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Abstract 

Deterministic methods for evaluation of moment Lyapunov exponents are 
derived for two-dimensional systems with non-degenerate noise. 

Key words: Lyapunov exponents, moment Lyapunov exponents, stability index 

1. Introduction 

Various characteristics of asymptotic behavior (under t -+ oo) of solutions of linear 
autonomous systems of stochastic differential equations (SDE) such as Lyapunov ex-
ponents, moment Lyapunov exponents, stability index, rotation numbers, and some 
others ·are derived and studied in [1-6] (see also references therein). It is possible to 
compare the values of the characteristics with the values of eigenvalues for linear deter-
ministic systems of differential equations with constant coefficients. Meanwhile there 
are only a few results permitting to find them. Moreover, almost all of them concern 
the Lyapunov exponent. Among them there is an explicit formula for Lyapunov expo-
nent for two-dimensional systems (see [2]). A method using numerical integration of 
SDE is proposed in [7]. In the papers [8,9] on systems with small diffusion asymptotic 
expansions of Lyapunov exponent in powers of small parameter in two-dimensional 
case are given. 

In our paper deterministic methods are derived for evaluation of such characteristics. 
One of the suggested methods reduces the evaluation of moment Lyapunov exponent to 
finding a root of an equation with a smooth convex monotone function by the Newton 
method. The Newton method is known to require a little number of iterations even 
for reaching high accuracy. The computational efforts for realization of each iteration 
consist in solving of the linear boundary value problem for the second order ordinary 
differential equation. Such a problem is profoundly investigated in numerical respect 
and has a number of good algorithms for its solution. Thus the evaluation of moment 
Lyapunov exponents becomes reliable and effective matter. The same also concerns 
other characteristics. In Section 7 some probabilistic representations connected with 
moment Lyapunov exponents are brought. They are not used directly in numerical 
respect here because in two-dimensional case the obtained deterministic methods are 
undoubtedly preferable. But due to the fact that the values of such representations can 
be calculated with any precision they become very useful in numerical tests connected 
with numerical integration of SDE and a Monte-Carlo technique. The last Section 
deals with the problem of maximization of stability index. 



2. Preliminary 

Consider the second order Ito's linear autonomous system of SDE 
m 

dX = AoX dt + L AiX dwi(t) (2.1) 
i=l 

where A0 , Ai, ... , Am are real 2x2-matrices, and wi(t) are independent standard scalar 
Wiener processes. 

Following [1,2], consider the new processes p(t) and <I>(t) where 

p(t) = ln I X(t) I 
and <I>(t) is defined by relations 

X1(t) X2(t) . I x ( t) I = cos <I> ( t)' I x ( t) I = sm <I> ( t)' 0 ::; <I> ( t) < 27r 

Introduce the vectors 

A = [ cos '-P ] A = [ sm r.p ] ( r.p) sin cp ' ( r.p) - cos r.p ' 

the matrix 
m 

A( r.p) = L AiA( r.p )AT ( r.p )AT 
i=l 

and the functions 

1 1 m 
Q(r.p) = a0 (r.p) + 2TrA(r.p) -AT(r.p)A(r.p)A(r.p) = a0 (r.p) + 2TrA(r.p)- ?=at(r.p), 

i=l 

m 

k2(cp) = XT(r.p)A(r.p)A(cp) = l:f3f(r.p) 
i=l 

We shall suppose throughout what follows that 

k2 ( cp) > 0' 0 ::; r.p < 27r 

Note that all introduced functions and a matrix A( cp) are Jr-periodic. 
Applying Ito's formula (see [1,2]) we have 

m m 

(2.2) 

d<I>(t) = (-/3o(<I>) + I:ai(<I>)f3i(<I>))dt- L/3i(<I>)dwi(t), (2.3) 
i=l i=l 

m 

dp(t) = Q(<I>)dt + L ai(<I>)dwi(t) (2.4) 
i=l 

Thanks to (2.2) the Markov process <I>(t) is ergodic on the unit circle. If µ(r.p) is the 
invariant measure of the process <I>(t) then for any x f:. 0 the following limit exists a.s. 

p(t) 1 12~ lim - = lim - ln I xx(t) I= Q(r.p)dµ(r.p) := .\ 
t-+-oo t t-+-oo t O 

(2.5) 
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This limit A is called the Lyapunov exponent of the system (2.1). 
It follows from (2.4) for p ER, x # 0 

I xx( t) Ip= exp { p(l Q( <P"( s) )ds + l ~a;( <I1"( s) )dw;( s))} (2.6) 

where <.p = {f>'P(O) corresponds to x = xx(o) by equality A(<.p) = x/ Ix I. 
The formula 

{ 
t t m } Tt(P)f(cp) = E/(<P"(t))exp p(fo Q(<P"(s))ds +lo ~o:;(<I1"(s))dw;(s)) (2.7) 

defines under any p E R the strongly continuous semigroup of positive operators on 
the space of continuous Jr-periodic functions J( <.p ). The infinitesimal operator L(p) of 
this semigroup has the form 

L(p)f(cp) = ~k2(cp)j"(cp) + b(cp;p)j'(cp) + c(cp;p)j(cp) (2.8) 

where 
m 

b(<.p;p) = -/30(<.p) + (1 - p) I: ai(<.p)/3i(<.p), 
i=l 

1 m 
c( <.p; p) = pQ ( <.p) + 2 p2 L al ( <.p). 

i=l 

In [3-5] the concept of moment Lyapunov exponents for linear autonomous SDE 
was introduced. It turns out that under assumption (2.2) the following limit 

g(p) := lim ~ lnE I xx(t) IP, p ER 
t-+oo t (2.9) 

exists and is independent of x, x # 0. The limit g(p) is a convex analytic function of 
p ER, g(O) = 0, g(p)/p is increasing, and 

g' (0) = lim g(p) := .-\ 
p-+0 p (2.10) 

where A is the Lyapunov exponent defined in (2.5). Moreover, for any p E R the 
number g(p) is the eigenvalue of L(p) which strictly dominates the real part of any 
point from the rest part of the spectrum of L(p). This eigenvalue is simple and has a 
strictly positive Jr-periodic eigenfunction f ( <.p; p) : 

L(p)f(<.p;p) =g(p)f(<.p;p) (2.11) 

Let us note that if the matrix Ao in (2.1) is replaced with Ao+ al, where a is a 
scalar and I is the identity matrix, then g(p) is replaced with g(p) + ap, and the new 
Lyapunov exponent is equal to A+ a. 

If,,\ < 0 then the trivial solution of the system (2.1) is a.s. asymptotically stable. It 
is well known (see, for instance, [2]) and follows from (2.10) that in this case g(p) < 0 
for all sufficiently small positive p, i.e., the solution X = 0 of (2.1) is p-stable for such 
p. It is shown in [4] that g(p) -+ +oo for p -+ +oo unless there exists a non singular 
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matrix G such that GAiG-1, i = 1, ... , m, are skew-symmetric matrices. If g(p) ---7 +oo 
as p ---7 +oo then the equation 

g(p) = 0 (2.12) 

has the unique positive root /O· It is clear that the solution X = 0 of (2.1) is p-stable 
for 0 < p < /o and p-unstable for p > /o· The root /o is connected with the asymptotic 
behavior of [6] 

Vs(x) := P{sup I xx(t) I> 8}, lxl/8 ---7 0 
t~O 

It turns out that for some]{> 0 and for all 8 > 0 and lxl < 8 

(2.13) 

It follows from (2.13) that the probability of exit from the ball !xi < 8 has the order 
lxl'0 for x ---7 0 for any 8 > 0 if (2.1) is stable and /o is the positive root of (2.12). The 
number /o is called the stability index of the system (2.1 ). Analogous results are valid 
in the unstable case (see [6]), where the equation (2.12) has a unique negative root /o· 

The evaluation of such quantities as g11 (0) or inf{g(p) : p E R} is also of great 
interest. The first of them is connected with the rate at which the almost-sure limit 
,\ = limt-00(1/t) ln I xx(t) I is achieved, and the second is closely related to' estimates 
of P{I xx(t) I~ R} and P{sups>t I xx(s) I~ R} as t ---7 00 (see [5]). 

Remark. For definiteness we consider here linear systems. But all the results of 
the paper are also correct for a second order nonlinear autonomous SDE 

m 

dX = fo(X)dt + L fi(X)dwi(t) (2.14) 
i=l 

of homogeneous type. More precisely, the vector field fo = (JJ, JJ)T is required to 
be homogeneous of degree one, i.e., Jo( ex) = ef0 ( x) for all e E R, the vector fields 
f = (fl, fl) T, i = 1, ... m, are required to be positive homogeneous of degree one, i.e., 
fi( ex) = efi(x) for all c > 0, and for any i = 1, ... , m each pair of functions J/, j = 1, 2, 
is required to be even or odd, i.e., or J/ (-x) = J/ (x ), j = 1, 2, or J/ (-x) = - J/ (x ), 
j = 1, 2. Besides we suppose that (2.14) is the system with non degenerate noises, i.e., 
the coefficient k2(cp) for the system (2.14) (see below) is strictly positive. 

Indeed, introduce the functions 

Ctij(cp) = !/ (cos cp, sin cp) = J/ ( l:I) = l~IJ/ (x), i = 1, ... m; j = 1, 2 

If we set 
o:i( cp) = O:i1 ( cp) cos cp + O:i2( cp) sin cp, i = 0, 1, ... m, 

/3i( cp) = O:i1 ( cp) sin cp - O:i2( cp) cos cp, i = 0, 1, ... m, 
1 m m 

Q ( cp) = O:o ( cp) + 2 cos 2cp · L ( o:72 ( cp) - o:71 ( cp)) - sin 2cp · L O:i1 ( cp) · O:i2 ( cp) 
i=l i=l 

and suppose that 

m m 

k2 (cp) = °Ef3[(cp) = °E(o:i2 (cp)coscp-o:i1 (cp)sincp)2 > 0, 0 ~ <.p < 27r 
i=l i=l 
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then all the relations (2.3)-(2.13) are fulfilled. It will appear by what follows that our 
results concerning the equation (2.12) use only the strict positiveness of k2( cp) and the 
?r-periodicity of the functions k2( cp ), b( cp; p ), c( cp; p ). But under hypothesis made above 
the ?r-periodicity of the mentioned functions also takes place in the case of the system 
(2.14). 

Example 2.1. Consider the system (2.1) where 

We have 
m 

A( 'P) = L AiA ( 'P )AT ( 'P) A! = 
i=l 

f [ ( ai cos cp + bi sin cp) 2 
( ai cos cp + bi sin cp) (-bi cos cp + ai sin cp) ] 

i=l ( ~i cos cp + bi sin cp )(-bi cos cp + ai sin cp) (-bi cos cp + ai sin cp )2 ' 

m m 
TrA(cp) = l:(a7 +bl}, AT(cp)A(cp)A(cp) = L a7, 

i=l i=l 

m 1 m 
ai('P) = ai, /3i('P) =bi, k2(cp) = Lbr, Q(cp) = ao + 2 l:(br - a;), 

i=l i=l 

m 1 m 1 m 

b(cp;p) = -bo + (1 - p) l:aibi, c(cp;p) = p(ao + 2 L(b7 - a7)) + 2p2 L ar 
- i=l i=l i=l 

and the equation (2.11) acquires the form 

1 m 11 m / 2 I: bl · f ( cp; P) + ( -bo + ( 1 - p) L ai bi) · f ( cp; p) 
~l ~l 

1 m 1 m 
+ (p(ao + 2 L:(bl - a;))+ 2p2 I: a;)· f(cp;p) = g(p)f(cp;p) (2.15) 

i=l i=l 

From here 

g(p) = p(ao + ~ f(b~ - am+ ~p2 fa~, f(cp;p) = 1 (2.16) 
i=l i=l 

If 2:~1 a; -:/= 0, ,\ = g' (0) = ao + ! L::1 (bt - al) < 0 then the stability index lo is 
equal to 

lo= 
2ao + 2:~1 (bt - at) (2.17) 

3. The equation for g(p) 
It is not difficult to obtain for every fixed p E R a transcendental equation such that 
g(p) is one of its roots. Indeed, consider the second order ordinary differential equation 

· L(p) f - v f = 0 (3.1) 
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where v ER. Let fi(cp;p, v), h(cp;p, v) be a fundamental system of solutions for (3.1) 
and f = C1f 1 + C2f2 be the general solution. For ?r-periodic J we have 

C1f1(0;p, v) + C2h(O;p, v) = C1f1(7r;p, v) + C2f2(7r;p, v), 

C1J~(O;p, v) + C2f~(O;p, v) = C1J~(7r;p, v) + C2f~(7r;p, v) 
If f is non -trivial for some v then for such v 

D( ) ·- d t [ f1(0;p,v)-fi(7r;p,v) h(O;p,v)-f2(7r;p,v)] - 0 p, v .- e J~(O;p, v) - J~(?r;p, v) J~(O;p, v) - J~(?r;p, v) - · (3.2) 

If p is fixed then (3.2) is an equation with respect to v and g(p) is a root of this 
equation. For accurate solution of the equation (3.2) it is necessary to study properties 
of the function D(p, v) thoroughly what seems to be fairly difficult task. Below another 
equation for g(p) is derived. 

Consider the boundary value problem on [-?r, 7r] 

L(p)y - vy = 0, 

y(-?r;p, v) = 1, y(?r;p, v) = 1 

Let v0 = v0 (p) be maximal eigenvalue for Sturm-Liouville's problem 

L(p)y - vy = 0, y(-?r;p) = y(?r;p) = 0 

(3.3) 

(3.4) 

(3.5) 

We note that v0 (p) < maxo<cp<1!" c(cp;p). For all v > v0 solutions of the equation 
(3.3) are non oscillating on [-?r,-;.f and therefore the solution y(cp;p, v) of the problem 
(3.3)-(3.4) exists and is unique. It can be found in the following way. Let y1(cp;p, v), 
y2( cp; p, v) be the solutions of (3.3) with initial data 

Y1(-7r;p, v) = 0, y~(-?r;p, v) = 1, 

Y2(7r;p, v) = 0, y;(?r;p, v) = -1 

It is clear (of course, we suppose v > v0 ) that y1 ( cp; p, v) > 0 on ( -?r, 7r] and 
Y2( <.p; p, v) > 0 on [-?r, 7r ). Let us note in passing that if y1 ( cp; p, v) > 0 on (-?r, 7r] or 
Y2(cp;p, v) > 0 on [-7r,7r) for some v then v > v0 • 

The solution y( cp; p, v) of (3.3)-(3.4) is evidently expressed in the form 

( ·p ) _ Y1(cp;p,v) + Y2(<.p;p,v) 
y <.p, 'v - ( ) ( ) Y1 ?r; p, v Y2 -?r; p, v 

(3.6) 

Lemma 3.1. The function y( cp; p, v) for any -?r < <.p < 7r and p E R is strongly 
monotonically decreasing and convex function with respect to v for v > v0 (p ). 

Proof. For the derivative ~~ ( cp; p, v) we have 

(3.7) 

(3.8) 

using (3.3)-(3.4). 
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But Y1 ( <p; p, v ), Y2( <p; p, v) is the fundamental system of solutions for the homoge-
neous equation which corresponds to (3.7). Introduce the Wronskian 

W(cp;p,v) = det [ Y; Y7 l 
Y1 Y2 

Since Y1(-7r;p, v) = 0, y~(-7r;p, v) = 1, Y2(-7r;p, v) > 0 then W(-7r;p, v) < 0 and 
hence W( <p; p, v) < 0 for -7r ::; <p ::; 7r. The 'solution of the problem (3. 7)-(3.8) can be 
expressed in the form 

18y . _ . rY2(B;p,v)·y(B;p,v) 
2av(<p,p,v) -Yi(<p,p,v) · l<p k2(B). W(B;p,v) dB 

+ ( . )·f_rp y1(B;p,v)·y(B;p,v)dB 
y2 <p,p,v -11" k2(B)·W(B;p,v) (3.9) 

The derivative ~:~ ( <p; p, v) satisfies the following boundary value problem 

a2y a2y ay 
L(p) av2 - v av2 = 2 a) <p; p, v), (3.10) 

a2y a2y 
8v2(-7r;p,v) = 0, 8v2(7r;p,v) = 0 (3.11) 

Analogously to (3.9) it can be obtained 

8y 
1a2y . _ . rY2(B;p,v)· a)B;p,v) 
48v2(<p,p,v)-Yi(<p,p,v) · }rp k2(B) · W(B;p,v) dB 

8y 

J_
<p y1 ( B; p, v) · a ( B; p, v) 

+ Y2(<p;p, v) · -11" k2(B). W(~;p, v) dB (3.12) 

Now the assertion of the lemma easily follows from (3.9) and (3.12). Lemma 3.1 is 
proved. 

The following lemma can be proved. 
Lemma 3.2.For any -Jr < <p < 7r and p E R 

lim y ( <p; p, v) = oo, lim y ( <p; p, v) = 0 ( 3 .13) 
vlvo(P) vjoo 

Theorem 3.1. The eigenvalue g(p) of the problem {2.11} is a root of the equation 

y(O;p, v) = Y1(0;p, v) + Y2(0;p, v) = 1 
Y1 ( 7r; p, v) Y2( -7r; p, v) 

(3.14) 

v0 (p) < g(p) < oo, and the eigenfunction f ( <p; p) is equal to 
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Proof. Due to Lemmas 3.1-3.3 the root of the equation (3.14) exists and is unique 
on (v0 (p),oo). Denote this root as iJ, v0 (p) < iJ < oo. The function y(r.p;p,iJ) on [-11",0] 
is the solution of the boundary value problem 

L(p)y - vy = 0, y(-11") = 1, y(O) = 1 

and on [O, 11"] is the solution of the boundary value problem 

L (p) y - iJy = 0, y ( 0) = 1, y ( 71") = 1 

Each of these problems has a unique solution because the equation 

'L(p)y - iJy = 0 

has a positive solution on [-11", 11"]. Since the coefficients of this equation are 71"-periodic 
functions we have 

y(r.p;p, iJ) = y(r.p + 11";p, iJ), - 71":::; r.p:::; 0 

y' ( -71"; p, v) = y' (O; p, v) 

i.e., y( r.p; p, iJ) is the positive 7!"-periodic function. Hence iJ = g(p) and (3.15) is realized. 
Theorem 3.1 is proved. 

4. The evaluation of g(p) 

Thanks to Theorem 3.1 and Lemmas 3.1-3.3 the problem of evaluating g(p) and J ( r.p; p) 
is sufficiently simple under any fixed p. For localization of the root iJ = g(p) of the 
equation (3.14) the following fact is useful. Ify1(r.p;p,v) > 0 on (-11",11"] then v > v0 (p), 
and if y1 ( r.p; p, v) takes negative values on ( -7!", 71"] then v < v0 (p). Since the function 

y ( O; p, v) of v is monotone and convex and the derivative ~~ ( O; p, v) can be evaluated 
comparatively easy, the Newton method is preferable. The Newton method converges 
for all initial approximations v1 , which are sufficiently close to iJ, and for all that 
v1 > v0 (p) for which y(O;p, v1) > 1. To realize the Newton method 

(4.1) 

ay 
one must calculate y(O; p, vk) and av (O; p, vk) at each step. To use the formula (3.9) 

for calculation ~~ (O; p, vk) is non rational. It is much simpler to find the solution 
zo(r.p;p, vk) of the Cauchy problem (see equation (3.7)) 

L(p )z - VkZ = y( r.p; p, vk), z(-11") = 0, z' (-11") = 0 (4.2) 

and to obtain 

ay 
-(r.p; p, vk) == av . (4.3) 
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Thus the realization of a single Newton method's step is reduced to solving of 
three Cauchy problems: two problems for the equation (3.3) and one problem for the 
equation ( 4.2). To avoid storing the function y( cp; p, vk) it can be recommended to solve 
the corresponding Cauchy problem for the systems (3.3), ( 4.2). 

Another approach for searching of y(O; p, vk) and ~~ (O; p, vk) consists in solving of 
the boundary value problems (3.3)-(3.4) and (3. 7)-(3.8) by a finite difference method. 
Such a method is more preferable if a Cauchy problem is not well-posed. 

Let the point (p, g(p)) be known. Then the point (p + .6.p, g(p + .6.p)) under suffi-
ciently small .6.p can be calculated by the Newton method 

y(O; p + .6.p, vk) Vk+l = Vk - a , k = 1, 2, ... ( 4.4) 
a~ (O; p + .6.p, vk) 

if as the first approximation for g(p + .6.p) the value 

V1 = g(p) (4.5) 

is taken. It is clear Vk < g(p + .6.p), k = 2, 3, .... 
The value v2 approximates g(p + .6.p) to within 0((.6.p) 2 ) and Vk approximates up 

to 0( ( .6.p )2k-1). 
In this way it is possible to construct numerically the function g(p) on any interval 

[O,p] (remember g(O) = 0). 

5. Differential equation for the function g(p) and evaluation of 
g' (p) 

According to Theorem 3.1 the function g(p) satisfies the equation 

y ( 0; p' g (p)) = 1 

From here 

g'(p) = 
8y 
ap(O; p, g(p)) 
8y 
8v (O; p, g(p)) 

(5.1) 

(5.2) 

i.e., g(p) is the solution of the following Cauchy problem for ordinary differential equa-
tion dv 

dp = F(p, v), v(O) = 0 (5.3) 

where 
8y 
8p(O;p, v) 
8y . . 
8v(O,p,v) 

F(p, v) = (5.4) 

It was shown in the previous sections how to evaluate ~~ ( cp; p, v). Consider an 

evaluation of ~; ( cp; p, v). From ( 3 .3 )-( 3 .4) (see also ( 2.8)) it follows 

a a m m 
L(p) 8; - v 8; = ~ a;(cp),8;( cp) · y' (cp; p, v) - (Q(cp) + p ~ ai('P )) · y( cp; p, v), (5.5) 
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(5.6) 

The boundary value problem (5.5)-(5.6) is uniquely solvable. Let u0 (cp;p, v) be the 
solution of the following Cauchy problem 

m m 
L(p)u - vu= I>~i(cp),Bi(cp) · y'(cp;p, v) - (Q(cp) + p l:a;(cp)) · y(cp;p, v), 

i=l i=l 

u(-7r)=0, u1 (-7r)=O (5.7) 

Then evidently 

uo(7r;p, v) ( ) ( ) 
( ) 

· Y1 cp; p, v + Uo cp; p, v 
Y1 1ri p, v 

Of course, ~~ ( \Oi p, v) just as ~~ ( <p; p, v) can also be found by finite difference 
method. 

As far as the function F(p, v) can be calculated sufficiently simply, it is possible 
for searching 9(p) to solve the Cauchy problem (5.3) by any Runge-Kutta method of 
numerical integration. But due to the equation (5.1) the simplest method, i.e., Euler's 
method, is preferable. Indeed, suppose the point (p,9(p)) to be known (maybe 9(p) is 
known approximately). Calculating F(p,9(p)) according to (5.4) we find 

9(p + flp) = 9(p) + F(p,9(p))flp := 91 

The convexity of 9(p) gives 91 < 9(p + flp) and consequently (see Lemma 3.1) 
y(O; p + flp, 91) > 1. 

Use the formula ( 4.4), where the first approximation in the Newton method unlike 
( 4.5) is equal to 9i, i.e., 

y(O; p + flp, Vk) 
Vk+i = Vk - ay , k = 1, 2, ... , V1 = 91 

av (O; p + flp, Vk) 

(5.8) 

Here v1 differs from 9(p + flp) by a quantity of O((flp)2). The correction of v1 

in accordance with (5.8) gives v2 > v1 = 91 with the error O((flp)4 ), which has the 
same accuracy as a Runge-Kutta method of the third order. The next approximation 
v2 < v3 < 9(p + flp) has the error 0((.6.p)8 ), and it is much better than that does 
the most used Rung~-Kutta method of the fourth order. Besides such an approach 
does not lead to any error accumulation. Taking v2 or v3 as 9(p + flp) we obtain the 
next point (p + fl.p, 9(p + fl.p)) (of course, approximately) and the procedure can be 
repeated. 

Computational efforts for the construction of 9(p) here are the same as in the 
method suggested in the previous section but the important function 9 1 (p) is simulta-
neously calculated now. 

Having 91 (p) it is also very easy to find the stability index /o, which is the root of 
the equation 9(p) = 0, by the Newton method. 

For evaluation of inf {9(P) : p E R} one can solve the equation 

9'(p) = 0 
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which can accurately be solved by using gfl (p) : 

a2y a2y , a2y , 
8p2 (O; p, g(p)) + 2 8p8v (O; p, g(p)). g (p) + av2 (O; p, g(p)). (g (p)) 2 

gfl(p) = 8y 
8v (O; p, g(p)) 

a2y a2y a2y 
The derivatives apz ( r.p; p, g(p) ), apa) r.p; p, g(p) ), avz ( r.p; p, g(p)) can be found from 

boundary value problems which are analogous to the problems (3.7)-(3.8) and (5.5)-
(5.6). 

Let us note in passing that under p = 0, v = 0 the homogeneous equation corre-
sponding to the problems for calculating derivatives has the form 

1 2 fl ( ~ I 

2 k ( r.p) u + ( - Po r.p) + L.J ai ( r.p) Pi ( r.p)) u = o 
i=l 

From here it follows that any derivative g(n)(O), n = 1, 2, ... , can be found by 
quadratures. 

6. The second method of evaluation of g'(p) 

We have (see (2.8) and (2.11)) 

L(p)f - 29(p) f 
k2( r.p) 

fl 2b(r.p;p) '( 2c(r.p;p) ( ) 2g(p) ( 
:= f (r.p;p) + k2(<.p) f r.p;p) + k2(r.p) f r.p;p - k2(r.p)f r.p;p) = 0, 

f(O;p) = f(7r;p), /(O;p) = /(7r;p) 

Therefore 
L( ) a J _ 2g(p) a J = 2g' (p) . !( . ) 

p 8p k2( <.p) 8p k2( r.p) r.p, p 

(6.1) 

(6.2) 

2 m 1 2 m + k2( ) ?=ai(<.p)Pi(<.p) · f (<.p;p)-k2( )(Q(<.p) + P ?=ar(r.p)) · f(r.p;p), (6.3) 
r.p i=l r.p i=l 

8f 8f d 8f d 8f 
8p(O;p) = 8p(7r;p), dr.p(8p)(O;p) = dr.p(8p)(7r;p) (5.4) 

A solution of the problem (6.3)-(6.4) there exists iff the right hand side of the 
equation (6.3) is orthogonal to the nontrivial solution of the homogeneous conjugate 
problem 

L*( ) ·= d2z _ j_(2b(r.p;p) ) + 2(c(r.p;p) - g(p)) = 0 p z . dr.p2 dr.p k2( r.p) z k2( <.p) z ' 

z(O;p) = z(7r;p), z
1(0;p) = z'(7r;p) 

Let f 1(r.p;p), fz(r.p;p) be the solutions of (6.1) with initial data 

f1(0;p) = 0, f~(O;p) = 1, 
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(6.5) 

(6.6) 



h(7r;p) = 0, !~(7r;p) = -1 

and W ( r.p; p) is the Wronskian 

W(1n· p) = det [ J~ ( r.p; P) J~ ( r.p; P) ] 
" f1(r.p;p) f2(r.p;p) 

It is clear that W(O;p) = -/2 (0;p) < 0, W(7r;p) = -f1(7r,p) < 0. 
Lemma 6.1. The problem {6.5)-(6.6) has a positive solution which is equal to 

z(r.p;p) = fz(r.p;p) 
vV( r.p; p) 

(6.7) 

Proof. Since the problem (6.1)-(6.2) has a nontrivial solution which is equal to 

then (see (3.2)) 

D(p) := det [ f~(O~p) - f~(7r,p) f~(O;p) - f~(7r;p) ] 
!1(0,p) - f1(7r,p) f2(0;p) - f2(7r;p) 

= det [ -fi~7r,p) ,h(O; p) ] = O 
1- f1(7r,p) f2(0;p) + 1 

(6.8) 

(6.9) 

It is not difficult to verify directly that if y(r.p;p) is any solution of the equation (6.1) 
then y(r.p;p)/W(r.p;p) is the solution of the equation (6.5) (remember W' = -2bW/k2). 
Therefore the function z defined by (6.7) is the solution of (6.5). Clearly z(O;p) = 
z( 7rj p) = 1. The relation z' (O; p) = z' ( 7rj p) follows from direct calculation taking 
account of (6.9). Lemma 6.1 is proved. 

Corollary. 
I R-S ' g (p) = --.,,1------

J; k2 ( r.p) · f ( r.p; p) · z( r.p; p )dr.p 
(6.10) 

where R and S are equal to 

R= rQ(r.p)+PLi:1aT(r.p) ·!(. )· (. )d lo k2 (r.p) r.p,p z r.p,p r.p' 

s = r 2:£:1 ai( <.p )/3i( r.p) . t'( . ) . ( . )d lo k2(r.p) r.p,p z r.p,p r.p 

and f(r.p;p), z(r.p;p) are from {6.8) and {6.7). 
Due to this formula we do not need to solve any additional boundary value problems 

for calculation of g' (p). But the calculation of integrals in (6.10) is sufficiently labor-
consuming problem. 

Remark. Of course, 

fi(r.p;p) = Y1(r.p - 7r;p,g(p)), f2(cp;p) = Y2(r.p;p,g(p)), 0:::; <p:::; 7r, 

where Y1 and Y2 are from (3.6). 
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7. Some probabilistic representations 

The solution y( <p; p, v) of the boundary value problem (3.3)-(3.4) has the following well 
known probabilistic representation for v > v0 

y( <p; p, v) = E exp {-vT4' + p · 1( <p, TIP)} (7.1) 

where TIP is the time at which the solution ~4'( s) of the equation (2.3) leaves the interval 
(-7r, 7r) and 

I( <p, r"') = [' Q( qi"'( s) )ds + [' f o:;( qi"'( s) )dw;( s) 
0 0 i=l 

The value g(p) is the very number for which 

E exp {-g(p)T0 +p·1(0, T 0)} = 1 (7.2) 

and for stability index /o the following equality 

(7.3) 

holds. 
Having differentiated (7.2) with respect to p two times we obtain 

Eexp {-g(p)T0 +P·1(0, T 0
)} (-g'(p)T0 +1(0, T0

)) = 0, (7.4) 

Eexp {-g(p)T0 +p·1(0, T 0)} [(-g'(p)T0 +1(0, T0 )) 2 - g"(p)T0 ] = 0 (7.5) 

Of course, it is possible to differentiate (7.2) further. 
Let us prove, for example, (7.4). To this end we establish the possibility of differ-

entiating the expression 

EG(p) = E exp {-g(p)T0 +p·1(0, T 0
)} 

Let p = jj be fixed. Note that there exists a number 8 > 0 such that 

E exp {-vT0 + p · 1(0, T 0
)} < oo for v > -g(p) - 28, jj - 28 ~ p ~ jj + 28 (7.6) 

Due to mean value theorem 

- 1 (G(p + ~p) - G(p)) =exp {-g(p)T0 +p·1(0, T 0
)} · (-g'(p)T0 +1(0, T0 )) (7.7) ,6.p 

where p depends on elementary event w and jj- ,6.p ~ p ~ jj + ,6.p. For definiteness let 
,6.p > 0 and let 6.p be so small that 6.p < 8 and -g(p) < -g(jj) + 8. Then 

exp { -g(p)T0 + p · 1(0, T 0
)} ~ 

exp {-(g(jj) - 8)T0 + (jj + 8) · 1(0, T 0
)} • XI(o,To)~o(w )+ 

exp {-(g(p) - 8)T0 + (jj - 8) · 1(0, T 0
)} • XI(o,To)<o(w) ~ 
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exp {-(g(p) - 8)T0 + (p + 8) · 1(0, T 0
)} +exp {-(g(p) - 8)T0 + (p - 8) · 1(0, T 0)} 

(7.8) 
Thanks (7.6) the right-hand side of (7.8) has bounded mathematical expectation. 

Let l9'(fi)I :::; I< for p - D..p:::; p:::; p + D..p. From (7.7) and (7.8) we have 

~p IG(p + .6.p) - G(P)I ::::; exp {-(g(p) - 8)T0 + (P +8) · I(O, T 0
)} • (K T0 + II(O, T0 )1)+ 

exp {-(g(p) - 8)T0 + (p - 8) · 1(0, r 0
)} • (I< r 0 + ll(O, r 0) I) (7.9) 

It is not difficult to justify the boundedness of E( Tor and Ell(O, r 0) In for any 
positive integer n. Due to (7.6) the functions 

exp {(1 + -
1
-) · [-(g(p) - 8)T0 + (p ± 8) · 1(0, r 0

)]} n-1 
are integrable for sufficiently big n. Thus the summability of the right-hand side of 
(7.9) follows from Holder's inequality. Now the differentiability of EG(p) and formula 
(7.4) imply from the Lebesgue theorem. 

From (7.4)-(7.5) we can write down the formulae for g'(p) and g"(p) and specifically 

A = g'(O) = E f.I"
0 

Q( <1>
0

( s) )ds , 
Er0 

"(O) = E(-g'(O)r0 + 1(0, T 0
) )

2 

9 Er0 

It is possible to use different representations for y( cp; p, v ). For example, 

y(cp;p, v) = Eexp {-vT""" + f~;• c(<I>"'(s;p);p)ds} 

along the solution of the equation 

d<.P = b( <P; p )dt + k( <.P )dw( s) 

where w( s) is a scalar Wiener process. 

(7.10) 

But the representation (7.1 ), (2.3) is remarkable in that respect that <I> (and con-
sequently r) does not depend on p. 

In view of such formulae as (7.1) or (7.10) many assertions of Section 3 become 
easy-to-interpret. For example, the assertion 

lim y ( cp; p, v) = 0 
vjoo 

from Lemma 3.2 becomes evident after (7.10). 
These probabilistic representations, as we can calculate g(p), g'(p), /o, and so on 

with any precision by deterministic methods, are very useful in numerical tests which 
are connected with numerical integration of SDE and a Monte-Carlo technique. 

At last we turn out our attention to the probabilistic meaning of the eigenfunction 
f(cp;10) = y(cp;/o,O) of the problem (2.11) which can be easily found after /o (see 
Sections 3-5). Let /o > 0. At first let us find the probability 

V ( x) = P (xx ( r) = 1) 
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where xx(t), 0 < x < 1, is the solution of the one-dimensional equation 

dX = aXdt + aXdw(t) (7.11) 

and Tis the exit time at which xx(t) leaves the interval (0, 1) . 
The function V ( x) satisfies the following linear boundary value problem 

~u2x2V" + axV' = 0 , V(O) = 0 , V(l) = 1 (7.12) 

The problem (7.12) has the solution 
2a 

--+l 
V(x) =x a 2 (7.13) 

As the stability index for the equation (7.11) is equal to /o = -
2a + 1, we have 
a2 

obtained that the exponent in (7.13) coincides with the stability index. 
Such a problem can be treated for n-dimensional systems as well. Let us consider 

the more general problem and for definiteness we restrict ourselves to two-dimensional 
case. We shall find out 

V(x) = EF(Xx(r)) 
where xx(t), 0 < Jxl < 1, is the solution of the equation (2.1), T is the exit time at 
which the process xx(t) leaves the open sphere of radius 1 with center at zero, and F 
is a twice continuously differentiable function defined on the boundary of the sphere. 
If F =·1 then V(x) = P(jXx(r)I = 1). The function V(x) satisfies the equation (in the 
open sphere with deleted center) 

av 1 m a 2 
LV(x) := (Aox, ax)+ 2 tr(Aix, ax) V = 0, lxl < 1, x # 0 (7.14) 

and the boundary conditions 

V(O) = 0, V l1x1=1= F(x) (7.15) 

Let us try to find out a solution of the linear boundary value problem (7.14)-(7.15) 
in the form of separating variables 

x V(x) = lxl,, · F(-) = lxl,, · f(cp) lxl 
where I > 0, J( cp) = F( cos cp, sin cp) is a strictly positive function. 

(7.16) 

Let V(x) of the form (7.16) with/> 0 be the solution of (7.14)-(7.15). Then (see 
[3]-[4]) 

L(!) f ( 'P) = Ix 1-')' L v = 0 
i.e., I is equal to the stability index /o and J( cp) = f( cp; 10) is the strictly positive 
eigenfunction for the operator L( 10 ). On the contrary, if/ = /o > 0 is the stability 
index ~nd f ( cp) = f ( cp; /o) is the corresponding eigenfunction then V ( x) of the form 
(7.16) is the solution of (7.14)-(7.15). 

Now it is not difficult to obtain the following known bounds for P(IXx(r)I = 1) 
with the help off( cp; 10) 

m M 
M · lxl'Yo ~ P(jXx(r)j = 1) ~ m · lxl'Yo 

where 
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8. Optimization of parameters 

Let us consider a system of SDE with control in two-dimensional case, for instance, of 
the following type 

m 

dX = (AoX + cu)dt + L(AiX + O"iu)dwi(t) (8.1) 
i=l 

where u is a scalar control and c, O"i are vectors. If the control u is constructed in the 
form of linear feedback u = k1X 1 + k2X2 then the system (8.1) acquires the form 

m 

dX = Ao(k)Xdt + L Ai(k)Xdwi(t) (8.2) 
i=l 

In more general situation the parameter k = (k1 , ••• kn) can be taken with n greater 
than two, matrices Ai(k), i = O, ... ,m, can depend on kin an arbitrary (nonlinear) 
manner, and ki, ... kn can satisfy some restrictions. 

As performance criterion for choice of k it is natural to take such a criterion which 
does not depend on the initial state of the process X(t) and which, of course, depends 
on k. The moment Lyapunov exponent under fixed p and stability index give examples 
of such criterions. 

Consider the problem of maximization of stability index 

/o(k) ~max 
kEG 

where G is a certain set (bounded or unbounded). 

(8.3) 

To solve optimization problems the crucial moment is the possibility of evaluating 
the gradient of an optimized function. 

We have 
g(;o(k); k) = 0 

where g(p; k) is the moment Lyapunov exponent for the system (8.2). If k belongs to 
the interior of G, we can calculate O/o/ oki according to the formula 

if;;(to(k); k) 
~(1o(k); k) 

(8.4) 

The derivatives og I Oki are calculated like og I op what has been done in Section 6. 
Of course, the problem (8.3) subject to Ai(k), i = 0, ... , m, and g can be very difficult 

but due to above stated results in many interesting cases it is possible to manage such 
problems numerically. 

Consider an example with explicit calculation of 010 / oki under some value of the 
parameter k. 

Example 7.1. Consider a system with two scalar controls 

where 

X = [ :f ~ ] , A;= [ ~~; :: ] , i = 0, 1, 2, 
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Let the only coordinate X 1 be observed and the controls ui, u2 be constructed in 
the form of linear feedback u1 = kiXi, u2 = k2X1. Then the system (8.5) acquires the 
form 

dX = Ao(k)Xdt + A1(k)Xdw1(t) + A2(k)Xdw2(t) 

where k = (k1, k2 ) is the two-dimensional parameter and 

Calculate 

where 
au(cp; k) = ((a1 + a1k1) cos 'P + b1 sincp)2 + (a2 cos 'P + b2 sincp)2 , 

a12( cp; k) = a21 ( cp; k) = ( ( ai + a1 ki) cos 'P + b1 sin 'P) · (-b1 cos 'P + a1 sin 'P) 

+(a2coscp + b2sincp) · ((-b2 + a2k2)coscp + a2sincp), 

a22( 'Pi k) = (-b1 cos 'P + a1 sin 'P )2 + ( (-b2 + a2k2) cos 'P + a2 sin 'P )2 

Further 

and finally 

ao( 'Pi k) = AT ( 'P )Ao( k )A( 'P) = ao + k1 cos2 'P + k2 cos 'P sin 'P , 

a1('Pi k) = AT(cp)A1(k)A(cp) = ai + a1k1 cos2 'P, 

a2(cp; k) = AT(cp)A2(k)A(cp) = a2 + a2k2 cos cpsincp, 

/30( cp; k) = A_ T ( 'P )Ao( k )A( 'P) = bo + ki cos 'P sin 'P - k2 cos2 'P , 

/31(cp; k) = A.T(cp)A1(k)A(cp) = b1 + a1k1 coscpsincp, 

/32( cp; k) =A_ T ( 'P )A2(k )A( 'P) = b2 - a2k2 cos2 'P 

1 2 
Q(cp; k) = ao(cp; k) + 2TrA(cp; k) - ?= aHcp; k) 

i=l 

= ao +~(bi+ b~ - ai - aD + (k1 - a1a1k1 - b2a2k2) cos2 'P 2 

+(b1 a1k1 + k2 - a2a2k2) cos <p sin <p +~(-a~ k~ + a~k~) cos2 <p cos 2cp , 

2 

k2( cp; k) = ~ /3f ( cp; k) = (b1 + a1k1 cos 'P sin 'P )2 + (b2 - a2k2 cos2 'P )2 , 
i=l 

2 

(8.6) 

b(cp;p, k) = -/30(cp; k) + (1 - p) L ai('P; k)/3i('P; k) = -bo - ki cos 'P sincp + k2 cos2 'P 
i=l 
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1 2 
c(cp;p, k) = pQ(cp; k) + 2,P2 l:ar(cp; k) 

i=l 

= pQ( cp; k) + ~ p2( ( a1 + o-1 k1 cos2 cp )2 + ( a2 + o-2k2 cos cp sin cp )2
) 

2 
Write down the equation (2.11) 

~k2 ( cp; k )j" ( cp; p, k) + b( cp; p, k )j' ( cp; p, k) +c( cp; p, k )! ( cp; p, k) = g(p, k )! ( cp; p, k) (8. 7) 

Clearly 

( ( 1 ( 2 2 2 2)) 1 2( 2 2) J( . ) -g p, 0) = p ao + 2, b1 + b2 - a1 - a2 + 2,P a1 + a2 , cp, p, 0 = 1 

Denote 
8J 8J 

u1(cp;p) = 8k1 (cp;p,O) 'u2(cp;p) = 8k2 (cp;p,O) 

Differentiating (8. 7) with respect to k1 and setting k1 == 0, k2 == 0 leads to the 
following boundary value problem (remember J is 7r-periodic) 

~(b~ + b~)u~ + (-bo + (1 - p)(a1b1 + a2b2))u~ 

+ p( (1 - a1 <71) cos2 cp + blu1 cos cp sin cp) + p2a1 <71 cos2 cp - ::
1 

(p, 0) = 0 (8.8) 

u1(0;p) == u 1(7r;p), u~(O;p) == u~(7r;p) (8.9) 
The corresponding homogeneous conjugate problem to the boundary value problem 

(8.8)-(8.9) has the solution z = 1. Due to Corollary of Lemma 6.1 

8g 7r 
ak

1 
(p, 0) == 2p(l - a10"1 + pa10-1) 

It is possible to obtain analogously 

8g 7r 
8k (p, 0) = -2pb20"2 

2 . 

Taking into account that g(p, 0) is equal to g(p) from (2.16) and /o(O) is equal to 
/o from (2.17), we obtain 

8g ( ( ) ) 1 ( 2 2 2 2) ap /o 0 , 0 = -ao - 2, b1 + b2 - a 1 - a2 

For sufficiently small k1 and k2 the formula (8.4) gives (of course, we suppose /o < 0) 
7r 7r 

/o(k) = /o- 2 2 (1-a10-1 +1oa10-1)k1 + 2 2 b20-2k2 (8.10) 
a1 + a2 a1 + az 

Due to (8.10) we can do the first step to increase /o(k). The next steps are similar 
but they can be done only numerically. It is interesting to note that increasing of /o( k) 
(stability properties are better in a sense) can be accompanied by decreasing of j.-\( k) I 
for some values of the coefficients (stability properties are worse in a sense) where the 
Lyapunov exponent .-\( k) is equal to 

( ) 8g ( ) . 1 ( 2 2 2 2) 7r ( ) 7r k .-\k ==apO,k =ao+ 2 b1+b2 -a1-a2 + 2 1-a10-1k1-2b2a2 2 
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