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Abstract

Memory enables to forecast future on the basis of experience, and thus, in some form,

is principally important for the development of flexible adaptive behaviour by animal com-

munities. To model memory, in this paper we use the concept of hysteresis, which mathe-

matically is described by the Preisach operator. As case study, we consider anti-predator

adaptation in the classic Lotka-Volterra predator-prey model. Despite its simplicity, the

model allows to naturally incorporate essential features of an adaptive system and mem-

ory. Our analysis and simulations show that a system with memory can have a continuum

of equilibrium states with non-trivial stability properties.

1 Introduction

Motivation. The ability to adapt to changing conditions is an essential feature of life and a key

for its survival and reproductive success, and memory, which enables to forecast future on the

basis of experience, is a vital component of the mechanism of adaptation. Memory, in some

form, appears to be inherent for life. “Implicit memory”, classified into short-, medium- and long-

term forms, was found among heterotrophic eukaryotes, e.g. mollusks and insects (Hawkins

et al (2006); Kandel (2001)). A map-like spatial memory is used in visual navigation by insects,

such as bees and ants (Collett and Collett (2002); Menzel et al (2006)). Explicit, or declara-

tive memory, which characterizes sentient man, most likely evolved from the ancestral implicit

state (Kandel (2001)). However, there is mounting evidence that a sophisticated “episodic-like”

memory is possessed by some birds, e.g. crows (Corvidae) (Clayton et al (2001); Emery and

Clayton (2004); Emery et al (2004)), which enables them to remember “when, where and what”

in relation to past events, to plan for the future, and in effect to engage in mental time travel —

a property previously thought to be associated exclusively with Homo sapiens (Tulving (2002)).

Apparently, the ability to memorize past events and then forecast and plan for the future should

have a lasting impact on human or animal behaviour. Our objective is to explore the impact

that past experience of individuals may have on population dynamics when such experience

becomes a factor of their adaptive strategies.

As a convenient setting for this study we choose the predator-prey formalism, where we include

the adaptive response of the prey to the pressure of predation. Although the Lotka-Volterra

model, which we use as the case study, is not the only possible application for illustrating our

approach, it allows us to straightforwardly include the “cost of safety” factor that is naturally in-

curred by adaptation strategies. This model is also convenient, because we can easily compare

its outcomes in the case of adaptive response based on memory of the past with the case of

the memoryless adaptive response that we have recently studied in Pimenov et al (2015). Thus,

we consider a predator-prey system where the prey has an immediate access to a refuge in
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a broad sense: it can either be a physical refuge, where the prey hides (as, for example, in

Chiorino et al (1999); Hausrath (1994); Krivan (2009); McNair (1986); Ruxton (1995)), or an

anti-predator behaviour which is safer compared to that of the prey in a predator free environ-

ment (which, in contrast, we call risky). As the limiting case for this scenario one could consider

a situation on islands where predators are sometimes completely absent (Blumstein and Daniel

(2005), see also Beauchamp (2004)). We model the ability of prey to adapt to external condi-

tions by allowing an individual animal at any instance of time to choose either a “safe” mode

of behaviour, or a “risky” behaviour. The choice is governed both by (i) current perceived level

of threat imposed by the predator, and (ii) level of threat experienced by the prey animal in the

past (some form of memory). To formulate a model of memory-based adaptive response, we

adopt the general approach proposed in Pimenov et al (2012), which is related to the paradigm

of hysteretic memory.

Modelling memory. In order to keep the model as simple as possible, we prefer to avoid as-

sumptions where an individual prey animal adopts a particular mode of behaviour on the basis

of some complex rule that would use any form of detailed information of the history. Instead, for

simplicity, we use a basic model known as bi-stability or elementary hysteresis (Visintin (1994)),

where an individual switches from risky to safe mode of behaviour when the perceived level

of threat exceeds a certain threshold value αS and switches back from the safe to the risky

mode of behaviour when the level of threat drops below a different (lower) threshold value αR.

The case when the switching thresholds coincide, αR = αS , corresponds to the memoryless

adaptation strategy that has been considered in Pimenov et al (2015) and will be used here

as a reference. In the hysteretic case, αS > αR, whenever the level of threat lies between

the thresholds αR and αS (that is, within the bi-stability interval) the actual mode of behaviour

adopted at this moment is a simple function of the past (risky, if the last threshold crossing was

at αR, and safe if the last threshold crossing was at αS).

Although the above hysteresis-based model of individual adaptation strategies, known as the

bi-stable switch or non-ideal relay, is simple, a quite complex memory of the past emerges at

the level of the whole prey population, if we take into account that the threshold values vary

among the individuals. At any moment in time, the prey population is distributed over two states

(risky and safe), and this distribution, that varies with time, records (depends upon) many fea-

tures of the population dynamics history. In particular, this distribution is affected by a sequence

of maximal and minimal levels of threat experienced by the prey in the past. This emerging com-

plex memory can be described using the formalism of the classical Preisach model, which is a

cornerstone of the modern mathematical theory of hysteresis operators (see Mayergoyz (2003)

and the bibliography therein).

Hysteresis vs alternative models of memory. Differential equations with delays provide a

traditional apparatus for mathematical modelling of memory effects in biology. However, delayed

equations, as well as other linear tools such as convolution integrals, impose an explicit time

scale onto the memory deletion process. That is, either the evolution is determined by the past

states of the system achieved a given time ago, as in the case of discrete delays, or the effect of

the past states on the future decays (typically, exponentially) at a given rate. This contrasts to the

hysteresis-based memory of the bi-stable switch, often called a permanent or rate-independent

memory, because the effect of the past on the future is not limited to any a priori prescribed
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interval of time. Indeed, suppose, for example, that the input (the level of threat) temporarily

increases from a value α lying within the bi-stability range (αR, αS) to some value exceeding

the upper threshold αS and then returns to the initial level alpha. A bi-stable switch that initially

was in state “risky” will respond to this temporary increase of the input by switching to state

“safe” where it will reside afterwards as long as the input will remain above the lower threshold

αR. This behaviour can be interpreted as permanent memory of a temporary variation of the

input, because the “safe” state of the switch continues to record the input variation for unlimited

time even after the applied stimulus has been removed (the input is returned to its initial value α
and is kept at this value afterwards). This memory can be erased in the future only by another

stimulus that brings the input value below the threshold αR thus resulting in a transition of the

switch back to the “risky” state.

Of course, hysteresis based permanent memory is an idealization, but it is a useful one if the

characteristic time for which the prey retains the memory of its past experience (that the memory

affects its choice of the adaptation strategy) is much longer than a typical time interval between

substantial variations of the level of threat from the predator that cause the prey to change its

behaviour. This consideration related to characteristic time scales is typical and can be com-

pared to the situation in magnetic recording technologies, an area where the Preisach model

has been massively employed (Mayergoyz (2003)). The lifetime of a magnetic record is limited

by thermal fluctuations that cause the bi-stable magnetic particles to randomly switch the orien-

tation of their magnetic moment. The Preisach model of a permanent magnet works well on time

intervals that are shorter than a typical time scale set by the thermal memory deletion process.

Under the above limitation, the hysteresis based memory model can have an advantage over

models employing delays, as hysteresis is not associated with any explicit time scale of the

memory deletion process, which might be inadequate and is hardly measurable. We will further

discuss the relevance of hysteresis to the development of defensive responses and optimization

of the survival strategy as well as the factors of fear and herding behaviour in the Conclusions

section.

The cost of safety. A preliminary advance in applying hysteresis and the Preisach operator for-

malism to modelling biological systems with memory was done in Pimenov et al (2010, 2012). In

these papers, the concept of dynamical memory effect called Permanent Effects of a Temporary

Stimulus (PETS) was introduced and the impacts of PETS were studied for a specific problem

of the spread of an infectious disease in a population. A basic Susceptible-Infectious-Recovered

(SIR) epidemic model was employed as a convenient case study.

The model, considered in Pimenov et al (2010, 2012), exhibits remarkable qualitative effects.

In particular, a continuum of equilibrium states is possible for this model, and the convergence

to a particular equilibrium state depends on the system pre-history. However, this model is not

suitable for analysis of adaptive behaviour, as it assumes no cost for the safe behaviour. As a

result, for this model the advantageous (safe) behaviour does not involve any explicit disadvan-

tages, and hence there is no apparent reason for an individual to switch to disadvantageous and

endangering behaviour again. The reason for this deficiency is that instituting explicit costs into

the frameworks of a SIR model is hardly feasible. Instead, the model includes a sort of underly-

ing understanding that there is a certain cost associated with the safe behaviour (for instance,

it can be merely inconvenience induced by the need to behave safely), and hence an individual
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tends to return to “business as usual” mode (risky behaviour). However, the lack of explicitly

incorporated costs of advantageous behaviour still should be considered as a shortcoming.

In order to close this gap and explore the effect of memory based adaptive response on dy-

namics of populations, we choose a different modelling framework. A predator-prey model is

convenient for our objectives because it allows a straightforward institution of both the idea of

adaptation of behaviour and the concept of the safety cost. For a population model, such as

the predator-prey model that we consider, this cost can be naturally instituted in the terms of

reproduction abilities, or reproduction rate. In other words, for such a model it is reasonable to

assume that safety is paid for by either a direct reduction of reproduction, or an indirect reduction

caused by a reduced access to a resource (food) (Preisser and Bolnick (2008); Preisser et al

(2005)). We leave the detail of how the safety can be achieved out of our consideration; some

relevant discussion can be found in Pimenov et al (2015) and in the literature cited therein. The

most obvious methods which increase the safety are using a refuge, forming defensive groups,

or simply spending time and effort for monitoring the surrounding area. The associated reduc-

tion of the reproduction rate can be caused by avoiding rewarding but dangerous feeding or

breeding grounds, or spending energy for defence.

The ability of animals to reduce the risk of predator attacks by modifying their behaviour, as well

as the fact that the secure behaviour must incur certain disadvantages, was long recognised

and confirmed by observations and experiments (e.g., see Chiorino et al (1999); Ruxton (1995)).

Mathematical models developed for a few particular cases revealed a number of phenomena

caused by adaptive behaviour. In particular, the model constructed by Chiorino et al (1999)

demonstrates the Allee effect caused by adaptive response of the prey rather than by community

effects in the predator population. However, these models, as well as many other models (e.g.

Berec (2010); Harrison (1986)), were formulated as ordinary differential systems and neither of

these assumed any kind of memory. A systematic institution of the adaptive (memoryless) prey

behaviour was done in Pimenov et al (2015), where two modes of behaviour were postulated,

and it was assumed that an individual switches from one to another mode when a value of a

certain stimulus (level of threat) reaches an individual threshold level. It was assumed that the

stimulus is proportional to a probability for an individual to be attacked and that the switching

threshold is individual and is distributed in the population with a given distribution. This ordinary

differential model with incorporated safety cost demonstrated that a coexistence of two stable

positive equilibrium states, separated by a separatrix of a saddle point, is possible in such a

predator-prey system. In this paper, we modify this model by including hysteresis based memory

in the adaptive response using the formalism developed in Pimenov et al (2012). Namely, we just

need to postulate two different thresholds for each individual prey, one associated with switching

the risky mode of behaviour to the safe mode and the other for the opposite switching.

The initial premise for our study is that in a situation when the risk of predator attack is high,

it can be advantageous for the prey to adopt a safe mode of behaviour accepting the cost

it incurs, whereas when the predation is low, an advantage can be gained exploiting richer

feeding grounds. We note that for a predator-prey model, the Darwinian fitness of the prey is

the ratio of the current reproduction rate to the attack rate. It is easy to see that the above-

mentioned adaptive strategy increases only a relative fitness. One should take in consideration

that if there is a strategy that increases the absolute rather than a relative fitness, than a group or
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a subspecies adopting this strategy would overcompete the rest of the population and eventually

it would be the only type present, and no further changes of behaviour would be then feasible.

The paper is structured as follows. In the next section, we present our modeling approach. Sec-

tion 3 contains analysis of branches of equilibrium points and numerical results that characterise

their stability. Conclusions are presented in the last section.

2 Model

2.1 Colouring approach

We divide the environment into cells of equal size/volume that corresponds to the volume which

a prey can grasp using its sensory systems. Inside each cell prey can exhibit risky or safe mode

of behaviour. In the risky mode the prey is more vulnerable to the predator, whereas in the

safe mode it is subject to stronger competition and lower food availability. We begin with the

simplifying assumption of coloured cells.

Assumption 1 (Coloured cell) At any given moment in time, all the prey in any given cell is in

the same mode of behaviour.

This assumption is natural if the prey “colours” the cell by using a defensive mechanism, taking

collective actions, or changing its local habitat properties, when it switches from the risky to safe

mode and from the safe to risky mode. We will show later that an equivalent assumption can be

justified when a refuge patch is available for the prey. The birth, competition, and attack rates

for prey in the risky mode are bR, cR, aR, respectively; for the safe mode, they are bS, cS, aS ,

where aR ≥ aS, bR ≥ bS, cR ≤ cS . With this notation, the time evolution of the total number

of prey u = u(t,x) in a cell x is assumed to be defined by the equation

u̇ = biu− ciu
2 − aiuv

where i = R when the prey is in the risky mode; i = S when the prey is in the safe mode; v is

the total number of predator; and, dot denotes the derivative with respect to time.

Assumption 2 (Heterogeneity) At a given moment in time, prey can have different mode of

behaviour in different cells.

Heterogeneity in prey’s behaviour may result from a heterogeneity of the habitat.

Assumption 3 (Stimuli: reaction to predator) Prey in a cell x switches between the safe and

risky modes of behaviour in response to stimuli A(t). We assume that A is a function of the

number of predators v.

We will describe the prey’s mode of behaviour by the binary function of time (R
x
A)(t) which

equals 0 when the prey is in the risky mode and 1 when the prey is in the safe mode. Here R
x
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is a an operator that maps the time series of stimuli A(t) to this binary function of time. Hence,

the rate equations for the number of prey can be combined to the equation

u̇ = (bR(1−R
x
A)+bSRx

A)u−(cR(1−R
x
A)+cSRx

A)u2−(aR(1−R
x
A)+aSRx

A)uv.

The simplest option is to assume that R = RαS
is an ideal relay (the shifted Heaviside step

function)

RαS
(A) =

{

0, αS ≥ A,
1, αS < A,

(1)

where the value of the switching threshold αS = αS(x) is individual to a cell x, and is defined

by the cell’s properties and the ability of prey to perceive the stimuli in this cell. Then the rates

r = a, b, c switch between the safe and risky values according to the formula

r = rSRαS(x)(A) + rR(1−RαS(x)(A)).

However, this switching strategy is memoryless and does not lead to a hysteretic behaviour.

Instead, we assume a more complex response of the prey to the stimuli.

Assumption 4 (Feedback: reaction to other prey) Reaction of the prey to the stimuli A(t) is

enhanced by a positive feedback loop coupled with the ideal relay response (1) and resulting

in the existence of two switching thresholds. The prey switches the risky mode of behaviour to

the safe mode when the stimuli A(t) increase above a threshold value αS ; it switches back to

the risky mode when the stimuli drop below a lower threshold value αR < αS . The switching

threshold values αS(x), αR(x) are a property of a cell and vary from cell to cell.

The positive feedback may result from the herding behavior of the prey. Herding describes the

situation where the fact that other prey is in the safe mode acts as an additional stimulus for a

prey species to stay in the safe mode, effectively pushing the switching threshold of the response

to the variation of the predator-controlled stimuli A(t) from the value αS adopted by the prey

when in the risky mode to a lower value αR when in the safe mode. According to Assumption 4,

the time series of stimuli A(t), where t ≥ t0, is mapped to the binary time series of the mode of

prey’s behaviour by the so-called non-ideal relay operator (Krasnosel’skii and Pokrovskii (1989))

(RαR,αS
[η(t0)]A)(t) =























0 if A(τ) ≤ αR for some τ ∈ [t0, t]
and A(s) < αS for all s ∈ [τ, t];

1 if A(τ) ≥ αS for some τ ∈ [t0, t]
and A(s) > αR for all s ∈ [τ, t];

η(t0) if αR < A(τ) < αS for all τ ∈ [t0, t],

(2)

where η(t0) is the state (mode of behaviour) of the prey at the initial moment t0, that is either

η(t0) = 0, or η(t0) = 1. The non-ideal relay (2) can indeed be obtained as the solution operator

of the equations y(t) = (RαS
x)(t), x(t) = A(t) + y(t)∆ describing the system, which

consists of the ideal relay (1) with the input A(t) and a positive feedback loop. The coefficient

∆ controlling the feedback strength defines the difference ∆ = αS − αR of thresholds of the
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non-ideal relay. Assumption 4 implies that the dependence of the attack, birth and competition

rates r = a, b, c on the varying stimuli A(t) is described by the relationship

rαR(x),αS(x) = rSRαR(x),αS(x)[η(t0)]A+ rR(1−RαR(x),αS(x)[η(t0)]A). (3)

The non-ideal relay is the most basic, yet non-trivial, example of a hysteretic input-state rela-

tionship. If A(t) ≥ αS at some moment t, then the state η(t) = (RαR,αS
[η(t0)]A)(t) of the

relay at the same moment is 1; if A(t) ≤ αR, then η(t) = 0. However, the switching rules

(2) are defined in such a way that when the current value of the input falls within the interval

αR < A(t) < αS between the switching thresholds, the simultaneous value of the state η(t)
of the relay depends on the input history prior to the moment t. The most important property of

memory in the input-state relationship of the non-ideal relay, as well as other models of hystere-

sis, is rate-independence. The rate-independence means the state does not depend on the rate

at which the input may have varied, but rather on the past values of the input extrema. This is an

important form of memory that persists on a long time scale and can not be attained by linear

dynamic systems whose memory is typically associated with certain characteristic times, rather

than input features such as extrema. Hysteresis and multi-stability, with the associated memory,

have been demonstrated in many different biological contexts.

Having discussed prey in an individual cell, we proceed to the whole ensemble of the cells.

Assumption 5 (Heterogeneity of switching thresholds) The threshold values αR(x), αS(x)
are distributed among all cells with a density µ(αR, αS).

The last assumption concerns the movement of prey between the cells.

Assumption 6 (Free movement) Prey and predator move freely between and inside the cells

according to a conventional diffusive process. The rate of diffusion is much higher than the rate

of population processes.

Due to fast diffusion, on the slow time scale of the population processes, the prey density and

the predator density are uniform in space. That is, Assumption 6 allows us to average the sys-

tem over the spatial variable x. For example, assuming the ideal relay response (1) of prey

(αR = αS in Assumption 4) and a distribution of the switching threshold with the density func-

tion µ(αS), the average rates r̄ = ā, b̄, c̄ are

r̄ =

ˆ

∞

0

(rSRαS
(A) + rR(1−RαS

(A)))µ(αS)dαS = rSPS(A) + rR(1− PS(A)),

where PS(A) is the anti-predator functional response of the prey,

PS(A) =

ˆ A

0

µ(α)dα

satisfying 0 ≤ PS ≤ 1. To obtain type I functional response, we can assume A = κv and

µ(α) =

{

1, α ≤ 1,
0, α > 1.
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Then, under the assumption that κv ≤ 1, we obtain the following dynamical model of a predator

and a two-mode prey populations:

u̇ = (bSκv + bR(1− κv))u− (cSκv + cR(1− κv))u2

−(aSκv + aR(1− κv))vu, (4)

v̇ = −dv + e(aSκv + aR(1− κv))vu, (5)

where the proportions κv and 1 − κv of the prey population in the safe and risky modes of

behaviour, respectively, are defined by the simultaneous number of predator v. By rearranging

the terms, we arrive at a Lotka-Volterra model with non-standard functional response F (u, v)
and numerical response N(u, v):

u̇ = bRu− cRu
2 − F (u, v), v̇ = −dv +N(u, v), (6)

N(u, v) = ((aS − aR)κv + aR)vu, (7)

F (u, v) = (D(u, v)− T (u, v))uv, (8)

T (u, v) = κ(aR − aS)v ≥ 0, (9)

D(u, v) = aR + κ(bR − bS) + κ(cS − cR)u ≥ 0, (10)

where D(u, v) is the loss component due to predation and T (u, v) represents the advantage

of the anti-predator response. This system is close to the model studied in Ruxton (1995) where

the proportion of prey in a refuge was defined by the number of predators. A similar model with

two patches, including a rate equation for the prey population in each patch and assuming that

the rate of flow of the prey to the refuge patch is controlled by the number of predator, was

studied in Chiorino et al (1999).

Now, we assume the hysteretic response of prey to stimuli, which is defined by the non-ideal

relay operator (2). In this case, the feedback loop introduced through herding ensures that any

new prey arriving to a cell x due to the diffusion process adopts immediately the same mode

of behaviour as the other prey populating this sell, thus providing for Assumptions 1 and 4 (with

αR < αS). Hence, the averaged rate of population processes at a moment t is obtained by

integrating the expression (3) for the rates with the weighting function µ(αR, αS):

r̄(t) =

ˆ

∞

0

ˆ αS

0

µ(αR, αS)rαR,αS
(t) dαRdαS = rSPS(t) + rR(1− PS(t)). (11)

Here the time series of the anti-predator response of the prey PS(t), satisfying 0 ≤ PS(t) ≤ 1
at all times, is defined by the hysteretic operator

PS(t) =

ˆ

∞

0

ˆ αS

0

µ(αR, αS)(RαR,αS
[η0(αR, αS)]A)(t) dαRdαS =: (P[η0]A)(t), (12)

which can be viewed as superposition of non-ideal relay operators with different thresholds.

This operator P = P [η0], mapping the time series A(t) to the time series PS(t), is known

as the Preisach operator (Krasnosel’skii and Pokrovskii (1989); Mayergoyz (2003)). The bi-

nary function η0 = η0(αR, αS) in its definition is known as the initial state of the Preisach

operator; it describes the states of all the non-ideal relays at the initial moment. The time se-

ries PS(t) is a continuous function of time. The weighting function µ satisfies the condition
´

∞

0

´ αS

0
µ(αR, αS) dαRdαS = 1.
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Using Eq. (11) for the rates of population processes and assuming that the stimuli are propor-

tional to the abundance of the predator, A = κv, we obtain the following extension of model (6)

– (10):

u̇ = (bSPS(t) + bR(1− PS(t)))u− (cSPS(t) + cR(1− PS(t)))u
2

−(aSPS(t) + aR(1− PS(t)))vu, (13)

v̇ = −dv + e(aSPS(t) + aR(1− PS(t)))vu, (14)

PS(t) = (P[η0]y)(t), y(t) = κv(t). (15)

where PS(t) is the proportion of prey in the safe mode of behaviour; the operator P in Eq. (13)

accounts for hysteresis (memory) in the response of the prey to the predator abundance, and

y(t) is the stimulus function.

As the simplest density function µ in Eq. (11), we will consider the function

µ(αR, αS) =

{

2, 0 ≤ αR ≤ αS ≤ 1,
0, otherwise,

(16)

which generates the uniform distribution of switching thresholds in a unit triangle.

If the ideal relays are used instead of non-ideal relays, then the density function (16) corre-

sponds to

µ(α) =

ˆ α

0

µ(αR, α)dαR =

{

2α, α ≤ 1,
0, otherwise,

and we obtain PS(t) = (κv(t))2 rather than the response PS(t) = κv(t) discussed earlier in

this section. The square dependence manifests the learning curve.

2.2 Refuge analogy: repelling patches

In this subsection, we show how a refuge analogy can produce a coloured cell according to

Assumption 1. A cell is supposed to be composed of three patches: a neutral (intermediate)

patch of volume ω0, a free (risky) patch of volume ωR, and a refuge (safe) patch of volume

ωS , see Fig. 1 (a). The population rates ai, bi, ci in the patches ωi satisfy aS ≤ a0 ≤ aR,

bS ≤ b0 ≤ bR, and cR ≤ c0 ≤ cS
1. We assume that the refuge patch is repelling and the

free patch is attractive for the prey in the risky mode of behaviour; whereas the refuge patch

becomes attractive and the free patch becomes repelling for the scared prey. The neutral patch

is always acceptable for the prey. The fast mixing Assumption 6 holds for the whole environment

except repelling areas in the cells, where there is no prey. That is, at any given moment, the

density of the predator is the same in all the patches of all the cells; the density of the prey is the

same in the neutral and attracting patches of all the cells and zero in all the repelling patches.

With the increase of stimuli A(t) beyond the threshold value αS = αS(x), the prey vacates

the risky patch and populates the safe refuge patch in the cell x; this may result in a change

of prey’s density (which happens on the fast time scale), as the total volume occupied by the

prey changes if ωR 6= ωS . Due to the positive feedback loop (Assumption 4), the refuge patch

1The neutral patch ω0 may play the role of a transport route.
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Attractive

Neutral patch

(b)

patch patch

Free Refuge

k+

k−

Figure 1: (a) Cell composition under the repelling patches assumption. In the risky mode of

behaviour, refuge patch is repelling, free patch is attractive, intermediate patch is neutral. In the

safe mode of behaviour, free patch is repelling, whereas refuge patch is attractive. In the neutral

and attractive patches fast mixing Assumption 6 holds, and there is no prey in the repelling

patch. (b) Cell composition under the flow assumption. In each mode of behaviour, there is a

flow with constant rate k+ from the free (risky) patch to the refuge (safe) patch and a flow in the

opposite direction with the rate k−. Fast mixing Assumption 6 holds inside both patches.

remains occupied and the risky patch remains prey-free as long as A(t) ≥ αR with αR < αS .

Applying Assumptions 5 and 6, we obtain the expression

r̄ =
r0ω0 + rRωR + (rSωS − rRωR)PS(t)

ω0 + ωR + (ωS − ωR)PS(t)
(17)

for the average attack and birth rates r = a, b; and the formula

c̄ =
c0ω0 + cRωR + (cSωS − cRωR)PS(t)

(ω0 + ωR + (ωS − ωR)PS(t))2
(18)

for the average competition rate.

If ωS = ωR, then the volume occupied by the prey in each cell and the total volume of the

habitat are constant at all times. If, in addition, ω0 = 0, then, using the same assumptions as

in the previous subsection, we obtain exactly system (13)-(15). The relation ω0 > 0 results in

extra linear terms in the system.

The case ωS 6= ωR leads to an extension of model (13)-(15) where the first two equations are

replaced by the equations
u̇ = b̄u− āuv − c̄u2,
v̇ = −dv + eāuv

(19)

with coefficients defined by the expressions (17), (18) with r = a, b, where hysteresis Preisach

operator PS(t) appears in the denominator of nonlinear terms. In particular, setting ωR = 0,

we arrive at a two two-patch modification of model (13)-(15) where the prey occupies both the

neutral patch (which now plays the role of the risky patch) and the refuge under dangerous

conditions and vacates the refuge, or its part, when the abundance of predator is low. A further

extension of the model can be obtained by assuming that the volumes ωR, ωS, ω0 are functions

of x. This leads to a system with several Preisach operators, which have the same state at any

given moment in time, but different weighting functions µi(αR, αS).
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However, our assumption that the prey avoids some patches completely applies to all these

models. This assumption is quite specific, because generally prey tends to occupy all the avail-

able space. Next, we replace complete avoidance by a more general assumption of an exchange

flow with variable rate between the patches.

2.3 Refuge analogy: flow between the patches

We assume that the refuge consists of equal size small cells, which are embedded into a large

free patch reservoir, see Fig. 1(b). The population rates are aR, bR, cR in the free patch and

aS, bS, cS in the refuge cells. There is a fast flow of prey from each refuge cell to the free patch

reservoir and backwards, a fast diffusion mixing in the free patch according to Assumption 6,

but (for simplicity) no flow from cell to cell. Also, a fast diffusion process keeps the density of

predator homogeneous in the whole habitat including the free patch and refuge cells. Let ρS(x)
be the density of prey in a refuge cell x and ρR be the density of prey in the free patch. Let

k+(x)ρR be the prey flow rate from the free patch to a refuge cell x and k−(x)ρS(x) be the

prey flow rate from the cell x to the free patch. That is, we assume proportionality of the rates

to the prey density. Diffusion and exchange flows are assumed to have much faster time scale

than population processes, hence ensuring the quasi-equilibrium relationship k−(x)ρS(x) =
k+(x)ρR between the density of prey in the refuge cell x and the free patch. We apply an

analog of Assumption 4 of the form

k+(x)/k−(x) = fR + (fS − fR)RαR(x),αS(x)[η(t0)]A

with parameters fS > fR ≥ 0 characterizing the ratio of the flow rates in and out of the refuge

for two modes of prey’s behaviour. For example, assuming the homogeneous constant flow rate

k−(x) = k− from the refuge for all the cells x, we postulate a higher rate k+(x) = fSk− of the

flow to the refuge when the prey switches to the safe mode of behaviour due to a high number

of predator and a lower rate k+(x) = fRk− of this flow when the number of predator drops

and the prey returns to the risky behaviour. Again, the positive feedback mechanism creates a

separation of the switching thresholds αR(x) < αS(x), thus making the frightened prey stick

to the refuge for lower values of the stimuli than those pushing the prey into the refuge.

Averaging the population rates over the refuge cells x, we obtain the relations

r̄ =
rRΩR + rSΩSfR + rSΩS(fS − fR)PS(t)

ΩR + ΩSfR + ΩS(fS − fR)PS(t)

for the average attack and birth rates r = a, b and the formula

c̄ =
cRΩR + cSΩSf

2
R + cSΩS(f

2
S − f 2

R)PS(t)

(ΩR + ΩSfR + ΩS(fS − fR)PS(t))2

for the average competition rate, where ΩR is the volume of the free patch and ΩS is the total

volume of all the refuge cells. We see that these expressions have the same form as, and can

be considered as a specific case of, the population rates (17), (18) in the model with repelling

patches from the previous subsection. A similar model results from the assumption that the the

exchange rate ratios fR, fS depend on x.
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In what follows, we perform a steady state analysis for the simplest representative from the class

of models presented above, the system (13)-(15).

3 Steady state analysis

3.1 Initial data

In this section, we consider system (13)-(15), where the Preisach operator has the simple uni-

form density function (16). The rates are assumed to satisfy the relationships bS = bR =
b, cS > cR, aS < aR, that is the birth rate is the same for both modes of prey’s behaviour.

Initial data for this system include initial values of the four variables: the number of prey u, the

number of predator v, the proportion of prey in the safe mode of behaviour PS , and the variable

y measuring the value of stimuli as perceived by the prey; as well as the initial binary state func-

tion η0(αR, αS) of the Preisach operator, which defines the initial state (0 or 1) of each relay (2)

in the integral formula (12) for PS . At the initial moment t0, the prey is in the safe mode of be-

haviour in all those cells that have switching thresholds αR, αS for which η0(αR, αS) = 1; the

cells containing prey in the risky mode have switching thresholds satisfying η0(αR, αS) = 0.

The initial data should satisfy two compatibility conditions. The first of them results from the fact

that the state of a relay RαR,αS
is 0 whenever its input satisfies A(t) ≤ αR and is 1 whenever

A(t) ≥ αS , see (2). Applying this rule at the initial moment to all the relays with the input y(t0),
we obtain the condition

η0(αR, αS) =

{

0, αR ≥ y(t0),
1, αS ≤ y(t0).

(20)

For those pairs (αR, αS) that satisfy2 0 ≤ αR < y(t0) < αS ≤ 1 the value η0(αR, αS)
can be either 0 or 1. The second compatibility condition arises from equation (15), which, using

relations (12), (16), can be written at the initial moment as

PS(t0) =

ˆ 1

0

ˆ αS

0

η0(αR, αS) dαRdαS. (21)

Combining (20) and (21), we see that initial data must satisfy the inequalities

PS(t0) = 0 if y(t0) = 0,
y2(t0) ≤ PS(t0) ≤ y(t0)(2− y(t0)) if 0 < y(t0) < 1,

PS(t0) = 1 if y(t0) ≥ 1.
(22)

In particular, if y(t0) = 0 then η0(αR, αS) must identically equal zero (all prey in the risky

mode of behaviour), whereas if y(t0) ≥ 1 then η0(αR, αS) must identically equal 1 (all prey in

the safe mode). If strict inequalities hold in (22), that is y2(t0) < PS(t0) < y(t0)(2 − y(t0))
with 0 < y(t0) < 1, then there are infinitely many initial state functions η0(αR, αS) that satisfy

compatibility conditions (20), (21).

2As µ(αR, αS) = 0 outside the triangle 0 ≤ αR < αS ≤ 1, we can restict the location of admissible pairs

(αR, αS) to this triangle only.
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3.2 Equilibria of the system

At an equilibrium, all the variables u, v, PS, y are constant, and so is the stateRαR,αS
[η0(αR, αS)]y =

η0(αR, αS) of each relay in (12). Therefore, equilibrium values of the four variables u, v, PS, y
satisfy three algebraic equations obtained by setting the right hand sides of differential equa-

tions (13)-(14) to zero; the operator equation (15) at an equilibrium is equivalent to (20) and thus

results in the additional constraint (22), where PS(t0) and y(t0) are now equilibrium values of

the variables PS and y.

A few remarks are in order before we calculate equilibria of system (13)-(15).

First, the constraint (22) has the form of a two-sided inequality if 0 < y < 1. Hence, the

four components of an equilibrium (u, v, PS, y) with 0 < y < 1 solve a system of three

equations and two inequalities. Therefore, we expect such equilibria to form a continuous branch

(or several branches), if they exist. Branches of equilibria are typical of systems with hysteresis

due to the presence of the infinite dimensional component (space) of states η0 of the hysteresis

nonlinearity. Equilibria of system (13)-(15) with either y = 0 or y > 1 are isolated.

Second, equilibria embedded in a continuous branch can be neutrally stable, but not asymptot-

ically stable.

Analysis of stability of equilibria is not a trivial problem. The reason is that the effect of a pertur-

bation of the initial state function η0(αR, αS), which is part of the initial data, on the long term

behaviour of a trajectory cannot be accounted for by a straightforward linearization approach.

As an illustration, a robust equilibrium of a system with the Preisach operator can simultane-

ously attract many trajectories and repel many trajectories from its neighborhood – a property

which does not have an analog in the theory of smooth dynamical systems. For rigorous defi-

nitions and results (for planar differential systems coupled with the Preisach operator) we refer

to McCarthy and Rachinskii (2014), where such robust equilibria were called partially stable.

Numerical results in Pimenov and Rachinskii (2014, 2015); Pimenov et al (2012) give an evi-

dence that a continuous branch can include equilibria of different types, such as neutrally stable,

partially stable, and unstable.

For some classes of differential equations with the Preisach operator, algorithms of rigorous

local stability analysis based on linear approximations and conditions ensuring their validity were

proposed (Brokate et al (2005); Krejčí et al (2011); Pimenov and Rachinskii (2009); Pokrovskii

et al (2006)). In this paper, we do not perform such analysis for system (13)-(15). Instead, we

will resort to a number of numerical simulations in order to reveal some biologically relevant

global scenarios of convergence of trajectories to, and divergence from, equilibrium points and

branches.

Let us proceed with the calculation of equilibrium solutions. There is a unique equilibrium with

zero prey population u. This is the trivial equilibrium u = v = PS = 0 (where v = 0 follows

from Eq. (14) and PS = 0 follows from the first equation in (22)). The trivial equilibrium is

unstable, because in its neighborhood the linear term bu with b > 0 dominates quadratic terms

in Eq. (13); hence, for any small positive u and v, the u population exponentially increases.

There is another predator free equilibrium. With v = 0 Eqs. (22) imply PS = 0 (all the prey in

the risky mode) and from Eq. (13) we obtain a unique non-zero prey population u = b/cR. In
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what follows, we assume that

baRe > cRd. (23)

Then, in a small neighborhood of the equilibrium (u, v, PS, y) = (b/cR, 0, 0, 0), the right hand

side of Eq. (14) is dominated by the linear term (−d+ eaRb/cR)v, which is positive for v > 0.

Hence, the predator population exponentially increases, that is this equilibrium is also unstable.

All the other equilibrium points have all four positive components. Equations (13)-(14) for the

positive equilibria imply

u =
d

e(aSPS + aR(1− PS))
, (24)

b =
d(cSPS + cR(1− PS))

e(aSPS + aR(1− PS))
+

1

κ
(aSPS + aR(1− PS))y, (25)

where y = κv due to (15), and Eq. (25) can be rewritten as

y =
γ(1− θPS)− σ(PS + γ(1− PS))

ν(1− θPS)2
=: F (PS), (26)

where we introduce new parameters

γ =
cR
cS

∈ (0, 1); θ = 1−
aS
aR

∈ (0, 1); σ =
cRd

aRbe
∈ (0, 1); ν =

aRcR
bcSκ

> 0; (27)

the relation σ < 1 is equivalent to (23). The function y = F (PS) defined by Eq. (26) satisfies

F (PS) → +0 as PS → −∞; F (PS) → −∞ as PS → 1/θ > 1

and has a unique point of local and global maximum on the interval PS < 1/θ; the graph

Γ of F is shown in Fig. 2. For equilibria with 0 < y < 1 (that is, equilibria with a non-zero

fraction of prey in each of the two modes of behaviour), the additional constraint (22) defines

the lense shaped domain y2 < PS < y(2 − y) between two parabolas, which lies inside the

square 0 ≤ PS, y ≤ 1 of the (PS, y) plane (see the same figure). Hence, any part Γi of the

curve Γ contained in this lense domain defines a continuous curve of equilibria (u, v, PS, y),
(PS, y) ∈ Γi of system (13) – (15) with the components u, v related to the components PS, y
by Eqs. (24). In particular, if

γ(1− θ) < σ + ν(1− θ)2, (28)

then F (1) < 1 and, due to F (0) = γ(1−σ)/ν > 0, the curve Γ intersects the lense domain,

hence system (13) – (15) has at least one continuous branch of equilibrium points. The number

of disjoint branches can vary from one to three depending on parameters as we discuss in the

next subsection.

Eq. (28) ensures that all the positive equilibria satisfy y < 1, PS < 1. That is, each positive

equilibrium has a non-zero fraction of prey in the risky mode of behavior, as well as in the safe

mode, and, generically, every positive equilibrium is embedded into a continuous branch of such

equilibria. Additional parameter constraints can ensure that every trajectory enters the domain

PS < 1 and remains there forever. One example is the relation

σ + θ > 1 (29)
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Figure 2: The intersection of the graph Γ of function (26) with the shaded lense domain is the

projection of the curve of equilibrium points onto the (PS, y) plane.

(which implies (28)). Indeed, Eq. (29) ensures that v̇ = (−d+eaSu)v < 0 in Eq. (14) whenever

PS = 1, v > 0 and u ≤ b/cR, while all trajectories enter the domain u ≤ b/cR and stay there

forever, because Eq. (13) implies u̇ ≤ (b− cRu).

If the inequality γ(1− θ) > σ + ν(1 − θ)2, which is opposite to (28), holds, then system (13)

– (15) has an isolated positive equilibrium with the components

u = d/(aSe), v = y/κ, PS = 1, y =
γ(1− θ)− σ

ν(1 − θ)2
. (30)

At this equilibrium, and in its neighborhood, all the prey is in the safe mode of behavior. There-

fore, locally, system is equivalent to the ordinary differential predator-prey model (19), hence

equilibrium (30) is asymptotically stable. It possibly coexists with a continuous branch of posi-

tive equilibria considered above, where prey have fractions of the population in both modes.

3.3 Examples of branches of equilibria

If aS ≈ aS and cR ≈ cS (equivalently, θ ≪ 1, γ ≈ 1), then all the equilibria of system (13) –

(15) are close to each other. This is to be expected as the change in attack and competion rates

is small when prey switches between the safe and risky modes of behavior. If the attack rates

are close to each other (θ ≪ 1), but the ratio γ of the competition rates is not close to one, then

condition (28) ensures that the lense domain in Fig. 2 intersects the descending branch of the

graph Γ of function (26). Hence, positive equilibrium points of the system form one continuous

branch. On this branch, the equilibria with higher proportion PS of prey in the safe mode of

behavior have lower predator population. At the same time, Eq. (24) implies that the number of

prey u for all equilibrium points of the branch is almost the same due to θ ≪ 1.

The equilibrium branches become more interesting when the attack rates aS and aR are sig-

nificantly different. If the ratio aS/aR = 1 − θ is not too small, then, typically, the continuous

branch of positive equilibria is still unique (assuming (28)). However, along this branch, the

predator population v can either increase with PS (the number of predator is higher for equilib-

ria with higher fraction of safe prey), or decrease with increasing PS (the number of predator is
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Figure 3: Different number of equilibrium branches of system (13) – (15). Panels show the

projection of the branches on the (PS, y) plane. (a) One branch for θ = 0.99, γ = 0.2,

σ = 0.03, ν = 0.5. The parameters satisfy condition (29). (b) Three branches for γ = 0.065,

σ = 0.002 with θ, ν same as for panel (a).
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Figure 4: Examples with two branches of positive equilibrium points. (a) θ = 0.99, γ = 0.1,

σ = 0.005. (b) θ = 0.95, γ = 0.075, σ = 0.03. The value of ν = 0.5 is the same as for

Fig. 3.

lower for equilibria with larger PS), or v can achieve its maximum at an equilibrium with an inter-

mediate value of PS as in Fig. 3(a); we note that, according to Eq. (24), the number of prey u at

an equilibrium always increases with PS . The variations of the branch profile can be explained

by looking at the unique positive equilibrium of the standard predator-prey system (19). The

equilibrium predator population v of (19) tends to zero when the attack rate ā either gets low

or sufficiently high (in the latter case, the predator extincts after it eliminates the prey), hence v
reaches its maximum bewteen these two extremes. Since in system (13) – (15) equilibria with

different average attack rates ā = aR(1 − PS) + aSPS coexist, increasing, decreasing and

hump profiles of v with increasing PS and u are all possible. A particular profile is defined by

the relative position of the maximum of the curve Γ with respect to the lense domain, which

determines the range of admissible average attack rates ā.

In the extreme of very different attack rates in the safe and risky modes of prey’s behavior,

θ ≈ 1, system (13) – (15) can have up to three disjoint continuous branches of equilibrium
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Figure 5: Examples with two (panel (a)) and three (panel (b)) branches of positive equilibrium

points where the upper branch consists of one equilibrium with PS = 1. (a) θ = 0.8, γ = 0.2,

σ = 0.017. (b) θ = 0.95, γ = 0.075, σ = 0.001. The value of ν = 0.5 is the same as for

Fig. 3.

points. Fig. 3(b) presents an example where the curve Γ has three disjoint intersections with

the lense domain, representing three equilibrium branches; Fig. 4 shows examples with two

branches. In these figures, the value of the attack rate aS is 1-5% of the value of the attack rate

aR. Also, σ is small (for example, due to the small ratio of the death rate of the predator and

birth rate of the prey, d/b ≪ 1).

Parameters in Figs. 3, 4 satisfy the condition (28). Geometrically it means that the curve Γ
passes below the upper corner (1, 1) of the lense domain. We have seen that in this case all

the equilibrium solutions have a non-zero fraction of prey in the risky mode, PS < 1, wheras if

γ(1−θ) > σ+ν(1−θ)2 (that is, the curve Γ passes above the right corner of the lense), then

the system has an isolated positive stable equilibrium where all the prey is in the safe mode,

PS = 1. In particular, this isolated saturated equilibrium is unique when Γ does not intersect

the lense domain. Fig. 5 shows examples where the isolated equilibrium with PS = 1 coexists

with either one or two branches of equilibrium points with PS < 1.

3.4 Global dynamics: numerical results

In this section, we present some results of numerical solution of Eqs. (13) – (15). We fix a param-

eter set such that the system has three disjoint continuous branches of equilibria as in Fig. 3(b)

and attempt to charecterise stability of the steady states belonging to each of these branches.

Initial values u(t0), v(t0), PS(t0) and the initial state η0(αR, αS) of the Preisach model at the

moment t0 = 0 determine which equilibrium the solution converges to (see Fig. 7). In order

to satisfy the compatibility conditions for the initial data, we introduce an auxiliary parameter

ξ ∈ [0, 1] and define the initial value PS(t0) using the relationship PS(t0) = PS(t0, ξ), where

PS(·, ξ) = (2ξ − 1)y2(·) + 2(1− ξ)y(·), (31)

which ensures the compatibility condition (22) for an arbitrary choice of y(t0) = κv(t0). Fur-

thermore, we use the following standard class of the so-called “staircase” states η0(αR, αS) of

the Preisach operator (see Brokate and Sprekels (1996); Krasnosel’skii and Pokrovskii (1989);
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Figure 6: Configuration of initial data η0(αR, αS) such that the line L0 has a vertical segment

starting from αR = αS = y0 (left) and a horizontal segment (right), bold solid lines. Change of

configuration of the state, when the input increases from y0 to y1, is represented by bold dashed

lines, and the gray areas show the relays RαR,αS
that were switched on after the increase of

the input.

Mayergoyz (2003)) which are shown in Fig. 6. A state is defined by a continuous staircase line

L0 such that for all points (αR, αS) located to the left of (below) the line L0 in the triangle

0 ≤ αR ≤ αS ≤ 1 the relation η0(αR, αS) = 1 is satisfied, while for all the other points

of this triangle η0(αR, αS) = 0. The polyline L0 consists of horizontal and vertical segments

(links), goes from North-West to South-East, and intersects the bisector αR = αS at the point

(y(t0), y(t0)). These properties ensure the compatibility condition (20). We note that for any

given set of initial data u(t0), v(t0), y(t0) and ξ ∈ (0, 1) with PS(t0) defined by (31) there are

still infinitely many choices of the staircase initial state satisfying the compatibility condition (21).

For numerical simulations, we used initial states where the line L0 has two links. Namely, there

are two types of such states. For the first type, which we call V -type, the line L0 consists of a

segment of the vertical line αR = y(t0) and a segment of a horizontal line αS = yM > y(t0)
(see Fig. 6(a)). For the second type, called H-type, L0 consists of a segment of the horizontal

line αS = y(t0) and a segment of a vertical line αR = ym < y(t0) (see Fig. 6(b)). The com-

patibility condition (21) implies the formula yM = yM(ξ, y(t0)) for the corner point (y(t0), yM)
of the L0-line of the V -type initial state and the relation ym = ym(ξ, y(t0)) for the corner point

(ym, y(t0)) of the H-type initial state, where

yM(ξ, y0) = ((1 + ξ)y0 + (1− ξ)(2− y0))/2, ym(ξ, y0) = (1− ξ)y0. (32)

After the initial moment t0 = 0, the staircase polyline L0 changes in response to the variations

of the input y(t) of the Preisach operator according to a set of rules which can be found in

Brokate and Sprekels (1996); Krasnosel’skii and Pokrovskii (1989); Krejčí (1996); Mayergoyz

(2003); we do not discuss them here.

We perform numerical stability analysis of three disjoint continuous branches of equilibria of

system (13)-(15) (as in Fig. 3(b)) by choosing appropriate parameters and perturbing initial state

of the system in different ways (see Table 3.4). To illustrate these results, some of the time traces

of the predator population are presented in Fig. 7. The initial conditions u(0), v(0), PS(0), and

η0 for each solution were selected from a close vicinity of a steady state by taking the following

steps. First, we fixed a value of ξ ∈ [0, 1] and solved equations (24), (25), (31) to obtain three
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equilibrium points (u∗, v∗, P ∗

S), one on each of the three branches. Next, we slightly perturbed

the predator number from its equilibrium value v∗ and used the initial data v(0) = v∗ + δv,

u(0) = u∗, PS(0) = P ∗

S to perform a simulation. The initial state η0 of the Preisach operator

was either of V -type or H-type for each simulation.

The branches of equilibria can be uniquely identified by the proportion of prey in the safe mode

PS as the ranges of PS for the three branches are disjoint, see Fig. 3(b); we denote the left

branch by (L), the middle branch by (M) and the right branch by (R). An equilibrium on a partic-

ular branch is identified by the value of ξ ∈ [0, 1]. We have used ξ = 0.7 to obtain results listed

in Table 3.4 and plotted on Fig. 7. The corresponding values of v∗, P ∗

S at the equilibrium are

v∗ = 0.99731586, P ∗

S = 0.99624508 for branch (R), v∗ = 0.892, P ∗

S = 0.8535 for branch

(M), and v∗ = 0.1593, P ∗

S = 0.1065 for branch (L). That is, the predator is most abundant

at the equilibrium on branch (R) and least abundant on branch (L). We have also performed

simulations with different values of ξ and different types of perturbations, where we have per-

turbed initial values of u, PS and the initial state of the Preisach operator, and we have found

that Fig. 7 represents well the dynamics we observed. In particular, our simulations show that

the steady states on branch (R) (see Table 3.4(a)-(d), graphs (a), (d) in Fig. 7) and on branch

(L) (see Table 3.4(i)-(l), Fig. 7(i)) are neutrally stable: the perturbed solution converges to an

equilibrium belonging to the same branch with the value ξ̃ close to 0.7. The destination equilib-

rium where the trajectory converges to depends on the magnitude and sign of the perturbation.

For example, the value |ξ̃ − 0.7| is much larger for trajectory (b) where δv = 10−7 than for

trajectory (a) where δv = −0.001 (see Table 3.4).

The most interesting behaviour was observed for perturbations of equilibrium points from branch

(M). For the H-type initial state η0 of the Preisach operator, we found that the trajectory diverges

from this branch and converges to an equilibrium on branch (R) for positive small perturbations

of initial predator abundance, see trajectory (e) in Table 3.4 and Fig. 7. However, for negative

perturbations the solution converges to an equilibrium on the same branch (M) as before (see

Table 3.4(f)). Moreover, for the V -type initial state η0, the solution converges to a nearby equi-

librium on branch (M) for arbitrary small perturbations, see Table 3.4(g)-(h), Fig. 7(g), (h). Thus,

equilibrium points from the middle branch (M) demonstrate simultaneously repelling and at-

tracting properties. Such equilibria have been characterised as partially stable in McCarthy and

Rachinskii (2014) (where equilibria were isolated rather than embedded in a branch though).

The property to attract many trajectories and simultaneously repel many trajectories should be

attributed to the memory properties of system (13)-(15). In the theory of ordinary differential

systems, an analogous behaviour is demonstrated by a saddle-node equilibrium. However, a

saddle-node is not robust to arbitrarily small perturbations, whereas the partially stable equilib-

rium branch (M) of system (13)-(15) is robust.

For comparison, let us consider an ordinary differential system (13), (14), (31), where the pro-

portion of the prey population in the safe mode PS is a (memoryless) function of the perceived

stimuli A = κv, which depends on an additional parameter ξ ∈ [0, 1]. The union of all the

steady states (u∗, v∗, P ∗

S) of this system for all ξ ∈ [0, 1] coincides with the set of the steady

states of system (13)-(15). Fig. 8(a) presents three branches of equilibrium points for the pa-

rameter set of Fig. 7. Here, system (13), (14), (31) has three equilibrium points for each ξ (cf.

Fig. 3(b)). The linear stability analysis shows that the equilibrium points with the most abun-
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Solution Branch η0 type δv v∗∗ P ∗∗

S ξ̃
(a) R H 10−7 0.997188 0.99624521 0.6672

(b) R H -0.001 0.997317 0.99624508 0.7003

(c) R V 10−7 0.9972621 0.99624513 0.6862

(d) R V −10−7 0.997447239 0.99624495 0.736

(e) M H 0.001 0.9974308842 0.99624497 0.7314

(f) M H -0.001 0.8911 0.8533 0.6943

(g) M V 0.001 0.8989 0.8548 0.7427

(h) M V 0.001(∗) 0.8864 0.8525 0.6686

(i) L H 0.001 0.1597 0.1065 0.6985

(j) L H -0.001 0.159 0.1054 0.7004

(k) L V 0.001 0.1595 0.1056 0.701

(l) L V -0.001 0.1589 0.105 0.7015

Table 1: Initial data and destination point for solutions obtained by different perturbations of three

equilibrium points v∗ = 0.99731586, P ∗

S = 0.99624508 for branch (R), v∗ = 0.892, P ∗

S =
0.8535 for branch (M), and v∗ = 0.1593, P ∗

S = 0.1065 for branch (L). The columns specify

the solution; branch of equilibria near which the solution starts (a particular equilibrium near

which the solution starts is defined by the parameter ξ = 0.7); type of initial state η0; value of

the perturbation δv for the initial value v(0) = v∗ + δv of the solution (other perturbations are

δu = δPS = 0, that is u(0) = u∗, PS = P ∗

S , except for solution (h) where also the initial state

η0 was perturbed); components v∗∗, P ∗∗

S of the equilibrium to which the solution converges; the

value ξ̃ of the parameter ξ for the equilibrium to which the solution converges.
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Figure 7: Time traces of the predator population v of system (13)-(15). Parameters are b = d =
κ = 1, θ = 0.993, ν = 1.4, γ = 0.2, σ = 0.002. Initial data for each solution are summarized

in Table 3.4. The dashed solution (e) starts near the equilibrium branch (M) and converges to

an equilibrium belonging to branch (R). Solution (i) converges slowly to an equilibrium, although

it looks like a periodically oscillating solution for the values of t that are shown. This behaviour

is explained by Figure 8(b): real part of one of the eigenvalues is close to 0 for ξ ≈ 0.7 in the

analogous ordinary differential system (13), (14), (31).
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Figure 8: Bifurcation diagrams for ordinary differential system (13), (14), (31). (a) The depen-

dence of equilibrium predator population on the parameter ξ for three branches of positive

equilibria. (b) The maximal real part of the eigenvalues of the linearization at equilibrium points.

Parameters are the same as in Fig. 7.

dant and the least abundant predator population (the upper and lower branches in Fig. 8(a)

corresponding to the branches (R) and (L), respectively, on Fig. 3(b)) are asymptotically stable,

whereas the the equilibrium at the middle branch is a saddle. Fig. 8(b) presents the maximal

real part of the eigenvalues of the linearization at each equilibrium of system (13), (14), (31).

We see that ordinary differential system (13), (14), (31) demonstrates a typical predator pit

scenario, which is characterized by two stable and one unstable equilibria. In model (13)-(15),

in comparison, isolated locally stable equilibria are replaced by continuous branches of neutrally

stable equilibria. The branch of equilibrium points, which corresponds to the unstable equilibrium

of the ordinary differential model, is partially stable: equilibria of this branch are neutrally stable

for V -type initial memory state of the Preisach operator, and unstable for the H-type initial state.

4 Conclusions

The predator-prey relationship, where one class of animal — the predator — kills and consumes

animals of another group — the prey, is of fundamental importance in ecology. Both groups of

this system, however, are subject to similar evolutionary demands i.e. they seek to maximise in-

dividual fitness. Therefore, both the predator and the prey strive to maximise their own individual

survival and reproductive success. Much is known about the adaptations of predators in the de-

tection, pursuit and subduing of prey (e.g. Begon et al (2006)) and the evolutionary responses of

their quarry, including aposomatic colouration and crypsis (e.g. Davies et al (2012)), autotomy,

group living and selfish herd behaviour Hamilton (1971) , and the use of the looming image (e.g.

Lima and Dill (1990)). Indeed the whole predator - prey interaction has been depicted as an

“Arms Race” (Dawkins and Krebs (1979), see also Brodie and Brodie (1999)).

Less is known however about the subtle behavioural responses of prey to the presence of

predators. Prey live in a “landscape of fear” (Altendorf et al (2001); Laundré et al (2001, 2010))

and this ambiance of threat imposes costs (e.g. Searle et al (2008); Stankowich and Blumstein

(2005); Zanette et al (2011)) including the increased allocation of time to vigilance and to hiding,

and the general “trade off in energy for safety made by foraging animals” (Searle et al (2008)).

Indeed there is now much focus on the “non-lethal effects” of predators (Cresswell (2008)).
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Predators can have a direct adverse impact on prey population density — the “consumptive

effect” and/or by altering their behaviour, the “non-consumptive” effect (Hermann and Thaler

(2014)).

The “fear” of being killed is a non-consumptive effect and it raises the issue of decision making

and the taking of risks. The phenomenon of fear is highly complex (e.g. Cross et al (2013);

LeDoux (2014); Tovote et al (2015)). In mammals, and perhaps in birds, fear memory is lo-

cated in the amygdala whereas spatial memories are stored in the hippocampus (e.g. Cross

et al (2013)). However, animals have to feed themselves and provision their young, so in the

landscape with predators they have to take risks.

It would appear that the acquisition of fear and the development of defensive responses through,

for example, Pavlovian conditioning or associative learning is at least in part a hysteresis (see

Duvarci and Pare (2014); Hermann and Thaler (2014); LeDoux (2014)). Presumably fear may

have a lasting effect on animal’s behavior even after the environment has become less danger-

ous. By this reason, the Preisach operator seems to provide us with a suitable tool for modeling

this form of adaptive response as a permanent effect of temporary stimuli (PETS). In particular,

the phenomenology of the Preisach model based on superposition of simple bi-stable responses

of many individuals is attractive for modeling population processes.

The presence of hysteresis and hysteretic patterns of behaviour of individual species have

been described for various ecological systems (Costello et al (1990); Jumars (1993); Lunt and

Spooner (2005)). However, the most accurate measurements of multi-stability and hystere-

sis were obtained for microorganisms in laboratory experiments (Dubnau and Losick (2006);

Graziani et al (2004); Ham et al (2008); Lai et al (2004); Maamar et al (2007); Smits et al

(2006); Thattai and Shraiman (2003); Wanga et al (2009); Wolf et al (2008)). The importance of

bi-stability in living systems has been first articulated by Max Delbrück (1949), who associated

different stationary states with epigenetic differences in clonal populations of microorganisms.

A classical example of bi-stable behavior in bacteria is provided by lac-operon, a collection of

genes which are associated with transport and metabolism of lactose in E. coli. Expression of

these genes can be turned on by molecules called inducers. Novick and Weiner (1957) as well

as Cohn and Horibata (1959a,b,c) demonstrated that two phenotypes each associated with “on”

and “off” state of lac-operon expression can be obtained from the same culture of genetically

identical bacteria. Novick and Weiner did not use the term “hysteresis”, but effectively they de-

scribed the response of the lac-operon to variation of the extracellular concentration of inducers

as a bi-stable switch with two different switching thresholds, and their early findings of hystere-

sis were consistent with even earlier observations of bi-stability of enzymes in yeast (Winge and

Roberts (1948)). Recent experiments using molecular biology methods permitted to confirm and

further study the region of bi-stability of the lac-operon when multiple input variables are used

to switch the lac-operon genes on and off Ozbudak et al (2004). On the other hand, reaction

diffusion differential equations where bacteria were modeled by bi-stable switches are capable

of explaining experimentally observed pattern formation in bacterial colonies (Hoppenstead and

Jäger (1980)).

The idea that adaptation to time-varying environments through switching of behavior of pheno-

type helps survival and that organisms use various switching strategies (such as bet-hedging,

matching the switching rate to the rate of environmental changes, etc.) to increase their fitness
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has been discussed in different biological contexts and gained a substantial experimental sup-

port (Acar et al (2005, 2008); Beaumont et al (2009); Kaufmann et al (2007); Kussell and Lieber

(2005); Thattai and van Oudenaarden (2004)). The model proposed in Friedman et al (2014)

shows that a switching strategy based on a bi-stable hysteresis can be advantageous when a

realistic opportunity cost is associated with any phenotype switching event. Bi-stability allows

organisms avoid excessive switching when favoring of the more favored over the less favored

phenotype is not strong and the loss incurred by the transition event exceeds the gain from being

in the state favored by the environment. This observation (that agrees with some experimental

findings, see Lim and van Oudenaarden (2007); Rao et al (2002)) is rather general and can be

extended to adaptive behavior in predator-prey interaction. One can therefore conjecture that

hysteresis in adaptive response may develop as an optimal switching strategy. As we discussed

in Section 2, hysteresis in decision making can also develop as a result of herding behavior

when an individual tends to follow others. The simplest model demonstrating this effect consists

of two identical coupled memoryless switches (step functions): indeed, this system responds

to external inputs exactly as one bi-stable switch with two different thresholds (Pokrovskii and

Rachinskii (2013)). Effectively, hysteresis develops through a positive feedback loop resulting

in the separation of switching thresholds and creation of a bi-stability range. Large systems of

interacting memoryless switches, such as in the Ising model (Castellano et al (2009); Dorogovt-

sev et al (2002); Honey et al (2009); Pastor-Satorras and Vespignani (2001)), produce complex

hysteresis loops, which are similar to those of the Preisach model (Sethna et al (2001)).

The results obtained in his work can be compared to the outcomes of the ordinary differential

model proposed in Pimenov et al (2015), which has a similar structure except that the adaptive

response in Pimenov et al (2015) is memoryless. The ordinary differential model demonstrated

the co-existence of two stable positive equilibrium states with high and low prey population,

which were separated by a separatrix of a saddle point. The introduction of memory in the

adaptive response, which has been implemented in this paper, results in a “blow up” of each

equilibrium into a connected continuum (branch) of equilibrium states. Some of these three

branches may also merge so that the set of all equilibriums may have from one to three con-

nected components depending on the parameter regime. Each equilibrium state within a given

branch is characterised by a different proportion of the prey population that adopted the safe

mode of behaviour. As a result, we observe that trajectories converge to a “continuous spec-

trum” of equilibrium states. Typically, trajectories starting from close initial conditions converge

to close (but different) equilibrium states. Furthermore, this convergence can be characterised

as path-dependent (a concept used in economics and social sciences). The trajectories along

which the predator population achieves a higher peak tend to end up at an equilibrium with

higher proportion of prey in the refuge (safe mode of behaviour) and a higher total population of

prey. This can be explained by the effect of the memory. Indeed, when the predator population

peaks, the prey hides in the refuge, and even after the predator numbers subside a substantial

part of the prey population (with low enough threshold αR) remains in the refuge due to the

memory of the outburst of predator’s population that the prey experienced in the past.

Memory induced multiplicity of equilibrium states has been observed also in the SIR model de-

veloped in Pimenov et al (2012). However, the cost of safety, which we introduce in the predator-

prey model in this paper, produces further interesting behaviour. In the regime with three disjoint

branches of equilibrium points, most trajectories converge either to the “upper branch” (where
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the prey population is high), or to the “lowest branch” (with a low prey population at each equilib-

rium). However, the “middle branch” does not quite behave as a separatrix between the basins

of attraction of these two branches as one might expect using the intuition of smooth dynam-

ical systems theory. Some small perturbations of initial data result in a trajectory that leads

from an equilibrium state E on the middle branch either to the upper or to the lower branch,

while other small perturbations of the same equilibrium E produce just a short trajectory that

ends at a nearby equilibrium on the same middle branch. This behaviour has a similarity with

a saddle-node point of smooth dynamical systems which simultaneously attracts and repels

many trajectories. However a saddle node point is structurally unstable and can be eliminated

by a small perturbation of parameters, while equilibrium states of our system are structurally

stable (robust to parameter perturbations). We call such robust equilibrium states E partially

stable. (Theoretical analysis of partially stable equilibria of systems with hysteresis has been

done in part in McCarthy and Rachinskii (2014); Pimenov and Rachinskii (2014, 2015) and will

be a subject of future study.) In a sense, hysteresis introduced into the adaptive response grants

more stability to the middle equilibrium point.

The conceptual methodology, which we exploited in this paper, and in particularly the concept

of a dependence of a model parameters on certain stimuli, which in their turn depend on the

current and past state variables, and modelling memory by a hysteresis, are not limited to the

considered Lotka-Volterra model (which was used here mostly as a convenient case study),

but can be straightforwardly extended to any other model when adaptation or memory (or both)

should be studied.
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