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ABSTRACT. The solution of PDE with stochastic data commonly leads to very high-dimensional
algebraic problems, e.g. when multiplicative noise is present. The Stochastic Galerkin FEM
considered in this paper then suffers from the curse of dimensionality. This is directly related to
the number of random variables required for an adequate representation of the random fields
included in the PDE. With the presented new approach, we circumvent this major complexity
obstacle by combining two highly efficient model reduction strategies, namely a modern low-rank
tensor representation in the tensor train format of the problem and a refinement algorithm on the
basis of a posteriori error estimates to adaptively adjust the different employed discretizations.
The adaptive adjustment includes the refinement of the FE mesh based on a residual estimator,
the problem-adapted stochastic discretization in anisotropic Legendre Wiener chaos and the
successive increase of the tensor rank. Computable a posteriori error estimators are derived for
all error terms emanating from the discretizations and the iterative solution with a preconditioned
ALS scheme of the problem. Strikingly, it is possible to exploit the tensor structure of the
problem to evaluate all error terms very efficiently. A set of benchmark problems illustrates the
performance of the adaptive algorithm with higher-order FE. Moreover, the influence of the
tensor rank on the approximation quality is investigated.

1. INTRODUCTION

In the present paper we consider an adaptive stochastic Galerkin method for a class of PDE
with random coefficients. In this respect, the presented approach is a continuation of the
papers [20, 21, 22] of one of the authors. Therein, a PDE with stochastic data was reformulated
as a parametric PDE in the Cameron Martin space, depending on infinitely many parameters.
Our main contribution is the use of modern hierarchical tensor representations and tensor
product approximations for the discretization and solution representation by which the curse
of dimensionality is circumvented. We thus tackle a major obstacle for the employment of
(intrusive) Galerkin methods with stochastic problems which usually lead to huge coupled
algebraic systems that may quickly become prohibitive to setup and solve. The efficient low-rank
tensor representation is combined with an adaptive scheme. This relies on (residual-based)
reliable a posteriori error estimators. It is noteworthy that the evaluation of the a posteriori error
estimator terms can be carried out very efficiently by exploiting the low-rank tensor format. The
combination of these model reduction techniques results in a fully adaptive stochastic Galerkin
scheme with computable overall error bounds for the mean square error in the energy norm.
We remark that the a posteriori error estimation and tensor techniques could in principle also
be applied to numerical solutions obtained by other numerical methods such as Stochastic
Collocation (SC), see e.g. [35] and [7] for a similar approach in an adaptive Galerkin scheme.

Stochastic Galerkin FEM (SGFEM) have become one of the main numerical methods for sto-
chastic PDE since their introduction in [32]. This framework was taken up again for a more
thorough analysis beginning with [15, 29, 49, 2, 5, 4] and succeeding works. In contrast to
sampling methods such as Monte-Carlo, SGFEM are based on an orthogonal projection onto a
discrete subspace of the infinite dimensional stochastic problem space. A basis for this space
is given by polynomials orthogonal with respect to the probability distribution of the random
variables determining the model. This is due to the famous theorem of Cameron and Martin,
see also [24, 67] for the extension to generalized polynomial chaos and recent convergence
results for the representation in suitable Wiener chaos polynomials. Depending on the considered
problem, the larger effort of this approach with respect to implementation and computation is
rewarded by significantly higher convergence rates. Moreover, the best approximation property
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(perturbed by inexact algebraic solvers) allows for the application of well-known deterministic
error estimates in all active modes and a separation of deterministic and stochastic error contri-
butions. This can be considered an advantage over stochastic interpolation methods such as the
Stochastic Collocation (see [3, 51, 50, 66]), in particular with respect to the a priori stability of
the approximation. Nevertheless, several of the derived concepts could probably be transferred.
For an in-depth review of current numerical methods and the analysis of parametric PDE as in
our context, we refer to [61, 35]. The topic of a posteriori error control for deterministic FEM is a
fairly mature area and the interested reader is referred to [1, 65, 8] and [9] for a unified view on
residual-based error estimation as used here.

We consider elliptic differential operators which depend affine linearly on a countable set of
parameters (ym)∞m=1 with ym ∈ [−1, 1], cf. [61]. Thus, the PDE can be viewed as a parametric
PDE depending on y ∈ Γ := [−1, 1]∞. This type of dependence with respect to countable
random variables is for instance obtained by the common Karhunen-Loève (KL) expansion for the
stochastic data. Due to the decaying singular values of the KL decomposition of the stochastic
conductivity field, we obtain a canonical ordering of stochastic variables in the Legendre chaos
polynomials. Subsequently, we take advantage of the natural tensor structure of the problem by
employing the simple tensor train (TT) format [53, 40].

The accuracy of the stochastic Galerkin approximation is determined by a set of parameters
which affect: (a) the FE grid and the order of the FE basis, (b) the order of the individual chaos
polynomials and (c) the truncation of the used KL expansion of the coefficient field. Moreover,
as a new aspect in comparison to previous works, (d) the approximation by the low-rank tensor
representation has to be taken into account. All parameters determining the approximation
quality have to be chosen such that these error contributions are equilibrated.

In this paper, we derive a posteriori error estimators which measure all these contributions to the
total error individually, i.e., the approximation error of the FEM discretization, the truncation error
of the affine coefficient expansion, the stochastic discretization error subject to the degree of
chaos polynomials and the approximation error of the low-rank tensor product representation. The
error estimators for the first part were developed in [20] and are transferred to the tensor setting.
Here, it is crucial to avoid the prohibitive complexity typically induced by the full discrete stochastic
tensor space which can now be used instead of a small selection of stochastic polynomials as in
earlier works. In fact, the numerical approximation with this hugely larger approximation space
only becomes feasible due to the employed tensor compression. With the presented fully adaptive
algorithm, we refine the FEM grid, enlarge the (anisotropic) active set of chaos polynomials and
increase the multi-linear tensor approximation according to the corresponding a posteriori error
estimators. With this approach, we try to exploit the sparsity of the elliptic model problem (2.1)
and discover an “optimal” discretization setting with minimal effort. Results regarding the sparsity
of the solution discretized in polynomial chaos for the class of PDE at hand can e.g. be found
in [13, 12]. These insights are crucial to explain why adaptive methods for the infinite dimensional
parametric problem may actually work very effectively. In principle, the present strategy can be
employed with any existing adaptive finite element code without requiring further modifications,
i.e. non-intrusively. Moreover, other equations of the problem class can be treated similarly as
was shown in [20].

For the Galerkin method of the deterministic FE part, we use a classic residual-based approach
although more recent techniques could be considered. However, it should be emphasized that
we do not require Galerkin orthogonality for the FEM solution in the derivation of reliable error
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bounds. In particular, the theory allows for inexact solutions. Hence, our main result can as well
be applied to approximate solutions which are determined by means of other numerical methods.

For the present setting with affine noise, we make use of the fact that the polynomial degree
in the stochastic discretization can increase by at most one in any stochastic dimension. For
the more general case where the parameter dependence of the operator is approximated by
a low-order chaos polynomial (e.g. in the lognormal setting), the respective residual could be
computed in the same way as presented. However, this would include higher polynomial degrees
which leads to more coupling terms and a higher computational complexity. Nevertheless, we
expect that the described tensor representation would still permit an efficient computation of the
error terms in such a generalized setting and we will devote some future research to this topic.

The described a posteriori error estimators require summations over all coefficients from the
active chaos polynomials. It is a key aspect of this work that we can circumvent this prohibitively
high complexity by applying the tensor product concepts to these summations. As a result,
we obtain a significantly better scaling behavior than previous algorithms in [20, 21, 22]. The
error of the tensor product approximation can be computed efficiently in the employed tensor
format in an `2 sense equivalent to the present energy norm topology. This is due to the fact
that the underlying energy norm in the tensor product space V := H1(D)⊗ L2(Ω) is a cross-
norm which can be transferred easily to a discrete `2 setting. This observation also provides a
preconditioning which is crucial for defining an appropriate metric on the tensor subspace.

One crucial point is the choice of an appropriate tensor format. Tensor product approximation in
the canonical format,

U(x1, . . . , xd) =
rc∑
k=1

U1(x1, k)U2(x2, k) · · ·Ud(xd, k),

also known as CANDECOMP, PARAFAC etc. [46], is one of the oldest approaches in applied
mathematics where it is also known as separation of variables. Among others, it is dating
back to Fourier. The canonical format can be seen as the generalization of the singular value
decomposition (SVD) to higher-order tensors. The SVD was introduced to matrices and general
linear operators by Schmidt [59]. While this generalization is quite intuitive and has therefore
been studied extensively, it has severe drawbacks and is still not fully understood, see for example
[47]. In this work, we pursue the alternative approach of regarding the SVD as a subspace
approximation, e.g. POD (proper orthogonal decomposition), which leads to the concept of
Tucker approximation [48] or the improved hierarchical Tucker approximation [39]. We focus on
the special case of the modern TT representation [54] and the relation to the notion of reduced
basis functions [10, 11]. Note however, that the resulting parameterization of a tensor is not really
new, as it has been used in different fields of science, e.g. in quantum physics, where it is known
as matrix product states (MPS). In the same context, general hierarchical tensors are called tree
tensor networks, see [62] for an extensive review of the applications in physics. The hierarchical
tensor representation, and hence tensor trains in particular, have many substantial features which
render them highly attractive for computational purposes [40] and have lead to increased interest
in the community in recent years. Since we cannot provide a detailed description of hierarchical
tensor representations, we refer to the monograph [36], the initializing papers [53, 34, 39] and
review articles [40, 38].

Tensor product approximation in the canonical format has been applied in a similar context in [44].
The TT format has been used in [43] for the lognormal case of the random diffusion problem, see
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also [18, 27]. The canonical and the hierarchical formats have been investigated in [26]. In the
lognormal case, a further approximation of the operator is required. To avoid this, nonintrusive
Stochastic Collocation (SC) instead of intrusive Stochastic Galerkin methods have been used.
For this, similar to (quasi-)Monte-Carlo methods, one computes the tensor u(x, y) at several
points ym,m = 1, . . . ,MMC, and employs a tensor completion procedure in order to find the
tensor with TT rank r that fits these measurements the best. For an appropriately and adaptively
choosen set of points, known as adaptive cross approximation, a tensor which fits the values
exactly can be determined. Although the design of the set of points is somewhat heuristical, this
approach does indeed work well, as confirmed by numerical examples [55, 16, 6]. However, we
follow a different approach in this paper.

Tensors of fixed multi-linear rank form an analytic Riemannian manifold and allow for the applica-
tion of related local optimization methods. For the sake of simplicity, we use an alternating least
squares (ALS) method, which can be understood as an alternating block coordinate search or a
nonlinear Gauß-Seidel method. Note that any other (more advanced) tensor algorithm for the
solution of the linear system could be applied equally well, but the simple ALS can be used to
better illustrate some features of the chosen format, which might be important for (and transferred
to) other methods. Convergence of the solution with increasing rank has been demonstrated for
instance in [44, 17]. The speed of convergence is mainly determined by the decay of the singular
values in the KL decomposition. From this perspective, it seems that the tensor approach is
less well suited for weak correlation. However, in the present case, high regularity of the true
solution is only required for very fine FE grids, which are adaptively chosen. So far, we have not
considered the overall complexity and convergence analysis, as has been done e.g in [21]. This
will be part of a forthcoming paper.

The paper is organized as follows. Section 2 is concerned with the formulation of the problem
setting and the stochastic Galerkin discretization in Legendre chaos polynomials. We then provide
a brief introduction to reduced basis functions and the hierarchical tensor representation of the
model in the TT format in Section 3. Additionally, the manifold structure of TT tensors is discussed.
Section 4 introduces the ALS algorithm and goes into some detail about preconditioning and rank
adaptivity. The different a posteriori error estimators are introduced in Section 5. We demonstrate
how the tensor representation can be used to efficiently compute the required quantities while
avoiding the curse of dimensionality. These error estimators are then combined in a fully adaptive
algorithm which is described in Section 6. In the final Section 7, we present numerical examples
which illustrate the performance of the developed adaptive algorithm based on different decay
rates of the coefficients in the expansion of the coefficient. Moreover, we investigate the effect
the TT rank has on the approximation quality of the numerical solution.

2. SETTING AND DISCRETIZATION

In the following, we introduce the considered problem formally, present its weak formulation and
describe the employed discretizations in finite dimensional function spaces.

2.1. Model problem. We consider the elliptic second order linear model problem

(2.1) − div(a∇u) = f in D, u|∂D = 0

on a bounded Lipschitz domain D ⊂ Rd with d = 1, 2, 3 and assume for the sake of simplicity
that the source term f ∈ L2(D) is deterministic. The diffusion coefficient a is a random field
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on the probability space (Ω,Σ, P ) over L∞(D), see e.g. [61, 12]. For (2.1) to have a unique
solution, we assume uniform ellipticity which is obtained if there exist constants 0 < amin ≤
amax <∞ such that

(2.2) amin ≤ a(x, ω) ≤ amax for all (x, ω) ∈ D ×Ω.
With the Lax-Milgram lemma it immediately follows the realization-wise existence of a solution
u(·, ω) ∈ X := H1

0 (D) for every ω ∈ Ω which satisfies the variational formulation of the
problem,

(2.3)

∫
D

a(x, ω)∇u(x, ω) · ∇v(x, ω) dx =

∫
D

f(x)v(x) dx for all v ∈ X .

For v ∈ X , we define the norm ‖v‖2X = (v, v)X :=
∫
D
|∇v|2 dx and denote the dual space

of X by X ∗ = H−1(D). The solution u = u(x, ω) is a random field in the probability space
(Ω,Σ, P ) and it holds

(2.4) sup
ω∈Ω
‖u(·, ω)‖X ≤ a−1min‖f‖X ∗ .

Details regarding the regularity of u can be found in [13, 61, 12].

2.2. Weak formulation. We consider parametric elliptic problems of the form (2.1) which depend
on a countable infinite set of parameters y := (ym)∞m=1 ∈ Γ :=×∞m=1

Γm. The solution is in
the tensor product Hilbert space

(2.5) V := X ⊗ Y with X := H1
0 (D) and Y :=

∞⊗
m=1

L2
πm(Γm)

where πm is the measure associated with ym. Equation (2.1) then is equivalent to

(2.6) A(y)u(x, y) = f(x) in D, u(x, y) = 0 on ∂D

where the operatorA(y) : H1
0 (D)→ H−1(D) is given by

(2.7) v 7→ − div(a(x, y)∇v) for y ∈ Γ,
f ∈ L2(D) and u ∈ V . The coefficient is assumed to admit a representation of the form

(2.8) a(x, y) := a0 +
∞∑
m=1

am(x)ym with am ∈ L∞(D), m > 0,

which could e.g. be a Karhunen-Loève expansion. The operator (2.7) can then be expanded as

(2.9) A(y) = A0 +
∞∑
m=1

Amym for all y ∈ Γ

where

(2.10) Am : H1
0 (D)→ H−1(D), v 7→ − div(am∇v).

Moreover, to ensure strong ellipticity ofA, we require

(2.11) |
∞∑
m=1

am(x)ym| ≤ γa0 with γ < 1

which implies a(x, y) ≥ (1− γ) > 0 and |ym| ≤ 1. Hence, y ∈ Γ := [−1, 1]∞.
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In what follows, we assume the parameters ym to be independent and distributed identically and
uniformly with probability measure πm = π1 for m ∈ N. The product measure π =

⊗∞
m=1 π1

then is the probability measure of y on Γ . Thus, we now work in the image space L2
π(Γ ) instead

of L2
P (Ω). Note that the identical distribution of the parameters is not a requirement but mainly

simplifies the notation.

We obtain the weak formulation of (2.6) by integration with respect to π, i.e.,

(2.12)

∫
Γ

〈A(y)u(y), v(y)〉 dπ(y) =

∫
Γ

∫
D

f(x)v(x, y) dx dπ(y) =: `(v),

where 〈·, ·〉 denotes the usual duality pairing in vector spaces. The left-hand side of (2.12) is a
scalar product on V := L2

π(Γ ;X ) for w, v ∈ V ,
(2.13)

(w, v)A :=

∫
Γ

〈A(y)w(y), v(y)〉 dπ(y) =

∫
Γ

∫
D

a(x, y)∇w(x, y) · ∇v(x, y) dx dπ(y)

which induces the energy norm ‖v‖2A := (v, v)A for v ∈ V . Moreover, we define
(2.14)

(w, v)A0 :=

∫
Γ

〈A0w(y), v(y)〉 dπ(y) =

∫
Γ

∫
D

a0(x)∇w(x, y) · ∇v(x, y) dx dπ(y)

and the induced mean energy norm ‖v‖2A0
:= (v, v)A0 . It is crucial that this is a cross norm, i.e.

for elementary w ∈ V , w(x, y) = wx(x)wy(y) it holds
(2.15)

‖w‖2A0
=

∫
D

a0(x)∇wx(x) · ∇wx(x) dx

∫
Γ

wy(y)wy(y) dπ(y) = (a0wx, wx)X (wy, wy)Y .

where

(u, v)X :=

∫
D

∇u · ∇v dx and (w, z)Y :=

∫
Γ

wz dπ(y).

Note that this does not hold for the energy norm ‖w‖A. However, we have equivalence of these
two norms, ‖w‖A ∼ ‖w‖A0 , see e.g. [33]. The cross norm allows us to exploit the tensor
structure of the solution and evaluate the norms independently, see [36]. Furthermore, after
the discretization, we obtain equivalence to an `2 setting in which we can efficiently compute
the error norms. Existence and uniqueness of the solution u of (2.12) follow from the Riesz
representation theorem and u coincides with the solution of (2.1) for π-a.e. y ∈ Γ .

Note that for the numerical solution of the problem, the dimension of the parameter space is
restricted to some M < ∞ such that a set of parameters yM ∈ ΓM := [−1, 1]M has finite
cardinality and

(2.16) aM(x, y) := a0 +
M∑
m=1

am(x)ym.

Then, the solution uM of (2.6) is in the space

(2.17) VM := X ⊗ YM with YM :=
M⊗
m=1

L2
π1

([−1, 1]).

Hence, the truncation parameter M determines the dimension of the stochastic space in the
discretization. An adaptive determination of M is part of the presented refinement algorithm.
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For the discretization of the weak problem (2.12) with the stochastic Galerkin FEM, an orthonor-
mal system of polynomials as a basis for the stochastic space is defined. Upon a selection of
a (finite) active set Λ of stochastic modes, this leads to a semi-discretization of the problem
and a semi-discrete best-approximation uΛ of u. The fully discrete system is obtained with the
discretization of the deterministic space by higher-order FEM. By this, the fully discrete Galerkin
approximation uN is obtained. Let F be the set of finitely supported multi-indices

(2.18) F := {µ ∈ N∞0 | |suppµ| <∞}
where suppµ := {m ∈ N | µm 6= 0} and |µ| :=

∑
i∈suppµ µi. For any subset Λ ⊂ F , we

define suppΛ :=
⋃
µ∈Λ suppµ ⊂ N. The infinite set

(2.19) ∂Λ := {ν ∈ F \ Λ | ∃m ∈ N : ν − εm ∈ Λ ∨ ν + εm ∈ Λ}
defines the boundary of Λ. Likewise, the active boundary of Λ is defined by

(2.20) ∂◦Λ := {ν ∈ F \ Λ | ∃m ∈ suppΛ : ν − εm ∈ Λ ∨ ν + εm ∈ Λ}
which is a finite set in case that |Λ| < ∞. Here, εm := (δmn)∞n=1 denotes the Kronecker
sequence.

Tensor product orthogonal polynomial basis. Let (Pn)∞n=0 denote an orthogonal polynomial
basis of L2

π1
([−1, 1]) of degree deg(Pn) = n, see [61]. Due to the symmetry of π1, such a

basis satisfies a recursion of the form

(2.21) βnPn(ym) = ymPn−1(ym)− βn−1Pn−2(ym) for n ≥ 1

with P0 := 1 and β0 := 0. Since we assume a uniform distribution dπ1(ym) = 1
2

dym, the
(Pn)∞n=0 are Legendre polynomials and βn = (4− n−2)−1/2.

An orthogonal basis of L2
π(Γ ) is obtained by tensorization of the univariate polynomials. For any

µ ∈ F , the tensor product polynomial Pµ :=
⊗∞

m=1 Pµm in y ∈ Γ is expressed as the finite
product

(2.22) Pµ(y) =
∞∏
m=1

Pµm(ym) =
∏

m∈suppµ

Pµm(ym).

Recursion (2.21) implies

(2.23) ymPµ(y) = βµm+1Pµ+εm(y) + βµmPµ−εm(y).

Moreover, we set Pµ := 0 for µm < 0. The family of polynomials (Pµ)µ∈F forms an orthonormal
basis of L2

π(Γ ), see [61].

Stochastic discretization. The solution u of (2.12) in the basis (Pµ)µ∈F of L2
π(Γ ) with coeffi-

cients uµ ∈ X for µ ∈ F has the L2
π(Γ ;X ) convergent expansion

(2.24) u(x, y) =
∑
µ∈F

uµ(x)Pµ(y).

The sequence of coefficients (uµ)µ∈F ∈ `2(F ;V ) is determined by the infinite coupled system

(2.25) A0uµ +
∞∑
m=1

Am (βµm+1uµ+εm + βµmuµ−εm) = fδµ0 for µ ∈ F .
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In contrast to preceding publications such as [20], we allow (and in fact require by construction)
the set Λ to be a full tensor set with dimensions dm

(2.26) Λ = {(µ1, . . . , µM , 0, . . .) ∈ F | µm = 0, . . . , dm − 1; m = 1, . . . ,M}.

This yields a set of
∏M

m=1 dm elements and for dm > 1, the cardinality grows exponentially
with M . While this results in a significant enlargement of the problem as compared to other
publications where Λ was only assumed to be monotone (also called downward closed), it also
yield a much more accurate solution. It is crucial that we break this curse of dimensionality in the
following by means of low-rank tensor techniques.

For any subset Λ ⊂ F , we define the (stochastically) semi-discrete space

(2.27) V(Λ) :=
{
vΛ(x, y) =

∑
µ∈F

vΛ,µ(x)Pµ(y) | vΛ,µ ∈ X ∀ µ ∈ Λ
}
⊂ V .

Furthermore, let Ym := span{Pµm : µm = 0, . . . , dm − 1}. Since Λ is a full tensor set,

(2.28) V(Λ) = X ⊗ YM(Λ) := X ⊗

( ⊗
m∈suppΛ

Ym

)
.

The Galerkin projection of u onto V(Λ) is the unique uΛ ∈ V(Λ) which satisfies

(2.29) (uΛ, v)A = `(v) for all v ∈ V(Λ).

If Λ is finite, the sequence of coefficients (uΛ,µ)µ∈F ∈ XΛ :=
∏

µ∈F X of uΛ is determined by
the finite system

(2.30) A0uΛ,µ +
∞∑
m=1

Am (βµm+1uΛ,µ+εm + βµmuΛ,µ−εm) = fδµ0 for µ ∈ Λ

where we set uΛ,ν = 0 for ν ∈ F \ Λ. Note that all terms in the sum (2.30) vanish for
m ∈ N \ suppΛ.

2.3. Deterministic discretization. We discretize the deterministic space X by a conforming
finite element space Xp(T ) ⊂ X spanned by piecewise polynomials of degree p on some
simplicial triangulation T of D. The nodal basis is given by {ϕi}Ni=0 − 1 with N := dimVp(T ).
For the sake of a simple presentation, we assume D to be a polygon which is partitioned by T .
The set of edges (sides) is denoted S and S ∩D is the set of interior edges, S ∩ ∂D the set
of boundary edges. Likewise, for any T ∈ T , the set S ∩ ∂T contains the edges of T in the
boundary of T . Moreover, for any T ∈ T and S ∈ S , let hT := diamT and hS := diamS
denote the element and edge sizes and let ωT and ωS define the patches of T and S, i.e., the
union of all elements of T sharing at least a vertex with T or S, respectively.

The fully discrete space for the approximation of the solution is defined by
(2.31)

Vp(Λ; T ) :=

{
vN(x, y) =

∑
µ∈F

vN,µ(x)Pµ(y) | ∀ µ ∈ Λ, vN,µ ∈ Xp(T )

}
⊂ V(Λ).

Similar to (2.29), the Galerkin projection of u is the unique uN ∈ Vp(Λ; T ) which satisfies

(2.32) (uN , v)A = `(v) for all v ∈ Vp(Λ; T ).
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The sequence of coefficients (uN,µ)µ∈Λ ∈ Xp(T )Λ =
∏

µ∈ΛXp(T ) for µ ∈ Λ is determined
by
(2.33)∫

D

(A0uN,µ)v dx+
∞∑
m=1

∫
D

Am (βN,µm+1uµ+εm + βµmuN,µ−εm) v dx =

∫
D

fδµ0v dx

for all v ∈ Xp(T ). Note that we set uN,ν = 0 for ν ∈ F \ Λ as before.

2.4. Tensor structure. The tensor structure of V (2.5) and its discretization Vp(Λ; T ) (2.31)
leads to a natural formulation of (2.32) in tensor notation. According to (2.31), we may decompose
any uN ∈ Vp(Λ; T ) by

(2.34) uN(x, y) =
N−1∑
i=0

∑
µ∈Λ

U(i, µ)ϕi(x)Pµ(y).

With the truncation parameter M in (2.16), we obtain the parameter tensor U ∈ RN×d1×···×dM .
Set

Km(i, j) :=

∫
D

am(x)∇ϕi(x) · ∇ϕj(x) dx, i, j = 0, . . . , N − 1,(2.35)

Bm(µ, ν) :=

∫
Γm

ymPµm(ym)Pνm(ym) dπ(ym), ν, µ ∈ F ,(2.36)

for m = 0, . . . ,M , and with y0 ≡ 1. Then, problem (2.32) can be rewritten as

(2.37) A(U) :=

(
M∑
m=0

Am

)
(U) = F

with

Am := Km ⊗ I ⊗ . . .⊗Bm ⊗ . . .⊗ I,(2.38)

F := f ⊗ e1 ⊗ . . .⊗ e1,(2.39)

where U is in tensor format as detailed in Section 3.2 and e1 denotes the first unit vector.

3. TENSOR DECOMPOSITION FORMATS

Since the set Λ grows exponentially with M , calculating the related sum in (2.34) becomes un-
feasible very quickly for larger M . As a remedy for this problem, model reduction or compression
techniques such as reduced basis functions and the Tensor Train format can be employed. We
introduce these intimately related notions in the following sections.

3.1. Reduced Basis Functions. We seek to find a reduced basis {Φ(0)
k1

: k1 = 1, . . . , r1} that
is given by a linear combination

(3.1) Φ
(0)
k1

(x) =
N−1∑
i=0

U0(i, k1)ϕi(x).
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These functions span the subspace L0 := span{Φ(0)
k1

: k1 = 1, . . . , r1} ⊆ Xp(T ) ⊂ X . This
representation is in general not exact but instead is a further approximation of U as in (2.34) via
a truncated SVD of

(3.2) U(i, µ1, . . . , µM) ≈
r1∑

k1=1

U0(i, k1)U≥1(k1, µ1, . . . , µM).

For uN ∈ Vp(Γ ; T ), we hence obtain

(3.3) uN(x, y) =

r1∑
k1=1

∑
µ∈Λ

U≥1(k1, µ)Φ
(0)
k1

(x)Pµ(y).

The crucial point is that it yields a sufficiently good representation for all parameters µ ∈ Λ. This
can be extended to all other modes

(3.4) Lm := span{Φ(m)
km+1

: km+1 = 1, . . . , rm+1} ⊂ Xp(T )⊗ Y1 ⊗ · · · ⊗ Ym
via

Φ
(m)
km+1

(x, y1, . . . , ym)

=
N−1∑
i=0

d1−1∑
µ1=0

· · ·
dm−1∑
µm=0

U≤m(i, µ1, . . . , µm, km+1)ϕi(x)Pµ1(y1) · · ·Pµm(ym).(3.5)

These reduced basis sets do not circumvent the curse of dimensionality by themselves. However,
we observe that the subspaces are nested, namely

(3.6) Lm+1 ⊂ Lm ⊗ Ym+1.

This nestedness implies a recursive definition of the reduced basis
(3.7)

Φ
(m)
km+1

(x, y1, . . . , ym) =
rm∑

km=1

dm−1∑
µm=0

Um(km, µm, km+1)Φ
(m−1)
km

(x, y1, . . . , ym−1)Pµm(ym)

and

(3.8) U≤m(i, µ1, . . . , µm, km+1) =
rm∑

km=1

U≤m−1(i, µ1, . . . , µm−1, km)Um(km, µm, km+1).

In practice, it is convenient to orthogonalize the basis functions in (3.4). In the present case of
parametric boundary value problems, we require the orthogonality of the first set of reduced
basis functions {Φ(0)

k1
: k1 = 1, . . . , r1} with respect to an inner product equivalent to the

H1(D)-inner product. The basis sets for all other Lm are orthogonalized w.r.t. an inner product
for a Hilbert space norm equivalent to the H1(D)⊗ L2

π1
([−1, 1])M norm, see (2.14).

In the same fashion, we reduce the basis of the remaining space in Lm ⊗ Ym+1 ⊗ . . .⊗ YM ,
obtaining subspaces

Rm+1 := span{Ψ (m+1)
km+1

: km+1 = 1, . . . , rm+1},(3.9)

Rm+1 ⊂ Ym+1 ⊗ . . .⊗ YM(3.10)
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with basis functions

Ψ
(m+1)
km+1

(ym+1, . . . , yM)

=

dm+1−1∑
µm+1=0

· · ·
dM−1∑
µM=0

U≥m+1(km+1, µm+1, . . . , µM)Pµm+1(ym+1) · · ·PµM (yM).(3.11)

The original problem then reduces to a much smaller problem with solution

(3.12) uN(x, y) =

rm+1∑
km+1=1

Φ
(m)
km+1

(x, y1, . . . , ym)Ψ
(m+1)
km+1

(ym+1, . . . , yM)

depending only on the (discrete) parameter km+1. We often require the reduced basis functions
inRm+1 to be orthogonal as well. This motivates the ALS algorithm defined below.

We mention in passing that the reduced basis of the first component of the tensor (3.1) is
constructed implicitly when evaluating the solution tensor with the ALS of Section 4. Since this
basis can immediately be extracted and used for further computations, the suggested approach
could thus be understood as the offline phase of a reduced basis method.

3.2. The Tensor Train Format. Expanding on the recursive formula (3.8), we obtain an explicit
decomposition of any tensor U ∈ RN×d1×···×dM of the form

(3.13) U(i, µ1, . . . , µM) =

r1∑
k1=1

· · ·
rM+1∑

kM+1=1

U0(i, k1)
M∏
m=1

Um(km, µm, km+1),

where rm+1 = 1. Since the rm are exactly the dimensions of the subspaces rm = dim Lm,
this is just the TT representation that was introduced by Oseledets et al. in [54]. It has received
much attention in recent years and it has already been applied to stochastic PDEs in [16].

Throughout this paper, the discrete solution uN will be represented by a TT tensor U as in (2.34).
While this is a further approximation, we circumvent the curse of dimensionality in exchange since
this tensor grows only linearly in M . The question remains whether this approach is justified and
accurate enough in the present case. In general, a good approximation can be achieved if the
decay of the singular values of every unfolding of U is fast, see e.g. [44]. This is often given if
the solution u exhibits very high regularity which cannot be guaranteed here. However, in our
context, the quality of the approximation only needs to be on par with the other approximations.
Improvement is necessary only for very fine meshes and a large tensor set Λ. Therefore, it is
very reasonable to reduce the basis sets accordingly.

We define the left and right unfoldings

(3.14) UL
m = [Um]

km+1

kmµm
∈ Rrmdm×rm+1 and UR

m = [Um]
µmkm+1

km
∈ Rrm×dmrm+1

as the two matricization of the components, respectively. The above orthogonality is accom-
plished by requiring

(3.15) (UL
m)TUL

m = Irm+1 .

The component Um is then called left-orthogonal. For U0 we also require

(3.16) UT
0 U0 = Ir1
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for now, but this will be modified later. Um is called right-orthogonal if

(3.17) UR
m(UR

m)T = Irm .

Orthogonalization can be achieved by performing an SVD on the component Um and shifting
parts to the next component Um+1, i.e., for left-orthogonality,

UL
m = XmΣmY

T
m ,(3.18)

UL
m ← Xm,(3.19)

UR
m+1 ← ΣmY

T
mU

R
m+1.(3.20)

3.3. Calculating Mean and Variance in TT Format. The TT format allows to compute and
postprocess the whole parametric solution of problem (2.6) efficiently. For any given x ∈
D, y ∈ [−1, 1]M , this would conventionally be calculated by evaluating the full sum (2.34).
Computational costs for obtaining this representation grows exponentially with dimension M but
this can be overcome by using the TT structure of the tensor U as in (3.13). Notice that uN can
be rewritten as
(3.21)

uN(x, y) =

r1∑
k1=1

· · ·
rM∑

kM=1

(
N−1∑
i=0

U0(i, k1)ϕi(x)

)
M∏
m=1

(
dm−1∑
µm=0

Um(km, µm, km+1)Pµm(ym)

)
.

It can be seen directly that computational cost now is in fact linear in M . This extends to the
calculation of stochastic moments, e.g. the mean and the variance. For the mean, we get

E(uN) =

∫
Γ

uN(y) dπ(y)(3.22)

=
N−1∑
i=0

∑
µ∈Λ

U(i, µ)ϕi

M∏
m=1

∫ 1

−1
Pµm(ym) dπ(ym)(3.23)

=
N−1∑
i=0

U(i, 0, . . . , 0)ϕi(3.24)

due to the orthonormality of (Pµm)∞µm=0 in L2
π1

([−1, 1]). The variance defined by

V(uN) = E((uN − E(uN))2)(3.25)

= E(u2N)− (E(uN))2(3.26)

can be evaluated similarly. Here, the second part is just the square of the mean as above and
the first part is given by

E(u2N) =

∫
Γ

u2N(y) dπ(y)(3.27)

=

∫
Γ

N−1∑
i,j=0

∑
µ,ν∈Λ

U(i, µ)U(j, ν)ϕiϕjPµ(y)Pν(y) dπ(y)(3.28)

=
N−1∑
i,j=0

∑
µ∈Λ

U(i, µ)U(j, µ)ϕiϕj(3.29)
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because of the orthogonality of the Pµ. If the solution is right-orthogonal (3.17), this can be
simplified to

(3.30) E(u2) =
N−1∑
i,j=0

r1∑
k1=1

U0(i, k1)U0(j, k1)ϕiϕj.

Note that also higher moments can be calculated based on the preceding derivations.

3.4. Fixed-Rank Manifolds and Varieties. The representation (3.13) is called a TT decompo-
sition if r = (r1, . . . , rM) is minimal in each component. It can be shown that such a minimal
decomposition always exists and is computable in polynomial time [41]. r is then called the
TT-rank of the decomposition.

We consider the spaces

Mr = {U ∈ RN×d1×...×dM : U has TT-rank r},(3.31)

M≤r = {U ∈ RN×d1×...×dM : U has TT-rank smaller or equal to r}.(3.32)

It has been established in [41] and [64] thatMr is a smooth manifold which is embedded in
the tensor space. In [30] it has been shown thatM≤r is an algebraic variety, i.e. the set of
common zeros of some multi-variate polynomials, and as such it is closed. This is important
for optimization tasks and does not hold for all tensor decomposition formats such as e.g. the
canonical format [14]. A crucial drawback is that the manifoldMr is in general not connected
and highly non-convex. This will be discussed in the next section.

If we fix r and consider only tensors U ∈ M≤r, we can define the space of components
C≤r = {(U0, U1, . . . , UM) : U0 ∈ RN×r1 , Um ∈ Rrm−1×dm×rm} and the map

τ : C≤r → M≤r,(3.33)

(U0, U1, . . . , UM) 7→ τ(U0, U1 . . . , UM) := U,(3.34)

for the introduction of the ALS algorithm in the next section. Note that this map is not injective. It
can be made so by imposing a quotient structure on C≤r as discussed in [64] but this is not of
interest here.

4. THE ALS ALGORITHM

This section is devoted to the description of the employed solution algorithm. While there are
many advanced algorithms available, we employ a very simple iteration procedure to obtain a
low-rank approximation of the solution. The description provides some understanding of the
nature of the present tensor approximation and its relation to reduced basis functions.

Upon recalling the definitions of Section 2.4, in the given problem setting, we minimize the
functional

(4.1) J(U) :=
1

2
〈A(U), U〉 − 〈F,U〉.

This can be defined equivalently on the component space C≤r as

(4.2) j(U0, U1, . . . , UM) := J(τ(U0, U1, . . . , UM)).



14

To minimize this functional, we introduce the Alternating Least Squares (ALS) algorithm: For
m ∈ {0, . . . , d}, fix U0, . . . , Um−1 and Um+1, . . . , UM and solve the subproblem

(4.3) min
Vm∈Rrm×dm×rm+1

j(U0, . . . , Vm, . . . , UM)

in a least squares sense. This can be done in a successive manner and with alternating directions
which justifies the name of the procedure.

The TT format allows for an explicit formulation of this algorithm, sometimes dubbed the Alternat-
ing Linear Scheme, to maintain the abbreviation. In this case, we can derive a closed form for
each subproblem. These can be solved using standard tools from linear algebra and numerical
optimization.

For fixed m = 1, . . . ,M − 1, we solve the subproblem on the subspace

(4.4) Lm−1 ⊗ Ym ⊗Rm+1 ' Rrm×dm×rm+1

via

uN(x, y) =
rm∑

km=1

dm−1∑
µm=0

rm+1∑
km+1=1

Um(km, µm, km+1)

× Φ(m−1)
km

(x, y1, . . . , ym−1)Pµm(ym)Ψ
(m+1)
km+1

(ym+1, . . . , yM).(4.5)

For m = 0, this subspace becomes Xp(T )⊗R1 ' RN×r1 and for m = M we get LM−1 ⊗
YM ' RrM×dM and (4.5) changes accordingly.

We solve the subproblem by projecting the tensor U ∈ RN×d1×...×dM onto these subspaces
using the orthogonal projection Pm. If we choose the reduced basis functions {Φ(m−1)

km
: km =

1, . . . , rm} and {Ψ (m+1)
km+1

: km+1 = 1, . . . , rm+1} to be orthogonal, this projection is given by

the insertion operators Em(Um) = U and E†m(U) = Um as introduced in [42], characterized
by

(4.6) Pm = EmE
†
m.

Because of the orthogonality, we also get E†mEm = id. We remark that a sufficient condition

for the orthogonality of {Φ(m−1)
km

: km = 1, . . . , rm} and {Ψ (m+1)
km+1

: km+1 = 1, . . . , rm+1} is
maintained if U0, . . . , Um−1 are left-orthogonal and Um+1, . . . , UM are right-orthogonal. Thus,
it suffices to shift orthogonality to the next component after the optimization step in Um in order
to prepare for the next step.

The subproblem in (4.2) becomes

j(U0, U1, . . . , UM) =
1

2
〈AEm(Um),Em(Um)〉 − 〈F,Em(Um)〉(4.7)

=
1

2
〈E†mAEm(Um), Um〉 − 〈E†m(F ), Um〉,(4.8)

which yields

U+
m = argminVm∈Rrm×dm×rm+1 j(U0, . . . , Vm, . . . , UM)(4.9)

= (E†mAEm)−1E†m(F ),(4.10)

U+ = (PmAPm)−1(F )(4.11)

for every iteration step m.
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It is important to note that the rank has to be chosen in advance since the functional j is defined
on a fixed component space C≤r. Hence, one usually would reduce the ranks after some
iteration steps. This means that we minimize on the manifoldMr or the varietyM≤r. Several
approaches to rank adaptivity have been introduced already. The most well-known might be the
DMRG algorithm that is mostly used in quantum physics [62]. We present a more recent method
in section 6.

Convergence results for the ALS algorithm are subject to current research and so far only local
convergence can be assumed [58, 25, 60]. If the ALS converges to a point U∗, it was shown that
this is a stationary point [42]. Therefore, if J is a convex functional and we choose full rank r,
there is convergence to a global minimum. However, since the manifoldsMr are non-convex,
this does not hold for smaller ranks. In this case, we can hope to find a local minimum at best.

Nevertheless, in practice, the ALS algorithm often outperforms more sophisticated algorithms
significantly and remains the “workhorse” algorithm in tensor optimization [46].

4.1. Preconditioning. Preconditioning is key to the convergence behavior of the solver. We
choose to precondition the functional j using the mean value of the coefficient such that A0 =
K0 ⊗ I ⊗ · · · ⊗ I as for instance discussed in [31, 57, 56, 63]. Thus, for each m, we are
minimizing

(4.12) j(U0, . . . , Vm, . . . , UM) =
1

2
〈CAC†Em(Vm),Em(Vm)〉 − 〈C†(F ),Em(Vm)〉,

where A−10 = (K0)
−1⊗ I ⊗ · · · ⊗ I =: CCT⊗ I ⊗ · · · ⊗ I =: CC† is the unique Cholesky

decomposition. For m = 1, . . . ,M , this can be incorporated into the insertion operators,

Ũ0 = CTU0,(4.13)

Ẽm = C†Em.(4.14)

However, this would require an explicit computation of the inverse K−10 as well as its Cholesky
decomposition. Therefore, we exploit that for left-orthogonal U0, (4.13) is equivalent to

(4.15) (ŨL
0 )TK0Ũ

L
0 = Ir1 ,

i.e., we generally require the first component to be orthogonal with respect to the K0-inner
product. This yields exactly the inner product (2.14), i.e. we obtain

(4.16) (a0Φk1 , Φk′1)X = δk1k′1 .

Subsequently, we can rewrite (4.12) as

(4.17) j(U0, . . . , Vm, . . . , UM) =
1

2
〈AẼm(Vm), Ẽm(Vm)〉 − 〈F, Ẽm(Vm)〉.

This means, by ensuring orthogonality of the first component w.r.t. the mean inner product, we
can incorporate the preconditioner effectively into the ALS-step. An explicit preconditioning has
only to be carried out for the first subproblem.

4.2. Rank adaptivity. As explained above, the ALS algorithm finds a stationary point in a subset
M≤r of the fully discretized tensor space RN×d1×...×dM . Since this set is an algebraic variety, a
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necessary and sufficient condition for such a stationary point is that the projection of the gradient
onto the tangent cone
(4.18)
TUM≤r = {ξ ∈ RN×d1×···×dM : ∃(Un) ⊆M≤r, (α

n) ⊆ R+ s.t. Un → U, αn(Un−U)→ ξ}

vanishes, see e.g. [60]. In other words, U∗ is a stationary point of the functional J if

(4.19) −∇J(U∗) ∈ T ◦U∗M≤r,

where

(4.20) T ◦UM≤r = {y ∈ RN×d1×...×dM : 〈y, ξ〉 ≤ 0 for all ξ ∈ TUM≤r}

is the polar tangent cone of regular normal vectors at U . In the case where we optimize only on
the embedded manifoldMr, the tangent cone equals the linear tangent space of the manifold
and the polar tangent cone is its orthogonal complement, i.e. the normal space.

Since we know that the ALS algorithm results in a stationary point U∗ ∈ M≤r if it converges,
we can deduce that the discrete residual R(U∗) := A(U∗)− F = ∇J(U∗) lies completely
in the polar tangent cone at U∗. Thus, any step taken in gradient direction will lead us off the
varietyM≤r and hence increase the rank.

This motivates a straightforward strategy for rank increase as discussed in [19]: Find an appropri-
ate rank-k approximation of the discrete residual and add it to the tensor U∗. For example, a
rank-1 update will increase every rank by at most 1 and thus yield a sizable enlargement of the
search spaceM≤r. According to [34] such a rank-1 approximation is given by truncating the
singular values of every unfolding.

Similar to [20, 21], we introduce an estimator for the error in the full tensor space in Section 6. If
the ALS error outweighs the other error components which are the result of various discretizations,
a rank increase of the tensor is performed. Note that we aim at keeping the rank comparatively
low since increasing it results in an immediate and significant enlargement of the computational
complexity of the problem.

5. ERROR ESTIMATES

In this section, we recall an error estimator for the overall mean square energy error which was
derived in [20, 21]. It consists of different error contributions which value the discretization and
stochastic truncation errors as well as a consistency error, in our case arising from inexact solves
in low-rank format. In addition to a bound for the consistency term, our fundamental contribution
is the highly efficient evaluation of the error terms based on the exploitation of the TT format.
With this, as with the solution of the discrete problem, the curse of dimensionally can be avoided.

Following [20], we define the stochastic tail indicator for wΛ ∈ V(Λ),

ζν(wΛ) :=
∞∑
m=1

∥∥∥∥ama0
∥∥∥∥
L∞(D)

(βνm+1 ‖wΛ,ν+εm‖X + βνm ‖wΛ,ν−εm‖X ),(5.1)

and the deterministic residual-based error estimator for any wN ∈ Vp(Λ; T ),

ηµ(wN)2 :=
∑
T∈T

ηµ,T (wN)2 +
∑
S∈S

ηµ,S(wN)2(5.2)
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with volume and edge contributions on T ∈ T and S ∈ S given by

ηµ,T (wN)2 := h2T‖a
−1/2
0 (fδµ0 +∇ · σµ(wN))‖2L2(T ),(5.3)

ηµ,S(wN)2 := hS‖a−1/20 [[σµ(wN)]]S‖2L2(S).(5.4)

Here, the numerical flux σµ(wN) is defined by

(5.5) σµ(wN) := a0∇wN,µ +
∞∑
m=1

am∇(βµm+1wN,µ+εm + βµmwN,µ−εm).

The stochastic and deterministic upper bounds are then given by ζ(wΛ)2 :=
∑

ν∈F ζν(wΛ)2

and η(wN)2 :=
∑

µ∈Λ ηµ(wN)2, respectively. With this in place, the following overall error
bound can be derived.

Theorem 5.1 ([20] Thm. 6.2). For any wN ∈ Vp(Λ; T ), the solution u ∈ V of (2.1) and the
Galerkin approximation uN ∈ Vp(Λ; T ) in (2.32), it holds

‖wN − u‖2A ≤ ηA :=

(
cη√

1− γ
η(wN) +

cQ√
1− γ

ζ(wN)

+ cQ‖wN − uN‖A
)2

+ ‖wN − uN‖2A.
(5.6)

Remark 5.2. For our purposes, cQ denotes the operator norm of id − I with I the Clément
interpolation operator, and cη stems from interpolation constants and a uniform overlap condition
due to the regular grid T . More details on the definition of these constants can be found in [20].

The first sum in (5.6) suffers from the curse of dimensionality as we need to sum over the error
estimates for each µ ∈ Λ. The second sum in (5.6) is infinite but each term can be computed
very quickly. We assume the sum can in principle be evaluated (up to very high accuracy). We
address these issues independently in the following sections.

5.1. Tail Estimator. To efficiently evaluate the stochastic tail estimator (5.1), it is beneficial to
sum over all indices which affect a certain stochastic dimension n, since we aim at maintaining
the full tensor set. We thereby obtain an estimator for any component n = 1, . . . ,M (and
analogously for all inactive components n > M ).

Let

∆n := {ν ∈ ∂Λ : ν − εn ∈ Λ}(5.7)

= {(ν1, . . . , dn − 1, . . . , νM , 0, . . .) ∈ F |
νm = 0, . . . , dm − 1; m = 1, . . . ,Zn, . . . ,M}.(5.8)
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Then, the estimator for the n-th component subject to some (semi-discrete) wΛ ∈ V(Λ) is given
by

ζn(wΛ)2 =
∑
ν∈∆n

ζν(wΛ)2(5.9)

=
∑
ν∈∆n

(
∞∑
m=1

∥∥∥∥ama0
∥∥∥∥
L∞(D)

(βνm+1 ‖wΛ,ν+εm‖X + βνm ‖wΛ,ν−εm‖X )

)2

(5.10)

=
∑
ν∈∆n

(∥∥∥∥ana0
∥∥∥∥
L∞(D)

βνn ‖wΛ,ν−εn‖X

)2

(5.11)

=

(
βdn−1

∥∥∥∥ana0
∥∥∥∥
L∞(D)

)2 ∑
ν∈∆n

‖wΛ,ν−εn‖
2
X .(5.12)

Here, we use the fact that wΛ,ν+εm ≡ 0 for all m since ν ∈ ∂Λ. For the same reason we get
wΛ,ν−εm ≡ 0 for all m 6= n. By decomposing wΛ,ν =

∑N−1
i=0 W (i, ν)ϕi with the discrete FE

basis {ϕj}N−1j=0 , the last sum can be written as∑
ν∈∆n

‖wΛ,ν−εn‖
2
X =

∑
ν∈∆n

(wΛ,ν−εn , wΛ,ν−εn)X(5.13)

=
∑
ν∈∆n

N−1∑
i,j=0

(W (i, ν − εn)ϕi,W (j, ν − εn)ϕj)X(5.14)

=
N−1∑
i,j=0

∑
ν∈∆n

W (i, ν − εn)W (j, ν − εn)(ϕi, ϕj)X .(5.15)

The sum over ∆n can be seen as the trace over all stochastic indices with the n-th index fixed
from which follows∑
ν∈∆n

W (i, ν − εn)W (j, ν − εn) =

d1−1∑
µ1=0

· · ·
A
A
A
AA

dn−1∑
µn=0

· · ·
dM−1∑
µM=0

W (i, µ1, . . . , dn − 1, . . . , µM)W (j, µ1, . . . , dn − 1, . . . , µM).

(5.16)

This can be calculated efficiently in the TT format and does not scale exponentially. We obtain a
low-rank decomposition as in (3.30)

(5.17)
∑
ν∈∆n

W (i, ν − εn)W (j, ν − εn) =

r1∑
k1=1

r1∑
k′1=1

W0(i, k1)R(k1, k
′
1)W0(j, k

′
1),

where

R(k1,k
′
1) =

d1−1∑
µ1=0

· · ·
A
A
A
AA

dn−1∑
µn=0

· · ·
dM−1∑
µM=0

W≥1(k1, µ1, . . . , dn − 1, . . . , µM)W≥1(k
′
1, µ1, . . . , dn − 1, . . . , µM).

(5.18)
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Storage and computational cost is not independent of the size of Λ and depends only on the
much smaller rank r1. In accordance with [20], for any n ∈ N \ supp(Λ), (5.12) becomes

(5.19) ζn(wΛ)2 =

(
β1

∥∥∥∥ana0
∥∥∥∥
L∞(D)

)2∑
ν∈Λ

‖wΛ,ν‖2X ,

with β1 constant and ω :=
∑

ν∈Λ ‖wΛ,ν‖
2
X which can be calculated efficiently as above. The

second sum in (5.6) then becomes∑
µ∈F

ζµ(wN)2 =
∑

n∈supp(Λ)

ζn(wN)2 +
∑

n∈N\supp(Λ)

ζn(wN)2(5.20)

=
∑

n∈supp(Λ)

ζn(wN)2 + β2
1ω

∑
n∈N\supp(Λ)

∥∥∥∥ana0
∥∥∥∥2
L∞(D)

.(5.21)

Assumption (2.11) ensures convergence of

(5.22)
∑

n∈N\supp(Λ)

∥∥∥∥ana0
∥∥∥∥
L∞(D)

and thus the sum in the error estimate is finite.

5.2. Deterministic Estimator. We can exploit the TT structure for the deterministic error es-
timator as in the preceding section. Assume some (fully discrete) wN ∈ Vp(Λ; T ). Since all
sums in the expression (5.2) are finite, for the first part we deduce∑

µ∈Λ

ηµ,T (wN)2 =
∑
µ∈Λ

h2T 〈fδµ0 +∇ · σµ(wN), a−10 (fδµ0 +∇ · σµ(wN))〉T(5.23)

= h2T
(
〈fδµ0, a−10 f〉T + 2〈fδµ0, a−10 ∇ · σ0(wN)〉T

+
∑
µ∈Λ

〈∇ · σµ(wN), a−10 ∇ · σµ(wN)〉T
)
.(5.24)

As before, taking the sum over all µ ∈ Λ is computationally too complex. Instead, we exploit the
structure of the approximation wN =

∑N−1
i=0

∑
µ∈ΛW (i, µ)ϕiPµ which yields

(5.25) σµ(wN) =
M∑
m=0

N−1∑
i=0

am∇ϕiWm(i, µ),

where we set

(5.26) Wm :=
[
I0 ⊗ I1 ⊗ · · · ⊗Bm ⊗ · · · ⊗ IM

]
(W )
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and Bm is as in (2.36) with the finite index set Λ instead of F . We obtain for the last term
of (5.23), on any T ∈ T ,∑

µ∈Λ

〈∇ · σµ(wN), a−10 ∇ · σµ(wN)〉T

=
∑
µ∈Λ

〈∇ ·
M∑

m1=0

N−1∑
i=0

am1∇ϕiWm1(i, µ), a−10 ∇ ·
M∑

m2=0

N−1∑
j=0

am2∇ϕjWm2(j, µ)〉T(5.27)

=
M∑

m1,m2=0

N−1∑
i,j=0

〈∇ · (am1∇ϕi), a−10 ∇ · (am2∇ϕj)〉T
∑
µ∈Λ

Wm1(i, µ)Wm2(j, µ).(5.28)

Since Wm is a tensor in TT format, the sum over all µ ∈ Λ can again be evaluated in polynomial
(see (3.21)) and the curse of dimensionality does not incur. Additionally, similar to (5.17), it can
be advantageous to perform a low-rank decomposition of Wm such that

(5.29)
∑
µ∈Λ

Wm1(i, µ)Wm2(j, µ) =

r1∑
k1=1

r1∑
k′1=1

W0(i, k1)R
m1,m2(k1, k

′
1)W0(j, k

′
1).

Observe that the dependence on m1,m2 is encoded entirely in the middle term Rm1,m2 . It can
be incorporated into either the left or the right term, e.g.

(5.30) V m1,m2(i, k′1) :=

r1∑
k1=1

W0(i, k1)R
m1,m2(k1, k

′
1).

We thus obtain∑
µ∈Λ

〈∇ · σµ(wN), a−10 ∇ · σµ(wN)〉T =

M∑
m1,m2=0

r1∑
k1=1

〈∇ ·
N−1∑
i=0

am1∇ϕiV m1,m2(i, k1), a
−1
0 ∇ ·

N−1∑
j=0

am2∇ϕjW0(j, k1)〉T .(5.31)

This retains the original format that can be solved easily in the finite element setting. However,
the sum over all µ ∈ Λ where |Λ| grows exponentially with M is replaced by a sum over the first
rank k1 = 1, . . . , r1, and two sums over M which are much more efficient to evaluate.

The second part of the estimator can be calculated analogously on any edge S ∈ S by∑
µ∈Λ

ηµ,S(wN)2 =
∑
µ∈Λ

hS‖a−1/20 [[σµ(wN)]]S‖2L2(T )(5.32)

=
∑
µ∈Λ

hS〈[[σµ(wN)]]S, a
−1
0 [[σµ(wN)]]S〉S(5.33)

= hS

M∑
m1,m2=0

N−1∑
i,j=0

〈[[am1∇ϕi]]S, a−10 [[am2∇ϕj]]S〉S

×
∑
µ∈Λ

Wm1(i, µ)Wm2(j, µ).(5.34)
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It follows that∑
µ∈Λ

ηµ,S(wN)2 =

hS

M∑
m1,m2=0

r1∑
k1=1

〈[[
N−1∑
i=0

am1∇ϕiV m1,m2(i, k1)]]S, a
−1
0 [[

N−1∑
j=0

am1∇ϕjW0(j, k1)]]S〉S.(5.35)

5.3. ALS Residual. For the last component of (5.6), we estimate the distance to the best
approximation in the energy norm by using the discrete residual rN(wN) := A(wN − uN),

‖wN − uN‖2A =

∫
Γ

〈A(y)(wN(y)− uN(y)), (wN(y)− uN(y))〉 dπ(y)(5.36)

=

∫
Γ

〈A−1/20 rN(wN)(y), A
1/2
0 (wN(y)− uN(y))〉 dπ(y)(5.37)

≤ ‖rN‖A−1
0
‖wN − uN‖A0 ,(5.38)

where
(5.39)

‖w‖2
A−1

0
=

∫
Γ

〈A−10 w(y), w(y)〉 dπ(y) =

∫
Γ

∫
D

a−10 (x)∇w(x, y) · ∇w(x, y) dx dπ(y).

Because of the norm equivalence ‖w‖A0 ∼ ‖w‖A, we obtain the bound

(5.40) ‖wN − uN‖A . ‖rN‖A−1
0

=: ι(wN).

Since uN , wN ∈ Vp(T ;Λ), this is exactly

(5.41) ‖A−1/20 rN‖A−1
0

= ‖A−1/20 (A(W )− F )‖`2(RN×d1×···×dM )

in the Frobenius norm of the tensor space with wN =
∑N−1

i=0

∑
µ∈ΛW (i, µ)ϕiPµ.

6. FULLY ADAPTIVE ALGORITHM

The adaptive algorithm described in this section is similar to the algorithms presented in [20, 21]
to which we refer for further details. In the following, we identify functional modules which
encapsulate different aspects of the proposed adaptive approach. Given some mesh T , a finite
set Λ ⊂ F including 0, a fixed polynomial degree p and a tensor rank r, we assume that a
numerical approximation wN ∈ Vp(Λ, T ) (ideally close to the Galerkin projection of (2.32)) is
obtained by a function

wN ← Solve[Λ, T , r].
The error indicators of Section 5 and the overall upper bound ηA in Theorem 5.1 are computed
by the methods

(ηT (wN , Λ))T∈T , η(wN , Λ, T )← Estimatex[wN , Λ, T ],

(ζν(wN))ν∈∂◦Λ, ζ(wN , ∂Λ), (‖wN,µ‖V )µ∈Λ ← Estimatey[wN , Λ],

ι(wN)← EstimateALS[wN ].
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With these, a separate marking of elements of the mesh T and the modes of the inactive
boundary ∂◦Λ ⊂ F \ Λ of Λ is carried out by the functions

M← Markx[ϑx, (ηT (wN , Λ))T∈T , η(wN , Λ, T )],

∆← Marky[ϑy, (ζν(wN))ν∈∂◦Λ, ζ(wN , ∂Λ), (‖wN,µ‖V )µ∈Λ]

with refinement parameters 0 < ϑx, ϑy ≤ 1. Refinex determines a subsetM ⊆ T of
elements to refine. Details about the procedure Refiney can be found in [21, Sec. 5.2]. The
obtained smallest setsM⊆ T and ∆ ⊂ ∂Λ satisfy the Dörfler property, i.e.,

η(wN , Λ,M) ≥ ϑxη(wN , Λ, T ) and ζ(wN , ∆) ≥ ϑyζ(wN , ∂Λ),

where η(wN , Λ,M) and ζ(wN , ∆) denote the obvious restrictions of the estimators η and ζ to
the respective subsets. With these marking sets, the following methods produce a refined regular
mesh T ∗ and an enlarged active set Λ∗, namely,

T ∗ ← Refinex[T ,M] and Λ∗ ← Refiney[Λ,∆].

We set Λ∗ = Λ ∪∆ but other choices are possible as long as we maintain a full tensor set.

In addition to the algorithm of previous publications, we also have to handle the case that the
consistency error due to the inexact ALS solve in TT format estimated by ι(wN) dominates. As
described in Section 4.2, each rank of the tensor representation then is increased by one which
is encoded in the routine

U∗ ← UpdateTT[U ]

as outlined in Section 4.2

A single iteration step of an adaptive algorithm which returns either a refined T ∗ or Λ∗ or the
tensor format solution with increased rankU∗ is given by the function TTASGFEM. For numerical
simulations as performed in Section 7, this function has to be called iteratively until either a
defined error bound or a maximum problem size is reached. The upper error bound directly
follows from Theorem 5.1 and the computable estimators of Section 5.

U∗, T ∗, Λ∗ ← TTASGFEM[Λ, T , ϑx, ϑy, r, αTT]

U∗, T ∗, Λ∗ ← U, T , Λ
wN ← Solve[Λ, T , r]
(ζν)ν∈∂◦Λ, ζ, (‖wN,µ‖V )µ∈Λ ← Estimatey[wN , Λ]
(ηT )T∈T , η ← Estimatex[wN , Λ, T ]
ι← EstimateALS[wN ]
if η = max{η, ζ, αTTι} then
M← Markx[ϑx, (ηT )T∈T , η]
T ∗ ← Refinex[T ,M]

else if ζ = max{η, ζ, αTTι} then
∆← Marky[ϑy, (ζν)ν∈∂∗Λ, ζ, (‖wN,µ‖V )µ∈Λ]
Λ∗ ← Refiney[Λ,∆]

else
U∗ ← UpdateTT[U ]
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FIGURE 1. Adaptively refined meshes for square and L-shaped domains with
σ̃ = 2. Iterations 2 and 47 (square), and 12 and 43 (L-shaped).

7. NUMERICAL EXPERIMENTS

The adaptive algorithm of Section 6 is implemented with the open source framework ALEA [23]
which has already been used for the ASGFEM presented in [20, 21], the FEniCS FE frame-
work [28] and ttpy [52], an open source toolbox for the TT format. For the evaluation of the
stochastic energy error of the numerical solution, we employ Monte Carlo sampling based on a
realization-wise reference solution as described in Section 7.1. Subsequently, the performance
of the new exact error estimator with regard to some benchmark problems on the square and the
L-shaped domain as in [20, 21] is examined in Section 7.2.

7.1. Evaluation of the error. For experimental verification of the reliability of the error estimator,
the error of the parametric solution is computed by Monte Carlo simulations. For this, a set
of MMC independent realizations {y(i)}MMC

i=1 of the stochastic parameters is determined. The

y
(i)
m are sampled according to the probability measure π of the (vector-valued) random variable
y ∈ Γ . The mean-square error e of the (inexact) parametric SGFEM solution wN ∈ Vp(Λ, T )
is approximated by a Monte Carlo sample average

‖e‖2X =

∫
Γ

‖u(y)− wN(y)‖2X dπ(y) ≈ 1

MMC

MMC∑
i=1

‖ũ(y(i))− wN(y(i))‖2X .(7.1)

Note that the sampled solutions ũ(y(i)) are approximations of the exact u(y(i)) = A−1(y(i))f
since the differential operator is discretized on a fine reference mesh which is obtained by another
uniform refinement of the adapted mesh generated from the SGFEM discretization of the final
iteration. Moreover, the truncated expansion (2.8) of the random field a(x, y) is expanded by the
trailing largest 200 terms which are not considered by the best approximate parametric solution.
We choose MMC = 150 for the Monte Carlo sampling of the reference error (7.1) which proved
to be sufficient to assess the reliability of the error estimator.

7.2. The stochastic diffusion problem. We examine numerical simulations for the stationary
diffusion problem (2.1) in a plane, polygonal domain D ⊂ R2. As in [20, 21], the expansion
coefficients of the stochastic field (2.8) are given by

(7.2) am(x) := αm cos(2π%1(m)x1) cos(2π%2(m)x2)

where αm is of the form ᾱm−σ̃ with σ̃ > 1 and some 0 < ᾱ < 1/ζ(σ̃) with the Riemann zeta
function ζ . Then, (2.11) holds with γ = ᾱζ(σ̃). Moreover,

(7.3) %1(m) = m− k(m)(k(m) + 1)/2 and %2(m) = k(m)− %1(m)



24

with k(m) = b−1/2 +
√

1/4 + 2mc, i.e., the coefficient functions am enumerate all planar
Fourier sine modes in increasing total order. To illustrate the influence which the stochastic
coefficient plays in the adaptive algorithm, we examine the expansion with slow and fast decay of
αm, setting σ̃ in (7.2) to either 2 or 4. The computations are carried out with conforming FEM
spaces of polynomial degrees 1, 2 and 3. For the adaptive algorithm TTASGFEM of Section 6,
the marking parameters are ϑx = ϑy = 1/2.

7.2.1. Square domain. The first example is the stationary diffusion equation (2.1) on the unit
square D = (0, 1)2 with homogeneous Dirichlet boundary conditions and with right-hand side
f ≡ 1. The results of the adaptive algorithm TTASGFEM for a slow decay of the coefficients
with σ̃ = 2 and a fast decay with σ̃ = 4 are depicted in Figures 2–5. The amplitude ᾱ in (7.2)
was chosen as γ/ζ(σ̃) with γ = 0.9, resulting in ᾱ ≈ 0.547 for σ̃ = 2 and ᾱ ≈ 0.832 for
σ̃ = 4.

Figure 2 shows the error estimator ηA and the reference error obtained by Monte Carlo sampling
as described in Section 7.1 in the top row. In all cases, the error estimator exhibits the same
decay rate as the actual energy error. This is the largest for p = 3, as expected. In particular,
the obtained accuracy for p = 2, 3 is significantly higher than for the first order FE approximation
p = 1. With faster decay of the coefficient (right column), the attained error levels are better
than for slower decay (left column). In the bottom row of the same figure, the progression of
the maximal TT rank and the number of active stochastic dimensions (ydim) are pictured. It
can be seen that an increase of stochastic dimensions is coupled to a growing rank of the
TT representation of the solution. The largest values can be observed for p = 3 with slow
decay, namely about 130 stochastic dimensions and the maximal TT rank 22. For the low-order
p = 1 FEM, the stochastic dimensions and consequently the TT ranks are much lower since the
deterministic approximation error is much more pronounced than for p = 3.

The compression level gained by the low-rank TT representation can be seen in Figure 3. There,
the complete degrees of freedom of the problem discretization are plotted against the dofs of the
compressed TT representation. Clearly, one can observe an exponential scaling with the number
of active stochastic dimensions in the uncompressed case. Due to the curse of dimensionality,
in case of slow decay and p = 3, the complete dofs rise to about 1050 which is far beyond a
feasible problem size for actual computations. However, due to the employed tensor compression,
the discretization is reduced significantly while retaining a very high approximation quality. This
effect is less strongly pronounced for fewer active stochstastic dimensions as with the p = 1
discretizations.

The top row of Figure 4 depicts the deterministic FE dofs and the stochastic dofs of the discretiza-
tion without the low-rank compression of the TT representation. The successive increase of
active stochastic dimensions (plotted in Figure 2 bottom row) leads to an exponential growth of
stochastic dofs, also compare with Figure 3.

In the TT representation, the increase of stochastic dofs basically becomes linear as pictured in
the bottom row of Figure 4. It can also be observed that the successive rank increase leads to
an increasing number of deterministic dofs. This is some negligible trade-off for the significant
compression of the exponential growth of the stochastic dofs.

The degree of the Legendre chaos polynomials for the first 30 stochastic dimensions is depicted
in Figure 5. As expected, for p = 1 the maximal polynomial degree is relatively small and only
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FIGURE 2. Convergence of the error estimator in the energy norm with FEM
of degree p = 1, 2, 3 for the stationary diffusion problem on the square with
homogeneous Dirichlet boundary conditions for slow (σ̃ = 2, left) and fast
(σ̃ = 4, right) decay. Error estimator and sampled error (top), number of active
stochastic dimensions and TT rank (bottom) for TT degrees of freedom.

few dimensions are active. Opposite to this, for p = 3 the stochastic error dominates and the
stochastic dimensions are thus increased drastically. In case of fast decay, the first stochastic
dimension is descretized with polynomials up to degree 10. This is smaller in case of slow decay,
namely degree 5. However, the number of active dimensions then is about 130.

A comparison with the results obtained in [21] is depicted in Figure 6 for p = 1, 3. It can clearly
be seen that the TT approximation presented in this work improves on previous results. For
slow decay (left), the improvement is noticeable but the comparatively small stochastic basis
selected in the adaptive algorithm of [21] already seems to be nearly optimal. For fast decay
(right), significant improvements of the approximation quality can be observed.

7.2.2. Square domain TT rank test. In this example, we investigate the influence the TT rank has
on the accuracy of the discrete solution. As in Section 7.2.1, we assume a square domain and
determine the discrete solution uN with p = 1, 2, 3 FEM, M = 30 stochastic dimensions and a
slow decay rate σ̃ = 2 in the coefficient representation. The stochastic variables are discretized
with a uniform polynomial degree of 3. Figure 7 depicts the mean square energy error of the
discrete solution subject to the rank of the low-rank TT representation. With increasing rank, the
number of degrees of freedoms (dofs) continuously increased, starting with rank 1 and ending at
about 105 dofs in the shown graphs. We compare the error progression with increasing ranks for
each polynomial FE degree for a coarser and a finer grid. The left graph in Figure 7 depicts the
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norm with FEM of degree p = 1, 3 for the stationary diffusion problem on the
square with homogeneous Dirichlet boundary conditions for slow (σ̃ = 2, left)
and fast (σ̃ = 4, right) decay.

experiments with the coarser grid, the right graph shows the results on the finer grid. It can clearly
be observed that the error crucially depends on the rank of the representation. With the coarser
grid, a constant error decay can only be observed for p = 3. The solutions with p = 1, 2 show
degraded error reduction for increasing ranks which is due to the prevailing FE approximation
error which in these cases is dominant on the coarse mesh (left graph). This behavior changes
on a finer grid (right graph). Since the FE approximation error is reduced in for all FE polynomial
degrees, the error can be decreased for all p = 1, 2, 3. While p = 2 now exhibits a constant
decay rate, p = 1 levels off once the FE error dominates again. This point is reached with rank 4.
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A consequence we can infer from these observations is that, in order to obtain a fully adaptivity
approximation scheme, also the tensor rank has to be updated according to the required accuracy
of the numerical solution. Hence, this is included in the adaptive algorithm presented in Section 6.

7.2.3. L-shaped domain. A standard benchmark problem for deterministic a posteriori error
estimators is the stationary diffusion problem (2.1) on the L-shaped domain D = (−1, 1)2 \
(0, 1)× (−1, 0). It is well-known that the solution exhibits a singularity at the reentrant corner
at (0, 0) which has to be resolved by a pronounced mesh refinement in its vicinity in order to
achieve optimal convergence rates, also see Figure 1. The previous remarks in Section 7.2.1
regarding the setup of the coefficient and the error evaluation are also valid with this example.
The convergence of the error estimator and its efficiency with regard to the error determined
by (7.1) are depicted in Figures 8–9.

Similar to the example on the square domain of Section 7.2.1, the energy error and the a
posteriori error estimator for slow (left) and fast (right) decay of the stochastic field coefficient are
depicted in Figure 8 (top row). Moreover, the number of active stochastic dimensions and the TT
rank of the tensor representation are shown (bottom row). Compared to the experiments on the
square domain, the stochastic discretization reaches somewhat lower levels since the adaptive
algorithm first has to ensure that the determistic FE approximation is sufficiently accurate due to
the present corner singularity. In particular, this results in an initial mesh refinement for p = 2, 3
which was not the case before. Hence, the number of active stochastic dimensions now stays
below 100 in all experiments.

For different FE degrees, the observed convergence rates of the energy error are obviously
different with p = 3 leading to the highest rates.

The distribution of stochastic polynomial degrees with respect to the stochastic dimension is
pictured in Figure 9. These are similar to Figure 5 with somewhat lower degrees than before due
to the reasons mentioned above.
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FIGURE 8. Convergence of the error estimator in the energy norm with FEM of
degree p = 1, 2, 3 for the stationary diffusion problem on the L-shaped domain
with homogeneous Dirichlet boundary conditions for slow (σ̃ = 2, left) and fast
(σ̃ = 4, right) decay. Error estimator and sampled error (top), number of active
stochastic dimensions and TT rank (bottom) for TT degrees of freedom.
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