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Abstract

Recently, a novel approach for the robust discretization of the in-
compressible Stokes equations was proposed that slightly modifies the 
nonconforming Crouzeix–Raviart element such that its velocity error 
becomes pressure-independent. The modification results in an O(h) 
consistency error that allows straightforward proofs for the optimal 
convergence of the discrete energy norm of the velocity and of the L2 

norm of the pressure. However, though the optimal convergence of 
the velocity in the L2 norm was observed numerically, it appeared to 
be nontrivial to prove. In this contribution, this gap is closed. 
Moreover, the dependence of the energy error estimates on the 
discrete inf-sup constant is traced in detail, which shows that classical 
error estimates are extremely pessimistic on domains with large 
aspect ratios. Numer-ical experiments in 2D and 3D illustrate the 
theoretical findings.

1 Introduction

For several decades, it was common belief in the numerical analysis com-
munity, that in mixed discretizations for the Stokes equations in primal
variables velocity u and pressure p, and with data f ∈ L2(Ω), g ∈ L2

0(Ω)
and ν > 0 on a domain Ω ⊂ Rd (d = 2, 3),

−ν∆u +∇p = f , x ∈ Ω,

−∇ · u = g, x ∈ Ω,

u = 0, x ∈ ∂Ω,

(1)

a dependence of the discrete velocity on the continuous pressure was more
or less practically unavoidable. In other words, it became standard in finite
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element analysis to prove for new mixed discretisations of the incompressible
Stokes equations the following kind of finite element error estimate for the
discrete velocity

‖u− uh‖1,h ≤
C1

βh
inf

wh∈Xh

‖u−wh‖1,h +
1

ν
inf

qh∈Qh

‖p− qh‖L2 , (2)

with some generic constant C1, since this estimate allows to conclude that
the discrete velocity converges with an asymptotically optimal convergence
order. However, the estimate (2) is not really optimal with respect to two
different aspects, i.e., qualitatively, it does not give the best possible the-
oretical result, which one can hope for: i) The first point concerns the
appearance of the inverse of the discrete inf-sup constant βh in the error es-
timate. The inf-sup constant is well-known to degenerate for domains with
a large aspect ratio [16, 15, 38, 11], e.g., for practically relevant channel-
like domains. Therefore, velocity error estimates containing the constant
1/βh are extremely pessimistic. Indeed, such estimates can be improved, if
an appropriate, locally defined Fortin operator for a mixed finite element is
known, as demonstrated in this contribution. Further, we will derive several
explicit a-priori error estimates, where all involved constants (such as C̃1

in (3) below) only depend on the angles in the underlying finite element
mesh, but not on the inf-sup constant or the value of ν.

ii) The second point concerns the appearance of the pressure-dependent
error contribution 1

ν infqh∈Qh
‖p−qh‖L2 . Though mixed finite elements with-

out a pressure-dependent error contribution are rather classical [36, 35, 31,
19], they were not really investigated by numerical analysts for many years.
For the pressure-robust Crouzeix–Raviart finite element method, we prove
in this contribution the error estimate

‖u− uh‖1,h ≤ C̃1‖hTD2u‖L2 , (3)

where hT is the meshsize function. We remark that the appearance of the
pressure-dependent error contribution 1

ν infqh∈Qh
‖p−qh‖L2 in (2) shows that

classical mixed methods do not fulfill a fundamental invariance property of
the continuous Stokes equations (1) exactly: changing the right hand side by
f → f +∇φ changes the Stokes solution by (u, p)→ (u, p+φ), i.e., gradient
fields in the momentum balance are absorbed completely by the pressure
gradient. A renewed interest [39, 40, 8, 13, 26, 21, 20, 37] in pressure-robust
mixed methods for the Stokes equations that allow for pressure-independent
velocity error estimates was incited by the seminal work of S. Zhang [39],
who constructed in 2005 the first pressure-robust 3D Stokes element. The
lack of robustness of classical mixed methods, whose velocity error is in-
deed pressure-dependent, was demonstrated in recent years for several flow
problems, where the pressure is much more complicated than the velocity
[24, 10, 17, 26].
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Recently, the observation was made that the appearance of the pressure-
dependent error contribution 1

ν infqh∈Qh
‖p−qh‖L2 is only due to the fact that

certain discrete velocity test functions in classical mixed methods are not
divergence-free in the sense of H(div) [26, 25]. This problem also influences
the approximation by adaptive finite element methods for stationary [27]
and for nonstationary problems as noted in [4, 5], and special care needs to
be taken in the transfer of solutions between different meshes at different
points in time to preserve the discrete divergence-free condition.

Employing lowest-order H(div)-conforming Raviart–Thomas elements in
certain novel velocity reconstructions [26, 25], it was shown that the non-
conforming Crouzeix–Raviart element [14] can be slightly modified in its
discretisation of the right-hand side such that its velocity error becomes
pressure-independent. These velocity reconstructions introduce anO(h) con-
sistency error, which allows for straightforward proofs of the optimal con-
vergence of the discrete velocity in its energy norm and of the L2-norm of
the pressure [26]. However, the optimal convergence of the discrete velocity
in the L2-norm seemed to be difficult to prove, although it was observed in
numerical experiments [6]. This gap will be closed in this contribution, using
an Aubin–Nitsche type duality argument and a certain higher regularity of
the right hand side.

The rest of the paper is outlined as follows. Section 2 intrudces contin-
uous and discrete setting and all necessary notation. Section 3 recalls and
refines known a priori error estimates for the energy norm and the L2 norm
of the pressure and eventually presents the proof for the optimal convergence
of the L2 velocity error. Section 4 concludes the paper with three numerical
examples.

2 Continuous and Discrete Setting

This section explains the continuous and the discrete setting for the model
problem under consideration and employs the standard Sobolev spaces

V := H1
0 (Ω)d := {v ∈ H1(Ω)d : v = 0 along ∂Ω},

Q := L2
0(Ω) := {q ∈ L2(Ω) :

∫
ω
qdx = 0},

H(div,Ω) := {v ∈ L2(Ω)d : ∇ · v ∈ L2(Ω)}.

2.1 Continuous Setting

The weak solution (u, p) ∈ V × Q of the continuous steady incompressible
Stokes problem with right-hand side f ∈ L2(Ω)d and g ∈ Q satisfies

a(u,v) + b(v, p) = l(v),

b(u, q) = χ(q) for all (v, q) ∈ V ×Q
(4)
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with a, b and l defined by

a : V × V → R, a(u,v) := ν

∫
Ω
∇u : ∇vdx ,

b : V ×Q→ R, b(u, q) := −
∫

Ω
q∇ · udx ,

l : V → R, l(v) :=

∫
Ω

f · vdx ,

χ : Q→ R, χ(q) :=

∫
Ω
g qdx

With the subset of functions that satisfy the divergence constraint

Vg := {v ∈ V : −∇ · v = g}, (5)

the saddle point problem (4) transforms into a problem for the velocity
alone, i.e., u ∈ Vg such that

a(u,v) = l(v) for all v ∈ V0. (6)

2.2 Notation

In the following, Th denotes a shape-regular family of triangulations of the
domain Ω into triangles for d = 2 or tetrahedra for d = 3, for simplicity,
we assume the domain to be polygonal or polyhedral respectively, so that
no special treatment of the boundary is needed. For any element T ∈ Th,
mid(T ) denotes the barycenter of T . The set of all simplex faces, i.e., edges
of triangles for d = 2 and faces of tetrahedra for d = 3, is denoted by F . The
subset F(Ω) denotes the set of interior faces, while F(∂Ω) denotes the set of
boundary faces along ∂Ω. For any F ∈ F , mid(F ) denotes the barycenter
of F and nF abbreviates a face unit normal vector. The orientation of these
normal vectors for the interior faces F ∈ F(Ω) are arbitrary, but fixed. The
normal vector nF for boundary faces F ∈ F(∂Ω) points outwards of the
domain Ω. For every simplex T ∈ Th, F(T ) denotes the set of faces of this
simplex and nT denotes the outer unit normal of the simplex T ∈ Th. The
piecewise constant function hT denotes the local mesh size, i.e., hT |T :=
diam(T ) for all T ∈ Th. Moreover, we let h = ‖hT ‖L∞ . The function space
of Pk(Th) contains piecewise polynomials of order k with respect to Th. For a
piecewise Sobolev function v ∈ H1(Th)d and some face F ∈ F(Ω), the notion
[v ·nF ] denotes the jump of the normal flux over F , while {{v ·nF }} denotes
the average value of the normal flux over F . The space of Crouzeix–Raviart
velocity trial functions is given by

CR(Th) :=
{
vh ∈ P1(Th)d : [vh](mid(F )) = 0 for all F ∈ F(Ω)

& vh(mid(F )) = 0 for all F ∈ F(∂Ω)
}
.
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The pressure trial function space reads

Q(Th) :=

{
qh ∈ P0(Th) :

∫
Ω
qhdx = 0

}
.

The space of lowest order Raviart–Thomas finite element functions reads

RT(Th) :=
{

vh ∈ H(div,Ω) : ∀T ∈ Th ∃aT ∈ Rd, bT ∈ R,

vh|T (x) = aT + bTx
}
.

Any Raviart–Thomas function is uniquely defined by its constant face nor-
mal fluxes v · nF ∈ P0(F ) for all F ∈ F [7].

The discrete setting employs the broken gradient

∇h : V ⊕ CR(Th)→ L2(Ω)d×d

and the broken divergence

∇h · (·) : V ⊕ CR(Th)→ L2(Ω)

in the sense that

(∇hvh)|T := ∇(vh|T ), (∇h · vh)|T := ∇ · (vh|T ) for all T ∈ Th .

The discrete gradient norm for the space V ⊕ CR(Th) reads

‖vh‖1,h :=

(∫
Ω
∇hvh : ∇hvhdx

)1/2

= ‖∇hvh‖L2 . (7)

2.3 Interpolation operators

The usual Crouzeix–Raviart interpolation operator πCR
h : V → CR(Th) is

defined by

(πCR
h v)(mid(F )) =

1

|F |

∫
F

vds for all F ∈ F .

The Raviart–Thomas interpolation operator πRT
h : V⊕CR(Th)→ RT(Th)

is defined by

nF · (πRT
h v)(mid(F )) =

1

|F |

∫
F

v · nF ds for all F ∈ F .

Note that, due to continuity in the face barycenters, this is well-defined also
for v ∈ CR(Th). Moreover, it holds the identity πRT

h πCR
h v = πRT

h v for any
v ∈ V .

For any γ ∈ Q and v ∈ Vγ , it immediately follows -∇·πRT
h v = π0 γ and -

∇h ·πCR
h v = π0 γ by Gauss’ theorem. Here, π0 denotes the L2 projector onto
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P0(Th). Furthermore, there are the well-known stability and approximation
properties, elementwise on all T ∈ Th,

‖∇h(πCR
h v)‖L2(T ) ≤ ‖∇v‖L2(T ) for all v ∈ H1(T ), (8)

‖∇h(v − πCR
h v)‖L2(T ) ≤ CI‖hTD2v‖L2(T ) for all v ∈ H2(T )d, (9)

‖v − πRT
h v‖L2(T ) ≤ CF ‖hT∇hv‖L2(T ) for all v ∈ H1(T ), (10)

where the generic constants CI and CF depend only on the shape of the
simplices in the triangulation Th, but not on their size [7, 1, 9].

2.4 The finite element scheme with divergence-conforming
reconstruction

The discrete weak formulation of the model problem employs

ah(uh,v) := ν

∫
Ω
∇huh : ∇hvhdx ,

bh(uh, qh) := −
∫

Ω
qh∇h · uhdx ,

lh(vh) :=

∫
Ω
f · vhdx .

With this, the discrete Stokes problem seeks (uh, ph) ∈ CR(Th)×Q(Th) such
that

ah(uh,vh) + bh(vh, ph) = lh(πRT
h vh),

bh(uh, qh) = χ(qh) for all (vh, qh) ∈ CR(Th)×Q(Th).
(11)

In comparison to the classical Crouzeix–Raviart nonconforming finite ele-
ment method [14], the introduction of πRT

h in the right-hand side consti-
tutes a variational crime that maps discretely divergence-free test functions
to divergence-free functions in H(div,Ω) with certain benefits as discussed
below.

Like the continuous incompressible Stokes and Navier-Stokes equations,
also the discretization (11) can be formulated as an problem [34, 18] within
the space of discretely constrained functions

Vg,h := {vh ∈ CR(Th) : −∇h · vh = π0 g}. (12)

Then, uh ∈ Vg,h is uniquely defined by

ah(uh,vh) = lh(πRT
h vh) for all vh ∈ V0,h. (13)

Remark 1. The pair CR(Th)×Q(Th) satisfies the discrete inf-sup condition

0 < βh := inf
qh∈Q(Th)\{0}

sup
vh∈CR(Th) \{0}

∫
Ω qh∇h · vhdx

‖vh‖1,h‖qh‖L2

. (14)

The inf-sup constant βh for the Crouzeix–Raviart element is independent of
the mesh [14].
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3 A Priori Error Estimates

This section presents a priori finite element error estimates for the modified
Crouzeix–Raviart discretization of the incompressible Stokes equations (11).
The analysis is based on the estimates of the consistency error in [1], which
apply the Raviart–Thomas interpolation to the best advantage and avoid the
use of a trace inequality. However, some slight changes due to the divergence-
conforming reconstruction deliver fundamentally improved results, since the
scheme (11) allows for an error estimate of the discrete velocity that is inde-
pendent of the pressure. The proof involves the interpolation error estimates
from above and the elementwise Poincaré constant

CP : = sup {‖v − π0 v‖L2/‖hT∇hv‖L2 : v ∈ V ⊕ CR(Th)}
≤ sup

h>0
max
T∈Th

sup
{
‖v − π0 v‖L2(T )/‖hT∇hv‖L2(T ) : v ∈ H1(T )

}
.

Lemma 1. For all vh ∈ CR(Th), it holds

i) bh(vh, q) = b(πRT
h vh, q) for all q ∈ L2(Ω),

ii) b(πRT
h vh, q) =

∫
Ω
∇q · (πRT

h vh)dx for all q ∈ H1(Ω).

Proof. The divergence theorem and the definition of πRT
h shows∫

T
∇h · (vh − πRT

h vh)dx =
∑

F∈F(T )

∫
F

(vh − πRT
h vh) · nT ds = 0.

Since ∇h · (vh − πRT
h vh) is elementwise constant, the above implies the

relation ∇h ·vh = ∇·(πRT
h vh) which proves the first identity. An integration

by parts, which is allowed since πRT
h vh ∈ H(div,Ω), shows the second

identity and concludes the proof.

Lemma 2. For all v ∈ V ∩H2(Ω)d,w ∈ V ⊕ CR(Th), it holds∣∣∣∣∫
Ω
∇hv : ∇hw + ∆v · πRT

h wdx

∣∣∣∣ ≤ (2CF + CP )‖hTD2v‖L2‖w‖1,h.

Proof. Let ΠRT
h denote the rowwise Raviart–Thomas interpolator and Π0

the L2 projection onto P0(Th)d. Since the normal fluxes (ΠRT
h ∇v)nF are

continuous for all F ∈ F and constant on the boundary faces F ∈ F(∂Ω)
and w is zero at least at the centers of any F ∈ F(∂Ω), it holds∑

T∈Th

∫
∂T

(
ΠRT

h ∇v n
)
·wds = 0.
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An elementwise integration by parts and the commutation property of the
divergence with the Raviart–Thomas interpolation ∇· (ΠRT

h ∇v) = Π0(∆v)
show ∫

Ω
ΠRT

h ∇v · ∇hw + Π0(∆v) ·wdx = 0.

This and elementary calculations reveal∫
Ω
∇v : ∇hw + ∆v · πRT

h wdx

=

∫
Ω

(
∇v −ΠRT

h ∇v
)

: ∇hwdx +

∫
Ω

(∆v −Π0(∆v)) ·wdx

+

∫
Ω

∆v ·
(
πRT

h w −w
)

dx .

For the first integral, a Cauchy-Schwarz inequality and the rowwise version
of (10) yield∫

Ω

(
∇v −ΠRT

h ∇v
)

: ∇hwdx ≤ CF ‖hTD2v‖L2‖w‖1,h.

For the second integral, the L2 orthogonality of ∆v−Π0(∆v) and w−Π0 w
w.r.t. P0(Th)d and elementwise Poincaré inequalities show∫

Ω
(∆v −Π0(∆v)) ·wdx =

∫
Ω

(∆v −Π0(∆v)) · (w −Π0 w)dx

≤ ‖∆v‖L2‖w −Π0 w‖L2 ≤ CP ‖hT∆v‖L2‖w‖1,h.

Another Cauchy-Schwarz inequality and (10) bound the third integral by∫
Ω

∆v ·
(
πRT

h w −w
)

dx ≤ CF ‖hT∆v‖L2‖w‖1,h. (15)

The combination of the last three estimates concludes the proof.

The estimate of the consistency error is a corollary to Lemma 2.

Lemma 3 (Pressure-independent consistency error estimate). Given the
solution (u, p) ∈ H2(Ω)d×H1(Ω) of the continuous Stokes equations (4), it
holds

sup
0 6=wh∈V⊕CR(Th),
π0(∇h·wh)=0

∣∣ah(u,wh)− lh(πRT
h wh)

∣∣
‖wh‖1,h

≤ ν(2CF + CP )‖hTD2u‖L2 .
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Proof. For all 0 6= wh ∈ V ⊕ CR(Th) with π0(∇h ·wh) = 0 it holds
∫

Ω∇p ·
πRT

h whdx = 0. This and (4) and show

1

ν

∣∣∣∣ah(u,wh)− lh(πRT
h wh)

∣∣∣∣ =
1

ν

∣∣∣∣∫
Ω
ν∇hu : ∇hwh − f · πRT

h whdx

∣∣∣∣
=

1

ν

∣∣∣∣∫
Ω
ν∇hu : ∇hwh + (ν∆u−∇p) · πRT

h whdx

∣∣∣∣
=

∣∣∣∣∫
Ω
∇hu : ∇hwh + ∆u · πRT

h whdx

∣∣∣∣ .
(16)

Lemma 2 concludes the proof.

Remark 2. Note that Lemma 3 does not hold in a pressure-independent
way for the standard Crouzeix–Raviart finite element method, since in (16)
∇p and wh for wh ∈ V0 + V0,h are not orthogonal in the L2 scalar product.

The estimate of the pressure-independent consistency error leads to the
following optimal a priori estimates.

Theorem 1. For the solution (u, p) ∈ H2(Ω)d × H1(Ω) of the continuous
Stokes equations (4) and the discrete solution (uh, ph) of (11), it holds

i) ‖u− uh‖1,h ≤ (2CI + 2CF + CP )‖hTD2u‖L2 ,

ii) ‖π0 p− ph‖L2 ≤ (2CI + 4CF + 2CP )β−1
h ν‖hTD2u‖L2 ,

iii) ‖p− ph‖2L2 ≤ C2
P ‖hT∇p‖2L2 + (2CI + 4CF + 2CP )2β−2

h ν2‖hTD2u‖2L2 .

Proof of i). Formulation (13) and wh := uh − vh ∈ V0,h for an arbitrary
vh ∈ Vg,h yield

ν‖wh‖21,h = ah(wh,wh)

= ah(uh − vh,wh)

= ah(u− vh,wh) + ah(uh,wh)− ah(u,wh)

= ah(u− vh,wh) + lh(πRT
h wh)− ah(u,wh)

≤ ν‖u− vh‖1,h‖wh‖1,h +
∣∣ah(u,wh)− lh(πRT

h wh)
∣∣ .

The triangle inequality for ‖u−uh‖1,h = ‖(u−vh)−wh‖1,h produces Strang’s
second lemma in the form

‖u− uh‖1,h ≤ 2 inf
vh∈Vg,h

‖u− vh‖1,h +
1

ν
sup

wh∈V0,h

∣∣ah(u,wh)− lh(πRT
h wh)

∣∣
‖wh‖1,h

.

Since πCR
h u ∈ Vg,h, the first error term can be bounded with (9) by

inf
vh∈Vg,h

‖u− vh‖1,h ≤ ‖u− πCR
h u‖1,h ≤ CI‖hTD2u‖L2 .

The second error term is estimated with Lemma 3.
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Proof of ii). Due to the discrete inf-sup stability (14), we can estimate the
second term by

‖π0 p− ph‖L2 ≤
1

βh
sup

vh∈CR(Th)

bh(vh, π0 p− ph)

‖vh‖1,h
.

Since ∇h · vh is constant and π0 p − p is orthogonal on constants, the term
in the numerator of this expression equals

bh(vh, π0 p− ph) = bh(vh, p− ph).

Elementary calculations, the application of Lemma 1 i) and ii), and f =
−ν∆u +∇p show

bh(vh, p− ph) = bh(vh, p) + ah(uh,vh)− lh(πRT
h vh)

= b(πRT
h vh, p) + ah(uh,vh)−

∫
Ω

f · πRT
h vhdx

=

∫
Ω
∇p · πRT

h vhdx + ah(uh,vh)

+

∫
Ω

(ν∆u−∇p) · πRT
h vhdx

= ah(uh − u,vh) +

∫
Ω
ν
{
∇hu : ∇hvh + ∆u · πRT

h vh
}

dx .

The first term is estimated by i) with

ah(uh − u,vh) ≤ (2CI + 2CF + CP )‖hTD2u‖L2‖vh‖1,h

Lemma 2 yields the concluding argument∫
Ω
ν
{
∇hu : ∇hvh + ∆u · πRT

h vh
}

dx ≤ (2CF + CP )ν‖hTD2u‖L2‖vh‖1,h.

Proof of iii). For the pressure estimate, the Pythagoras theorem shows

‖p− ph‖2L2 = ‖p− π0 p‖2L2 + ‖π0 p− ph‖2L2 .

Elementwise Poincaré inequalities with constant CP bound the first term by

‖p− π0 p‖L2 ≤ CP ‖hT∇p‖L2 .

The combination with ii) concludes the proof.

Remark 3. The constants CI , CF and CP in Theorem 1 are independent
of the inf-sup-constant βh. Estimates for mixed methods that depend on βh
are dramatically pessimistic for channel domains with large aspect ratio [38,
15, 16, 11].
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Remark 4. Guaranteed upper bounds for all involved constants CI , CF and
CP in Theorem 1 are known. The Fortin interpolation constant is bounded
by CF ≤ 0.6215 for rectangular triangles, for details see the maximum angle
estimate from [9, Theorem 5.1]. In 2D, [23] shows CP = 1/j1,1 where j1,1 =
3.8317 . . . is the first positive root of the first Bessel function J1. In 3D,
the constant CP = 1/π is valid for every convex domain [29, 3]. Moreover,
the constant CI is in fact also bounded by CP , since the Crouzeix-Raviart
interpolation operator πCR

h has the property
∫
T ∇h(vh − πCR

h vh) dx = 0 for
all T ∈ Th and so allows for a Poincaré type inequality in (9).

Remark 5. The modified Crouzeix–Raviart method (11) or equivalently (13)
is usually much more accurate than the standard Crouzeix–Raviart method,
see [26]. However, the standard Crouzeix–Raviart method performs better in
those (very special) situations, whenever the continuous pressure p vanishes.
In order to get an estimate, how the modified Crouzeix–Raviart method be-
haves in this worst case, let ûh denote the solution of the standard Crouzeix–
Raviart finite element method and let uh denote the solution of the modified
Crouzeix–Raviart finite element solution from (11). Then, by (10) it holds

ν‖ûh − uh‖21,h = ah(ûh − uh, ûh − uh)

= lh(ûh − uh)− lh(πRT
h (ûh − uh))

≤ CF ‖hT f‖L2‖ûh − uh‖1,h.

Hence, the difference between the two solutions is at most

‖ûh − uh‖1,h ≤
CF
ν
‖hT f‖L2 .

This estimate reflects the considerations above in the following way: the
worst case for the classical Crouzeix–Raviart finite element method is for
f = ∇p which means u = 0. Here, the modified Crouzeix–Raviart method
delivers the exact velocity solution uh = 0, while ûh deteriorates in general
with O(1/ν) for ν → 0. On the other hand, the worst case for the modified
Crouzeix–Raviart finite element method happens for f = −ν∆u which means
p = 0. Then, it holds

‖ûh − uh‖1,h ≤ CF ‖hT∆u‖L2

which is independent of 1/ν.

Corollary 1 (Invariance property). The modified Crouzeix–Raviart finite
element method satisfies a continuous invariance property in the sense that
for all f ∈ L2(Ω)d and all φ ∈ H1(Ω)/R it holds

f → f +∇φ =⇒ (u, p)→ (u, p+ φ),

f → f +∇φ =⇒ (uh, ph)→ (uh, ph + π0 φ).
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Proof. This is a direct consequence of Theorem 1. Theorem 1 i) shows, that
the discrete solution uh for the right-hand side ∇φ and for g = 0 is zero
(because the exact solution is zero) and Theorem 1 ii) shows ‖π0 φ−ph‖L2 =
0.

Lemma 4. Given a right-hand side r ∈ L2(Ω)d, let ur ∈ V0 denote the
solution of

a(ur,v) = (r,v) for all v ∈ V0,

and let ur,h ∈ V0,h denote the solution of

ah(ur,h,vh) = (r,πRT
h vh) for all vh ∈ V0,h

Then, for the solutions u from (4) and uh from (11), it holds

‖u− uh‖L2 ≤ sup
r∈L2(Ω)d,‖r‖L2=1

{
ν‖u− uh‖1,h‖ur − ur,h‖1,h

+
∣∣ah(u− uh,ur)−

(
r,πRT

h (u− uh)
)∣∣

+
∣∣ah(u,ur − ur,h)−

(
f ,πRT

h (ur − ur,h)
)∣∣

+
∣∣(r, (u− uh)− πRT

h (u− uh)
)∣∣

+
∣∣(f ,ur − πRT

h ur
)∣∣ }.

Proof. The proof is based on the duality argument

‖u− uh‖L2 = sup
r∈L2(Ω)d\{0}

(r,u− uh) /‖r‖L2 .

Elementary algebra yields

(r,u− uh) = ah(uh,ur,h)− ah(u,ur) + (r,u− uh) +
(
f ,ur − πRT

h ur,h
)

= −ah(u− uh,ur,h)− ah(u,ur − ur,h)

+ (r,u− uh) +
(
f ,ur − πRT

h ur,h
)

= ah(u− uh,ur − ur,h)

− ah(u− uh,ur) +
(
r,πRT

h (u− uh)
)

− ah(u,ur − ur,h) +
(
f ,πRT

h (ur − ur,h)
)

+
(
r, (u− uh)− πRT

h (u− uh)
)

+
(
f ,ur − πRT

h ur
)
.

Triangle and Cauchy-Schwarz inequalities conclude the proof.

Theorem 2. Assuming that Ω is convex, simply connected, and that for
the solution of the continuous Stokes equations (4) holds (u, p) ∈ H2(Ω)d ×
H1(Ω), ∆u ∈ H2(Ω), we obtain for the discrete solution (uh, ph) of the
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scheme (11) the following L2 error estimate of optimal order for the discrete
velocity

‖u− uh‖L2 ≤ C h2 (|u|H2 + ‖∆u‖H2) , (17)

with a constant C depending on the shape regularity of the triangulation.

Proof. Since we assume that the domain Ω is convex. we obtain by classical
regularity results for the incompressible Stokes equations that ur ∈ H2(Ω)d

for all r ∈ L2(Ω)d and that the following a-priori estimates

ν |ur|H2 ≤ C‖r‖L2 ,

ν‖∇ur‖L2 ≤ C‖r‖L2

(18)

hold. Then, we apply the abstract error estimate from Lemma 4 , and have
to estimate the corresponding five different terms. First, we obtain

ν‖u− uh‖1,h‖ur − ur,h‖1,h ≤ ν (Ch|u|H2) · (Ch|ur|H2)

≤ Ch2|u|H2‖r‖L2

using Theorem 1 and (18). The second term∣∣ah(u− uh,ur)−
(
r,πRT

h (u− uh)
)∣∣ ≤ νCh|ur|H2‖u− uh‖1,h
≤ Ch2|u|H2‖r‖L2

can be estimated by the consistency error for the adjoint problem from
Lemma 3, Theorem 1 and (18). By Lemma 3, we obtain analogously∣∣ah(u,ur − ur,h)−

(
f ,πRT

h (ur − ur,h)
)∣∣ ≤ νCh|u|H2‖ur − ur,h‖1,h
≤ νCh2|u|H2 |ur|H2

≤ Ch2|u|H2‖r‖L2 ,

using the estimate of the consistency error for the original problem. For the
fourth term, we obtain by Theorem 1 and (10)∣∣(r, (u− uh)− πRT

h (u− uh)
)∣∣ ≤ Ch‖u− uh‖1,h‖r‖L2 ≤ Ch2|u|H2‖r‖L2 .

Bounding the fifth term goes beyond standard arguments. We introduce the
L2-interpolation Π0 into elementwise constants and obtain∣∣(f ,ur − πRT

h ur
)∣∣ ≤ ∣∣ν (∆u−Π0 ∆u,ur − πRT

h ur
)∣∣

+
∣∣ν (Π0 ∆u,ur − πRT

h ur
)∣∣ (19)

since (∇p,ur−πRT
h ur) = 0. For the first summand, standard error estimates

for the L2-projection and πRT
h give the desired bound∣∣ν (∆u−Π0 ∆u,ur − πRT

h ur
)∣∣ ≤ ch2‖∇∆u‖L2‖r‖L2

13



To estimate the second term on the right of (19), we notice that ∇ · ur = 0
and hence, utilizing the exactness of the de Rahm complex on a simply
connected domain, there is a function σr such that ∇ × σr = ur. Further,
since ur ∈ H1(Ω)d it holds σr ∈ H2(Ω) if d = 2 and σr ∈ H2(Ω)3 if d = 3.
In both cases, it holds ‖σr‖H2 ≤ c‖r‖L2 , see, e.g., [22, Lemma 2.6]. Further,

there is a finite element space Ṽh and a corresponding interpolation operator
Ih : H2 → Ṽh such that ur − πRT

h ur = ∇× (σr − Ihσr). Since the space Ṽh
takes a different form for different dimensions d = 2, 3, we proceed by cases:

2d In this case Ṽh consists of piecewise linear polynomials and Ih is the
standard nodal interpolation, see, e.g., [2, Table 5.1] or [30] for the original
definition of the element.

Then, we can estimate the remaining term as follows utilizing Green’s
formula∣∣(Π0 ∆u,ur − πRT

h ur
)∣∣ =

∣∣∣∑
T∈Th

(
Π0 ∆u,ur − πRT

h ur
)
T

∣∣∣
=
∣∣∣∑
T∈Th

(Π0 ∆u,∇× (σr − Ihσr)T
∣∣∣

≤
∣∣∣∑
T∈Th

(∇×Π0 ∆u, σr − Ihσr)T
∣∣∣

+
∣∣∣∑
T∈Th

(Π0 ∆u,n× (σr − Ihσr))∂T
∣∣∣

(20)

Given that Π0 ∆u is elementwise constant, the volume term vanishes. For
the boundary term, we calculate

|(Π0 ∆u,n× (σr − Ihσr)∂T | ≤ ‖Π0 ∆u‖L∞(∂T )‖σr − Ihσr‖L1(∂T ).

Standard interpolation estimates for linear polynomials imply

‖σr − Ihσr‖L1(∂T ) ≤ ch2|σr|H2(T ).

For the sake of completeness, we derive this estimate step by step. The trace
identity for any function v ∈ H1(T ) and triangle T = conv{E, p} with edge
E and opposite node P reads∫

E
vds =

|E|
|T |

∫
T
vdx+

|E|
2|T |

∫
T
∇v · (x− P )dx.

Setting v := |σr − Ihσr| in this identity yields∫
E
|σr − Ihσr|ds

≤ |E||T |−1
(
‖σr − Ihσr‖L1(T ) + 1/2 ‖x− P‖L2(T )‖∇(σr − Ihσr)‖L2(T )

)
≤ |E||T |−1/2

(
‖σr − Ihσr‖L2(T ) + hT /2 ‖∇(σr − Ihσr)‖L2(T )

)
≤ ch2

T |σr|H2(T )

14



for some constant c that depends only on the shape of T .
For the term ‖Π0 ∆u‖L∞(∂T ), we observe, that

‖Π0 ∆u‖L∞(∂T ) =
1

|T |

∣∣∣∣∫
T

∆u dx

∣∣∣∣ ≤ ‖∆u‖L∞(T ) ≤ c‖∆u‖H2(T ).

Combining this, we can bound (20) as follows∣∣(Π0 ∆u,ur − πRT
h ur

)∣∣ ≤ ∣∣∣∑
T∈Th

(Π0 ∆u,n× (σr − Ihσr)∂T
∣∣∣

≤ ch2
∑
T∈Th

‖∆u‖H2(T )|σr|H2(T )

≤ ch2‖∆u‖H2 |σr|H2

≤ ch2‖∆u‖H2‖r‖L2 .

Here, the elementwise L∞ norm of ∆u was estimated by ‖∆u‖H2(T ) to avoid
a dependence on the number of elements.

3d In 3d, Ṽh is the space of Nedelec elements with the corresponding
interpolation, see, e.g., [2, Table 5.2] or [28] for the original definition of the

elements. Unfortunately, Ṽh does contain all constants, but not all linear
polynomials. Hence, the argument from the 2d case needs to be modified,
since the interpolation of σr can at most provide one power of h. To this
end, we utilize the representation (20)∣∣(Π0 ∆u,ur − πRT

h ur
)∣∣ =

∣∣∣∑
T∈Th

(Π0 ∆u,n× (σr − Ihσr)∂T
∣∣∣

and proceed with a different splitting

|(Π0 ∆u,n× (σr − Ihσr))∂T | ≤ ‖Π0 ∆u‖L1(∂T )‖σr − Ihσr‖L∞(∂T ).

A straight forward calculation utilizing the shape regularity, i.e., |∂T | ≤ ch2,
gives

‖Π0 ∆u‖L1(∂T ) =

∫
∂T
|Π0 ∆u| ds

≤ ‖Π0 ∆u‖L∞(∂T )

∫
∂T

ds

≤ ch2‖∆u‖L∞(T )

≤ ch2‖∆u‖H2(T ).

For the interpolation error estimate, we employ a Bramble-Hilbert type
argument. For this, we note that by assumption any elements T can be
obtained by an affine linear transformation AT : T̂ → T from some reference
element T̂ . For any function f on T , we denote by f̂ its pullback onto T̂ , i.e.,
f̂(x̂) = f(AT x̂) for any x̂ ∈ T̂ . By definition of the nodal-variables of the
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Nedelec element it is Îhf = Îhf̂ where Îh is the local interpolation operator
on the reference element. Utilizing L∞ stability of Îh, we conclude using
that σr is continuous

‖σr − Ihσr‖L∞(∂T ) ≤ ‖σ̂r − Îhσ̂r‖L∞(∂T̂ )

≤ c‖σ̂r‖L∞(T̂ )

≤ c‖σr‖L∞(T )

≤ c‖σr‖H2(T )

with a constant c depending on the shape regularity of the element only.
Analogous to the 2d case, the assertion follows.

Remark 6. Again, the significance of Theorem 2 lies in the fact that the
velocity error ‖u−uh‖L2 is independent of the pressure. The additional reg-
ularity assumption, needed for the proof of the optimal O(h2) error estimate
is a consequence of the variational crime commited in the definition of (11),
where piecewise linear discretely divergence-free functions are mapped onto
divergence-free piecewise constant Raviart–Thomas functions. It is well-
known from the classical theory of variational crimes that higher regularity
assumptions than usual are necessary for proving optimal error estimates,
when the right-hand side is projected onto a polynomial space of less than
optimal order as it happens e.g. with quadrature rules [12].

4 Numerical Experiments

This section deals with three numerical experiments to validate and confirm
the theory. The first example demonstrates the benefits of the modified
method. The next two examples focus on the convergence rate of the L2

velocity error under low regularity. Here, we set in each case p = 0, since in
this case the classical Crouzeix–Raviart element performs best and we want
to compare with those results without being distracted by pressure effects
in the non-modified standard method. Please note, that p = 0 is the (quite
unrealistic) worst-case for the modified Crouzeix–Raviart element.

4.1 First Example

The first benchmark example studies the Stokes problem with the exact
solution u = rotξ ∈ P7(Ω)2 ∩ V for the stream function

ξ = x2(1− x)2y2(1− y)2

and the pressure p = x3 + y3−1/2 on the unit square Ω = (0, 1)2. For given
viscosity ν, the volume force equals f := −ν∆u +∇p.
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ndof ‖u− uh‖L2 order ‖u− uh‖1,h order ‖p− ph‖L2 order

119 1.9192e-02 2.1347e-01 2.3999e-01
559 5.1086e-03 2.11 1.1112e-01 1.04 1.1089e-01 1.23

2431 1.1464e-03 2.24 5.2654e-02 1.12 5.1635e-02 1.15
9919 2.9411e-04 2.03 2.6943e-02 1.00 2.5888e-02 1.03

39975 7.4623e-05 2.01 1.3516e-02 1.01 1.2754e-02 1.04
161127 1.8719e-05 2.01 6.7697e-03 1.00 6.3533e-03 1.01

Table 1: Convergence history and convergence order for all error norms for
the standard method in the example of Section 4.1 for ν = 1.

ndof ‖u− uh‖L2 order ‖u− uh‖1,h order ‖p− ph‖L2 order

119 3.6198e-03 4.9825e-02 2.2590e-01
559 9.1389e-04 2.20 2.4666e-02 1.12 1.0663e-01 1.20

2431 2.2772e-04 2.09 1.2340e-02 1.04 5.0162e-02 1.13
9919 5.7381e-05 2.05 6.1891e-03 1.03 2.5426e-02 1.01

39975 1.4689e-05 2.00 3.1160e-03 1.01 1.2607e-02 1.03
161127 3.6552e-06 2.02 1.5561e-03 1.01 6.3002e-03 1.01

Table 2: Convergence history and convergence order for all error norms for
the modified method in the example of Section 4.1 for ν = 1.

Tables 1-2 show the error norms and their convergence orders for ν =
1. The error for the standard method is significantly larger than for the
modified method due to the influence of the pressure. Table 3 compares
the results on a fixed mesh for different ν towards zero. The velocity errors
of the standard method get polluted more and more as indicated by the
a priori error estimate, while the modified method is robust and shows no
changes in the velocity error.

4.2 Second Example

The second example considers the stream function w(x, y) = r2 log | log |r||
with r(x, y) :=

√
x2 + y2 with the exact solution u := rot(w(x, y)) and right-

‖u− uh‖L2 ‖u− uh‖1,h ‖p− ph‖L2

ν (standard) (modified) (standard) (modified) (standard) (modified)

1e1 4.0749e-05 8.3527e-05 4.6015e-03 7.4528e-03 1.5977e-02 1.5939e-02
1e0 1.8296e-04 8.3527e-05 1.4125e-02 7.4528e-03 1.2286e-02 1.1921e-02

1e-1 1.7930e-03 8.3527e-05 1.3429e-01 7.4528e-03 1.2244e-02 1.1874e-02
1e-2 1.7927e-02 8.3527e-05 1.3422e+00 7.4528e-03 1.2243e-02 1.1873e-02
1e-3 1.7927e-01 8.3527e-05 1.3422e+01 7.4528e-03 1.2243e-02 1.1873e-02

Table 3: Comparison of error norms for both methods in the example of
Section 4.1 for different ν and a fixed mesh with ndof = 8063.
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ndof ‖u− uh‖L2 order ‖u− uh‖1,h order ‖p− ph‖L2 order

1587 1.3437e-02 7.4276e-01 7.5464e-02
6386 3.3821e-03 2.11 3.7403e-01 1.05 4.0210e-02 0.96

25896 8.4052e-04 2.06 1.8577e-01 1.03 1.9510e-02 1.07
103677 2.1986e-04 1.97 9.4845e-02 0.99 9.7066e-03 1.02

Table 4: Convergence history and convergence order for all error norms for
the standard method in the example of Section 4.2.

ndof ‖u− uh‖L2 order ‖u− uh‖1,h order ‖p− ph‖L2 order

1587 2.8328e-02 1.2626e+00 2.1148e-01
6386 7.4116e-03 2.05 6.4892e-01 1.02 9.6991e-02 1.19

25896 1.8752e-03 2.03 3.2773e-01 1.01 3.7382e-02 1.41
103677 4.7668e-04 2.01 1.6561e-01 1.00 1.7856e-02 1.08

Table 5: Convergence history and convergence order for all error norms for
the modified method in the example of Section 4.2.

hand side f := −∆u on the domain Ω := (−3/7, 4/7)2. The exact solution
satisfies u ∈ H2(Ω) but not ∆u ∈ L∞(Ω). The unstructured meshes for
the computations were generated with Triangle [32] and the unsymmetric
bounds of the domain ensure that the singular point (0, 0) is not a node of
the meshes.

Tables 4 and 5 show that all error norms under consideration converge
with optimal speed for both methods. The results indicate, that the required
regularity ∆u ∈ H2(Ω) in the statement of Theorem 2 can potentially be
relaxed.

4.3 Third Example

The third example concerns the 3d velocity

u(x, y, z) :=
13

5

 5y − 3z
−5x+ 2z
3x− 2y

 r−1/2+1/100 with r2 := x2 + y2 + z2

and the right-hand side f := −∆u on the unit cube Ω := (−0.5, 1)3. The
exact solution satisfies u ∈ H2(Ω) but not ∆u ∈ L∞(Ω). The unstructured
meshes for the computations were generated with TetGen [33] and the un-
symmetric bounds of the domain ensure that the singular point (0, 0) is not
a node of the meshes.

Tables 6 and 7 suggest that there is no reduction of the optimal conver-
gence order in case u ∈ H2(Ω) but ∆u /∈ L∞(Ω).
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ndof ‖u− uh‖L2 order ‖u− uh‖1,h order ‖p− ph‖L2 order

113 1.1393e+00 0.00 6.9830e+00 0.00 1.2373e+00 0.00
882 5.1801e-01 1.91 5.0883e+00 0.77 4.8584e-01 2.26

5662 2.1333e-01 2.09 3.5125e+00 0.87 6.5409e-01 -0.70
44752 5.8255e-02 2.23 1.8796e+00 1.07 3.1996e-01 1.23

359529 1.7149e-02 1.92 1.0506e+00 0.91 1.8718e-01 0.84

Table 6: Convergence history and convergence order for all error norms for
the standard method in the example of Section 4.3.

ndof ‖u− uh‖L2 order ‖u− uh‖1,h order ‖p− ph‖L2 order

113 1.8259e+00 0.00 8.9380e+00 0.00 5.0305e+00 0.00
882 8.4509e-01 1.87 6.9863e+00 0.60 1.3127e+00 3.25

5662 3.8754e-01 1.84 5.4600e+00 0.58 1.4177e+00 -0.18
44752 1.0244e-01 2.28 2.9540e+00 1.05 6.5389e-01 1.33

359529 2.6287e-02 2.14 1.5657e+00 1.00 2.4901e-01 1.52

Table 7: Convergence history and convergence order for all error norms for
the modified method in the example of Section 4.3.
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