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Abstract

In this paper we introduce a general abstract formulation of a variational thermomechanical
model, by means of a unified derivation via a generalization of the principle of virtual powers for all
the variables of the system, including the thermal one. In particular, choosing as thermal variable
the entropy of the system, and as driving functional the internal energy, we get a gradient flow
structure (in a suitable abstract setting) for the whole nonlinear PDE system. We prove a global in
time existence of (weak) solutions result for the Cauchy problem associated to the abstract PDE
system as well as uniqueness in case of suitable smoothness assumptions on the functionals.

1 Introduction

In this paper we introduce a general derivation of thermo-mechanical phase transition models by
use of a generalization of the principle of virtual powers, in which micro-forces and thermal forces
are included. It is known that a recent field of research, in the framework of phase transitions, has
concerned models with some micro-forces (see, e.g., the approaches by Frémond [11] and by Gurtin
[14]). The main idea is that the equations governing the evolution of phase transition phenomena
may be derived by a variational principle, i.e. the principle of virtual powers, in which micro-forces,
responsible for phase transitions (i.e. for changes in the microstructure level of the materials), are
included. As a consequence, the resulting PDE system provides an intrinsic variational structure, at
least concerning equations for displacements and internal quantities, as phase or order parameters.
Many authors have dealt with this kind of approach. We mention, among the others we quote some
contributions as [15], [10], and [18].

On the other hand, as far as thermal properties are concerned, in the recent years several ef-
forts have been spent to investigate models in which an entropy balance (or imbalance) equation was
introduced in place of the more classical “heat equation”. We recall, e.g., the contribution by [3], [4],
and [5]. In particular, let us mention that the last paper shows a derivation of the equation on the en-
tropy by convex analysis tools and the application of a Legendre transformation for the free energy. It
is interesting to observe that in this framework, also thermal memory is formally justified from the point
of view of the derivation of the model. In a different direction Podio-Guidugli, in relation to a theory pro-
posed by Green and Naghdi, introduced the possibility of including thermal displacements and forces
in the whole balance of the principle of virtual powers, so that the entropy equation may be recovered,
as well as the momentum equation, as a “balance of forces”, forcing the system on the base of some
“reluctance to order”. Indeed, starting from the consideration that some virtual power principle may be
used to deduce all balance and imbalance laws of thermomechanics, he suggested to use it also for
the derivation of thermal evolution, through the notion of thermal displacement. As a consequence, he
derives an equation for the entropy of the system, which is combined with momentum balance. This
approach turns out to be consistent with thermodynamical principles. See, among the others, [20] and
the papers by Green and Naghdi [12], [13], and references therein. Finally, we can quote the recent
contribution [16], where a gradient structure of systems in thermoplasticity is introduced by means of
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a free entropy functional instead of the internal energy, which is the driving functional in the present
contribution.

Indeed, in this paper, we aim to combine the previous approaches and provide a general ab-
stract formulation of a variational thermomechanical model which can be applied to recover different
phase transitions and phase separation phenomena, also accounting for mechanical or thermal ef-
fects. Hence, we introduce an unified approach which formally justifies the evolution of the thermal
variable (represented here by the entropy of the system), the phase parameters, and (possibly) the
displacements. Actually, in the following, we are dealing with two state variables: s, which mainly plays
the role of the entropy, and a phase parameter χ, representing the internal mechanical variable. The
main advantage of the gradient structure is the possibility of deriving a time-incremental minimization
procedure, where the internal energy functional is minimized with respect to the entropy and the in-
ternal variables and so the existence of weak solutions for the associated Cauchy problem can be
deduced under quite general assumptions on the involved nonlinearities.

Indeed, the choice of the energy functional and the dissipation potential are fairly general.
In particular, in the internal energy functional we can include multivalued operators to ensure some
internal constraints. Since the resulting gradient flow structure is nonlinear and non smooth, we have to
introduce a suitable notion of (weak) solution in order to get a global in time existence result. However,
the weak notion of solution we are introducing is naturally in accordance with the physical meaning of
the problem under consideration as well as with the classical principles of thermodynamics. The proof
is performed by means of a combined regularization and time discretization procedure. Moreover,
uniqueness of solutions is proved under some further smoothness assumption on the internal energy
functional.

The paper is organized as follows. In the next Section 2 we derive the model and state the
main assumptions on the involved physical quantities and functionals. The main existence result is
stated and proved in Section 3, as well as the uniqueness of solutions.

2 The model and the main assumptions

Let Ω ⊂ R3 be a bounded and sufficiently regular domain with boundary Γ := ∂Ω. We introduce an
Hilbert triplet V ⊂ H ⊂ V ′ (with dense and compact injections), where V = H1(Ω), H = L2(Ω),
and H is identified as usual with its dual. We introduce the notations 〈·, ·〉 for the duality pairing
between V and V ′ and (·, ·) for the usual scalar product both in H and in L2(Ω)3. To simplify the
notation, we write H in place of L2(Ω)3, or V in place of H1(Ω)3, when vector-valued functions are
considered. For every f ∈ V ′ we indicate by f the spatial mean of f over Ω, i.e.

f :=
1

|Ω|
〈f, 1〉,

where |Ω| stands for the Lebesgue measure of Ω. We note as H0, V0 and V ′0 the closed subspaces
of functions (or functionals) having zero mean value in H , V , and in V ′, respectively. Then, by the
Poincaré-Wirtinger inequality,

‖v‖V0 :=

(∫
Ω

|∇v|2 dx

)1/2

represents a norm on V0 which is equivalent to the norm naturally inherited from V . In particular ‖·‖V0

is a Hilbert norm associated to a scalar product ((·, ·))V0 (defined in (2.1)), and thus we can introduce
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the associated Riesz isomorphism mapping A : V0 → V ′0 by setting, for u, v ∈ V0,

〈Au, v〉 := ((u, v))V0 :=

∫
Ω

∇u · ∇v dx, (2.1)

so that 〈Au, u〉 = ‖u‖2
V0

for every u ∈ V0 and 〈v,A−1(v)〉 = ‖v‖2
V ′0

for every v ∈ V ′0 . Finally,

we can identify H0 with H ′0 by means of the scalar product of H so to obtain the Hilbert triplet
V0 ⊂ H0 ⊂ V ′0 , where inclusions are continuous and dense. In particular, if z ∈ V and v ∈ V0, it is
easy to see that ∫

Ω

∇z · ∇(A−1v) dx =

∫
Ω

(z − z̄)v dx =

∫
Ω

zv dx. (2.2)

In what follows in this section we introduce our modelling approach and the set of PDEs and initial and
boundary conditions which we are going to analyze in the next sections.

2.1 The Principle of Virtual Powers

The model is derived by using a variational principle in mechanics which is known as (generalized)
principle of virtual power. Indeed, we refer to some generalization of the well known mechanical prin-
ciple as we are including in the involved forces the microscopic forces, acting on some “micro-scale”,
and also possible “thermal forces". Without entering the details of this argumentation, let us point out
that this principle is formally based on the fact that velocities are considered in a suitable linear space
and thus forces are defined as elements acting on velocities with respect to some duality relation be-
tween the two spaces. This is done for any (sufficiently smooth) subdomain D ⊆ Ω. Hence, before
proceeding we make precise the virtual velocities we are considering. More precisely, let us take the
couple of virtual velocities (δt, vt) (whose physical meaning may change time to time). In the case
when no accelerations are included, the principle of virtual powers can be written considering the
power of internal forces Pint and of external forces Pext (depending on D, δt, vt) as follows:

Pint(D, δt, vt) + Pext(D, δt, vt) = 0.

We assume that the power of internal forces is introduced as follows (in Ω and for any virtual velocities
δt ∈ V0 and vt ∈ V )

Pint = 〈〈F, δt〉〉+ 〈〈G, vt〉〉 = 〈F, δt〉+

∫
Ω

B vt dx+

∫
Ω

E∇vt dx, (2.3)

where F , B and E denote interior thermal and mechanical (micro) forces and stresses, respectively
and the duality relation 〈〈·, ·〉〉 is suitably defined between forces and velocities spaces.

Analogously, the power of external forces is

Pext = 〈〈R, δt〉〉+ 〈〈Z, vt〉〉.

We let vt ∈ V and δt ∈ V0 and we assume there exists Z, z such that

〈〈R, δt〉〉 = 〈R, δt〉 and 〈Z, vt〉 =

∫
Ω

Z vt +

∫
Γ

z vt, (2.4)

where Z and z stand for the external forces acting in the bulk Ω and at the boundary Γ, respectively.

It is clear that that we are considering a different behavior of the forces on the two types
of virtual velocities. Indeed, we note that the elements G and Z are defined as a.e. forces living
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in the bulk and on the boundary (with suitable summability), while we take F and R as general
as possible to include all the different (and less regular) situations we will face. In particular, as it
will be clear once we will make a precise choice of the actual velocities (cf. (2.5) and (2.6)), of the
energy functional (2.11), and of the dissipation potential (2.14), we aim to write down an equation
for the thermal variable of conservative type: it will result indeed as a conservation of energy, while
the equation for the mechanical variable will be on non conservative type. This mainly motivates the
choice we have made for the power of internal and external forces. Other choices are possible (cf.,
e.g., Remark 2.8), but we prefer not to move in this direction in the present contribution.

2.2 The constitutive relations and the PDEs

The state variables. We are dealing with a physical system governed by the state variables (s, χ,∇χ)
whose evolution is ruled by different thermomechanical relations. Note that we are distinguishing be-
tween different dependence of the energy with respect to the two variables s and χ: we consider, in
particular, the gradient ∇χ but not ∇s as state variable (cf. (2.11)). This corresponds to the specific
choice we have done for the forces F , G andR,Z we have made in (2.3) and (2.4).

In order to get the evolution of s, we take the actual velocities as δt = A−1(ξt), where ξt ∈ V ′0
and vt = 0, in order to get (forR = 0) 〈F,A−1(ξt)〉 = 0 for all ξt ∈ V ′0 and so we obtain

A(F ) = 0 in V ′0 . (2.5)

The evolution of χ is obtained by integrating by parts in Pint and choosing Z = z = 0 and δt = 0 as
well:

B − divE = 0 in V ′, (2.6)

with the no-mass flux through the boundary of Ω:

E · n = 0 on Γ , (2.7)

where we have denoted by n the outward unit normal vector to Γ. Notice that we have chosen here to
have 0 ezternal forcesR and Z only for simplicity of notation.

Remark 2.1. In the following, we mainly refer to the variable χ as a phase or order parameter, i.e.
related to the micro-structure of the physical system. However, let us point out that we could formally
include in our procedure the derivation of the (more) classical momentum balance equation (letting,
e.g., χ stand for displacements). In this case, the force B has to be equal to 0, due to the principle of
rigid motions.

The functionals and the main assumptions. We introduce two functionals governing the evolu-
tion and the equilibrium of our (thermo)mechanical system. These functionals depend on the state
variables and on the dissipative variables, respectively. As far as the equilibrium, it is governed by an
energy functional, and we choose to make use of an internal energy functional (in place of the free
energy functional). This choice is motivated by the fact that we may interprete s as the entropy of the
system (see [16] for a physical justification). However, it is well known that, under suitable assumptions,
the internal energy may be introduced as the Legendre transformed of the free energy.

Before we make precise the choices of the internal energy functional and of the dissipation
potential, let us introduce a functionW , depending on χ, as the sum of a convex possibly non-smooth
part and non-convex but regular function and it satisfies some smoothness and growth assumptions,
in particular, we need:
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Hypothesis 2.2. Assume W (χ) = β̂(χ) + γ̂(χ), where

(w1) β̂ : dom(β̂)→ [0,+∞] is convex, proper, and lower semicontinuous,

(w2) γ̂ : R→ R is a C1,1 function on R.

Remark 2.3. Notice that particularly meanigful choices ofW used in the literature of phase transitions
(when χ assumes the meaning of phase variable) are, for example,

1. the double well potential W (χ) = (χ2 − 1)2

2. the logarithmic potential W (χ) = χ log(χ) + (1− χ) log(1− χ)− χ2

3. the double obstacle potentialW (χ) = I[0,1](χ)−χ2, where I[0,1] denotes the indicator function
of the interval [0, 1] and it is defined as I[0,1](x) = 0 if x ∈ [0, 1] and I[0,1](x) = +∞
otherwise.

Moreover, we introduce a function j(θ, χ) : R× R→ [0,+∞] such that

θ 7→ j(θ, χ) is a convex, proper, and lower semicontinuous for every χ ∈ R and

χ 7→ j(θ, χ) is a C1 function for every θ ∈ R,

and let

JH(θ, χ) =


∫

Ω

j(θ, χ) if (θ, χ) ∈ H ×H and j(θ, χ) ∈ L1(Ω)

+∞ if (θ, χ) ∈ H ×H and j(θ, χ) 6∈ L1(Ω)
(2.8)

JV (θ, χ) = JH(θ, χ) on V ×H. (2.9)

Hence, we can introduce the convex conjugate of JV as follows J∗V (s, χ) : V ′ ×H → [0,+∞] is
defined as

J∗V (s, χ) = sup
θ∈V

(〈s, θ〉 − JV (θ, χ)) , (s, χ) ∈ V ′ ×H. (2.10)

Now, we are in the position of introducing the energy functional e : V ′ ×H ×H → (−∞,+∞]:

e(s, χ,∇χ) = J∗V (s, χ) +

∫
Ω

(
1

2
|∇χ|2 +W (χ)

)
dx. (2.11)

Let us note here that the first term in (2.11) contains both the purely caloric part of the energy func-
tional (i.e. the one depending only on s as well as the coupling terms depending on both s and χ)
(cf. Subsection 2.3 for possible choices of J∗V ), while inside the integral over Ω we have the parts
accounting for the nonlocal interfacial energy effects (the |∇χ|2) and the mixing potential W (cf. Re-
mark 2.3 for examples of possible choices of functions W ). We intentionally choose not to consider
interfacial (nonlocal) energy effects in the variable s in order to differentiate the roles of the caloric and
the mechanical parts (s and χ, respectively) in our approach.

Then, we can define the subdifferential (with respect to the variable s) ∂V ′,V JV (s, χ) which
maps V ′ ×H into 2V as (cf., e.g., [6]):

v ∈ ∂V ′,V J∗V (s, χ) if and only if v ∈ V, (2.12)

(s, χ) ∈ D(J∗V ), and J∗V (s, χ) ≤ 〈s− w, v〉+ J∗V (w, χ) ∀(w, χ) ∈ V ′ ×H .



6

Actually, in what follows we will always work in the space V ′ ×H and so we will state directly
the assumptions we need on the functional J∗V defined in (2.10). In particular, we need the following
assumptions:

Hypothesis 2.4. We assume that J∗V : V ′ × H → [0,+∞] is such that: there exist two positive
constants c1, c2 ∈ R+ such that the functional J∗V defined in (2.10) satisfies:

(J1) χ 7→ J∗V (s, χ) is Fréchet differentiable in H for every s ∈ V ′,

(J2)

∥∥∥∥∂J∗V (s, χ)

∂χ

∥∥∥∥
H

≤ c1‖η‖H + c2, for every η ∈ ∂V ′,V J∗V (s, χ) and (s, χ) ∈ D(J∗V ),

where ∂(·)
∂χ

denotes the partial derivative with respect to χ (which will be denoted also by ∂χ(·) and by
(·)χ in the paper).

Moreover, we assume that

(J3) s 7→ J∗V (s, χ) is proper, convex and lower semicontinuous from V ′ to [0,+∞], for everyχ ∈ H ,

so that the subdifferential ∂V ′,V JV (s, χ) which maps V ′×H into 2V according to the definition (2.12)
turns out to be a maximal monotone operator acting from V ′ to 2V , for every χ ∈ H (cf. [1]).

Note that, the assumption (J3) follows from assumptions on j and (2.10) and that possible
examples of functions j complying with our assumptions will be listed in the next Subsection 2.3.

Remark 2.5. Observe that the assumptions on the positivity of the maps j and J∗V could be weakened:
we need indeed to have only a lower bound (possibly with a negative constant) for them in order to
perform the first a-priori estimate (3.16). Moreover, let us nothe that the assumption (J2) could be
relaxed: we could indeed assume c1, c2 to be two continuous functions of χ bounded on dom(β̂).
However, we put ourselves in this setting to avoid further technicalities for the reader’s convenience.

Remark 2.6. Note that, under particular assumptions on the function j (for example in case dom(j) =
R), we could also rewrite the functional e in (2.11) as (cf. Remark 2.7 for more details and [1])

e(s, χ,∇χ) =

∫
Ω

(
j∗(s, χ) +

1

2
|∇χ|2 +W (χ)

)
dx , (2.13)

where j∗ is the conjugate function of j with respect to the variable s, i.e.

j∗(s, χ) = sup
θ∈R

(sθ − j(θ, χ)) , ∀(s, χ) ∈ R× R .

We introduce as dissipative variables the time derivatives st and χt (see, e.g. [11], for a def-
inition of the pseudo-potential of dissipation à la Moreau) and we include dissipation in the model by
choosing the following form for the pseudopotential of dissipation depending on the dissipative vari-
ables st and χt. Note that we suppose the evolution to be rate dependent. The first possibility we
consider for the dissipation functional is

ϕ : V ′0 ×H → R, ϕ(st, χt) =
1

2
〈st, A−1st〉+

1

2

∫
Ω

|χt|2 dx . (2.14)
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Note that we have a natural scalar product in V ′0 ((·, ·))V ′0 defined as ((st, st))V ′0 = 〈st, A−1st〉 =
‖st‖2

V ′0
,
∫

Ω
|χt|2 dx = (χt, χt) = ‖χt‖2

H . In the defintions of e and ϕ we have normalized all the
physical constants to 1 for simplicity and without any loss of generality. Another possibility consists in
letting

ϕ(st, χt) =
1

2
〈st, A−1st〉+

1

2
〈χt, A−1χt〉, (2.15)

but we prefer not to exploit this case in the present contribution in order to distinguish between the
roles of the two variables: the thermal variable s (conserved) and the mechanical variable χ (non
conserved). Moreover, a rate-independent model could be introduced in place of the rate-dependent
one we analyze here by suitably modifying the choice of the dissipation functional (2.14) (cf., e.g., [17]).
However, the analysis we are performing does not apply to this case, which would require ad hoc
techniques and some suitable notion of weak solution.

The constitutive relations and the PDEs. Now, according to the definition of Pint and of e and ϕ
(cf. (2.11) and (2.14)), we let the thermal force F be

F = ∂se+ ∂stϕ = ∂V ′,V J
∗
V (s, χ) + A−1(st) . (2.16)

Hence, for the evolution of χ we prescribe the following mechanical (micro) forces and stressesB and
E:

B = ∂χe+ ∂χtϕ = ∂χJ
∗
V (s, χ) + ∂β̂(χ) + γ̂′(χ) + χt, E = ∂∇χe = ∇χ . (2.17)

From (2.5–2.7) and the above constitutive relations we deduce the following PDE system for
the evolution of s and χ:

st + Aη = 0 in V ′0 , η ∈ ∂V ′,V J∗V (s, χ), a.e. in (0, T ) , (2.18)

χt −∆χ+ ξ + γ(χ) + ∂χJ
∗
V (s, χ) = 0, ξ ∈ β(χ) a.e. in Ω× (0, T ) (2.19)

∇χ · n = 0 a.e. on Γ× (0, T ) , (2.20)

where we denote by β the subdiferential of β̂ (β = ∂β̂) and by γ = γ̂′.

Notice that system (2.18)–(2.19) can be rewritten in terms of the vector u := (s, χ) in a more
general framework, as the gradient-flow associated to the functional

Φ(u) = Φ(s, χ) = J∗V (s, χ) +

∫
Ω

(
1

2
|∇χ|2 +W (χ)

)
dx , (2.21)

as

N (ut) +
δΦ

δu
3 0 in (0, T ) , (2.22)

whereN is the duality map betweenH := V ′0 ×H and V0 ×H induced by the norm

‖u‖H := 〈A−1(s), s〉+

∫
Ω

|χ|2 dx, so thatN (s, χ) := (A−1(s), χ) . (2.23)

Remark 2.7. Let us notice that in case dom(j) = R, which is also equivalent to assume

lim
|r|→+∞

j∗(r)

|r|
= +∞ ,
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then we can prove that (cf. [2]) the functional e defined in (2.11) can be rewritten as

e(s, χ,∇χ) =

∫
Ω

(
j∗(s, χ) +

1

2
|∇χ|2 +W (χ)

)
dx ,

where j∗ is the conjugate function of j with respect to the variable s, i.e.

j∗(s, χ) = sup
θ∈R

(sθ − j(θ, χ)) , ∀(s, χ) ∈ R× R .

Moreover, the inclusion (2.18) can be rewritten as the following gradient flow in V ′0 :

st + ∂V ′J
∗
V (s, χ) 3 0 ,

where ∂V ′J∗V is defined as the subdifferential of J∗V in V ′ mapping V ′ ×H into 2V
′

as follows:

ξ ∈ ∂V ′J∗V (s, χ) if and only if ξ ∈ V ′, (2.24)

(s, χ) ∈ D(J∗V ), and J∗V (s, χ) ≤ ((s− w, ξ))∗ + J∗V (w, χ) ∀(w, χ) ∈ V ′ ×H ,

where ((·, ·))∗ denotes the scalar product in V ′. The reader can refer to [1] and to [2, Section 2] for the
proofs of these results. Finally in this case we have u ∈ ∂V ′,V JV (s, χ) in V iff u ∈ ∂sj∗(s, χ) a.e.
in Ω, where ∂s denotes here the subdifferential of convex analysis with respect to the variable s (cf.,
e.g., [6]).

2.3 Possible choices of j∗

In this section we show how to derive different types of phase-field models by our general system.

The Caginalp model of phase transitions. Choose j∗(s, χ) = s2

2
− sχ + χ2

2
. Denote by θ :=

∂sj
∗ = s−χ. Then, the Hyp. 2.4 is obviously satisfied and the PDEs (2.18–2.19) can be rewritten as

θt + χt −∆θ = 0 ,

χt −∆χ+ β(χ) + γ(χ)− θ 3 0 ,

coupled with Neumann homogeneous boundary conditions on θ and χ. This PDE system can be
easily identified with the “standard” phase field model of Caginalp type (cf. [7]), letting θ be the relative
temperature of the system and χ the local proportion of one of the two phases of the substance
undergoing phase transitions.

The entropy model for phase transitions. Choosing j∗(s, χ) = j∗(s−λ(χ)) = exp(s−λ(χ)),
we have that Hyp. 2.4 is satisfied in case λ is a Lipschitz continuous function on the domain of β.
Then, defining θ := ∂sj

∗ = exp(s−λ(χ)), we get s = log θ+λ(χ) and the PDEs (2.18–2.19) can
be rewritted as

(log θ + λ(χ))t −∆θ = 0 ,

χt −∆χ+ β(χ) + γ(χ)− λ′(χ)θ 3 0 ,

again with Neumann homogeneous boundary conditions for both θ and χ. This system can be easily
identified with the “entropy” phase field model introduced in [3] and [4]. Here θ respresents the absolute
temperature of the system which is forced to be positive, by the presence of the logarithmic nonlinearity
in the θ-equation. Let us notice that in this case the assumption D(j∗) = R is not verified, hence we
are not entitled to use the function j∗ instead of the operator J∗V in e (cf. Remark 2.6), so, the choice
we made here is only formal. For a rigorous analysis of this case the reader can refer to [5].
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The Penrose-Fife model for phase transitions. We choose j∗(s, χ) = − log(s − χ), for s > χ
and define θ := ∂sj

∗(s, χ) = − 1
s−χ . Then, we observe that we can formally get the Penrose-Fife

mode. Indeed, it results that ∂χj∗(s, χ) = 1
s−χ = 1

θ
. Thus, we can rewrite (2.18–2.19) as

(θ ± χ)t ∓∆

(
−1

θ

)
= 0 ,

χt −∆χ+ β(χ) + γ(χ) +
1

θ
3 0 ,

coupled with Neumann homogeneous boundary conditions on −1
θ

and χ. This system can be easily
identified with the Penrose-Fife model of phase transitions introduced in [19].

Remark 2.8. Let us notice that in case we choose as pseudopotential of dissipation the functional
(2.15) in (2.16) and (2.17), the first equation is the same as (2.18), while the equation for χ results as:

A−1χt −∆χ+ β(χ) + γ(χ) + ∂χj
∗(s, χ) 3 0 , (2.25)

and thus

st + A (∂sj
∗(s, χ)) 3 0 in V ′0 , (2.26)

χt + Aw = 0, w ∈ −∆χ+ β(χ) + γ(χ) + ∂χj
∗(s, χ) , (2.27)

coupled with Neumann homogeneous boundary conditions for ∂sj∗(s, χ), χ and w. In this case the
evolution ofχ is ruled by the well-known fouth order Cahn-Hilliard equation modelling phase separation
phenomena (cf., e.g., [8]). However, as we already mentioned, we prefer not to deal with this case here.

3 Main results

In this section we state the main results of this paper, the first one (Thm. 3.1) concerns the existence
of global in time solutions for system (2.18)–(2.19) coupled with the boundary condition (2.7) and the
initial conditions

s(0) = s0 in D(J∗V ) , (3.1)

χ(0) = χ0 a.e. in Ω , (3.2)

while the second one (Thm. 3.4) regards uniqueness of solutions under more restrictive assumptions
on the nonlinearities involved. Let us start with the first result.

Theorem 3.1. Assume Hypotheses 2.4 and 2.2 and take s0 ∈ D(J∗V ), χ0 ∈ V ∩ dom(β̂). Then,
for every T > 0 there exists at least one solution (s, χ) to (2.18)–(2.20) and (3.1)–(3.2) satisfying the
regularity properties:

s ∈ H1(0, T ;V ′0) , (3.3)

χ ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;H2(Ω)) . (3.4)

Proof. In order to prove Theorem 3.1, we first approximate system (2.18–2.19) with a reg-
ularized problem depending on a positive small parameter ε and then we pass to the limit by (weak-
strong) compactness arguments and semicontinuity results based on sufficient a-priori estimates –
independent of ε – we are going to prove on the approximating solutions.
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The approximated problem. Let us fix ε > 0. Then, for every T > 0 and (s0,ε, χ0) ∈ (D(J∗V ) ∩
H)×(V ∩dom(β̂)), we aim to find a solution (sε, χε) ∈ H1(0, T ;V ′0×H) to the following differential
inclusions:

∂tsε + A (ηε + εsε) = 0 in V ′0 , ηε ∈ ∂V ′,V J∗V (sε, χε), for a.e. t ∈ (0, T ) , (3.5)

∂tχε −∆χε + ξε + γ(χε) + ∂χJ
∗
V (sε, χε) = 0 ξε ∈ β(χε), a.e. in Ω× (0, T ) , (3.6)

coupled with the boundary and initial conditions (2.20) and (3.1–3.2), with s0,ε in place of s0. In partic-
ular, we assume that

s0,ε ∈ D(J∗V ) ∩H, s0,ε → s0 in V ′0 as ε↘ 0. (3.7)

We first observe that we can recover (3.5) and and (3.6), by approximating the energy func-
tional (2.21) as follows:

Φε(s, χ) := Ψε(s, χ) +

∫
Ω

(
1

2
|∇χ|2 +W (χ)

)
dx , Ψε(s, χ) := J∗V (s, χ) +

ε

2

∫
Ω

|s|2 dx.

Actually, note that now Φε is defined in (V ′0 ∩H)×H . Hence, we can construct its subdifferential in
the duality between V ′0 and V0, and rewrite the equation (3.5) as

∂tsε + Aζε = 0 in V ′0 , ζε ∈ ∂V ′,V Φε(sε, χε) for a.e. t ∈ (0, T ) . (3.8)

Now, our aim is to prove the existence of solutions of (3.5)–(3.6), (3.1)–(3.2) with s0,ε istead of s0, and
(2.20) by a time-discrete approximation, as follows (cf. also [21] for a similar procedure). Here we drop
the index ε in order to simplify the notation. Let us fix a time step τ = T/N , N ∈ N and introduce a
uniform partition

Pτ := {t0 = 0, t1 = τ, . . . , tn = nτ, . . . , tN = T}
of the interval (0, T ). Then, we need to find a discrete approximation sn ∼ s(tn), χn ∼ χ(tn) by
solving the implicit Euler scheme (cf. also (2.22)):

N
(
Un − Un−1

τ

)
+ ζn = 0, n = 1, . . . , N ;U0 := u0 , (3.9)

where ζn ∈ δΦε

δu
(Un) and we have defined Un = (sn, χn), u0 = (s0,ε, χ0). Using the functional

space, we have already introduced to define the operator N , H = (V ′0 ∩ H) × H , we notice that
(3.9) is the Euler equation for the variational problem{

find Un ∈ H minimizing

Fε(τ, U
n−1;U) := 1

2τ
‖U − Un−1‖2

H + Φε(U), U ∈ H .
(3.10)

It is not difficult to see that this minimization problem is solvable due to the lower-semicontinuity and
coercivity properties of Φε (cf., e.g., [21, 22] and references therein for a similar variational approach
to find a discrete solution).

Then, we can construct the piecewise constant interpolants Ūτ (t) := Un if t ∈ ((n −
1)τ, nτ ]. In particular, we get that and we recover the solution U := (s, χ) of (3.5–3.6) as the
limit of Ūτ as τ ↘ 0.This can be done, by using suitable a priori estimates (independent of τ and
then passing to the limit by compactness and semicontinuity arguments. We do not enter the details
of the proof, as it is very similar to the estimates and passage to the limit procedure we are going to
detail in the next sections to pass to the limit as ε↘ 0. Note that in this case some technicalities are
avoided due to the more regular setting for the variable sε (recall the strict positivity of ε). Thus, we
can easily prove the following existence result.
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Theorem 3.2. Under the same assumptions of Theorem 3.1, letting ε > 0 be fixed and (3.7) holds,
then there exists a solution to (3.5)-(3.6) with sε(0) = s0,ε and χε(0) = χ0, with the following
regularity

sε ∈ H1(0, T ;V ′0) ∩ L∞(0, T ;V0), (3.11)

χε ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;H2(Ω)). (3.12)

A priori estimates (uniform in ε). Let us consider the system (3.5–3.6), where for the sake of
simplifying notation we neglect the index ε for solutions and involved functions.We now perform the a
priori estimates independent of ε, so, we use here the same symbol c for positive constants, possibily
different from line to line, depending on the problem data, but independent of ε.

In order to perform the first estimate we need to prove here a small variant of the chain rule
formula stated, e.g., in [9, Prop. 4.2].

Proposition 3.3. Let G : V ′ ×H → [0,+∞] be a map such that

v 7→ G(u, v) is Fréchet differentiable for every u ∈ V ′,

u 7→ G(u, v) is a proper convex lower semicontinuous mapping for every v ∈ H ,

and let u ∈ H1(0, T ;V ′)∩L2(0, T ;V0), v ∈ H1(0, T ;H)∩L2(0, T ;V ), and δ(t) ∈ ∂V ′,VG(u(t), v(t))
for a.e. t ∈ (0, T ), where the subdifferential ∂V ′,V is defined as in (2.12). Then the function g =
G(u(·), v(·)) is absolutely continuous in [0, T ] and g′(t) = 〈u′(t), δ(t)〉+ (v′(t), ∂vG(u(t), v(t)))
for a.e. t ∈ (0, T ).

Proof. Here we follow the lines of the proof of [9, Prop. 4.2]. Let w ∈ W 1,∞(0, T ) be a non-
negative function with compact support in (0, T ). We choose h > 0 such that supp(w) ⊂ [h, T − h].
For a.e. t ∈ (0, T ), by definition of sub-differentials we can infer that

〈u(t)− u(t− h), δ(t− h)〉+ (v(t)− v(t− h), ∂vG(u(t− h), v(t− h))

≤ g(t)− g(t− h) ≤ 〈u(t)− u(t− h), δ(t)〉+ (v(t)− v(t− h), ∂vG(u(t), v(t)).

Indeed, observe that (δ, ∂vG) belongs to ∂G, i.e. to the sub-differential of the functionG : V ′×H →
[0,+∞] defined w.r.t. the variable (u, v). Observe that we can extend w outside of (0, T ) with the 0
value. Hence, multiplying by w(t), integrating with respect to t, and letting h↘ 0, we obtain

1

h

∫ T

h

〈u(t)− u(t− h), δ(t− h)〉w(t)dt =
1

h

∫ T−h

0

〈u(t+ h)− u(t), δ(t)〉w(t+ h)dt

→
∫ T

0

〈u′(t), δ(t)〉w(t)dt,

1

h

∫ T

h

(g(t)− g(t− h))w(t)dt =
1

h

∫ T

0

δ(t)(w(t)− w(t+ h))dt

→ −
∫ T

0

δ(t)w′(t)dt,

1

h

∫ T

h

〈u(t)− u(t− h), δ(t)〉w(t)dt→
∫ T

0

〈u′(t), δ(t)〉w(t)dt.



12

Moreover,

1

h

∫ T

h

(v(t)− v(t− h), ∂vG(u(t− h), v(t− h))w(t)dt

=
1

h

∫ T−h

0

(v(t+ h)− v(t), ∂vG(u(t), v(t))w(t+ h)dt→
∫ T

0

(v′(t), ∂vG(u(t), v(t))w(t)dt,

1

h

∫ T

h

(v(t)− v(t− h), ∂vG(u(t), v(t))w(t)dt→
∫ T

0

(v′(t), ∂vG(u(t), v(t))w(t)dt.

Therefore, we conclude that

−
∫ T

0

g(t)w′(t)dt =

∫ T

0

(〈u′(t), δ(t)〉+ (v′(t), ∂vG(u(t), v(t))))w(t)dt

for all non-negative Lipschitz continuous test functions w with compact support. Since both the pos-
itive and the negative part of a Lipschitz continuous function are Lipschitz continuous, we obtain the
assertion.

First a priori estimate. We test (3.5) by A−1st getting

〈st, A−1st〉 = ‖st‖2
V ′0
, (3.13)

and in addition, using the definition of J∗V and a variant of the chain rule formula stated in Proposi-
tion 3.3 with the choices G = J∗V , u = s, v = χ, we get

〈Aη,A−1st〉 = 〈st, η〉 =
d

dt
J∗V (s(t), χ(t))− (χt, ∂χJ

∗
V (s, χ)) . (3.14)

Testing (3.6) by χt, we get

‖χt‖2
H +

1

2

d

dt
‖∇χ‖2

H +
d

dt

∫
Ω

W (χ) + (χt, ∂χJ
∗
V (s, χ)) = 0 . (3.15)

Adding the resulting equations and integrating over (0, t), t ∈ (0, T ), and using the definition of Ψε,
we obtain∫ t

0

(
‖st‖2

V ′0
+ ‖χt‖2

H

)
dτ + Ψε(s(t), χ(t)) +

∫
Ω

W (χ(t)) + ‖∇χ(t)‖2 ≤ c, (3.16)

where here c depends in particular on the initial data. Adding to both sides in (3.16)

‖χ(t)‖2
H = ‖χ0‖2

H + 2

∫ t

0

(χ(τ), χt(τ)) dτ ,

and using Hölder and Young inequalities together with Hyp. 2.2 and 2.4 and a standard Gronwall
lemma, we obtain

‖st‖2
L2(0,T ;V ′0) + ε‖s‖2

L∞(0,T ;H) ≤ c, (3.17)

‖χ‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ c, (3.18)

‖β̂(χ)‖L∞(0,T ;L1(Ω)) ≤ c . (3.19)

Second a priori estimate. We proceed by a comparison in (3.8). Due to (3.17)1, we have that Aζε is
bounded in L2(0, T ;V ′0), and thus

‖ζε‖L2(0,T ;V0) ≤ c . (3.20)
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Hence, using (3.17)2, we get
‖ηε‖L2(0,T ;H) ≤ c . (3.21)

Indeed, due to the definition of Ψε we can infer that ζε = ηε + ∂ψε(s), where we have used the
notation ψε(s) = ε

2

∫
Ω
s2dx and the fact that ψε has sa domain the whole real line and thus its

subdifferential in the duality V ′, V corresponds to the standard subdifferential of the convex analysis
(cf. [6]).

Third a priori estimate. Using now Hyp. 2.4 together with (3.21), we get

‖∂χJ∗V (s, χ)‖L2(0,T ;H) ≤ c1‖ηε‖L2(0,T ;H) + c2 ≤ c . (3.22)

Moreover, by comparison in (3.6) and by standard monotonicity and regularity results, we get

‖ξ‖L2(0,T ;H) + ‖χ‖L2(0,T ;H2(Ω)) ≤ c . (3.23)

Passage to the limit as ε↘ 0. Now, we aim to pass to the limit in (3.5)–(3.6) as ε↘ 0, revovering
finally a solution to (2.18–2.19). By virtue of (3.17–3.23) and by compactness results we get (at least
for some subsequences of ε↘ 0):

sε
∗
⇀s in H1(0, T ;V ′0), (3.24)

χε
∗
⇀χ in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;H2(Ω)) , (3.25)

ζε⇀ζ in L2(0, T ;V0) , (3.26)

ηε⇀η in L2(0, T ;H) , (3.27)

∂χJ
∗
V (sε, χε)⇀z in L2(0, T ;H) , (3.28)

ε1/2sε
∗
⇀ 0 in L∞(0, T ;H) . (3.29)

Notice that, by the definition of Ψε and by (3.26), (3.27), and (3.28), we immediately deduce that ζ = η
a.e.. Moreover, by strong compactness, from (3.25) we can also deduce (at least) (cf. [23])

χε → χ in C0([0, T ];H) ∩ L2(0, T ;V ) . (3.30)

We aim to identify ζ ∈ ∂V ′,V J∗V (s, χ) (see (3.26)). By definition of sub differential this corresponds to
prove that∫ T

0

〈v − s, ζ〉 dτ ≤
∫ T

0

(J∗V (v, χ)− J∗V (s, χ)) dτ ∀v ∈ V ′0 and χ ∈ H . (3.31)

Note that, if we test the equation (3.5) by A−1sε and integrate in time, by weak lower semicontinuity
of norm we have (for ζε ∈ ∂V ′,V Ψε(sε, χε))∫ T

0

lim sup
ε↘0

〈sε, ζε〉 dτ ≤
∫ T

0

〈s, ζ〉 dτ . (3.32)
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Hence, by employing (3.26), (3.27), and (3.29), and using the fact that ζε belongs to ∂V ′,V Ψε(sε, χε),we
get, for all v ∈ V ′0 and χε ∈ H ,∫ T

0

〈v − s, ζ〉 dτ ≤
∫ T

0

〈v, ζ〉 dτ − lim sup
ε↘0

∫ T

0

〈sε, ζε〉 dτ (3.33)

=

∫ T

0

〈v, ζ〉 dτ + lim inf
ε↘0

∫ T

0

(−〈sε, ζε〉) dτ

≤ lim inf
ε↘0

∫ T

0

(〈v, ζε〉 − 〈sε, ζε〉) dτ

≤ lim sup
ε↘0

∫ T

0

(Ψε(v, χε)−Ψε(sε, χε)) dτ

= − lim inf
ε↘0

∫ T

0

(
−J∗V (v, χε) + J∗V (sε, χε)−

ε

2
‖v‖2

H +
ε

2
‖sε‖2

H

)
dτ

≤ − lim inf
ε↘0

∫ T

0

(−J∗V (v, χε) + J∗V (sε, χε)) dτ .

Using Hyp. 2.4 and (3.30), we can deduce

lim
ε↘0

J∗V (v, χε) = J∗V (v, χ) . (3.34)

Hence, let us observe that

J∗V (sε, χε)− J∗V (s, χ) = J∗V (sε, χε)− J∗V (sε, χ) + J∗V (sε, χ)− J∗V (s, χ), (3.35)

where
I1 := J∗V (sε, χε)− J∗V (sε, χ),

and
I2 := J∗V (sε, χ)− J∗V (s, χ).

Hence, by (3.22) and (3.30), we have∫ T

0

|I1| dτ ≤
∫ T

0

‖∂χJ∗V (sε, χε)‖H‖χε − χ‖H dτ → 0 as ε↘ 0 . (3.36)

The second integral ∫ T

0

I2 dτ =

∫ T

0

(J∗V (sε, χ)− J∗V (s, χ)) dτ

is treated by using the fact that J∗V is lower semicontinuous in sε with respect to weak convergence as
it is convex (for χ fixed) and so

lim inf
ε↘0

∫ T

0

I2 dτ ≥ 0

Hence, coming back to (3.33), and using (2.4), we have, for all v ∈ V ′0 and χε ∈ H ,

−
∫ T

0

lim inf
ε↘0

(−J∗V (v, χε) + J∗V (sε, χε)) dτ

≤ −
∫ T

0

lim inf
ε↘0

(−J∗V (v, χε)) dτ −
∫ T

0

lim inf
ε↘0

(J∗V (sε, χε)− J∗V (s, χ) + J∗V (s, χ)) dτ

≤
∫ T

0

J∗V (v, χ)−
∫ T

0

lim inf
ε↘0

I1 −
∫ T

0

lim inf
ε↘0

I2 −
∫ T

0

J∗V (s, χ) dτ

≤
∫ T

0

(J∗V (v, χ)− J∗V (s, χ)) dτ ,
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and this concludes the proof of (3.31). Finally, using the previous convergences, where we have now
identified ζ = η ∈ ∂V ′,V J∗V (s, χ) inL2(0, T ;H), we can pass to the limit in the approximated system
(3.5–3.6) as well as in the corresponding boundary and initial conditions for ε ↘ 0. This concludes
the proof of Theorem 3.1.

We conclude now with the last result of our paper concerning uniqueness of solutions for
problem (2.18–2.20), (3.1–3.2).

Theorem 3.4. Assume Hypotheses 2.4 and 2.2 and take s0 ∈ D(J∗V ), χ0 ∈ V ∩ dom(β̂) and
suppose moreover that

the maps χ 7→ ∂V,V ′J
∗
V (s, χ) and χ 7→ ∂χJ

∗
V (s, χ) are Lipschitz continuous (3.37)

fromH to V0 and fromH toH , respectively, for every s ∈ V ′. Then the solution (s, χ) of (2.18–2.20),
(3.1–3.2) is uniquely determined and the following continuous dependence estimate holds true:

‖(s1 − s2)(t)‖2
V ′ + ‖(χ1 − χ2)(t)‖2

H +

∫ t

0

‖∇(χ1 − χ2)‖2
H dτ ≤C

(
‖(s1 − s2)(0)‖2

V ′ (3.38)

+‖(χ1 − χ2)(0)‖2
H

)
.

Proof. Let us take the difference of the two equations (2.18) and the two relations (2.19)
corresponding to two different solutions (si, χi), i = 1, 2 and test them by A−1(s1 − s2) and (χ1 −
χ2), respectively. Integrating over (0, t), for t ∈ [0, T ], using Hyp. 2.4 and Hyp. 2.2, we get

‖(s1 − s2)(t)‖2
V ′ + ‖(χ1 − χ2)(t)‖2

H + 2

∫ t

0

‖∇(χ1 − χ2)‖2
H dτ ≤ ‖(s1 − s2)(0)‖2

V ′

+ ‖(χ1 − χ2)(0)‖2
H − 2

∫ t

0

(γ(χ1)− γ(χ2), χ1 − χ2) dτ

− 2

∫ t

0

〈s1 − s2, ∂V,V ′J
∗
V (s2, χ1)− ∂V,V ′J∗V (s2, χ2)〉 dτ

− 2

∫ t

0

(χ1 − χ2, ∂χJ
∗
V (s2, χ1)− ∂χJ∗V (s2, χ2)) dτ .

Using then the Lipschitz continuity of γ and assumption (3.37), together with Gronwall lemma, we
obtain exactly (3.38).
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