation points of approximate so-
lutions qτ,ε : [0, T ] → QN of the microscopic pure-state system are indeed solutions of
the mesoscopic relaxed model (Qrlx

N ,E
rlx
N ,D

rlx
N ). We expect that this is typically not the

case. The point is that the relaxed model only takes into account the mesoscopic volume
fractions zi(t, x) ∈ [0, 1] of the phases i = 1, ..., N . However, in general situations it is
necessary to take into account the type of the microstructures. For instance a rotating
laminate may have constant volume fraction, but must dissipate microscopically, see the
discussions in [FrG06, GaL09, KoH11, HHM12]. It is surprising that we are able to prove
the evolutionary relaxation property in the two-phase case with C1 = C2, see Section 5.
The main idea here follows an observation in [The02], where it is shown that looking at
suitable laminates with a fixed normal is sufficient, even though other microstructures
may occur.

3 Existence for the relaxed two-phase model

In this section we provide the first existence result for the two-phase problem. Moreover,
we introduce the general theory of [Mie11, MiR15] for establishing convergence of ap-
proximations obtained from incremental minimization procedures. The major step is the
proof of the weak closedness of the stability sets, which will be treated afterwards. For
this we employ H-measures which are well adapted for the treatment of the quadratic
energies occurring in the two-phase problem.

3.1 Setup and existence result

For the rest of this work we restrict to the case of N = 2 phases and use the scalar
θ ∈ [0, 1] as the volume fraction of phase i = 2, i.e.

z =
(
1−θ , θ

)
∈ G2 = conv{e1, e2}.

Moreover, we assume C1 = C2 = C, where C is the symmetric and positive definite
elasticity tensor. We also write

Q := U× Z with U := {u ∈ H1(Ω; Rd) | u|ΓDir
= 0 } and Z := L2(Ω; [0, 1]),

equipped with the weak topology. The relaxed energy is defined on Q and reads

E(t, u, θ) =

∫

Ω

W (e(gDir(t)+u), θ)dx− 〈`(t), u〉, where (3.1)

W (E, θ) =
1− θ

2
|E−A1|2C +

θ

2
|E−A2|2C −

γ

2
θ(1−θ) + β1(1−θ) + β2θ.
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Here |E|2C := E:CE =
∑d

i,j,k,l=1 EijCijklEkl, and Ai is the transformation strain of the ith
phase. According to [Mie00, MTL02, GMH02] the constant γ is determined by Kohn’s
relaxation result, see [Koh91], for the elastic double-well problem, that is

γ := max{Σ(ω) | ω ∈ Sd−1 } with Σ(ω) := C[A]ω · A(ω)−1
(
C[A]ω

)
, (3.2)

where A := A2 − A1, and the acoustic tensor A(ω) ∈ Rd×d
sym is defined via

b ·
(
A(ω)b

)
:=

1

4

∣∣b⊗ω + ω⊗b
∣∣2
C for all b ∈ Rd.

Using the two positive thresholds κ1→2 and κ2→1 the dissipation distance D reads

D(θ, θ̃) =

∫

Ω

ψ
(
θ̃(x)−θ(x)

)
dx with ψ(a) =

{
κ1→2 a for a ≥ 0,
κ2→1|a| for a ≤ 0.

(3.3)

Thus, the ERIS (Q,E,D) is specified, and we can define the stability sets

S(t) :=
{
q ∈ Q

∣∣ E(t, q) <∞, ∀ q̂ ∈ Q : E(t, q) ≤ E(t, q̂) + D(q, q̂)
}

for t ∈ [0, T ].

Note that the relaxed energy E and dissipation D defined above correspond to Erlx
N and

Drlx
N for N = 2 from Section 2.3.

Theorem 3.1 (Energetic solutions) Under the above assumptions the two-phase model
(Q,E,D) has an energetic solution for all initial conditions q(0) ∈ S(0). Moreover, every
accumulation point q : [0, T ]→ Q of the approximations qτ,ε : [0, T ]→ Q for (τ, ε)→ (0, 0)
obtained from the approximate incremental minimization problem (2.2) is an energetic
solution.

We mention that the theory in [MiR09] also shows that all energetic solutions are
accumulation points of approximations obtained via a slight variant of (2.2), see also
[Rin09, Sect. 4.2].

3.2 General strategy for the convergence proof

Here we give the general strategy of constructing energetic solutions that was developed
in [MTL02, DFT05]. We follow the six steps as introduced in [FrM06] and [MiR15,
Sect. 2.1.6]; but in the present model many features are much simpler, since we can use
the quadratic structure of the energy and the weak sequential compactness of the space
Z = L2(Ω; [0, 1]). Step 3 will rely on the existence of mutual recovery sequences (MRS),
which is established in Section 3.4.

Step 0: Construction of approximate solutions. For every timestep τ = T/J and any
ε ≥ 0 and the given initial value q0 = q(0) the approximate incremental problem (2.2)
has solutions qτ,εj , j = 1, . . . , J . For ε > 0 this is indeed trivial, while for ε = 0 we can use
the weak lower semicontinuity of q 7→ E(jτ, q) + D(qτ,εj−1, q). Thus, the piecewise constant
interpolants qτ,ε : [0, T ]→ Q are well defined.

Step 1: A priori estimates. Since Z lies in a bounded ball of radius R = |Ω|1/2 in
Z := L2(Ω) we always have

∀ τ, ε : ‖θτ,ε(·)‖L∞(0,T ;Z) ≤ R.

9



Owing to E(jτ, uτ,εj , θτ,εj ) ≤ ετ + E(jτ, û, θτ,εj ) for j = 0, . . . , J , the quadratic structure of
E(t, ·, θ) together with Korn’s inequality show that there is a constant C1 > 0 such that

∀ τ, ε : ‖uτ,ε(·)‖L∞(0,T ;U) ≤ C1.

Finally, we may insert q̂ = qτ,εj−1 into (2.2) and sum over j = 1, . . . , J to find

DissD(qτ,ε, [0, T ]) =
J∑

j=1

D(qτ,εj−1, q
τ,ε
j ) ≤ εT +

J∑

j=1

E(jτ, qτ,εj−1)−E((j−1)τ, qτ,εj−1) (3.4)

≤ εT +

∫ T

0

C
(
‖ġDir(t)‖H1(Ω)+‖ ˙̀(t)‖U∗

)
dt ≤ C2,

independently of ε ∈ [0, 1] and τ = T/J . This estimate doesn’t give any information on
uτ ;ε, but with κ∗ = min{κ1→2, κ2→1} > 0 we find

Diss‖·‖1(θτ,ε, [0, T ]) = Var
(
θτ,ε; L1(Ω)) ≤ C2/κ∗.

Step 2: Selection of convergent subsequences. Because of the uniform total variation
bound for θτ,ε we can apply the abstract version of Helly’s selection principle. Hence,
for every sequence ((τk, εk))k∈N with τk, εk → 0 for k → ∞ there exists a subsequence
(τkn , εkn) with kn →∞ and a function θ : [0, T ]→ Z such that

∀ t ∈ [0, T ] : θτkn ,εkn (t) ⇀ θ(t) and DissD(θ, [0, t]) ≤ lim inf
n→∞

DissD(θτkn ,εkn , [0, t]). (3.5)

Define the function u : [0, T ] → U to be the unique minimizer of E(t, ·, θ(t)), then it is
easy to show that uτkn ,εkn ⇀ u(t) for all t. Thus, we conclude the convergence along the
whole subsequence, namely

∀ t ∈ [0, T ] : qτkn ,εkn ⇀ q(t) = (u(t), θ(t)) in U× Z.

Step 3: Stability of the limit. The most difficult step in the proof is to show that the
accumulation point q : [0, T ] → Q is stable in the sense of (S) in Definition 2.1, i.e.
q(t) ∈ S(t). For this we first show that qτ,εj is approximately stable for time t = jτ , which
follows by the triangle inequality for D as follows. Indeed for all q̂ ∈ Q we have

E(jτ, qτ,εj )
(2.2)

≤ ετ + E(jτ, q̂) + D(qτ,εj−1, q̂)−D(qτ,εj−1, q
τ,ε
j )

triangle

≤ ετ + E(jτ, q̂) + D(qτ,εj , q̂),

(3.6)

which also will be abbreviated by qτ,εj ∈ Sετ (jτ).
In order to establish the stability q(t) ∈ S(t), we want to pass to the limit along

the sequence (τkn , εkn) → (0, 0) by choosing suitable test functions q̂ = q̂τ,ε in the above
estimate. The crucial point is to find a MRS q̂n such that q̂n ⇀ q̂ and

lim sup
n→∞

(
E(t, q̂n) + D(qτkn ,εkn (t), q̂n)− E(t, qτkn ,εkn (t))

)
≤ E(t, q̂) + D(q(t), q̂)− E(t, q(t)).

This step will be discussed explicitly in the three results of the sections “Mutual recovery
sequences I to III” below. Using j = ĵn(t) := bt/τknc ∈ N0 such that qτkn ,εkn (t) = q

τkn ,εkn
bjn(t)

and inserting the MRS into (3.6) yields

0 = lim
n→∞

(
−εknτkn

)
≤ lim sup

n→∞

(
E(t, q̂n) + D(qτkn ,εkn (t), q̂n)− E(t, qτkn ,εkn (t))

)

≤ E(t, q̂) + D(q(t), q̂)− E(t, q(t)),
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where we used |t−τkn ĵn(t)| ≤ τkn → 0 and (2.1). This is the desired stability q(t) ∈ S(t).

Step 4: Upper energy estimate. We return to the dissipation estimate (3.4) in Step 1,
which can be written as

E(T, qτ,ε(T )) + DissD(qτ,ε, [0, T ]) ≤ εT + E(0, q(0)) +

∫ T

0

∂tE(t, qτ,ε(t))dt.

Since ∂tE(t, q) is affine in q, it is weakly continuous, and using qτkn ,εkn (t) ⇀ q(t) implies
the convergence of the last term. Together with the lower semicontinuities E(T, q(T )) ≤
lim infn→∞ E(T, qτkn ,εkn (T )) and (3.5) we find

E(T, q(T )) + DissD(q, [0, T ]) ≤ E(0, q(0)) +

∫ T

0

∂tE(t, q(t))dt,

which is the desired upper energy estimate.

Step 5: The lower energy estimate

E(t, q(t)) + DissD(q, [s, t]) ≥ E(s, q(s)) +

∫ t

s

∂rE(r, q(r))dr,

holds for all 0 ≤ s < t ≤ T generally for all measurable functions q : [0, T ] → Q that
are stable for all r ∈ [s, t], which was established in Step 3, see [MTL02, Thm. 2.5]
or [Mie11, Prop. 3.11]. Combining this with Step 4 provides the energy balance (E) in
Definition 2.1 for energetic solutions, and the proof of Theorem 3.1 is finished, except for
the construction of the MRS.

The remaining part in the above proof is the difficult Step 3, where the stability of the
accumulation point q : [0, T ] → Q is established. In [MTL02, Sect. 5] this step was done
under the restrictive assumption of convexity of E(t, ·). Here we show that the proof via
the construction of MRS is more flexible. Of course, we still need a fine tool from weak-
convergence theory, namely H-measure or microlocal defect measures, see [Tar90, Gér91]
and [Rin15] for the more general microlocal compactness forms.

3.3 Pseudo-differential operators and H-measures

To understand the set of stable states a little better we can use the fact that E(t, ·) is
quadratic, E(t, ·, θ) is uniformly convex (by Korn’s inequality and

∫
ΓDir

da > 0), and that
D depends on θ only. Thus,

q = (u, θ) ∈ S(t) =⇒ u minimizes E(t, ·, θ) =⇒ u = uelast + Bθ,

where the minimizer uelast(t) of E(t, ·, 0) satisfies uelast(·) ∈ gDir +C1([0, T ]; U). The linear
operator satisfies B ∈ Lin(L2(Ω); U). Defining I(t, θ) := E(t, uelast(t)+Bθ, θ) we arrive at
the quadratic functional

I(t, θ) =
1

2
〈Lθ, θ〉+ 〈β(t), θ〉+ α(t) = min

{
E(t, u, θ)

∣∣ u ∈ U
}
,

where β ∈ C1([0, T ]; L2(Ω)) and α ∈ C1([0, T ]). While the energetic shift α is irrelevant,
the function β can be seen as a time-dependent driving force that depends linearly on
gDir(t) and `(t) via uelast(t).
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The important feature here is that the quadratic functional I is given in terms of the
linear operator L ∈ Lin(L2(Ω); L2(Ω)), which is a symmetric pseudo-differential operator
of order 0, which means that

Lθ = F−1
(
Λ(·)F(Eθ)

)∣∣
Ω

+ Kθ,

where E : L2(Ω)→ L2(Rd) denotes the extension by 0 outside of Ω, and K is a compact
operator in L2(Ω). The more important first part consists of the Fourier transform F

and the Fourier multiplier Λ, which is also called symbol. The order 0 of the pseudo-
differential operator L relates to the homogeneity of Λ, namely Λ(rξ) = r0Λ(ξ) for r > 0
and ξ 6= 0. For our two-phase problem Λ takes the specific form

Λ(ξ) = γ − Σ(ξ) for ξ ∈ Rd\{0},

see [MTL02] and (3.2) for the definition of γ and Σ. Thus, the continuous spectrum of
L equals {Λ(ω) | ω ∈ Sd−1 }, lies in [0,∞[, and contains 0, because of the definition of γ.
In particular, a possible negative part of L must be compact, and I(t, ·) is indeed lower
semicontinuous.

For pseudo-differential operators we can use H-measures (cf. [Tar90, Gér91]) to calcu-
late the limits of quadratic functionals under weak convergence in L2(Ω). To formulate

our results shortly we simply write θn
H−→ (θ∗, µ) ∈ L2(Ω)×M(Ω× Sd−1), if θn ⇀ θ∗ and

the sequence θn− θ∗ generates the H-measure µ. The latter means that for all φ ∈ Cc(Ω)
and Ψ ∈ C(Sd−1) we have

lim
n→∞

∫

ξ∈Rd

∣∣∣F
[
E
(
φ(θn−θ∗)

)]
(ξ)
∣∣∣
2

Ψ(ξ/|ξ|)dξ =

∫

Ω

∫

Sd−1

|φ(x)|2Ψ(ω)µ(dx, dω).

The following results will be central for our construction of MRS.

Proposition 3.2 (H-measures) For p > 4 assume that vn ⇀ v∗ in Lp(Ω) and bn → b∗
and wm → 0 in Lp(Ω). Then, we have

vn
H−→ (v∗, µ) =⇒ I(t, vn)→ I(t, v∗) +

∫

Ω

∫

Sd−1

Λ(ω)µ(dx, dω), (3.7a)

vn
H−→ (v∗, µ) =⇒ bnvn+wn

H−→ (b∗v∗, b
2
∗µ). (3.7b)

Proof. Relation (3.7a) is a well-known standard result, see [Tar90, Cor. 1.2+1.12].
The same reference contains result (3.7b) under the stronger assumption bn = b∗ and

b∗ ∈ C0
c(Ω). Using the a priori bounds ‖vn‖Lp + ‖bn‖Lp ≤ C we can extend the result

since bnvn ⇀ b∗v∗, and there exists a subsequence nk → ∞ such that bnkvnk
H−→ (b∗v∗, µ̃)

for k →∞. We want to show that µ̃ = b2
∗µ.

We approximate b ∈ Lp(Ω) by Bδ ∈ C0
c(Ω) with Bδ → b∗ in Lp(Ω) and write bnvn =

zn+yn with zn = Bδvn and yn = (bn−Bδ)vn. The vector-valued H-measure for the vector
(zn, yn)> has components (µδij)i,j=1,2 with µδ11 = B2

δµ, where we exploit Bδ ∈ Cc(Ω). Using
bnvn = zn + yn we have µ̃ = µδ11 + µδ12 + µδ21 + µδ22. Moreover, for the total variations of
the measures µij we have

‖µδ12‖TV = ‖µδ21‖TV ≤ lim sup
n→∞

‖zn‖L2‖yn‖L2 , ‖µδ22‖TV ≤ lim sup
n→∞

‖yn‖2
L2 .
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Using ‖yn‖L2 ≤ ‖Bδ−b∗‖L4‖vn‖L4 , we obtain the estimate

‖µ̃−B2
δµ‖TV = ‖µ̃− µδ11‖TV ≤ C‖Bδ − b∗‖Lp → 0.

Thus, we conclude µ̃ = b2
∗µ as desired, and bnvn

H−→ (b∗v∗, b2
∗µ) even without taking a

subsequence.

More results on H-measures involving fine laminates are given in Proposition 5.2,
which is proved in Section 5.3.

3.4 Mutual recovery sequences I

Fix t ∈ [0, T ] and consider a stable sequence (qn)n∈N, i.e. qn ∈ S(t) with qn ⇀ q∗. To show
the stability q∗ ∈ S(t), we have to find a MRS (q̂n)n∈N for every test function q̂. This will
be done with the help of the function

F : [0, 1]2 → [0, 1]; F (θ0, θ1) =





θ1/θ0 for θ1 < θ0,
1 for θ0 = θ1,

(1−θ1)/(1−θ0) for θ1 > θ0.
(3.8)

Proposition 3.3 (Mutual recovery sequence I) Assume that qn = (un, θn) ∈ S(t)

and qn ⇀ q∗ and that q̂ = (û, θ̂) is arbitrary. Then, the sequence q̂n = (ûn, θ̂n) with

ûn = uelast(t) + Bθ̂n and θ̂n = θ̂ + g (θn−θ∗) with g(x) = F (θ(x), θ̂(x))

is a recovery sequence satisfying

lim
n→∞

D(θn, θ̂n) = D(θ∗, θ̂) and lim sup
n→∞

E(t, q̂n)− E(t, qn) ≤ E(t, q̂)− E(t, q∗). (3.9)

Proof. We first discuss the dissipation, which only depends on θ. The construction of g
via F is such that

sign
(
θ̂n(x)− θn(x)

)
= sign

(
θ̂(x)− θ∗(x)

)
.

This follows immediately from the explicit representations

θ̂n − θn =





(θ̂−θ∗)(1−θn)/(1−θ∗) for θ̂ > θ∗,

(θ̂−θ∗) for θ̂ = θ∗,

(θ̂−θ∗)θn/θ∗ for θ̂ < θ∗.

Thus, we can calculate the dissipation by using the domains Ω± := {x ∈ Ω | ±
(θ̂(x)−θ∗(x)) > 0 }, namely

D(θn, θ̂n) = κ1→2

∫

Ω+

θ̂−θ∗
1−θ∗

(1−θn)dx+ κ2→1

∫

Ω−

θ∗−θ̂
θ∗

θndx

→ κ1→2

∫

Ω+

θ̂−θ∗
1−θ∗

(1−θ∗)dx+ κ2→1

∫

Ω−

θ∗−θ̂
θ∗

θ∗dx

= κ1→2

∫

Ω+

(θ̂−θ∗)dx+ κ2→1

∫

Ω−

(θ∗−θ̂)dx = D(θ∗, θ̂).

Note that the weak convergence θn ⇀ θ∗ and the linearity of the integrals over Ω± allow
us to pass to the limit n→∞. Thus, the first relation in (3.9) is established.
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To establish the second relation we use that for q = (u, θ) ∈ S(t) we have u =
uelast(t) + Bθ, which is equivalent to E(t, u, θ) = I(t, θ). Thus, it suffices to show

lim sup
n→∞

(
I(t, θ̂n)− I(t, θn)

)
≤ I(t, θ̂)− I(t, θ∗) ≤ E(t, û, θ̂)− E(t, q∗),

where û can be arbitrary.
We now use that θn ⇀ θ∗ in Lp(Ω) for all p > 1. By the construction of θ̂∗ we also have

θ̂n ⇀ θ̂ in Lp(Ω) for all p > 1. Choosing a subsequence (not relabeled) we can assume

that θn and θ̂n generate H-measures µ and µ̂ respectively. Applying Proposition 3.2 on
H-measures with bn = g ∈ L∞(Ω) we obtain µ̂ = g2µ from (3.7b) and arrive via (3.7a) at

lim
n→∞

(
I(t, θ̂n)−I(t, θn)

)
= I(t, θ̂)−I(t, θ∗)+

∫

Ω×Sd−1

(
g(x)2−1

)
Λ(ω)µ(dx, dω) ≤ I(t, θ̂)−I(t, θ∗),

due to Λ ≥ 0 and g(x) ∈ [0, 1]. Because this holds along any subsequence the second
relation in (3.9) is established.

4 Numerical approximation

We now exploit the flexibility and robustness of the method of MRS, which allow us to
go much further than the theory in [MTL02]. Indeed, we can numerically approximate
the problem, e.g. by standard finite-element methods as used in [CaP01].

For this we consider finite-dimensional subspaces Uk and Zk of U = H1
ΓDir

(Ω; Rd) and
Z = L2(Ω) that are asymptotically dense, i.e.

Uk ⊂ Uk+1 ⊂ U, Zk ⊂ Zk+1 ⊂ Z,
⋃

k∈N
Uk = U,

⋃
k∈N

Zk = Z. (4.1)

Moreover, assume that the discretization of θ ∈ Z is compatible with the constraint
θ(x) ∈ [0, 1]. We set Zk = Zk ∩ Z and assume 0, 1 ∈ Z1 and that ∪k∈NZk is dense in Z.

4.1 An abstract convergence result

Based on the above general assumptions we add two major conditions. For each k we
need a (maybe nonlinear) mapping Pk : Z→ Zk such that the following holds

∀ g, h ∈ Z with g+h ∈ Z :

αk(g, h) := sup{ ‖Pk(h+gθ)− (h+gθ)‖L2 | θ ∈ Zk } → 0 for k →∞. (4.2)

To formulate the conditions between the compatibility of the discretization of u
through the spaces Uk and the discretization of θ via Zk, we again use the quadratic
structure of E. For θk ∈ Zk we define the reduced functionals

Ik(t, θ) := min{E(t, u, θ) | u ∈ Uk }.

By (4.1) we have Ik ≥ Ik+1 ≥ I and Ik(t, θ) → I(t, θ) for fixed (t, θ). The second major
condition is that the convergence is uniform with respect to (t, θ), namely

σk := sup{ Ik(t, θ)− I(t, θ) | θ ∈ Zk, t ∈ [0, T ] } → 0 for k →∞. (4.3)
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To formulate the existence and convergence result, we again use that we are able to
restrict to the variable θ. We consider the sequence of ERIS (Z, Ik,Dk) given by

Ik(t, θ) :=

{
Ik(t, θ) for θ ∈ Zk,
∞ otherwise,

and Dk = D. We use the discretized stability sets

Sk(t) := { θ ∈ Zk | ∀ θ̂ ∈ Zk : Ik(t, θ) ≤ Ik(t, θ̂) + Dk(θ, θ̂) }.

The numerical incremental minimization problem for τ = T/J with J ∈ N reads

θk,τ0 = θk0 ∈ Sk(0), θk,τj minimizes Ik(jτ, ·) + D(θk,τj−1, ·)) for j = 1, ..., J.

As in (2.3) we define the piecewise constant interpolants θk,τ : [0, T ]→ Z.

Theorem 4.1 (Convergence of numerical approximation) Let conditions (4.1),
(4.2), and (4.3) hold. Moreover, consider stable initial conditions θk0 ∈ Sk(0) such that

θk0 ⇀ θ0 in Z and Ik(0, θ
k
0)→ I(0, θ0),

then all accumulation points θ : [0, T ]→ Z for k →∞ and τ → 0 (in the sense of (3.5))
of the numerical approximations θk,τ : [0, T ]→ Z are energetic solutions of (Z, I,D).

The proof is identical to the one in Section 3.2, where now the crucial construction
of MRS for the numerical approximation is given in Section 4.2. We refer to Section
4.3 for possible ways to fulfill the assumptions (4.2) and (4.3) by concrete numerical
discretizations.

4.2 Mutual recovery sequences II

The construction follows closely the one for the existence result. However, we have to
take care that the MRS lies in the discrete finite-dimensional space Zk = Zk ∩ Z.

Proposition 4.2 (MRS for the discretized system) Let the conditions (4.1), (4.2),
and (4.3) be satisfied. Then, for any sequence (θk) with θk ∈ S(tk), tk → t∗, and θk ⇀ θ∗
and any θ̂ ∈ Z, the sequence

θ̂k = Pk
(
θ̂ + g (θk−θ∗)

)
with g(x) = F (θ∗(x), θ̂(x))

is a MRS satisfying

D(θk, θ̂k)→ D(θ∗, θ̂) and lim sup
n→∞

(
Ik(tk, θ̂k)−Ik(tk, θk)

)
≤ I(t∗, θ̂)− I(t∗, θ∗).

In particular, we conclude θ∗ ∈ S(t∗).

Proof. We first observe that h := θ̂ − gθ∗ ∈ Z and h + g ∈ Z, which follows from the
definition of g via the specific form of F . Setting θ̃k = h+ gθk we have

∣∣D(θk, θ̂k)−D(θ∗, θ̂)
∣∣ ≤

∣∣D(θk, θ̃k)−D(θ∗, θ̂)
∣∣+ max{κ1→2, κ2→1}‖θ̃k−θ̂k‖L1 → 0,
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where the first term converges to 0 as in the proof of Proposition 3.3. Since θk ∈ Zk, the
second term is bounded by Cαk(g, h), which converges to 0 by condition (4.2).

For the energy difference we use θk, θ̂k ∈ Zk and σk as in (4.3) to obtain

Ik(tk, θ̂k)−Ik(tk, θk) ≤ I(t∗, θ̂k)− I(t∗, θk) + σk + C|tk−t∗|.

By taking a subsequence we may assume that the limsup is achieved, θk
H−→ (θ∗, µ), and

θ̂K
H−→ (θ̂, µ̂). Using (3.7b) yields µ̂ = g2µ, since θ̂k = θ̃k + wn with θ̃k = h + gθk and

‖wn‖L2 ≤ αk(g, h)→ 0 by condition (4.2). Thus, using σk → 0 (i.e. condition (4.3)) and
tk → t∗ we conclude via (3.7a), namely

lim sup
k→∞

(
Ik(tk, θ̂k)−Ik(tk, θk)

)
≤ lim sup

k→∞

(
Ik(t∗, θ̂k)−Ik(t∗, θk) + 2σk + C|t∗−tk|

)

= I(t∗, θ̂)− I(t∗, θ∗) +

∫

Ω×Sd−1

(g2−1)Λdµ ≤ I(t∗, θ̂)− I(t∗, θ∗),

since Λ ≥ 0 and 0 ≤ g ≤ 1. This proves the proposition.

4.3 Conditions for numerical approximations

We now show that the two major conditions (4.2) and (4.3) can be easily satisfied by
suitable discretizations. For this, we assume that for each k ∈ N there is a triangulation
Tk of Ω, such that Ω decomposes into d-dimensional tetrahedra T (convex hull of d+1
points) plus some intersections of tetrahedra with Ω along the boundary. By

φ(T) := sup
{

diam(T )
∣∣ T ∈ T

}
with diam(T ) := sup{ |x1−x2| | x1, x2 ∈ T }

we denote the fineness of the triangulation T. For any Tk we denote by Zk the space of
functions θ that are constant on each of the subsets T ⊂ Tk. To satisfy the condition
Zk ⊂ Zk+1 we need to choose a nested triangulation where new tetrahedra are constructed
by inserting a point in the interior of T and generating smaller tetrahedra by connecting
this point with all the faces of T .

We denote by Pk the L2 orthogonal projection from Z to Zk which reads

(Pkθ)(x) =
1

|T |

∫

T

θ(y)dy for x ∈ T.

Given the above construction, the following three conditions are equivalent:

(i)
⋃

k∈N
Zk is dense in Z; (ii) φ(Tk)→ 0 for k →∞;

(iii) ∀ θ ∈ Z : Pkθ → θ for k →∞.

Lemma 4.3 The operator Pk constructed above satisfies (4.2).

Proof. We consider arbitrary h, g ∈ Z with g + h ∈ Z. For θk ∈ Zk = Zk ∩ Z, we use

‖Pk(gθk)− gθk‖2
L2 =

∑

T∈Tk

∫

T

( 1

|T |

∫

T

gθk dy − g(x)θk(x)
)2

dx

=
∑

T∈Tk

∫

T

(θk|T )2
( 1

|T |

∫

T

gdy − g(x)
)2

dx ≤ ‖θk‖2
L∞‖Pkg − g‖2

L2 ,
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where we used that θk is constant on each tetrahedron. Using 0 ≤ θk ≤ 1 yields

‖Pk(h+gθk)− (h+gθk)‖L2 ≤ ‖Pkh−h‖L2 + ‖Pk(gθk)−gθk‖L2 ≤ ‖Pkh−h‖L2 + ‖Pkg−g‖L2 .

Thus, we conclude αk(g, h) ≤ ‖Pkh−h‖L2 + ‖Pkg−g‖L2 and (iii) from above implies the
desired result (4.2).

We show that the second condition (4.3) can always be satisfied by choosing a suitably
fine discretization for the displacements u ∈ U. Considering the same family (Tm)m∈N of
nested triangulations as above, we set

Ũm :=
{
u ∈ H1

ΓDir
(Ω)

∣∣ ∀T ∈ Tm : u|T is affine
}

and Uk = ũmk .

Here the crucial point is that mk has to be chosen sufficiently large, i.e. the fineness
φ(Tmk) of the finite-element space Uk for the displacements is much higher than that for
the phase indicator θk ∈ Zk. In particular, this implies that the dimension of Uk may
be much higher that of Zk. It is well-known (cf. e.g. [BrS08]) that ∪m∈NŨm is dense in
U = H1

ΓDir
(Ω) if and only if φ(Tm)→ 0.

Lemma 4.4 Under the above assumptions there exists a sequence mk such that condition
(4.3) holds for Zk and Uk given above.

Proof. For each θ ∈ Z we set

ςm(θ) := sup
{

E(t, θ, u)− I(t, θ)
∣∣ u ∈ Ũm, t ∈ [0, T ]

}
,

such that σk in (4.3) has the form

σk = sup
{
ςmk(θ)

∣∣ θ ∈ Zk
}
,

where it is essential that ς has the larger index mk while θ ∈ Zk.
If Nk is the number of tetrahedra in Tk, then Zk is the convex hull of the Jk := 2Nk

extremal points (e
(k)
j )j=1,...,Jk in Zk which are given by functions taking the values 0 or 1 on

each tetrahedron. Because every θ ∈ Zk has the convex representation θ =
∑Jk

j=1 λje
(k)
j

with λj ≥ 0 and
∑Jk

j=1 λj = 1 we can use the convexity of Qm(t, ·) := Im(t, ·)−I(t, ·)
(which follows from Uk ⊂ U) to obtain

ςm(θ) = sup
{

Qm(t,
∑

j λje
(k)
j )
∣∣ t ∈ [0, T ]

}
≤ sup

{ ∑
j λjQm(t, e

(k)
j )
∣∣ t ∈ [0, T ]

}

≤∑j λj sup
{

Qm(t, e
(k)
j )
∣∣ t ∈ [0, T ]

}
=
∑

j λjςm(e
(k)
j ) ≤ max{ ςm(e

(k)
j ) | j = 1, ..., Jk }.

Since m 7→ ςm(θ) decays monotonously to 0 for each k there is a minimal M(θ, k)
such that ςm(θ) ≤ 1/k for m ≥M(θ, k). We now set

mk := max{M(e
(k)
j , k) | j = 1, . . . , Jk },

then ςm(θ) ≤ 1/k for all θ ∈ Zk and all m ≥ mk. Thus, we conclude σk ≤ 1/k, which
implies the desired condition (4.3).

While the above construction shows that it is in principle possible to find converging
discretizations, the method is not satisfactory. It would be desirable to show that the
discrete spaces Uk can be formulated on the same triangulation Tk instead of the much
finer triangulation Tmk . It is not clear that this can be achieved with some kind of
conforming discretization (i.e. Uk ⊂ U) as used in [CaP01]. However, it might be easier to
construct nonconforming scheme like discontinuous Galerkin schemes to satisfy condition
(4.3). Moreover, the latter condition turned out to be sufficient for our convergence result
in Theorem 4.1, but there might be substantially weaker abstract conditions that would
allow for a larger class of discretization schemes.
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5 Evolutionary relaxation

The original microscopic problem was described by pure phases with z(t, x) ∈ {e1, e2},
i.e. the phase indicator θ should only take the values θ = 0 for phase 1 or θ = 1 for phase
2. Thus, we define the pure, or unrelaxed, state space

P := { θ ∈ L2(Ω) | θ(x) ∈ {0, 1} for a.a. x ∈ Ω }.

Obviously, P is a subset of Z, but it is not weakly closed. In fact, Z is the convex hull of
P, while P contains all extremal points of Z.

We may consider the full ERIS (U×P,E,D) or the equivalent reduced ERIS (P, I,D),
but it is not clear whether this system has any energetic solutions for general loadings
via gDir and `. However, following the ideas in [MTL02, Mie04, MRS08] (see also [GaL09]
for a similar relaxation of a RIS related to fracture) one can define upper and lower
incremental relaxations, see [Mie04, Def. 4.1]. Indeed, for a special case of our two-phase
problem the lower relaxation was established in [The02].

5.1 The relaxation result

Here we want to address the time-continuous relaxation as introduced in [MRS08, Sect. 4].
For this, we consider approximate incremental minimization problems for (P, I,D) defined
via (2.2) with a fixed initial state θ0 ∈ P. Now for every εn > 0 we choose an approximate
solution

(
θτ,εj
)
j=1,...,J

for the time-discretized problem. As before we denote by θτ,ε :

[0, T ]→ P the piecewise constant interpolants.
Since θτ,ε satisfies an a priori dissipation bound DissD(θτ,ε, [0, T ]) ≤ C independently

of τ = T/N and ε ∈ ]0, 1], we can extract subsequences (τk, εk)→ (0, 0) such that

∀ t ∈ [0, T ] : θτk,εk(t) ⇀ θ(t) for k →∞. (5.1)

In the spirit of [Mie04, MRS08] we call (Z, I,D) an (upper) time-continuous relaxation
of (P, I,D) if all accumulation points θ obtained via (5.1) are energetic solutions for the
ERIS (Z, I,D).

The following result, which should be seen as a specific nontrivial instance of the gen-
eral theory in [MRS08, Sect. 4], provides the mathematically rigorous relaxation result
that all accumulation points of the pure-phase approximation solutions are indeed solu-
tions of the relaxed model. In particular, it justifies the model derived in [MTL02] via
separate relaxation as a true upper relaxation of the evolutionary problem. The property
of lower relaxation was already established in [The02].

Theorem 5.1 (Evolutionary relaxation) Consider the functions θτ,ε : [0, T ] → P

with ε > 0 and τ = T/J with J ∈ N obtained via the approximate incremental mini-
mization problem (2.2). Furthermore assume that θ0 ∈ P is stable in P, i.e. I(0, θ0) ≤
I(0, θ) + D(θ0, θ) for all θ ∈ P. Then, every accumulation point θ : [0, T ]→ Z satisfying
(5.1) is an energetic solution of the ERIS (Z, I,D) as discussed in Section 3.

As before, the only nontrivial part of the proof is Step 3, where we have to establish
the stability of the accumulation points θ : [0, T ] → Z, i.e. θ(t) ∈ S(t). As before, we
will deduce this from the stability of the approximations θτ,ε. However, the nonrelaxed
(approximate) stability sets are defined via

SαP(t) := { θ ∈ P | I(t, θ) ≤ α + I(t, θ) + D(θ, θ) for all θ ∈ P },
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where the test functions θ are in the much smaller set P of pure phases only. Thus, the
desired closedness condition, which reads

(
αk → 0, θk ∈ SαkP (t), θk ⇀ θ∗

)
=⇒ θ∗ ∈ S(t), (5.2)

is more difficult, because we do not only have to pass to the limit, but we also have to
enlarge the space of test functions from P to Z.

Hence, for a construction of MRS we must approximate functions θ̂ by suitable func-
tions θk ∈ P. In particular, for values θ̂(x) ∈ ]0, 1[ we need to introduce new oscillations
between the values 0 and 1, which implies that the oscillations captured in the H-measure
µ generated by θk cannot always be bounded by the H-measure µ, which is generated by
θk. However, we may introduce the necessary oscillations in such a way that they do not
increase the energy I too much. For this, we essentially use that by the very definition of
I as the relaxation of I there is at least one direction ω∗ ∈ Sd−1 such that Λ(ω∗) = 0, i.e.
laminates with normal ω∗ do only contribute to the energy as much as their weak limit.
This is also the essential point in the lower-relaxation result established in [The02].

5.2 Mutal recovery sequences III

We use the following construction for MRS. For θk ∈ P, θ∗ ∈ Z, and αk as in (5.2) and

arbitrary test functions θ̂ ∈ Z, we have to find a MRS (θk)k with θk ∈ P. We employ the
function H : [0, 1]× R→ {0, 1} with

H(β, s) =

{
1 for s mod 1 ∈ [0, β[,
0 for s mod 1 ∈ [β, 1[,

which satisfies H
(
β, n(·)

)
⇀ β. For an arbitrary function η ∈ Z and m ∈ N we define

the piecewise constant approximations

ηm(x) =
1

|Ω ∩ Am(x)|

∫

Ω∩Am(x)

η(y)dy, where Am(x) =×d
i=1

[
1
m
bmxic, 1

m
bmx1+1c

[
,

i.e. Am(x) ⊂ Rd is a semi-open cube of side length 1/m containing x. As in [The02,
Thm. 3.5] we set

Sηk(x) := H(ηk(x), k2ω∗ · x),

which is locally near x ∈ Ω a laminate with normal ω∗ and volume fraction ηk(x) ≈ η(x).

Clearly, Sηk ∈ P and Sk
H−→ (η, µ̃) with µ̃ = 1

2
η(1−η)⊗

(
δω∗+δ−ω∗

)
, see e.g. [Rin15, Lem. 12].

The following Theorem 5.3 gives a construction for MRS, which relies on the fact,
that we can introduce oscillations via Sηkn which are much faster than oscillations in
θn. The enforcement of a decoupling of spatial scales via kn � n of the micristructures
generated by Sηkn and θn, respectively, allows us to calculate the generated H-measure of
the maximum function ζn : x 7→ max{θn(x), Sηkn(x)} explicitly. The proof of this result
will be postponed to Section 5.3, and Figure 1 gives a sketch of the construction, where
very fine laminates generated by Sηkn are combined with the microstructure of θn.

Proposition 5.2 Assume θn ∈ P, the convergence θn
H−→ (θ∗, µ), and η ∈ Z. Then, there

exists a sequence (Kn)n∈N such that for all sequences (kn)n∈N with kn ≥ Kn for all n, the
functions ζn := max{θn, Sηkn} satisfy

ζn
H−→
(
θ∗+(1−θ∗)η, µ̂) with µ̂ = (1−η)2µ+ (1−θ∗)2η(1−η)⊗1

2

(
δω∗+δ−ω∗

)
. (5.3)
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Figure 1: The microstructure of θn (green circles) is combined with the much finer lami-
nates (violet) generated by Sηk for k � n. The function ζ(x) = max{θn(x), Sηk(x)} equals
0 in white regions and equals 1 in all colored regions.

We expect that the microlocal compactness forms developed in [Rin15] are the optimal
tools to give a clearer proof of the following result and to provide a stronger charac-
terization of the possible limiting objects. Fortunately, for our two-phase problem the
H-measure is already sufficient.

The above construction allows us to define suitable MRS θn ∈ P for a test function
θ̂ ∈ Z. As before we will be able to guarantee the sign condition

sign(θn(x)−θn(x)) = sign(θ̂(x)−θ∗(x)) a.e. in Ω. (5.4)

Thus for α ∈ {+, 0,−} we define the indicator functions 11α := 11Ωα for the domains

Ω± := {x ∈ Ω | ± (θ̂(x)−θ∗(x)) > 0 } and Ω0 := {x ∈ Ω | θ̂(x) = θ∗(x) }.

Now we are ready to choose the sequence

θn := max{θn, Sη
+

kn
}11+ + θn110 + min{θn, Sη

−

kn
}11−, where

η+ :

{
Ω+ → ]0, 1[,

x 7→ (θ̂(x)−θ∗(x))/(1−θ∗(x));
and η− :

{
Ω− → ]0, 1[,

x 7→ θ̂(x)/θ∗(x)

(5.5)

and formulate the final result on the MRS for the relaxation problem.

Theorem 5.3 (MRS for evolutionary relaxation) Let θk ∈ P, θ∗ ∈ Z, and αk be

given as in (5.2) and θ̂ ∈ Z. Then, there exist Kn � n such the sequence (θn)n∈N defined
in (5.5) with kn ≥ Kn is a MRS satisfying the relations

θk ⇀ θ̂, D(θk, θk)→ D(θ∗, θ̂), lim sup
n→∞

(
I(t, θn)−I(t, θn)

)
≤ I(t, θ̂)− I(t, θ). (5.6)

Moreover, if θn
H−→ (θ∗, µ), then

θn
H−→ (θ̂, µ̂) where µ̂ = b2µ+ a⊗1

2

(
δω∗+δ−ω∗

)

with b =
1−θ̂
1−θ∗

11+ + 110 +
θ̂

θ∗
11− and a = (1−θ̂)(θ̂−θ∗)11+ + θ̂(θ∗−θ̂)11− .

(5.7)
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Proof. Step 1: For the weak convergence we first use Proposition 5.2 to see that θn11+ ⇀(
θ∗+(1−θ∗)η+

)
11+ = θ̂11+. Similarly, max{θn, Sη

−

kn
}11− = θnS

η−

kn
11− ⇀ θ∗η−11− = θ̂11−, see

Step 1 in the proof of Proposition 5.2. Since obviously θn110 ⇀ θ∗110 = θ̂110, we conclude
θn ⇀ θ̂ as desired, if kn is sufficiently large.

Step 2: The convergence of the dissipation distances D(θk, θk) → D(θ∗, θ̂) is an easy
consequence of Step 1, if we observe the obviously true sign condition (5.4).

Step 3: Next we derive the H-measure relation (5.7) for which we assume θn
H−→ (θn, µ).

By decomposing into 11 = 11+ + 110 + 11− we can treat the three parts separately, since

θn11α
H−→ (θ∗11α, 11αµ). Clearly, we obtain θn110 ⇀ (θ̂110, 110µ), i.e. 110µ̂ = 110µ which means

b110 = 110 and a110 = 0.
For the part θn11+ we can directly apply Proposition 5.2 with η = η+, which provides

a11+ and b11+ as given in (5.7). The result on Ω− follows similarly, e.g. by substituting θ
by 1−θ. Hence, (5.7) is established.

Step 4: To show the limsup estimate in (5.6) we first choose a subsequence realizing

the limsup. Choosing a further subsequence (not relabelled), we may assume θn
H−→ (θ∗, µ).

Thus, owing to Proposition 3.2 and (5.7) we find

I(t, θn)− I(t, θn) = I(t, θ̂) +

∫

Ω×Sd−1

Λ(ω)dµ̂ − I(t, θ∗)−
∫

Ω×Sd−1

Λ(ω)dµ ≤ I(t, θ̂)− I(t, θ∗),

where we used Λµ̂ ≤ Λµ because of Λ(±ω∗) = 0, Λ ≥ 0, and 0 ≤ b ≤ 1 in (5.7).

5.3 Proof of Proposition 5.2

We consider a sequence θn ∈ P with θn
H−→ (θ∗, µ). For a given η ∈ Z we have to construct

a sequence (Kn)n∈N such that for all kn ≥ Kn the functions ζn := max{θn, Sηkn} satisfies

ζn
H−→
(
θ∗+(1−θ∗)η, µ̂) with µ̂ = (1−η)2µ+ (1−θ∗)2η(1−η)⊗1

2

(
δω∗+δ−ω∗

)
. (5.8)

Proof of Proposition 5.2. Step 1: As in [The02] we use that for a, b ∈ {0, 1} we have
the simple relation max{a, b} = a+ (1−a)b. Hence, using θn, S

η
k ∈ P we have

ζn = Zn,kn with Zn,k := θn + (1−θn)Sηk = (1−θn) (Sηk−η) + (1−η)θn + η.

We first consider the weak limit, where fixing n and considering k →∞ we find Zn,k ⇀
Zn,∞ := (1−η)θn+η due to Sηk ⇀ η. Since the weak L2-convergence in Z is metrizable by

some metric dw, we can choose K̃n such that dw(Zn,k, Zn,∞) ≤ 1/n for all k ≥ K̃n. Now,
Zn,∞ ⇀ z∞ := (1−η)θ∗+η implies %(n) := dw(Zn,∞, z∞)→ 0 and

dw(Zn,kn , z∞) ≤ dw(Zn,kn , Zn,∞) + dw(Zn,∞, (1−η)θ∗+η) ≤ 1/n+ %(n)→ 0,

whenever kn ≥ K̃n, i.e. we have ζn = Zn,kn ⇀ z∞ as desired.
Step 2: For the H-measure we use Proposition 3.2 to conclude that the term (1−η)θn

generates the H-measure µ̂2 := (1−η)2µ, while the third term η is constant and hence
does not contribute to µ̂.

Step 3: We next show that the first term ζ1
n := (1−θn) (Sηkn−η) generates the measure

µ̂1 := (1−θ∗)2η(1−η)⊗1
2

(
δω∗+δ−ω∗

)
if kn grows sufficiently fast. The Fourier transform F

(where the extension E by 0 on Rd \ Ω is suppressed) satisfies the convolution formula

F
(
(1−θn) (Sηkn−η)

)
= fn ∗ gn with fn(ξ) = F

(
(1−θn)

)
(ξ) and gn(ξ) = F

(
(Sηkn−η)

)
(ξ).
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We choose a radius Rn such
∫

|ξ|>Rn
|fn(ξ)|2 dξ ≤ 1

n

∫

Rd
|fn(ξ)|2 dξ =

1

n
‖fn‖2

L2 ≤ C1

n
.

Since Sηk−η ⇀ 0 the Fourier transform converges to 0 in the balls { ξ ∈ Rd | |ξ| ≤ Rn }
for k → ∞ and n fixed. Moreover, the fast oscillations in x 7→ H(ηk(x), k2ω∗·x)−η(x)
lead to a spreading of the Fourier transform in the directions ξ ≈ ±λω∗ with λ ≥ 2k2π.
Indeed, recalling |ω∗| = 1 and setting

Ξk :=
{
ξ ∈ Rd

∣∣∣ |ξ · ω∗| ≥ max
{

2k2π−k, k−1

k
|ξ|
} }

we find the relation

ρ(k) :=

∫

Rd\Ξk
|gk(ξ)|2 dξ → 0 for k →∞.

Choosing Kn ≥ K̃n such that ρ(k) ≤ 1/n for all k ≥ Kn, we see that the convolution
fn ∗ gn has most of its mass inside the set Xn := Ξkn + { ξ | |ξ| ≤ Rn }, i.e.

∫

Rd\Xn
|(fn ∗ gn)(ξ)|2 dξ ≤ C/n.

Since the radial projection of Xn on Sd−1 converges to {ω∗,−ω∗}, the H-measure generated

by ζ1
n is α(x)⊗1

2

(
δω∗+δ−ω∗

)
, where α is the weak limit of

(
(1−θn) (Sηkn−η)

)2
. As in Step

1 we obtain α = (1−θ∗)2η(1−η), where we may increase Kn if necessary.
Step 4: We still have to show that the sum

ζ1
n + ζ2

n := (1−θn) (Sηkn−η) + (1−η)(θn−θ∗)
generates the H-measure µ̂1 + µ̂2. For this it suffices to show that F(ζ1

n) and F(ζ2
n) have

their masses well separated. By Step 3 we know that the essential part of the mass
of F(ζ2

n) is contained in Ξkn + { ξ | |ξ| ≤ Rn }, while the essential part of the mass of

F
(
(1−η)θn

)
is concentrated in R̃n. Increasing Kn if necessary, for every test function

ϕ ∈ Cc(Ω) we find ‖F(ϕζ1
n)F(ϕζ2

n)‖L1(Rd) → 0. Thus, we conclude
∫

Ω×Sd−1

|ϕ(x)|2Ψ(ω)µ(dx, dω) = lim
n→∞

∫

Rd
|F
(
ϕ(ζ1

n+ζ2
n)
)
(ξ)|2Ψ(ξ/|ξ|)dξ

= lim
n→∞

[∫

Rd
|F(ϕζ1

n)|2Ψdξ + 2 Re
(∫

Rd
F(ϕζ1

n)F(ϕζ2
n) Ψdξ

)
+

∫

Rd
|F(ϕζ2

n)|2Ψdξ

]

=

∫

Ω×Sd−1

|ϕ(x)|2Ψ(ω)µ̂1(dx, dω) + 0 +

∫

Ω×Sd−1

|ϕ(x)|2Ψ(ω)µ̂2(dx, dω).

Thus, Proposition 5.2 is proved.
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