
WeierstraB-Institut 
fiir Angewandte Analysis und Stochastik 

im Forschungsverbund Berlin e.V. 

Asymptotic behavior of the solutions 
to a Landau-Ginz burg system with viscosity 

for martensitic phase transitions 
in shape memory alloys 

Jurgen Sprekels1 , Songmu Zheng2 , Peicheng Zhu2 

submitted: 15th January 1996 

1 Weierstrass Institute 
for Applied Analysis 
and Stochastics 
MohrenstraBe 39 
D - 10117 Berlin 
Germany 

2 Institute of Mathematics 
Fudan University 
200433 Shanghai 
P.R. China 

Preprint No. 214 
Berlin 1996 

1991 Mathematics Subject Classification. 35Q72, 73B30, 35B40. 
Key words and phrases. Nonlinear thermoviscoelasticity, shape memory alloys, phase transitions 
asymptotic behaviour, compact orbits, Landau-Ginzburg theory. 

J. Sprekels was partially supported by the Deutsche Forschungsgemeinschaft, DFG-SPP ,,Echtzeit-
Optimierung groBer Systeme". S. Zheng was supported by NSF of China, No. 19331040. 



Edited by 
Weierstraf3-Institut fiir Angewandte Analysis und Stochastik (WIAS) 
Mohrenstraf3e 39 
D - 10117 Berlin 
Germany 

Fax: + 49 30 2044975 
e-mail (X.400): c=de;a=d400-gw;p= WIAS-BERLIN ;s=preprint 
e-mail (Internet): preprint@wias-berlin.de 



Abstract 
In this paper, we investigate the system of partial differential equations governing the 

dynamics of martensitic phase transitions in shape memory alloys under the presence of 
a (possibly small) viscous stress. The corresponding free energy is assumed in Landau-
Ginzburg form and nonconvex as function of the order parameter. Results concerning 
the asymptotic behavior of the solution as time tends to infinity are proved, and the 
compactness of the orbit is shown. 

1 Introduction 
In the present paper, we study the asymptotic behavior of the solutions to a system that arises 
in the thermomechanical developments in a one-dimensional heat-conducting viscous solid of 
constant mass density {] (assumed to be normalized to unity, i.e. e = 1). The solid is subjected 
to heating and loading. We think of metallic solids that not only respond to a change of the 
strain c by a (possibly nonlinear) elastic stress u = u(c), but also to a change of the curvature 
of their metallic lattice by a couple stressµ= µ(ex)· 
We assume that the Helmholtz free energy density Fis a potential of Landau-Ginzburg form, 
i.e. 

(1.1) 
· where () denotes the absolute temperature. To cover systems modelling first-order stress-induced 

and temperature-induced solid-solid phase transitions accompanied by hysteresis phenomena, we 
do not assume that Fis a convex function of the order parameter c. 
A particular class of materials, in which both stress-induced and temperature-induced first-
order phase transitions leading to a rather spectacular hysteretic behavior occur, are the so-
called shape memory alloys. In these materials the metallic lattice is deformed by shear, and the 
assumption of a constant density is justified. The shape memory effect itself is due to martensitic 
phase transitions between different configurations of the crystal lattice, namely austenite and 
martensitic twins. For an account of the physical properties of shape memory alloys, we refer 
the reader to chapter 5 in the monograph [4]. In a series of papers (cf., for instance, [7], [8]), 
Falk has proposed a Laudau-Ginzburg theory that uses the shear strain c as order parameter in 
order to explain the occurrence of the martensitic transitions in shape memory alloys. In this 
connection, we also refer to the works of Miiller (cf. [1], [14]). 
The simplest form for the free energy density F that accounts quite well for the experimentally 
observed behavior and that takes couple stresses into account is (see Falk [7], [8]) given by 

where 

F{c, c.,, 0) = Fo(O) + F1(c)O + F2(c) + %c~, 

F1(c) = a1c2, F2(c) = a3c6 - a2c4 
- a1B1c2, 

Fo(O) = -CvOiog (~) + CvO + 6, 

(1.2) 

(1.3) 

(1.4) 

with positive physical constants B1, 8, ai, a 2, a 3, B2, Cv, C. The constant Cv denotes the specific 
heat. Observe that in the interesting range of temperatures, for() close to B1, Fis not a convex 
function of the shear strain c. In fact, F(·, c:z:, B) may have up to three minima that correspond 
to the austenitic and the two martensitic phases. 
We want to forecast the dynamics of the phase transitions in the one-dimensional situation. 
To this end, let n = (0, 1), and, fort > 0, Ot = n x (0, t). Then the balance laws of linear 
momentum and internal energy read 

(1.5) 
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Ut + qx - aet - µext = 0, in Ooo . (1.6) 
The second law of thermodynamics is expressed by the Clausius-Duhem inequality 

(1.7) 

Here, u, a, µ, U, q, e, S, and e, denote displacement, shear stress, couple stress, internal 
energy density, heat flux, shear strain, entropy density, and absolute temperature, in that order. 
For one-dimensional homogeneous thermoviscoelastic materials, we have the constitutive rela-
tions 

8F 8F 8F 
e = Ux, O' = 8e + "'fet, µ = Bex' s = - ae ' u = F + es' (1.8) 

where "Y > 0 is the viscosity. For the heat flux q, we assume Fourier's law 

(1.9) 

where k > 0 is the heat conductivity (assumed constant). Obviously, this assumption implies 
the validity of (1.7), so that the second law of thermodynamics is automatically satisfied. 
Inserting the constitutive relations in the balance laws (1.5)-(1.6), we obtain the system of 
partial differential equations 

where 
!1 = f1(c) = F{(c), h = h(c) = F~(c). 

In addition, we prescribe the initial and boundary conditions 

with 

as well as 
Bxlx=0,1 = 0, 

u(x,O) = uo(x), Ut(x,O) = u1(x), B(x,0) = Bo(x) > 0, x E n. 

(1.10) 

(l.11) 
(1.12) 

(1.13) 

(1.14) 

(1.15) 

(1.16) 
(1.17) 

The physical meaning of the boundary conditions is clear; for instance, the second condition at 
x = 1 describes the stress-free situation. 
Next, we employ an idea of Andrews [2] and Pego [17] to simplify the problem by introducing 
the velocity potential 

p(x, t) = f Ut(Y, t) dy. 

Then, 

and (1.10)-(1.11) can be rewritten as 
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(1.18) 

(1.19) 

(1.20) 

(1.21) 



Accordingly, the initial and boundary conditions (1.14), (1.16), (1.17) become 

Pxlx=O = Pxxxlx=O = exlx=O = o, (1.22) 

Plx=l = Pxx lx=l = elx=l = 0, (1.23) 

c(x, 0) =Co = Uox, p(x, 0) = Po(x) = [ u1(Y) dy, B(x, 0) =Bo, x En. (1.24) 

It is easy to see that if (u,v,B) is a smooth solution to (1.10)-(1.17), then (e,p,B) is a smooth 
solution to (1.19)-(1.24), and vice versa. Therefore, it suffices to consider the problem (1.19)-
(1.24). In the sequel, we assume without loss of generality that Cv = 1. 
Before stating and proving our results, let us first recall some related results in the literature. In 
the case 8 = 0, Dafermos [5], Dafermos & Hsiao [6], Chen & Hoffmann [9], and Jiang [11], proved 
the global existence of a classical solution to the system of (1.10)-(1.12) with various boundary 
conditions for a class of solid-like materials. However, an analysis of the asymptotic behavior as 
t -+ oo was not performed in these papers. Recently, on the basis of Dafermos [5] and Dafermos 
& Hsiao [6], T. Luo [13] further investigated the asymptotic behavior of smooth solutions as 
time tends to infinity for a special class of solid-like materials in which e = Cv B, F2 = 0, and 
8 = 0. Racke & Zheng [18] obtained global existence, uniqueness and the asymptotic behavior 
of weak solutions to (1.10)-(1.12) for 8 = 0 if both ends of the rod are insulated and if at least 
one end is stress-free. 

· In the case 8 > 0, we refer to Sprekels & Zheng [20], if 8 > 0, / = 0, and to Hoffmann & Zochowski 
[10], if 8 > 0, I > 0, for global existence and uniqueness results for Falk's Landau-Ginzburg model 
of shape memory alloys. However, the a priori estimates for the solution obtained in these papers 
depend on t, and hence the asymptotic behavior of the solution for t-+ oo could not be treated 
there. 
We also refer to the works of Andrews [2], Andrews & Ball [3], and Pego [17], for the isothermal 
and purely viscoelastic case. 
The purp·ose of our contribution is to study the asymptotic behavior as t-+ oo of the solutions 
to the system (1.19)-(1.24) and to prove the compactness of the orbit. 
Next, we state the main result of this paper. 

Theorem 1.1 Suppose that e0,p0 E H3 and Bo E H 1 are given functions that satisfy the com-
patibility conditions Poxlx=O = eoxlx=O = 0, Polx=l = Pxxlx=l = exlx=l = 0, and suppose that 
B0 > 0 in [O, l]. Then the following results hold. 
(i) The problem admits a unique global solution ( e, p, B) satisfying 

e E C(ffi+; H 3 ), et E C(ffi+; H 1) n L2 (ffi+; H 2); 

p E c(m+; H 3 ) n L2 (ffi+; H 4 ), Pt E C(m+; H 1) n L2 (ffi+; H 2
); 

BE C(m+; H 1), Bx E L2 (ffi+; H 1), Bt E L2 (m+; L2
), 

B(x, t) > 0, V (x, t) E [O, 1] x m+. 
(ii) As t -+ oo, it holds 

llP(·, t)l!Ha-+ 0, llPt(·, t)llH1 -+ 0, 

ll8exx(·, t) - cr1(·, t)llH1-+ 0, llet(·, t)llH1 -+ 0, llBx(·, t)ll -+ 0. 

(iii) For all v > 0, 

e E C([v, +oo); H 4 ), p E C([v,+oo); H 4), BE C([v, +oo); H 3
), 

i. e. the orbit is compact in H 3 x H 3 x H1 . 

(iv) 
(e(·, t),p(·, t), B(·, t))-+ (e, 0, 7J), as t-+ oo, in H 3 x H 3 x H 1

, 

where (e, 7J) is one of the equilibria for the corresponding stationary problem. 
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(1.26) 
(1.27) 

(1.28) 
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The main difficulties in proving Theorem 1.1 are due to the higher degree of nonlinearity inherent 
in the system (1.19)-(1.21), and to the higher order derivative arising for 8 > 0. The presence 
of this higher order derivative makes the problem in two ways significantly different from the 
problem with 8 = 0, 'Y > 0: it renders the orbit compact (while discontinuities of strain will 
persist in the case 8 = 0, / > 0, as shown in [18]), and the technique needed to obtain the 
asymptotic behavior differs considerably from that used in the case 8 = 0, / > 0. One of the 
main ingr~dients of the proof in this paper is to bound the norms of c, p, as well as of their 
derivatives, in terms of expressions of the form 

(1.30) 

where 0 :::; a :::; ~, 0 :::; /3 :::; ~. This makes it possible to reduce the degree of nonlinearity 
via interpolation techniques. To study the asymptotic behavior, we will make repeated use of a 
basic lemma in analysis proved in Shen & Zheng [19]. In Section 2, we will prove the uniform 
a priori estimates and the compactness of the orbit. In Section 3, the asymptotic behavior is 
investigated. 
The notation in this paper will be as follows: D', 1 :::; p :::; oo, wm,oo, m E IN, H 1 = W1,2 , 

and HJ= Wci-'2 , respectively, denote the usual Lebesgue and Sobolev spaces on (0,1). By (·, ·), 
we denote the inner product in L2 , and II· llB denotes the norm in the space B. We use the 
abbreviation II · II := II · 11£2 , and Ck(J, B); k E IN0 , denotes the space of k-times continuously 
differentiable functions from IC IR into a Banach space B. The spaces V(I, B), 1 :::; p :::; oo, 
are defined analogously. Finally, 8t or ft or a subscript t and, likewise, 8x or a subscript x, 
denote the partial derivatives with respect tot and x, respectively. 

2 Uniform A Priori Estimates 
The general framework to prove global existence and uniqueness of solution has been established 
in earlier papers, for instance in Sprekels & Zheng [20] and Hoffmann & Zochowski [10]. The 
setting will become more apparent soon during the derivation of uniform a priori estimates. 
Therefore, we can focus our attention on the study of the asymptotic behavior and on the 
compactness of the orbit. In order to get the asymptotic behavior of the solution as t -+ oo, 
we shall prove uniform a priori estimates on c, p, and (} with repect to t. From now on, we will 
always denote by C a universal positive constant that may depend on the initial data, but not 
on t. 

Lemma 2.1 For any t > 0, the following estimates hold. 

llc(t)ll + llc(t)11£6 + llPx(t)ll + llcx(t)ll + llB(t)llL1 :::; C, 

llp(t)llL00 + llc(t)llL= :::; C, 
B(x, t) > 0, V (x, t) E [O, 1] x m+. 

PROOF. First, applying the maximum principle to (1.21), we find that 

B(x, t) > 0, V (x, t) E [O, 1) x m+. 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

Next, multiplying (1.20) by -Pxx, adding the result to (1.21), and integrating with repect to x 
over n, we arrive at 

(2.5) 

Thus, 

11 1 8 
(B + F2(c) + -p; + -c;)(t) dx = E1 , 

0 2 2 
(2.6) 
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where E1 is a constant depending only on the initial data. 
Using Young's inequality, we see that 

whence 
llc:(t)ll + llPx(t)ll + llcx(t)ll + llc(t)llL6 + llB(t)llL1::; C. 

By virtue of the boundary conditions and of Poincare's inequality, we find 

whence the assertion follows. 

Lemma 2.2 For any t > 0, the following estimates hold. 

rt rl (82 p2 ) lo lo B~ .+ ~;/ dx dr::; C, 

t [[Px(r)i1 2dr '.St [[Px(r)[[J.~dr '.SC, t [[p(r)[[J.~dr :<; C, 
t [[Px(r)[[n+2dr :<; C, V n 2: 0. 

PROOF. Multiplication of (l.21) by 0-1 and integration with respect to x over n yield 

d {1 . {1 (kB2 IP2 ) dt lo (logB - F1(c))(t) dx - lo 82x + 8xx (t) dx = O. 

Since log B::; B - 1 for all B > 0, we obtain 

r f1 (ke; + IP;x) dx dr::; C. lo lo 82 e 
From Px lx=O = 0 it follows that 

Px(x, t) = Px(O, t) + f Pxx(Y, t) dy = f Pxx(Y, t) dy. 

Hence, 

Thus, 

(2.7) 

(2.8) 

(2.9) 

D 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

Combining (2.11) with (2.8), a simple induction yields that to any n E IN there is some 
C = C(n) such that 

(2.18) 

The proof of the assertion is complete. D 
In the sequel we will see that (2.18) is very useful for reducing the degree of nonlinearity. To 
get further estimates, we will now derive estimates for the derivatives of the norms of c:, p by 
expressions of the form· (l.30). 
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Lemma 2.3 For any t > 0, the following estimates hold. 

ft (llc:t(r)ll 2 + llPxx(r)ll 2
) dr::; C sup llB(r)llux:i, 

lo o~r::;t 
(2.19) 

f 11B,,(r)ll2dr ::0 C0~~~tllO(r)lli=· (2.20) 

PROOF. Using Lemma 2.2, we obtain 
t t 2 

lo llp,,,,(r)ll 2dr =lo vre:re(r) dr 
t 2 

::; sup llB( r) II Loo f p~( r) dr 
O~r~t lo vB 

::; C sup llB(r)ll£oo. (2.21) 
O~r::;t 

Similarly, we have 
ft llBx(r)ll2dr::; C sup llB(r)llioo· (2.22) 

lo O~r::;t 
The proof is complete. D 
We can now show further estimates. 
Lemma 2.4 For any t > 0 the following estimates hold. 

llP,,t(t) 11 2 + Jlp,,,,,,(t) 11 2 + f ([[p,,,,t( r) 11
2 + llcu( T) 11

2
) dr 

::0 C ( 1 + 0~~~tJlO(r)lli= + f llOt(r)Jl2 dr) , (2.23) 

llc,,t( t) 11 2 + f (lip,,,,,,,,( r) 11 2 + llc,,,,t( r) 11 2
) dr 

::0 C ( 1 + 0~~~t llO(r)lli= + f 110t(r)ll2 dr) . (2.24) 

PROOF. First, differentiating (1.20) with respect to t, multiplying the result by -C:tt, and 
integrating with repect to x over n, we obtain 

0 - (pu(t), -p,,,,t(t)) + -yJlcu(t)ll2 + (Oc,,t(t), c,,u(t)) + f Uit(t) cu(t) dx 
. 0 

- (Pxtt(t),Pxt(t)) + rllctt(t)ll 2 + 8(cxt(t), Cxtt(t)) 

+ l (ff(c) Ct 0 + f~(c) Ct + fi(c) Ot)(t) cu(t) dx. (2.25) 

Combination with (2.9) yields 

1 d ' fl 2 dt (11Pxt(t)ll 2 + 8llc:xt(t)ll 2
) + rllc:tt(t)ll 2 

::; 2llctt(t)ll 2 + C lo (B2c:; + c:; + e;)(t) dx.· 

Integrating (2.26) with respect to t and applying Lemma 2.3, we arrive at 

11Pm(t)ll2 +llc,,t(t)ll 2 +f11cu(r)ll2dr 

< C + C f (JIO(r) Ct(r)ll 2 + Jlct(r)Jl 2 + Jl0t(r)Jl 2
) dr 

::0C+C0~~~tJlO(r)lli=f11ct(r)Jl2 dr + C lo\Jlct(r)Jl2 + llOt(r)ll 2
) dr 

(2.26) 

::0 C (i + 0~~~tJlB(r)Jli= + f 11Bt(r)ll 2dr). (2.27) 
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Here, we have used Young's inequality in the form a~ Ca3 + C'. 
Next, we differentiate (1.20) with respect to t, then multiply by exxt, and integrate the result 
with respect to x over n, to obtain 

0 (pu(t), Cxxt(t)) - 'Y(Ctt(t), Cxxt(t)) + 8llcxxt(t)ll2 
- l Cxxt(t) ait(t) dx 

- (Pxxtt(t), Ct(t)) + 'Y(Cxtt(t), Cxt(t)) + 8llcxxt(t)112 
- l Cxxt(t) Uit(t) dx 

! (Pxxt(t), Ct(t)) - llPxxt(t) 11
2 + ~ ! licxt(t) 11

2 + Ollcxxt(t) 11
2 

-l Cxxt(t) alt(t) dx. (2.28) 

However, by integration by parts, we have 

(Pxxt(t), et(t)) = -(Pxt(t), Cxt(t)). (2.29) 

Combining this with (2.28), and using (2.23) and Young's inequality, we find 

(2.30) 

The proof of the lemma is complete. D 
In the sequel, we will find that the above lemma plays a crucial role in reducing the degree of 
nonlinearity. 

Lemma 2.5 For any t > 0, the following estimates hold. 

llOx(t)ll 2 +l110t(r)ll 2dr:::; C. 

sup llB(r)llL= ~C. 
0~1"9 

PROOF. Multiplying (1.21) by Bt and integrating with repect to x over n, we obtain 

~ dd' llBx(t) 11
2 + llBt(t)ll 2 = f

1 
(/1 (c) B Bt Pxx + 'Y Bt P;x)(t) dx 2 t lo 

:::; C (llO(t) Pxx(t)ll llOt(t)ll + (fo1 P!x(t) dx) t llOt(t)ll) 

(2.31) 

(2.32) 

:::; C (llO(t)ii!= llPxx(t)liL= (fo1 O(t) dx) t llOt(t)li + liPxx(t)lli• llOt(t)ll) . (2.33) 

Therefore, integration with respect to t yields 

llOx(t) 11
2 + l llOt(r)i1 2dr :::; C c~~~)IO(r)ii!= (l llPxh)iii,=dr) t (l llOt(r)ll 2dr) t 

+ (l11Pxx(r)lli•dr)t(lll0t(r)ll2dr)t + 1) 
- C (11 +12 + 1). (2.34) 

We .now estimate the terms 11, 12 • By virtue of Nirenberg's inequality and the boundary condi-
tions, we obtain 

(2.35) 
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11Pxx(t)llL4 ::=; C llPxxxx(t)llfi- 11Px(t)llf2 · (2.36) 

Hence, 
1 

Ii - C (sup llB(r)lluxi rt llBt(r)ll 2dr rt llPxx(r)lli=dr) 
2 

OSr9 lo lo 
1 

< C c~~~t llB(T)llL~ l llBt(T)ll2dT l llp,,,,,,z{T)ll llPz{T)ll dT) 
2 

. 1 

< C (sup llB(r)llL= rt llBt(r)lj 2dr) 
2 

(rt 11Pxxxx(r)ll 2dr rt llPx(r)lj 2dr) i. (2.37) 
OSr9 lo lo lo 

Using Lemma 2.2, Lemma 2.4, and Young's inequality, we conclude that 
.! 1 

I1 < c c~~~.llB(T)llL~ f 11e,(T)ll2dT) 
2 

(fo' llPxxxh)ll 2dT) 
4 

1 1 

< C c~~~,llB(T)llL~ l llBt(T)ll 2dT) 
2 

( 1 + 0~~~,llB(T)lli~ + l llBt(T)ll2dT) 
4 

< ~ rt 11Bt(r)ll 2dr + c (1 + sup llB(r)llL=). (2.38) 
4 lo OSr9 

Next, owing to Schwarz's inequality and (2.36), we have 
1 

h - C (fo' llBt(T)ll2dT l llp,,x(T)lli.•dT) 
2 

1 

< C (fo' llBt(T)ll2dT l llp,,,,,,,,(T)lli llPx(T)ll~dT) 2 

1 5 1 

< C (fo' llBt(T)ll2dT) 2 (fo' llp,,,,,,,,(T)ll2dT) I2 (fo' llpz{T)ll14dT) I2 • (2.39) 

Applying (2.18) with n = 12 and Lemma 2.4, we get 
. 1 5 

I2 < c (fo' 11e,(T)ll2dT r (fo' 11p,,,,,,,,(T)ll2dT r 
1 ~ 

< C ( rt llBt(r)ll 2dr) 2 (1 + sup llB(r)lli= + r 11Bt(r)ll2dr) 
12 

lo osrSt lo 

< ~ fo' 11e,(T)ll2dT + C0~~~tll0(T)llf~ +C. (2.40) 

Owing to Nirenberg's inequality and (2.1), we have 
2 1 2 

llB(t)llL= :::; c llB:c(t)ll 3 llB(t)llf1 + c llB(t)llL1 ::; c 11Bx(t)ll 3 +c. (2.41) 

Combining (2.38)-(2.40) with (2.34) and (2.41), and applying Young's inequality, we find 

llB,,(t)ll2 +fo'11e,(T)i12dT < ~ fo' 11et(T)i12dT + C(l + 0~~~,110,,(T)lli) 
< C + ~ (rt 11Bt(r)ll 2dr + sup llBx(r)11 2

) . (2.42) 
2 ~ OSrSt 

Taking the supremum with respect tot in (2.42) yields 

(2.43) 
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Hence, 

(2.44) 

Thus, using (2.41), 
sup llB( r) Iii= ~ C, 
O~r:9 

(2.45) 

which concludes the proof of the assertion. o 
Combining the Lemmas 2.3 to 2.5, and using the system equations, we immediately conclude 
that 

Lemma 2.6 For any t > 0, the following estimates hold. 

l (11Pxh}ll2+llct(r)112 + llOx(r)lli,1) dr :S: C, (2.46) 

lot (llPxxt( r) 11 2 + llctt( r) 11 2 + llPxxxx( r) 11 2 + llcxxt( r) 11 2
) dr :S: C, (2.47) 

llPxt(t) 11
2 + llPxxx(t) 11

2 + llcxt(t) 11
2 + llcxxx(t) 11

2 ~ C. (2.48) 

Lemma 2. 7 For any t > 0, the follpwing estimates hold. 

l (11Pt(r)ll 2 +llpt(r)lli=+11Pxt(r)ll2 + llPxt(r)lli=) dr :S: C, (2.49) 

l (ll8cxx(r) - cr1(r)ll 2dr + ll(8cxx - cr1)t(r)ll2
) dr :S: C, (2.50) 

l (ilPxx(r)lli= + llPxxx( r)ll 2 + llPxxx(r) Iii=+ llPtt( r)ll 2
) dr :S: C, (2.51) 

11Pt(t)ll2 +11Pxx(t)ll 2 + llPt(t)llioo + llPx(t)llioo + llPxx(t)llioo ~C. (2.52) 

PROOF. These estimates can easily be derived from the system equations and from the Lemmas 
2.5 and 2.6. D 
Now we proceed to investigate the compactness of the orbit of the solution for t > 0 in H 3 x 
H 3 x H1. For the time being, we assume that the initial data are so smooth that the solution 
will have enough smoothness to carry out the following argument; if the initial data belonged 
just to H 3 x H 3 x H 1, we could approximate them by smooth functions and then pass to the 
limit. 
Differentiating (1.20) twice with respect to t, we find that 

Pttt - 'YPxxtt + 8cxxtt - O"itt = 0 · (2.53) 

A straightforward calculation yields 

Multiplying (2.53) by Ptt and integrating with respect to x over 0, we find 

0 ~ :t llPtt(t) 11 2 
- 'Y(pxxtt(t), Ptt(t)) + 8(cxxtt(t), Ptt(t)) - ( crrn(t), Ptt(t)) 

- ~ :t llPtt(t) 11 2 + 'YllPxtt(t) 11 2 + 8(ctt(t), Pxxtt(t)) - (crrn(t), Ptt(t)) 

- ~ :t (11Ptt(t)ll2 + 8llctt(t)ll2
) + 'YllPxtt(t)ll2 

- (crrn(t),Ptt(t)) · (2.55) 
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Multiplying (2.55) by t2 and using (2.32), as well as the Lemmas 2.6 and 2.7, we obtain that 

~ ! (t2llPu(t)112 + t2<llleull2) - t (llPu(t) 11 2 + dlleu(t) 11 2) + 1t2 11Pxtt(t) 11
2 

< t2 I IPtt ( t) 11 2 + Ct2IIu1 tt ( t) 11 2 

< t2l!Ptt(t)ll2 + Ct2(llc:tt(t)l12 + llBt(t)ll2 + llBtt(t)ll2 + llct(t)ll2). (2.56) 

Hence, it follows from (2.31), (2.46), and (2.47), that 

t2(11Pu(t)ll2 + <>lieu(t)ll2) + l r 2 llPxtt(r)i1 2dr::; C1 + Ct2 +Cl r 2llOtt(r)ll2dr, (2.57) 

where C1 = C(llc:olln3, l!Polln3, llBolln1). 
On the other hand, differentiating (1.21) with respect tot, we get 

Multiplying by Btt and integrating with respect to x, we arrive at 

~ ! llOxt(t) 11 2 + llOu(t) 11 2 < ~ llOu(t) 112 + ~II (!1 (e J0Pxx + "YP;x)t(t) 11 2 

1 < 211Btt(t)ll2+C(11Pxx(t)11 2+11Bt(t)ll 2+11Pxxt(t)ll 2). (2.59) 

Multiplication of (2.59) by t2 yields 

kd ~ 2 dt(t2!1Bxt(t)ll2) - kt11Bxt(t)ll 2 + 2l1Btt(t)l12 :::; Ct2 (11Pxx(t)ll 2 +l!Bt(t)ll 2 +11Pxxt(t)ll 2
). (2.60) 

In order to estimate J~r11Bxt(r)ll 2dr, we multiply (2.58) by Bt and then integrate with respect 
to x over n, to obtain 

Multiplying (2.61) by t, we find 

1 d 
2 dt (tllBt(t) 11

2) +ktllBtx(t) 11
2 :::; c (llBt(t) 11 2+tllBt(t)112 +t (llc:t(t) 11 2+llBt(t)112+llPxxt(t)112) ). (2.62) 

Therefore, 

tll0t(t)ll2 + l rll0xt(r)ll2dr::; Ct + C2, 

where C2 = C(llc:olln3, llPolln3, llBolln1). 
Combination of (2.63) with (2.60) yields 

l r 2llOu(r)ll2dr::; Ca+ Ct2, 

with C3 = C(llcolln3, llPolln3, llBolln1). 
Thus, it follows from (2.57) that 

11Ptt(t)ll2 + llctt(t)112 :::; C4r2 +C. 

Also, using (2.63) and (2.60), 

l!Bt(t) 11 2 :::; C + C4r1, llBxt(t) 11 2 :::; C4r2 + C, 
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(2.63) 

(2.64) 

(2.65) 

(2.66) 



with C4 depending only on lleollH3, llPollH3, llOollHi. 
Thus, it easily follows from the equations (1.19) to (1.21) that for any initial data in H3 x H3 x H1 
it holds 

(c:(·, t),p(·, t), O(·, t)) E H4 x H4 x H3 , \It> O. (2.67) 
Moreover, we can infer from the Lemmas 2.5 to 2.7, and from (2.55), (2.59) and (2.61), that for 
any v > 0 the triple (c:,p, 0) is bounded in C([v, +oo); H4 xH4 xH3). From this the compactness 
of the orbit in H3 x H3 >< H 1 follows. o 

3 Asymptotic Behavior 
In this section, we will prove the results on the asymptotic behavior of the solution given in 
Theorem 1.1. In the sequel, a convergence symbol" --+" is always to be understood as t--+ oo. 
We will make use of the following basic lemma from Shen & Zheng [19]: 

Lemma 3.1 Suppose that y and h are nonnegative functions on (0, oo) such that y' is locally 
integrable and such that y, h satisfy 

Vt~O: 

\IT> 0: 

y'(t) :::; Aiy2(t) + A2 + h(t), 
T T 
j y(r)dr:::; A3, j h(r)dr:::; A4 , 

0 0 

(3.1) 

(3.2) 

where A1 , A2 , A3 , A4 denote positive constants which are independent oft and T. Then, for any 
r > 0, 

\It~ 0: (3.3) 

Moreover, 
lim y(t) = 0. 
t~oo 

(3.4) 

Lemma 3.2 It holds 
llp(t)llH3--+ 0, llPt(t)llH1 --+ 0, (3.5) 

1let(t)llH1 --+ 0, ll(c5cxx - a1)(t)llH1 --+ 0, (3.6) 

llut(t)llH2 --+ 0. (3.7) 

PROOF. It follows from (2.26) and (2.32) that 

! (\1Pzt(t)ll 2 + Ollczt(t)ll2
) + 'Ylictt(t)ll2 

< C (llO(t) et(t)ll'2 + llet(t)ll 2 + llOt(t)ll 2
) 

< C (llc.-t(t) 11 2 + llOt(t) 11 2
). (3.8) 

Combining (3.8) with (2.51), (2.46), (2.49), (2.31), and applying Lemma 3.1, we arrive at 

llPxt(t) 11 2 + llcxt(t) 11 2 --+ 0. (3.9) 

Hence, 11Pxxx(t)ll 2 --+ 0, and thus llutllH2--+ 0. 
Next, we differentiate (1.20) with respect to t, then multiply by c5cxx - a1 and integrate with 
respect to x over n. It follows 

!dd llc5cxx(t)- a1(t)ll2 
- -(Ptt(t) -"YC.-tt(t),c5cxx(t) - a1(t)) 

2 t 

< ~llOcxx(t) - u1(t)ll2 + C(llPtt(t)ll 2 + llctt(t)il2
). (3.10) 
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Combining (3.10) with (2.50), (2.51), (2.47), and applying Lemma 3.1, we conclude that 

ll<5cxx(t) - 0"1(t)11 2 -+ 0. (3.11) 

From (l.20) and (3.9), we also get 

II ( b'cxx - a1)x(t) 11 2 -+ 0. (3.12) 

The assertions of Lemma 3.2 now follow from the above estimates and from Poincare's inequal-
~ D 

Lemma 3.3 It holds 
llex(t)ll-+ 0. (3.13) 

PROOF. We multiply (1.21) by et and integrate with respect to x over n to get 

~ :t 11e,,(t)Jl2 +11et(t)ll2 
- { (-r p;,, et + fi(c) e et p,,,,) (t) dx 

< ~ 11et(t)Jl2 +11e(t) p,,,,(t)ll2 + IJp;,,(t)ll2
. (3.14) 

Combining (3.14) with (2.32) and (2.52), we see that 

k :tlle,,(t)ll2 + JJet(t)JJ2 ~ CJlp,,,,(t)ll2
• (3.15) 

Hence, we can infer from (2.46) and Lemma 3.1 that 

llex(t)ll 2 -+ 0, 

which concludes the proof. D 
Concerning the convergence of c-, u, e, we have the following result. 

Lemma 3 .4 It holds 

(c-(·, t),p(·, t), e(·, t))-+ (e, 0, B), in H3 x H3 x H 1
, (3.16) 

u(·,t)-tU, in H4
, withu(x)= fo"'e(y)dy, VxE[0,1], (3.17) 

where (e, B) is one of the equilibria for the corresponding stationary problem, 

b'cxx - f1(c-)e - h(c) = 0, 
cxlx=O = 0, clx=l = 0, 
e =Const., 

{ (e + F2(c) + ~c;) dx = E1 . 

PROOF. It is easy to see from (2.4) and (2.12) that, for any 0 < v < 1, 

(3.18) 
(3.19) 
(3.20) 

(3.21) 

d r 1 1 <5 ) r 1 ( ke2 'YP2 ) dt lo (e - v loge+ F2 (c-) + vF1(c-) + 2P; + 2c-; (t) dx + v lo e2x + exx (t) dx = 0. (3.22) 

Thus the system (l.19)-(1.21) has a Lyapunov function of the form 
r1 . 1 <5 

lo (e - v loge+ F2 (c-) + vF1 (c-) + 2P; + 2e:;)(t) dx. 

Since the orbit is compact, as proved in previous section, it follows from the standard theory of 
dynamical systems that the w-limit set is connected, compact and consists of equilibria. Since 
the corresponding stationary problem admits only a finite number of solutions (see Zhou [22], 
and also Luckhaus & Zheng [12], Novick-Cohen & Zheng [16], Zheng [21]), (3.16) follows. In 
view of the boundary condition ulx=O = 0, we also get (3.17). Therefore, the proofis complete. D 
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