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Abstract
In this paper we provide a novel anisotropic mesh adaptation technique for adaptive finite element a nalysis. It is based on the 

concept of higher dimensional embedding, which was exploited in [1–4] to obtain an anisotropic curvature adapted mesh that 

fits a c omplex s urface i n R 3. I n t he c ontext o f a daptive fi nite el ement si mulation, th e so lution (w hich is an un known 
function f : Ω ⊂ Rd → R) is sought by iteratively modifying a finite e lement m esh a ccording t o a m esh s izing fi eld de scribed 
via a (discrete) metric tensor field t hat i s t ypically o btained t hrough a n e rror e stimator. We p roposed t o u se a h igher 
dimensional embedding, Φf (x) := (x1, . . . , xd, s f (x1, . . . , xd), s ∇ f (x1, . . . , xd))t, instead of the mesh sizing field for the mesh a 
daption. This embedding contains both informations of the function f itself and its gradient. An isotropic mesh in this embedded 
space will correspond to an anisotropic mesh in the actual space, where the mesh elements are stretched and aligned according to 
the features of the function f . To better capture the anisotropy and gradation of the mesh, it is necessary to balance the contribution 
of the components in this embedding. We have properly adjusted Φf (x) for adaptive finite element a nalysis. To better understand 
and validate the proposed mesh adaptation strategy, we first provide a series of experimental tests for piecewise linear 
interpolation of known functions. We then applied this approach in an adaptive finite element solution of partial differential e 
quations. Both tests are performed on two-dimensional domains in which adaptive triangular meshes are generated. We compared 
these results with the ones obtained by the software BAMG – a metric-based adaptive mesh generator. The errors measured in the 
L2 norm are comparable. Moreover, our meshes captured the anisotropy more accurately than the meshes of BAMG.

1. Introduction

Anisotropic meshes are partitions of a given domain with elements elongated along prescribed directions. They
have been shown to be particularly well suited for the interpolation of functions and for numerical modeling charac-
terized by strong directional properties, such as semiconductor device modeling, electrochemical modeling, porous
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media flow, fluid dynamics, etc., which exhibit boundary or internal layers of various kinds due to singular perturba-
tion arising, e.g., from gate boundary conditions in semiconductors, reacting surfaces in electrochemical problems,
or moving reaction fronts. Compared with the resolution of these layers by isotropically adapted meshes, anisotropic
meshes can greatly reduce the involved numbers of degrees of freedom, i.e., of the dimensionality of the discrete
system, and therefore of the computational effort. The quality of the mesh is essential for the accuracy of the solution.
In particular, one can expect superconvergence effects for properly aligned anisotropic meshes.

Anisotropy means the way distance and angles are distorted. It is well understood that the anisotropy can be
described through a field M of metric tensors associated with a space domain Ω ⊆ Rd, where each metric tensor
M(x) ∈ M, x ∈ Ω is a d×d symmetric positive definite matrix. Given an open curve C ⊂ Ω, the length of C with respect
toM is defined as: lM(C) =

∫ 1
t=0

√
v(t)t M(c(t))v(t)dt, where c(t) : R→ Rd, t ∈ (0, 1) denotes a parameterization of C

and v(t) = ∂c(t)/∂t is the tangent vector. Then, the geodesic distance dM(x, y) between two points x, y ∈ Ω is defined
as the length of the (possibly non-unique) shortest curve C that connects x and y: dM(x, y) = min(lM(C)).

In the majority of works concerning anisotropic mesh generation, a discrete metric tensor field M (e.g., defined
on the vertices) is used to describe the anisotropic feature of the domain. Then, a uniform mesh (with equal edge
length) with respect to the metric tensor field M is sought. This will produce an anisotropic mesh of that domain.
One of the most commonly used approaches is mesh adaption, i.e., given an initial mesh T0 of the domain Ω, one
iteratively updates Ti, i = 0, 1, 2, ... through local mesh operations, like edge/face swapping, vertex smoothing, vertex
insertion/deletion, to obtain the desired anisotropic mesh. This has been shown to be very effective in generating
anisotropic meshes, see e.g. [10–13,26,27].

An alternative way to describe anisotropy is to use a higher dimensional embedding Φ : Rd → Rn, where d < n [1].
The map Φ embeds the space Ω into a higher dimensional space Φ(Ω) such that the anisotropy in Ω corresponds to
an isotropy in Φ(Ω), hence an isotropic mesh in Φ(Ω) will correspond to an anisotropic mesh in Ω. One can use this
embedding to define distances and angles in the higher dimensional space Φ(Ω). One example of such embedding on a
smooth surface Ω ⊂ R3 is to use the normal field of the surface, i.e., Φ : R3 → R6, Φ(x) = (x, y, z, snx, sny, snz)T [1,2],
where (nx, ny, nz) denotes the unit normal to Ω at x, and s ∈ [0,+∞) is a constant which tunes the amount of anisotropy.
This embedding essentially approximates the geodesic lengths in Ω by the Euclidean lengths in R6. An isotropic mesh
of Φ(Ω) in R6, when transformed back into R3, identifies a curvature-adapted anisotropic surface mesh of Ω. This
embedding has been successfully used to generated curvature-adapted anisotropic surface meshes [2,3].

In this paper we extend this idea to generate anisotropic meshes for adaptive finite element simulation. The goal is
to develop a novel approach for mesh adaptation framework for this application. In a classical adaptive finite element,
we start from an initial, usually uniform, mesh and then, to get a proper adapted mesh, we apply this sequence of
operations:

SOLVE→ESTIMATE→METRIC→ADAPT.

The procedure SOLVE solves the PDE to get a discrete solution uh, in ESTIMATE the numerical error is estimated based
on the actual mesh and uh. Then, at the step METRIC a metric field that suitably employs the informations provided by
the error estimate is constructed. Finally, the ADAPT procedure is called to re-create the mesh according to the given
metric field. This is an iterative procedure and there are different ways to stop this loop. One possibility is to break
when a prescribed error bound is obtained, or a maximum number of iterations is reached, or when we get a saturation
of the mesh, i.e., the modification done at the step ADAPT are “few”, see e.g. [5,6].

Contrary to the classical mesh adaptation procedure, the proposed adaptation strategy in this paper does not involve
both the estimation of an error and the construction of a metric field. In each iteration of the mesh adaptation, we use
the following steps:

SOLVE→RECOVER GRADIENT→ADAPT,

and the process stops when a desired maximum number of iterations is reached. There are different free or commercial
software to get the solution of a PDE. In this framework, we use the p∂elib library to have a finite element solution
of the problem at hand [24]. At step RECOVER GRADIENT we apply a recovery gradient scheme to get the gradient
components of the embedding map.

The remind of this paper is organized as following. In Section 2, we describe the higher dimensional embedding
proposed in [2] and how we have modified it to achieve a planar triangular anisotropic mesh. In Section 3, we
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describe the principle behind our gradient recovery strategy used in our adaptive finite element process, which is an
important stage for obtaining the gradients that used by the proposed higher dimensional embedding. In Section 4, we
explain in detail the mesh adaption procedure. In Section 5, we present experimental results as well as adaptive finite
element tests for some published academic examples. The comparison with BAMG - a metric-based adaptive mesh
generator, [22,23], is also reported. Finally, conclusions and future works are given in Section 6

2. Higher Dimensional Embedding

It has been shown in [1,2] that the anisotropy is obtained by increasing the dimensions: an isotropic mesh in a
higher dimensional space will correspond to an anisotropic mesh in the lower dimensional space., see an example in
Figure 1.

Fig. 1. An isotropic mesh in R3 (left) and the corresponding anisotropic mesh in R2 (right). This is a very representative picture of the idea behind
the higher dimension embedding proposed in [2].

In [2], given a surface Γ ⊂ R3, the authors embed it into R6 by the map, Φ : Γ→ R6:

Φ(x) = (x, y, z, s nx, s ny, s nz)t ,

where (nx, ny, nz)t denotes the unit normal to Γ at x(x, y, z) and s ∈ [0,+∞) is a user-specified constant.
This embedding Φ is an instrumental to get approximation of the geodesic edge lengths in Γ. In fact, where

the surface is flat, the lengths of edges remain the same in Φ(Γ). On the contrary, where Γ presents a very high
variation of curvature, the lengths of edges in Φ(Γ) become much larger than theirs euclidean lengths measured in
R3. Consequently, since the distances in R6 are affected by the normals, if we build an isotropic mesh of Φ(Γ) in the
embedding space, we will get a curvature-adapted anisotropic mesh of Γ in R3.

In this paper we are interested in a different task: we desire an anisotropic adapted mesh, where the elements are
aligned according to the trend of a known smooth function f or the solution uh of a partial differential equation (PDE).
To better understand the proposed approach, we consider only the case of a smooth function f over a two-dimensional
space, then, at the end of this section, we will extend this idea to uh.

Consider a flat domain Ω with a Lipschitz smooth boundary and a smooth function f : Ω ⊂ R2 → R. To proceed
with this adaptation procedure, we define the embedding map Φ f : Ω ⊂ R2 → R5 as:

Φ f (x) := (x, y, s f (x, y), s gx(x, y), s gy(x, y)) t , (1)

here s ∈ [0,+∞) is a user-specified parameter, f (x, y), gx(x, y) and gy(x, y) are values at the point (x, y) of the function
f and its gradient components, respectively.

We exploit the standard scalar product in R5 to have an approximation of the lengths and the angles in this em-
bedded space. Consider three points a,b, c ∈ Ω, we define the length of the segment ab in the embedded space
as

lab :=
√(

Φ f (a) − Φ f (b),Φ f (a) − Φ f (b)
)
, (2)

where (·, ·) is the standard scalar product in R5. Then, the angle âbc is defined via the cosine:

cos
(

âbc
)

:=

(
Φ f (a) − Φ f (b),Φ f (c) − Φ f (b)

)
√(

Φ f (a) − Φ f (b),Φ f (a) − Φ f (b)
)√(

Φ f (c) − Φ f (b),Φ f (c) − Φ f (b)
) . (3)
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The computation of these two quantities takes into account some information related to the behavior of the function
f . First of all, the term f (x, y) in Equation 1 takes into account the jumps of the function f : if an edge of the
mesh crosses a jump of the interpolating function, its length will be longer than the standard euclidean length in R2.
Moreover, the last two terms in Equation 1, gx and gy, take into account the trend of the function. Indeed, an edge
whose end-points have different gradient will be longer in this embedded space with respect to standard euclidean
length in R2.

The computation of these two quantities is all we need to make an initial mesh as uniform as possible in the
embedded space R5, i.e., to get a final triangular mesh where all the edges have the same target embedded length and
the embedded angles are as close as possible to 60◦.

Embedding Map for a weak solution of a PDE. When we are dealing with a piece-wise polynomial function, uh, that
comes from the resolution of a PDE, we can exploit a similar embedding map, Φuh : R2 → R5 defined as

Φuh (x) := (x, y, s uh(x, y), s gx(x, y), s gy(x, y)) t , (4)

where s is a user-specified parameter as before and

gx(x, y) := [∇uh (x, y)]x , gy(x, y) := [∇uh (x, y)]y ,

here [∇uh (x, y)]x and [∇uh (x, y)]y are the x and y components of the gradient of the discrete solution uh, respectively.
Unfortunately, when we are dealing with the approximation of a piecewise linear solution of a PDE, the gradient of uh

is generally discontinuous across the edges of a mesh element. Indeed, we can get a discontinuous approximation of
the gradient that may invalidate the higher dimensional embedding and, consequently, the whole adaptation procedure.
To avoid this difficulty, we exploit a gradient recovery procedure. It is described in Section 3.

Modifications of the Embedding Map. From Equation 1 and 4 it is clear that we take into account different quantities,
the coordinates of the point in R2, the function value, and the gradient of the function. These three quantities may
have very different ranges. It is necessary to make a suitable scaling factor to make them comparable. More precisely,
we select a scaling factor to make each component of the vector in Equation 1 and 4 between [0, 1].

Unfortunately, since the variation on the gradient of a function can be arbitrary large when we are dealing with
boundary or internal layers, the normalization on the gradient components may drastically reduce the small variation
on the gradient, so that the adaptation procedure can not capture them. To increase the sampling of the mesh in
these zones, we modify these two embeddings. For simplicity, we show how we changed the embedding defined in
Equation 1, the same variation has be done for the one in 4:

Φ̃ f (x) := (x̃, ỹ, s f̃ (x, y), s vx(x, y), s vy(x, y)) t , (5)

where x̃, ỹ, f̃ (x, y) are properly normalized between [0, 1] and

vx(x, y) := sign (gx(x, y))
√
|g̃x(x, y)| and vy(x, y) := sign

(
gy(x, y)

) √∣∣∣g̃y(x, y)
∣∣∣ , (6)

where g̃x(x, y) and g̃y(x, y) are the gradient components normalized and sign (·) denotes the standard “signum” func-
tion. The square root increases the magnitude of the gradient. So that it can effect the computation of the length
of the edges and the size of the angles in the embedded space even where the interpolating function presents small
variations. In this preliminary study we use the square root, since it was the easiest way to achieve this goal, but other
choices can be investigated. In Subsection 5.3, we numerically verify how the error is effected by this adjustment.

3. Gradient Recovery

The gradient of a piecewise linear solution of a PDE can be discontinuous across the edges of the mesh. However,
it is possible to proceed with a so called gradient recovery procedure that smooths the gradient of the piecewise
linear solution uh [15–17]. This is a common post processing procedure adopted when we might be more interested
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in computing the gradient rather the function itself. For instance, when we are dealing with an elasticity problem, we
can be more interested in computing the stresses and the strains rather than the displacements of the elastic body [25].

In this paragraph we will give a brief description of this gradient recovery techniques, in particular we will focus
on the one we used in the embedding map Equation 4. For a more detailed description of them, we refer the reader
to [15–17].

There are different ways to compute a smooth gradient moving from a piecewise linear function uh. We can divide
them in two main categories: local averaging and global averaging schemes. The former computes the recovered
gradient at a point x of the domain starting from a neighborhood of x. The latter defines the new smooth gradient
at x via the information provided by the whole domain. In the proposed embedding map we will consider the local
averaging schemes, since they provides good results and they are much easier to implement.

Let us consider a planar two dimensional triangular mesh Ωh, a piecewise linear solution computed on this domain,
uh, and a node of the mesh x ∈ Ωh. Moving from the gradient defined on the triangles that share the node x, we can
compute the so-called simple averaging to get a smooth value of the gradient at the node x:

(Gh∇uh)(x) :=
1
m

m∑
j=1

∇uh|T j (x) , (7)

where m is the number of triangles that share the node x and ∇uh|T j is the gradient of the piecewise linear function uh

on the triangle T j. Under particular hypothesis on the mesh elements, a super-convergence result holds for the simple
averaging schemes [19], so this quantity will offer a better approximation of the gradient than the one provided by the
finite element solution itself.

4. Mesh Adaptation Procedure

The idea of the proposed re-meshing strategy is to apply the standard mesh modification operations in R2, but
evaluate all the lengths and the angles in the embedded space, see Equation 2 and 3. More precisely, we start from
an initial mesh and then we apply the classical mesh modification procedure, such as edge flipping, edge contraction,
edge splitting and node smoothing, to make the mesh as uniform as possible in the embedded space. This standard
mesh modification operations are widely discussed in the literature. The following paragraphs briefly explain how we
apply in this novel mesh adaptation strategy.

Edge Flipping. This operation is the most efficient and effective way to modify a mesh. Consider two triangles abc
and bad that share the edge ab, an edge flip will replace the edge ab with the edge cd, consequently, the triangles abc
and bad will be replaced by adc and bcd, see Figure 2 left.

Fig. 2. Flipping of the edge ab left, example of an un-flippable edge ab due to condition (b), right.

In a triangular planar mesh, it is not always possible to make this operation, the edge ab has to satisfy precise
criteria to avoid the creation of undesired configuration:

(a) ab is not a boundary edge;
(b) neither the angle dac nor dbc has to be greater than 180◦, see Figure 2, right.

Once an edge ab satisfies both conditions (a) and (b), we decide to flip it if and only if

θa + θb < θc + θd , (8)
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where θ∗ are the embedded angles at the vertex ∗, see Equation 3. We can interpret the condition defined in Equation 8
as a “Delaunay Criteria” in the embedded space. Moreover, to make this operation more effective, we have developed
an edge-flip algorithm inspired to the well-known Lawson’s flip for the construction of a two-dimensional Delaunay
triangulation [20].

Edge Contraction. This is a really important operation when we are dealing with a mesh adaptation procedure since
it reduces the number of triangles in the mesh. In the proposed adaptation procedure we will use it to remove all the
edges in the mesh that have an embedding length lower than 0.5L, where L is the target embedded edge length. One of
the possible way to remove an edge is via a sequence of 2-by-2 flip and a final 3-to-1 flip. After the edge is removed,
we always call the FlipEdges() routine to locally improve the mesh.

Edge Splitting. This is the reverse operation of an edge contraction and it is a common way to refine the mesh and,
consequently, to increase the resolution of the mesh in the zones of interests. In this framework we will split at its
middle point all the edges that have an embedding length greater than 1.5L. Even in this case, the FlipEdges()
routine is called in the neighborhood of the new inserted point to locally improve the mesh.

Node Smoothing. Contrary to the previous mesh modification procedure this one does not change the topology of the
mesh, but it moves the point to a new location. One of the possible way to compute this new position is

x′ = x + α
∑

xi∈ωx

w(d(x , xi))ui , (9)

here α is a constant, w is a function w : R→ R+, ωx is the set of vertices that are connected to x, ui are the unit vectors
that identifies the direction from x to xi and d is the distance between x and xi. The choice of α and the function w
in Equation 9 determines the smoothing method. In this framework, we adopted the smoothing proposed in [3]: the
basic idea is to use the distance d evaluated in the embedded space and the function proposed by F. J. Bossen and
P. S. Heckbert in [21] as w.

4.1. The Mesh Adaptation Algorithm

The adaptation procedure has the following inputs: an input function F that can be a smooth known function f or
a piecewise linear function uh, an initial planar triangular mesh of the domain Ω, Ωh; a user-specified s factor, this
input is related to the embedding, the bigger it is the more the triangles will be stretched, a user-specified edge length
L, this is the target length in the embedded space, the smaller this length is, the finer will be the resulting mesh, and a
maxIter number of iterations.

The method applies the sequence of standard mesh operations to get a finial mesh where all the triangles are as
close as possible to the equilateral one in the embedded space, i.e., all the sides have length L in the embedded space
and all their angles evaluated in the embedded space are as close as possible to 60◦. We underline that we use the
embedded length of the edges and size of the angles only to drive the adaptation procedure. More precisely, we still
work in R2, but we the angles and lengths are evaluated in R6. This sequence of operation is shown in Algorithm 1.

In the first part of this iterative procedure, we reduce as much as possible the number of vertices in the actual mesh
to reduce the computational effort, line 2. Then we split all the edges that have an embedded length > 1.5L. At
this level, we get a mesh where the edges have embedded length close to the target length L. Finally, we apply edge
flipping and node smoothing to improve the measure of the embedded angles. The operation done at line 10 depends
on the function we are interpolating: if we are dealing with the interpolation of a known function f , at this level we
only recompute the coordinates of the points in the embedded space, while, if we are dealing with the solution of a
PDE, we compute the solution on the new adapted mesh and then update the coordinates in the embedded space.

5. Results

In this section we perform and report a series of numerical results to test and validate the proposed mesh adaptation
strategy. In Subsection 5.1 we investigate the influence of the s factor on the higher dimensional embedding. In



7

Algorithm 1 The adaptation procedure for a piecewise linear solution uhw
improve(F, Ωh, s, L)
Data: F the function we are interpolating, Ωh the initial mesh, s the user-specified constant for the embedding, L the
target embedded length.

1: for i=1 to maxIter do
2: repeat
3: contract all the edges such that lab < 0.5L;
4: FlipEdges() on all the edges;
5: until an edge is contracted
6: split all the edges such that lab > 1.5L;
7: FlipEdges() on all the edges;
8: smooth points;
9: FlipEdges() on all the edges;

10: update the embedding map
11: end for

Subsection 5.2, we analyze the convergence rate of the error varying the embedded edge length. In Subsection 5.3,
we numerically verify the significant role of the square root of the gradient components in the embedding Φ f in
Equation 5. In Subsection 5.4, we apply the the proposed anisotropic mesh adaptation procedure for piecewise linear
approximation of some known functions. Finally, in Subsection 5.5, we apply the same procedure on a piecewise
linear function provided by the resolution of a PDE. In the last two subsections, we also compared and reported our
results with another freely available anisotropic mesh generation software, BAMG [22].

To evaluate the discretization error associated with the meshes, we consider the following quantity

etot :=
∫

Ωh

| fh − f |2 dx , (10)

where Ωh is piecewise triangular adapted mesh, fh is the piecewise linear approximation of the function f we are
interpolating. Moreover, to have a measure of the stretch of the triangles in the adapted mesh, we compute the
quantity

σmax := max
T∈Ωh

σT , (11)

where σT is the so-called stretching factor [5]. If σT is close to 1 the shape of the triangle T will be close to the
equilateral one, on the contrary, high values of σT will correspond to high stretched elements. In all of our tests, we
fixed the maximum mesh adapation iteration number maxIter := 5.

5.1. s−Factor Test

In this test we consider the function f1 : [−1, 1] × [−1, 1]→ R,

f1(x, y) := tanh (2(x − y) − 1) . (12)

This function presents an internal boundary layer around the line 2x−2y−1 = 0, so we will expect that the triangles in
the adapted mesh will be stretched along this direction. We fix the target length L = 0.1 and we consider the following
values of the parameter s = {0.5, 1, 5, 10}.

The adapted mesh are shown in Figure 3, and the mesh statistics are reported in Table 1. We can see that when
s increases, the mesh elements are more stretched (anisotropic) along the internal boundary layer. Moreover, the
sampling will be localized where the gradient presents variations.

5.2. Embedding Length Test

In this test case we consider the function f2 : [−1, 1] × [−1, 1]→ R,

f2(x, y) := tanh(60x) − tanh(60x − 60y − 30) . (13)
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s = 0.1 s = 1. s = 5 s = 10

Fig. 3. Adapted mesh with s = 0.1, s = 1., s = 5 and s = 10, respectively. The highlighted dashed line corresponds to 2x − 2y − 1 = 0.

s Ele. etot σmax

0.5 121 1.780e-02 3.637e+00
1 407 1.669e-03 2.2116+01
5 1145 2.854e-04 5.3173+01

10 1822 8.739e-05 1.578e+02

Table 1. Statistics of the resulting meshes with different values of s.

We fix the parameter s = 1. and apply the adaptation procedure described in Subsection 4.1, with these different
embedded target lengths, L = {0.1, 0.5, 0.025, 0.0125}. In Figure 4 left, we collect the results obtained and we show
the trend of the error, etot, with respect to these different embedded lengths, Figure 4 right. As it was expected the
error decreases by decreasing the target embedded length.

Ele. L etot

622 0.1 2.579e-02
2293 0.05 3.835e-03
8288 0.025 1.033e-03

30032 0.0125 4.1787-04

Fig. 4. The numerical data obtained with this example, left, and the trend of the error etot with respect to the embedded edge lengths, right.

5.3. Numerical Test on the new Embedding

In this example we numerically verify the important role of the square root in Equation 6. We consider two different
embedding maps: the one defined in Equation 5 and

Ψ̃ f (x) := (x̃, ỹ, s f̃ (x, y), s wx(x, y), s wy(x, y)) t , (14)

where x̃, ỹ, f̃ (x, y) are properly normalized between [0, 1] and

wx(x, y) := sign (gx(x, y)) |g̃x(x, y)| and wy(x, y) := sign
(
gy(x, y)

) ∣∣∣g̃y(x, y)
∣∣∣ , (15)

where g̃x(x, y) and g̃y(x, y) are the gradient components normalized and sign (·) denotes the standard “signum” func-
tion. To make this comparison, we use the function f2, we fix the target embedding length and the factor to L = 0.05
and s = 1., respectively. In Figure 5 left, we provide the quantity

eloc := max
T∈A

∫
T
| fh − f2|2 dx ,
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where A is the set of triangles of the adapted mesh shown in Figure 5 right, fh is the piecewise linear approximation
of the function f2. From Figure 5 right, we highlight that the mesh provided by the embedding Φ̃ f is more refined
around the layer while, the one given by Ψ̃ f is more refined inside the layer, but coarser around it. Indeed, where the
interpolating function presents “small variations”, the embedding Φ̃ f offers a better approximation with respect to the
one provided by Ψ̃ f . This different behavior is numerically verified via the data in Figure 5, where we can see that the
error eloc is lower when we use the embedding Φ̃ f .

Embedding eloc

Ψ̃ f 3.157e-03
Φ̃ f 1.900e-04

Ψ̃ f Φ̃ f

Fig. 5. On the left the quantity eloc computed using the embedding Ψ̃ f , Equation 14, and Φ̃ f , Equation 5. On the right a detail of the adapted
meshes, here we highlight with a dashed strait lines the refined region of the other method.

5.4. Comparison with BAMG

In this subsection we compare the proposed mesh adaptation strategy with the re-meshing procedure of the anisotropic
mesh generator BAMG [22]. For this comparison we consider the adaptation with the “-AbsErr” flag and we report
the values of the “-err” flag used [23]. We use the functions f1 and f2 of the previous examples and the functions
f3 : [−1, 1] × [−1, 1]→ R,

f3(x, y) := sin
(
5 (x − 0.2)3 (y2 − y + 1)

)
,

and f4 : [0, 1] × [0, 1]→ R,
f4(x, y) := 4

(
1 − e−100x −

(
1 − e−100

)
x
)

y (1 − y) ,

We collect all the data in Table 2. We notice that these two mesh adaptation procedure are comparable in terms
of number of elements and error etot, so they offer a similar approximation of the interpolating function at hand.
However, the higher dimensional approach make the triangles more stretched than BAMG. In fact, the values of σmax

for this adaptation procedure are always greater than the ones provided by BAMG in all the examples.

BAMG higher embedding
function -err Ele. etot σmax L Ele. etot σmax

f1 1.500e-04 3128 3.644e-04 5.953e+00 0.026 3302 3.720e-04 1.019e+01
f2 1.000e-04 8106 2.063e-03 1.787e+01 0.025 8288 1.033e-03 4.763e+02
f3 1.500e-04 9707 3.969e-03 1.836e+01 0.03 9611 3.772e-03 2.2743+05
f4 1.900e-03 6915 9.255e-04 1.114e+01 0.02 6943 2.436e-04 2.301e+02

Table 2. Comparison between the mesh adapted with BAMG and the proposed re-meshing method with s = 1.

5.5. Adaptive finite element applications

5.5.1. A priori test case
Before dealing with the more complex a-posteriori cases, we consider an a-priori case. This test is the same

considered in [5,28]. We consider the following PDE: find u such that{
−µ∆u = f in Ω ,

u = 0 in ∂Ω ,
(16)
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BAMG higher embedding

Fig. 6. Example f3, on the left the adapted mesh with BAMG with a detail, -err=0.15, Ele. 1837, etot = 2.682e − 02, σmax = 9.319e + 00. On the
right the mesh adapted with the embedding procedure with the same detail, L = 0.07, Ele. 1764, etot = 2.134e − 02, σmax = 2.860e + 03. We show
the 3d representation of the function f3 on the whole domain and in the porposed detail.

here µ = 1., Ω = [0, 1] × [0, 1] and

f (x, y) := 4α2 (y − y2) e−αx + 8(1 − eαx − (1 − e−α) x)) ,

where we chosen α = 100. The analytical solution of Equation 16 is f4 and it exhibits an exponential layer along
the x = 0 boundary with an initial steepness of α. Since we have the exact solution of this PDE, we can still use
Equation 10 to evaluate the error. In Table 3, we collect the numerical results. Even in this example the embedding
adaptation procedure offers a result comparable to the one provided by BAMG, but the triangles in the latter approach
are more stretched than the ones obtained by the former.

BAMG higher embedding
Ele. 6866 6159
etot 9.331e-04 6.098e-03
σmax 9.062e+00 4.500e+03

Table 3. Comparison between the mesh adapted with BAMG and the proposed re-meshing method with -err 0.0019 and L = 0.018 for the two
mesh adaptation process, respectively.
.

5.5.2. A posteriori test cases
We apply this new anisotropic mesh adaptation procedure when we are dealing with the solution of a partial

differential equation. Since we do not have the exact solution of these PDEs, we consider the solution obtained with
a very fine mesh as a reference solution. More precisely we compute:

etot :=
∫

Ωh

|uh − ure f |
2 dx , (17)

where Ωh is the triangular mesh of the reference solution ure f , uh is the piecewise linear solution of the PDE defined
on the adapted mesh.

The “double ramp” example. We consider the scalar advection-diffusion problem with homogeneous Dirichlet bound-
ary conditions, [8]: find u {

−µ∆u +
−→
β · ∇u = 1 in Ω ,

u = 0 in ∂Ω ,
(18)
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BAMG higher embedding

Fig. 7. The Example of this Subsubsection 5.5.1, on the left the adapted mesh with BAMG. On the right the mesh adapted with the embedding
procedure. We show the 3d representation of the function on the whole domain and in a detail.

here µ = 0.001 and
−→
β = (1, 0)t. The domain Ω is an L-shaped region contained in a square of edge length equal to 4.

In Figure 8 we show the resulting adapted meshes. The triangles are perfectly aligned according to the trend of uh,
Figure 8 right and Figure 9. Then, in Table 4, we collect the result obtained with this new adaptation procedure and
BAMG. As in the test cases of Subsection 5.4, these two methods are comparable in terms of error, but in the higher
dimensional embedding we get more stretched elements, see Figure 9.

BAMG higher embedding

Fig. 8. The reference solution, left, the adapted mesh with BAMG, middle, the one obtained with the higher dimensional embedding, right.

BAMG higher embedding
Ele. 7206 7145
etot 6.167e-03 9.122e-03
σmax 1.435e+02 7.965e+03

Table 4. Comparison between the mesh adapted with BAMG and the proposed re-meshing method with -err 0.0033 and L = 0.0278 for the two
mesh adaptation process, respectively.

The channel test case. We consider the scalar advection-diffusion problem, [8]: find u
−µ∆u +

−→
β · ∇u = 0 in Ω ,

u = 1 in ∂Ω1 ,
u = 0 in ∂Ω2 ,

µ ∂u
∂n = 0 in ∂Ω3 ,

(19)
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BAMG higher embedding

Fig. 9. The stretching factor on the adapted mesh with BAMG, left, the one obtained with the higher dimensional embedding, right.

here µ = 0.05,
−→
β = (x, −y)t and ∂u/∂n is the normal derivative of u along the boundary of Ω. The domain Ω is the

same as the previous example: the boundary ∂Ω1 corresponds to the edge {x = 0} of the L-shaped domain, then edges
on {x = 4} and {y = 0} are ∂Ω3, the other ones are ∂Ω2.

BAMG higher embedding

Fig. 10. The reference solution, left, the adapted mesh with BAMG, middle, the one obtained with the higher dimensional embedding, right.

BAMG higher embedding
Ele. 4438 4337
etot 4.143e-03 6.650e-03
σmax 6.880e+01 3.456e+02

Table 5. Comparison between the mesh adapted with BAMG and the proposed re-meshing method with -err 0.0165 and L = 0.028 for the two
mesh adaptation process, respectively.

The triangles are stretched and aligned to the layers of the solution uh, see Figure 10 right. Moreover, the error is
comparable to the one of BAMG, while the triangles are more stretched in the higher embedding adapted mesh.

6. Conclusions and Future Work

In this paper we presented a novel method to get an anisotropic mesh, where the mesh elements are aligned
according to the trend of the interpolating function f , or the piecewise linear finite element solution of a PDE, uh.
This is an extension to function interpolation of the higher dimensional embedding method proposed in [1,2].
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Even if the results obtained are at least comparable to the ones provided by BAMG, it would be necessary a further
analysis on this new approach. More precisely, we may find a way to reduce the sampling in the region where the
actual function is flat. Moreover, even if we empirically verify that few iterations are enough to get a good anisotropic
adapted mesh, it could be better to find a more rigorous criteria to stop the adaptation procedure.

However, the results in the two dimensional case allow a possible application to the three dimensional case, i.e.,
when we are dealing with a function defined in a volume. Another interesting application can be the interpolation of
function defined on a surface in the three dimensional space and a goal-oriented mesh adaptation procedure, but in
both these cases a deeper analysis on the embedding map has to be done.

Acknowledgements. The authors would like to thank the “Deutscher Akademischer Austauschdienst” and, in partic-
ular, its academic exchange service that makes possible this research.
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