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Abstract. In this work we study the properties of segregation processes modeled by a family
of equations

L(ui)(x) = ui(x) Fi(u1, . . . , uK)(x) i = 1, . . . ,K

where Fi(u1, . . . , uK)(x) is a non-local factor that takes into consideration the values of the
functions uj ’s in a full neighborhood of x. We consider as a model problem

∆uεi (x) =
1

ε2
uεi (x)

X

i6=j
H(uεj)(x)

where ε is a small parameter and H(uεj)(x) is for instance

H(uεj)(x) =

Z

B1(x)

uεj(y) dy

or
H(uεj)(x) = sup

y∈B1(x)

uεj(y).

Here the set B1(x) is the unit ball centered at x with respect to a smooth, uniformly convex
norm ρ of Rn. Heuristically, this will force the populations to stay at ρ-distance 1, one from
each other, as ε→ 0.

1. Introduction

Segregation phenomena occur in many areas of mathematics and science: from equipartition

problems in geometry, to social and biological processes (cells, bacteria, ants, mammals), to

finance (sellers and buyers). There is a large body of literature and in connection to our work,

we would like to refer to [1, 2, 4, 5, 6, 8, 7, 9, 10, 11, 12, 13, 14, 15, 18, 20] and the references

therein. They study a family of models arising from different applications whose main two

ingredients are: in the absence of competition species follow a ”propagation” equation involving

diffusion, transport, birth-death, etc, but when two species overlap, their growth is mutually

inhibited by competition, consumption of resources, etc. The simplest form of such models

consists, for species σi with spatial density ui, on a system of equations

L(ui) = ui Fi(u1, . . . , uK).

The operator L quantifies diffusion, transport, etc, while the term ui Fi does attrition of ui

from competition with the remaining species.
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In these models, the interaction is punctual, i.e. ui(x) interacts with the remaining densities

also at position x. There are many processes, though where the growth of σi at x is inhibited

by the populations σj in a full area surrounding x.

The purpose of this work is a first attempt to study the properties of such a segregation

process. Basically, we consider a family of equations,

L(ui)(x) = ui(x) Fi(u1, . . . , uK)(x)

where Fi(u1, . . . , uK)(x) is now a non-local factor that takes into consideration the values of uj

in a full neighborhood of x. Given the previous discussion a possible model problem would be

the system

∆uεi (x) =
1
ε2
uεi (x)

∑

i 6=j
H(uεj)(x), i = 1, . . . ,K

where ε is a small parameter and H(uεj)(x) is a non-local operator, for instance

H(uεj)(x) =
∫

B1(x)
uεj(y) dy

or

H(uεj)(x) = sup
y∈B1(x)

uεj(y) .

Heuristically, this will force the populations to stay at distance 1, one from each other as ε

tends to 0.

We will consider instead of the unit ball in the Euclidean norm B1(x), the translation at x

of a general smooth, uniformly convex, bounded, symmetric with respect to the origin set, B.

The set B defines a smooth, uniformly convex norm ρ in Rn.

Let us note that there is some similarity also with the Lasry-Lions model of price formation

(see [3, 17]) where selling and buying prices are separated by a gap due to transaction cost.

2. Notation and statement of the problem

Let B be an open bounded domain of Rn, convex, symmetric with respect to the origin and

with smooth boundary. Then B can be represented as the unit ball of a norm ρ : Rn → R,

2



ρ ∈ C∞(Rn \ {0}), called the defining function of B, i.e.,

B = {x ∈ Rn | ρ(x) < 1} .

We assume that B is uniformly convex, i.e., there exists 0 < a ≤ A such that in Rn \ {0}

(2.1) aIn ≤ D2

(
1
2
ρ2

)
≤ AIn ,

where In is the n× n identity matrix. In what follows we denote

Br := {y ∈ Rn | ρ(y) < r} ,

Br(x) := {y ∈ Rn | ρ(x− y) < r} .

So through the paper we will always refer to the Euclidean ball as B and to the ρ-ball as B.

For a given closed set K, let

dρ(·,K) = inf
y∈K

ρ(· − y)

be the distance function from K associated to ρ. Then there exist c1, c2 > 0 such that

(2.2) c1d(·,K) ≤ dρ(·,K) ≤ c2d(·,K) ,

where d(·,K) is the distance function associated to the Euclidian norm | · | of Rn.

Let Ω ⊂ Rn be a bounded Lipschitz domain. We will denote by (∂Ω)1 the ρ-strip of size 1

around ∂Ω in the complement of Ω defined by

(∂Ω)1 := {x ∈ Ωc : dρ(x, ∂Ω) ≤ 1} .

For i = 1, . . . ,K, let fi be non-negative Hölder continuous functions defined on (∂Ω)1 with

supports at ρ-distance greater or equal than 1, one from each other:

(2.3) dρ(supp fi, supp fj) ≥ 1 , for i 6= j .

We will consider the following system of equations: for i = 1, . . . ,K




∆uεi (x) =
1
ε2
uεi (x)

∑

j 6=i
H(uεj)(x) in Ω,

uεi = fi on (∂Ω)1.

The functional H(uj)(x) depends only on the restriction of uj to B1(x).
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We will consider, for simplicity,

(2.4) H(w)(x) =
∫

B1(x)
wp(y)ϕ

(
ρ(x− y)

)
dy, 1 ≤ p <∞

or

(2.5) H(w)
(
x
)

= sup
B1(x)

w

with ϕ a strictly positive smooth function of ρ, with at most polynomial decay at ∂B1:

(2.6) ϕ(ρ) ≥ C(1− ρ)q, q ≥ 0.

In rest of the paper, when we refer to consider uε1, . . . , u
ε
K , viscosity solutions of the problem

(2.7), we mean that uε1, . . . , u
ε
K are continuous functions that satisfy in the viscosity sense the

system of equations

(2.7)





∆uεi (x) =
1
ε2
uεi (x)

∑

j 6=i
H(uεj)(x) in Ω,

uεi = fi on (∂Ω)1,

under the hypothesis that ε > 0, Ω is a bounded Lipschitz domain of Rn, fi are non-negative

Hölder continuous functions defined on (∂Ω)1 satisfying (2.3), H is either of the form (2.4) or

(2.5) and (2.6) holds.

3. Main results

For the reader’s convenience we present our main results below:

Existence (Theorem 4.1):

There exist continuous functions uε1, . . . , u
ε
K , depending on the parameter ε, viscosity

solutions of the problem (2.7).

Limit problem (Corollary 5.6):

There exists a subsequence (~u)εm converging locally uniformly, as ε → 0, to a function

~u = (u1, . . . , uK), satisfying the following properties:
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i) the ui’s are Lipschitz continuous in Ω and have supports at distance at least 1, one

from each other, i.e.

ui ≡ 0 in the set {x ∈ Ω | dρ(x, supp uj) ≤ 1} for any j 6= i.

ii) ∆ui = 0 when ui > 0.

Semiconvexity of the free boundary (Corollary 6.2):

If x0 ∈ ∂{ui > 0} there is an exterior tangent ρ-ball of radius 1 at x0.

Hausdorff measure of the free boundary (Corollary 6.3):

The set ∂{ui > 0} has finite (n− 1)-dimensional Hausdorff measure.

Sharp characterization of the interfaces (Theorem 7.1):

The supports of the limit functions are at distance exactly 1, one from each other, i.e,

if x0 ∈ ∂{ui > 0} ∩ Ω, then there exists j 6= i such that

B1(x0) ∩ ∂{uj > 0} 6= ∅ .

Classification of singular points in dimension 2 (Theorem 8.2, Corollary 8.3,

Corollary 8.16):

For i 6= j, let x0 ∈ ∂{ui > 0} and y0 ∈ ∂{uj > 0} be points such that {ui > 0} has an

angle θi at x0, {uj > 0} has an angle θj at y0 and ρ(x0 − y0) = 1. Then we have

θi = θj .

In the case of 2 populations, singular points, i.e. points where the free boundaries

have corners, are finite. Moreover under additional monotonicity assumptions on the

boundary data, the sets ∂{ui > 0}, i = 1, 2, are of class C1.

Free boundary condition (Theorem 9.1):

In any dimension, if we have 2 populations, H is defined as in (2.4) with ϕ ≡ 1, p = 1

and B1(x) = B1(x) the Euclidian ball, and if 0 ∈ ∂{u1 > 0}, en ∈ ∂{u2 > 0} and κi
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denote the principal curvatures, we have the following relation on the normal derivatives

of u1 and u2:

u1
ν(0)

u2
ν(en)

=
n−1∏

i=1
κi(0)6=0

κi(0)
κi(en)

if κi(0) 6= 0 for some i = 1, . . . , n− 1,

and

u1
ν(0) = u2

ν(en) if κi(0) = 0 for any i = 1, . . . , n− 1.

4. Existence of solutions

This proof follows the same steps as in [19] and it is written below for the reader’s convenience.

Theorem 4.1. There exist continuous functions uε1, . . . , u
ε
K , depending on the parameter ε,

viscosity solutions of the problem (2.7).

Proof. The proof uses a fixed point result. Let B be the Banach space of bounded continuous

vector-valued functions defined on the domain Ω with the norm

‖(u1, u2, . . . , uK)‖B = max
i

(
sup
x∈Ω
|ui(x)|

)
.

For i = 1, . . . ,K, let φi be the solutions of

(4.1)

{
∆φi = 0 in Ω,
φi = fi on ∂Ω.

Let Θ be the the subset of bounded continuous functions in Ω, that satisfy prescribed boundary

data, and are bounded from above and from below as stated below:

Θ =
{

(u1, u2, . . . , uK) |ui : Ω→ R is continuous, 0 ≤ ui ≤ φi in Ω, ui = fi on (∂Ω)1

}
.

Notice that Θ is a closed and convex subset of B. Let T ε be the operator that is defined on

Θ in the following way: T ε
(
(u1, u2, . . . , uK)

)
:= (vε1, v

ε
2, . . . , v

ε
K) if for any i = 1, . . . ,K, vεi is
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solution to

(4.2)





∆(vεi )(x) =
1
ε2
vεi (x)

∑

j 6=i
H(uj)(x) in Ω,

vεi = fi on (∂Ω)1,

where uj , j 6= i are given. Observe that if T ε has a fixed point

T ε
(
(uε1, u

ε
2, . . . , u

ε
K)
)

= (uε1, u
ε
2, . . . , u

ε
K)

then (uε1, u
ε
2, . . . , u

ε
K) is a solution of problem (2.7).

In order for T ε to have a fixed point, we need to prove that it satisfies the hypothesis of the

Schauder fixed point Theorem, see [16]:

(1) T ε(Θ) ⊂ Θ :

Classical existence results guarantee the existence of smooth solutions (vε1, v
ε
2, . . . , v

ε
K)

of the equations (4.2). Remark that vεi is subsolution of ∆u = 0 in Ω, therefore the

comparison principle implies

vεi ≤ φi in Ω.

Since in addition the fi’s are non-negative, again from the comparison principle we have

vεi ≥ 0 in Ω.

We conclude that T ε
(
(u1, u2, . . . , uK)

)
∈ Θ.

(2) T ε is continuous :

Let us assume that ((u1)m, . . . , (uK)m) → (u1, . . . , uK) in B meaning that when m

tends to +∞,

max
1≤i≤K

‖(ui)m − ui‖L∞ → 0 .

We need to prove that for each fixed ε > 0

‖T ε
(
(u1)m, . . . , (uK)m

)
− T ε(u1, . . . , uK)‖B → 0

when m→ +∞. Let

T ε
(
(u1)m, . . . , (uK)m

)
=
(
(vε1)m, . . . , (vεK)m

)
,
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then if we prove that there exists a constant Cε independent of m, so that we have the

estimate, for i = 1, . . . ,K

‖(vεi )m − vεi ‖L∞ ≤ Cε max
j
‖(uj)m − uj‖L∞ ,

the result follows. For all x ∈ Ω and for fixed i, let ωm be the function

ωm(x) = (vεi )m(x)− vεi (x) ,

and suppose that there exists y ∈ Ω such that

(4.3) ωm(y) > r2Dmax
j
‖(uj)m − uj‖L∞ ,

for some large D > 0, where r is such that Ω ⊂ Br, and Br is the ball centered at 0

of radius r in the Euclidean norm. We want to prove that this is impossible if D is

sufficiently large. Let hm be the concave radially symmetric function

hm(x) = γ
(
r2 − |x|2

)
,

with γ = Dmaxj ‖(uj)m − uj‖L∞ . Observe that:

(a) hm(x) = 0 on ∂Br;

(b) hm(x) ≤ r2Dmaxj ‖(uj)m − uj‖L∞ for all x in Br;

(b) 0 = ωm(x) ≤ hm(x) on ∂Ω, since (vεi )m and vεi are solutions with the same boundary

data.

Since we are assuming (4.3), there exists a negative minimum of hm − ωm in Ω. Let

x0 ∈ Ω be a point where the minimum value of hm − ωm is attained. Then

hm(x0)− ωm(x0) < 0 and ∆(hm − ωm)(x0) ≥ 0.

Moreover,

∆ωm = ∆
(
(vεi )m

)
−∆vεi

≥ 1
ε2

(
((vεi )m − vεi )

∑

j 6=i
H((uj)m)− vεi

∑

j 6=i
(H(uj)−H((uj)m))

)

≥ 1
ε2

(
((vεi )m − vεi )

∑

j 6=i
H((uj)m)− vεi (K − 1)C ‖(uj)m − uj‖L∞(Ω)

)
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adding and subtracting 1
ε2
vεi
∑

j 6=iH((uj)m), where C depends on the fj ’s and ϕ. Then

0 ≤ ∆(hm − ωm)(x0)

≤ −2γn− 1
ε2

(
((vεi )m − vεi )(x0)

∑

j 6=i
H((uj)m)(x0)

− vεi (x0)(K − 1)C ‖(uj)m − uj‖L∞
)

≤ −2nDmax
j
‖(uj)m − uj‖L∞ +

1
ε2
vεi (x0)(K − 1)C ‖(uj)m − uj‖L∞

≤ −2nDmax
j
‖(uj)m − uj‖L∞ +

C̃

ε2
‖(uj)m − uj‖L∞

because 0 < hm(x0) < ωm(x0) =
(
(vεi )m − vεi

)
(x0) and

∑
j 6=iH((uj)m)(x0) ≥ 0 and so

− 1
ε2

(
(vεi )m − vεi

)
(x0)

∑

j 6=i
H((uj)m)(x0) ≤ 0 .

Taking D = Dε >
eC

2nε2
, we obtain that

0 ≤ ∆(hm − ωm)(x0) < 0

which is a contradiction.

(3) T (Θ) is precompact :

This is a consequence of the fact that the solutions to (4.2) are Hölder continuous on Ω

and the subset of Θ of Hölder continuous functions on Ω is precompact in Θ.

This concludes the proof of the theorem. �

5. Uniform in ε Lipschitz estimates

In this section we will prove uniform in ε Lipschitz estimates that will imply the convergence,

up to subsequence, of the solution (uε1, u
ε
2, . . . , u

ε
K) of (2.7) to a limit function (u1, . . . , uK) as

ε→ 0. We will show that the functions ui’s are Lipschitz continuous in Ω and harmonic inside

their support. Moreover, ui ≡ 0 in the ρ-strip of size 1 of the support of uj for any j 6= i, i.e.,

the supports of the limit functions are at distance at least 1, one from each other. We start by

proving general properties of subsolutions of uniform elliptic equations.
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Lemma 5.1. Let:

a) ω be a subharmonic function in B1, such that

a1) ω ≤ 1 in B1;

a2) ω(0) = m > 0.

b) Let D0 be a smooth convex set with bounded curvatures

κi(∂D0) ≤ C0, i = 1, . . . , n− 1

(like B1 above).

Then, there exists a universal τ = τ(C0, n) such that, if the distance dρ(D0, 0) ≤ τm, then

sup
∂D0∩B1

ω ≥ m

2
.

Proof. Let h be harmonic in B1 \D0 and such that



h = 1 on (∂B1) \D0

h = m
2 on (∂D0) ∩ B1 .

Then, h grows linearly away from ∂D0 in B 1
2
. If τ is small enough, then

h(0) < m.

Therefore we must have sup(∂D0∩B1) ω ≥ m
2 , otherwise the comparison principle would imply

ω(x) ≤ h(x) in B1 \D0, which is a contradiction at x = 0. �

Remark. If we replace ∆u by a uniformly elliptic equation: aijDiju or div aijDju and D0

by a Lipschitz domain with a uniformly interior cone condition, the same result holds with

dρ(D0, 0) = τmµ (µ large) instead of τm. (This follows from a-priori estimates for equations

with bounded measurable coefficients.)

Lemma 5.2. Let ω be a positive subsolution of a uniformly elliptic equation, (λ2I ≤ aij ≤ Λ2I)

aijDijω ≥ θ2ω in Br.
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Then there exist c, C > 0 such that

ω(0)
sup
Br

ω
≤ Ce−cθr.

Proof. The function

g(x) =
n∑

i=1

cosh
(
θ

Λ
xi

)

is a supersolution of the equation aijDiju = θ2u. Moreover, using the convexity of the expo-

nential function, it is easy to check that it satisfies

g(x) ≥ C1e
cθr for any x ∈ ∂Br.

Then, the comparison principle implies

ω(x)
sup
Br

ω
≤ g(x)
C1ecθr

for any x ∈ Br.

The result follows taking x = 0. �

The next lemma says that if uεi attains a positive value σ at some interior point, then all the

other functions uεj , j 6= i, goes to zero exponentially in a ρ-ball of radius 1 + cσ around that

point.

Lemma 5.3. Let (uε1, . . . , u
ε
K) be viscosity solution of the problem (2.7). For i = 1, . . . ,K,

σ, r > 0, let

Γσ,ri := {y ∈ Ω : dρ(y, supp fi) ≥ 2r, uεi = σ}

and

m :=
σ

sup∂Ω fi
.

Then, in the sets

Aσ,ri,j :=
{
x ∈ Ω : dρ(x,Γ

σ,r
i ) ≤ 1 +

τmr

2
, dρ(x, supp fj) ≥

τmr

4

}

(where τ is given by Lemma 5.1), we have

uεj ≤ Ce−
cσαrβ

ε , for j 6= i,
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for some positive α and β depending on the structure of H (p and q).

Proof. Let x ∈ Aσ,ri,j . We want to show that for j 6= i, we have

(5.1) ∆uεj ≥
Cσαrβ

ε2
uεj in B τmr

4
(x)

for some α, β > 0. Let us prove it for x such that dρ(x,Γ
σ,r
i ) = 1+ τmr

2 , which is the hardest case.

The ball B1(x) is at distance τmr
2 from a point y ∈ Γσ,ri . Remark that since B2r(y)∩supp fi = ∅,

the function uεi , which is eventually equal to zero in B2r(y) ∩ Ωc, satisfies ∆uεi ≥ 0 in B2r(y).

Moreover, since uεi is subharmonic in Ω, it attains its maximum at the boundary of Ω, so

that uεi/ sup∂Ω fi ≤ 1 in Ω. Hence, from Lemma 4.1 applied to the function v(x) := uεi (y +

rx)/ sup∂Ω fi with m = σ
sup∂Ω fi

and D0 = B 1
r
− τm

2

(
x−y
r

)
, there is a point z in ∂B1− τmr

2
(x) ∩

Br(y), such that uεi (z) ≥ σ/2. Remark that if x ∈ B τmr
4

(x) then

B1(x) ⊃ B τmr
4

(z)

(since dρ(x, z) ≤ dρ(x, x) + dρ(x, z) ≤ τmr
4 + 1− τmr

2 = 1− τmr
4 ).

Let us first consider the case H defined as in (2.5). Then for any x ∈ B τmr
4

(x) we have

H(uεi )(x) = sup
B1(x)

uεi ≥ uεi (z) ≥
σ

2

and we get (5.1) with α = 1 and β = 0. Remark that since dρ(x, supp fj) ≥ τmr
4 , the ball

B τmr
4

(x) does not intersect the support of fj .

Next, let us turn to the case H defined as in (2.4). Remark that since z ∈ Br(y) and

dρ(y, supp fi) ≥ 2r, we have Br(z)∩supp fi = ∅ and therefore the function uεi , which is eventually

equal to zero in Br(z) ∩ Ωc, satisfies ∆uεi ≥ 0 in Br(z). This implies that (uεi )
p is subharmonic

in Br(z) and by the mean value inequality

(5.2)
∫
�
Bs(z)

(uεi )
pdx ≥

(σ
2

)p
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in any Euclidian ball Bs(z) ⊂ Br(z), for any p ≥ 1. Since dρ and the Euclidian distance are

equivalent, there is an s ∼ τmr such that

(5.3) Bs(z) ⊂ B τmr
8

(z) ⊂ B τmr
4

(z) ⊂ B1(x).

Moreover, if y ∈ Bs(z) and x ∈ B τmr
4

(x), then

ρ(y − x) ≤ ρ(y − z) + ρ(z − x) + ρ(x− x) ≤ τmr

8
+
(

1− τmr

2

)
+
τmr

4
= 1− τmr

8
,

that is

(5.4) 1− ρ(y − x) ≥ τmr

8
.

Hence, using (5.3), (2.6), (5.4) and (5.2), for all x ∈ B τmr
4

(x) we get

H(uεi )(x) =
∫

B1(x)
(uεi )

p(y)ϕ(ρ(y − x))dy

≥
∫

Bs(z)
(uεi )

p(y)C(1− ρ(y − x))qdy

≥
∫

Bs(z)
(uεi )

p(y)C
(τmr

8

)q
dy

≥ Cσαrβ

where α and β depend on p, q and on the dimension n. This implies (5.1).

Now, by Lemma 4.2 we get

uεj(x) ≤ Ce− cσ
αrβ

ε

for α = α
2 + 1 and β = β

2 + 1, and the lemma is proven.

�

Corollary 5.4. Let (uε1, . . . , u
ε
K) be viscosity solution of the problem (2.7). Let y be a point in

Ω such that

uεi (y) = σ, dρ(y, supp fj) ≥ 1 + τmr, i 6= j and dρ(y, supp(fi)) ≥ 2r,

where m = σ
sup∂Ω fi

and for ε ≤ σθ for some large θ, and r ≥ σγ for some small γ > 0. Then

there exists a universal constant C0 > 0 such that in B τmr
4

(y) we have

|∇uεi | ≤ C0
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and

∆uεi → 0 as ε→ 0 uniformly.

Proof. We want to estimate ∆uεi (z), for z ∈ B τmr
2

(y). In order to do that, we need to estimate

H(uεj)(z) for j 6= i. But H(uεj)(z) involves points x at ρ-distance 1 from z. Let x be such

that dρ(x, z) ≤ 1, then dρ(x, y) ≤ 1 + τmr
2 . Moreover, since dρ(y, supp fj) ≥ 1 + τmr, we have

dρ(x, supp fj) ≥ τmr
2 . Hence, by Lemma 5.3, for any j 6= i

uεj(x) ≤ Ce− cσ
αrβ

ε .

It follows that for z ∈ B τmr
2

(y)

0 ≤ ∆uεi (z) ≤ uεi (z)
Ce−

cσαrβ

ε

ε2
.

If we normalize the ball B τmr
2

(y) in a Lipschitz fashion

uεi (z) := 2
uεi
(
τmr

2 z
)

τmr
,

we have

0 ≤ ∆uεi ≤ Cσr
e−

cσαrβ

ε

ε2
in B1(y).

In particular, if ε ≤ σ4α and rβ ≥ σα, we have

0 ≤ ∆uεi ≤ C
e−cε

− 1
2

ε2
≤ C0 in B1(y).

It follows that |∇uεi | is universally bounded in B 1
2
(y) and therefore |∇uεi | is universally bounded

in B τmr
4

(y).

Further, ∆uεi (z) converges uniformly to zero, as ε→ 0 in the ball B τmr
2

(y). �

The next lemma says that in a ρ-strip of size 1 of the support of the fj ’s, the function uεi ,

i 6= j, decays to 0 exponentially.
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Lemma 5.5. Let (uε1, . . . , u
ε
K) be viscosity solution of the problem (2.7). For j = 1, . . . ,K,

σ > 0, let Γσj := {fj ≥ σ} ⊂ Ωc. Then on the sets

{x ∈ Ω : dρ(x,Γ
σ
j ) ≤ 1− r}, 0 < r < 1

we have

uεi ≤ Ce−
cσαrβ

ε , for i 6= j,

for some positive α and β depending on the structure of H (p and q) and the modulus of

continuity of fj.

Proof. Let x ∈ Ω and y ∈ Γσj be such that dρ(x, y) ≤ 1− r. We want to estimate H(uεj)(x), for

any x ∈ B r
2
(x). Let x ∈ B r

2
(x), then

(5.5) dρ(x, y) ≤ 1− r

2
.

Let us first consider the case H defined as in (2.5). We have

H(uεj)(x) = sup
B1(x)

uεj ≥ fj(y) ≥ σ.

Next, let us turn to the case H defined as in (2.4). Let r0 := min{σγ , r/4}, for some γ

depending on the modulus of continuity of fj (which is Hölder continuous), then fj ≥ σ/2 in

the set Br0(y) ∩ (∂Ω)1. Moreover, remark that from (5.5) and r0 ≤ r/4, we have

Br0(y) ∩ (∂Ω)1 ⊂ B r
4
(y) ⊂ B r

2
(y) ⊂ B1(x),

and for any z ∈ Br0(y) ∩ (∂Ω)1

ρ(x− z) ≤ ρ(x− y) + ρ(y − z) ≤ 1− r

2
+ r0 ≤ 1− r

4
.

Therefore, using in addition (2.6), we get

H(uεj)(x) =
∫

B1(x)
(uεj)

p(z)ϕ(ρ(x− z))dz

≥
∫

Br0 (y)∩(∂Ω)1

(uεj)
p(z)(1− ρ(x− z))qdz

≥
∫

Br0 (y)∩(∂Ω)1

(fj)p(z)C
(r

4

)q
dz

≥ Cσprβ0 ,
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where β depends on q and on the dimension n.

Now, remark that assumption (2.3) guarantees that B r
2
(x)∩ suppfi = ∅. Then, for H defined

as in (2.4) or (2.5), the function uεi , i 6= j, eventually extended to zero outside Ω, is subsolution

of

∆uεi ≥ uεi
Cσprβ0
ε2

in B r
2
(x), where p = 1 and β = 0 in the case (2.5). The conclusion follows as in Lemma 5.3. �

The following corollary is a consequence of Lemma 5.3, Corollary 5.4 and Lemma 5.5.

Corollary 5.6. Let (uε1, . . . , u
ε
K) be viscosity solution of the problem (2.7). Then we have

a) There exist θ̃ such that function

(ũεi ) :=
(
uεi − ε1/eθ)+

is locally uniformly Lipschitz in Ω independently of ε.

b) The function uεi → 0 as ε→ 0 in the set

{x ∈ Ω | dρ(x, suppfj) ≤ 1} for any j 6= i.

c) Let ~u = (u1, . . . , uK) be the (local uniform) limit of a convergent subsequence (~u)εm.

Then:

i) the ui’s are Lipschitz continuous in Ω and have disjoint supports, in particular

ui ≡ 0 in the set {x ∈ Ω | dρ(x, suppuj) ≤ 1} for any j 6= i.

ii) ∆ui = 0 when ui > 0.

6. A semiconvexity property of the free boundaries

Let (u1, . . . , uK) be the limit of a convergent subsequence of (uε1, . . . , u
ε
K), whose existence is

guaranteed by Corollary 5.6. For i = 1, . . . ,K, let us denote

(6.1) S(ui) := {ui > 0}.
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(In the next sections this set will be represented by Si.) Then the sets S(ui) have the following

semiconvexity property:

Lemma 6.1. Given S(ui) consider

T (ui) =
{
x ∈ Ω : dρ(x, S(ui)) ≥ 1

}

and

S∗(ui) =
{
x ∈ Ω : dρ(x, T (ui)) > 1

}

Then S∗(ui) = S(ui).

Proof. We have that S∗(ui) ⊃ S(ui). To prove the other inclusion consider

Sσ(ui) := {ui > σ} ,

Tσ(ui) := {x ∈ Ω : dρ(x, Sσ(ui)) ≥ 1}

and

S∗σ(ui) := {x ∈ Ω : dρ(x, Tσ(ui)) > 1}.

Notice that, the union of ρ-balls centered at points in Sσ(ui) coincides with the union of ρ-balls

centered at points in S∗σ(ui), i.e.

a) (Tσ(ui))c = ∪B1(x) for x ∈ Sσ(ui) and

b) (Tσ(ui))c = ∪B1(x) for x ∈ S∗σ(ui).

If x ∈ Sσ(ui), from (b) of Corollary 5.6 we have that dρ(x, suppfj) > 1 for j 6= i, and the

uniform convergence of uεi to ui and Lemma 5.3 imply that uεj ≤ Ce−
cσαrβ

ε in B1(x), where

2r = min{dρ(x, suppfi), C(dρ(x, suppfj)− 1)}. Now, the set where uεj decays is the same if we

had considered x ∈ S∗σ(ui), since that from (a) and (b) we have

∪x∈Sσ(ui)B1(x) = ∪x∈S∗σ(ui)B1(x).

Therefore
H(uεj)

ε2
goes to zero as ε goes to zero in S∗σ(ui). It follows that ∆ui ≡ 0 in S∗σ(ui), if

S∗σ(ui) is not empty. Now, from the inclusion Sσ(ui) ⊂ S∗σ(ui) we infer that ui 6≡ 0 in S∗σ(ui),
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since in addition ui is harmonic and non-negative in S∗σ(ui), the strong maximum principle

implies that ui > 0 in all S∗σ(ui), that is S∗σ ⊂ S(ui). We pass to the limit on σ. �

From the properties of the distance function used in the proof of Lemma 6.1 we can conclude

that the sets S(ui) have a tangent ρ-ball of radius 1 from outside at any point of the boundary,

as stated in the following corollary.

Corollary 6.2. If x0 ∈ ∂S(ui) there is an exterior tangent ball, B1(y) at x0, in the sense that

for x ∈ B1(y) ∩ B1(x0), all uj(x) ≡ 0 (including ui).

Corollary 6.3. The set ∂S(ui) has finite (n− 1)-dimensional Hausdorff measure.

Proof. From Corollary 6.2 and (2.2), at any point x ∈ ∂S(ui) there is an Euclidian ball Bd0(y) ⊂

(S(ui))c tangent to S(ui) at x, for some d0 independent of x. Therefore the Euclidian distance

function d(x) := d(x, S(ui)) is locally C1,1 in the set {0 < d < d0/2} and satisfies

∆d = −
n−1∑

l=1

1
1
κl − d

≥ − n− 1
d0 − d

,

where κl, l = 1, . . . , n− 1, are the principal curvatures of ∂S(ui). Then, for any euclidian ball

BR(y), y ∈ ∂S(ui) and 0 < σ < d0/2, we have

−2(n− 1)
d0

vol({σ < d < d0/2} ∩BE
R (y)) ≤

∫

{σ<d<d0/2}∩BER (y)
− n− 1
d0 − d

≤
∫

{σ<d<d0/2}∩BER (y)
∆d

=
∫

∂({σ<d<d0/2}∩BER (y))
Dνd

≤ Area(∂{d < d0/2} ∩BE
R (y))−Area(∂{d > σ} ∩BE

R (y))

+ Area(∂BE
R (y)).

We infer that

Area(∂{d > σ} ∩BE
R (y)) ≤ Area(∂{d < d0/2} ∩BE

R (y)) + Cvol(BE
R (y)) + Area(∂BE

R (y)).
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The sets ∂{d > σ} have therefore uniform bounded measure and converge uniformly to ∂{d > 0}

as σ → 0. Therefore

Area(∂{d > 0} ∩BE
R (y)) ≤ Area(∂{d < d0/2} ∩BE

R (y)) + Cvol(BE
r (y)) + Area(∂BE

R (y)).

�

7. A sharp characterization of the interfaces

In Section 5 we proved that the supports of the limit functions ui’s are at distance at least

1, one from each other (see Corollary 5.6). In this section we will prove that they are exactly

at distance 1, as shown in the following theorem.

Theorem 7.1. Assume p = 1 in (2.4). Let (uε1, . . . , u
ε
K) be viscosity solution of the problem

(2.7) and (u1, . . . , uK) the limit as ε→ 0 of a convergent subsequence. Let x0 ∈ ∂{ui > 0} ∩Ω,

then there exists j 6= i such that

(7.1) B1(x0) ∩ ∂{uj > 0} 6= ∅ .

Proof. First of all, remark that from (b) in Corollary 5.6, we have that dρ(x0, suppfj) ≥ 1 for

any j 6= i. If there is a j such that dρ(x0, suppfj) = 1, then (7.1) is obviously true. Therefore,

we can assume that dρ(x0, suppfj) > 1 for any j 6= i.

We divide the proof in two cases.

a) H(u)(x) =
∫

B1(x)
u(y)ϕ

(
ρ(x− y)

)
dy

and

b) H(u)(x) = sup
y∈B1(x)

u(y) .

Proof of case a): Let S(ui) = {ui > 0} as in (6.1). Let BS be a small ρ-ball centered at

x0 ∈ ∂S(ui). Then, as a measure, as ε→ 0, up to subsequence

∆uεi
∣∣
BS(x0)

−→ ∆ui
∣∣
BS(x0)

(that has strictly positive mass, since ui is not harmonic in BS(x0)).
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We bound by below
∫

B1+S(x0)

∑

j 6=i
∆uεjdx by

∫

BS(x0)
∆uεidx.

Indeed

ε2

∫

B1+S(x0)

∑

j 6=i
∆uεj(x)dx ≥

∑

j 6=i

∫

B1+S(x0)

∫

B1(x)
uεj(x)ϕ

(
ρ(x− y)

)
uεi (y)dy dx

≥
∑

j 6=i

∫

BS(x0)

∫

B1(y)
uεj(x)ϕ

(
ρ(x− y)

)
uεi (y)dx dy

= ε2

∫

BS(x0)
∆uεi (y)dy,

since the domain of the first integral on the right-hand side is B1+S(x0) × B2+S(x0) and the

domain of the second integral on the right-hand side is B1+S(x0)× BS(x0).

Therefore, for any positive S, taking the limit in ε we get
∫

B1+S(x0)

∑

j 6=i
∆uj ≥

∫

BS(x0)
∆ui > 0

which implies that there exists j 6= i such that uj cannot be identical equal to zero in B1+S(x0).

Since S small is arbitrary, the result follows.

The case b) is more involved. It is enough to prove the theorem for a point x0 for which ∂S(ui)

has a tangent ρ-ball from inside, since such points are dense on ∂S(ui) (by the semiconvexity

property of ∂S(ui)). We may assume x0 = 0. Let y0 be such that Bµ(y0) ⊂ S(ui) and 0 ∈

∂Bµ(y0). By Corollary 6.2 we know that there exists a ρ-ball B1(y1) such that B1(y1)∩S(ui) = ∅

and 0 ∈ ∂B1(y1).

Let us first prove two claims.

Claim 1: There exists µ′ < µ and C1 > 0 such that in the annulus {µ′ < ρ(x− y0) < µ} we

have

ui(x) ≥ C1dρ
(
x, ∂Bµ(y0)

)
.

Since any ρ-ball B satisfies the uniform interior ball condition, for any point x̄ ∈ ∂Bµ(y0) there

exists an Euclidian ball BR0(z0) of radius R0 independent of x̄ contained in Bµ(y0) and tangent
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to ∂Bµ(y0) at x̄. Let m > 0 be the infimum of ui on the set {x ∈ Bµ(y0) | d(x, ∂Bµ(y0)) ≥ R0/2},

where d is the Euclidian distance function, and let φ be the solution of




∆φ = 0 in
{R0

2
< |x− z0| < R0

}

φ = 0 on ∂BR0(z0)

φ = m on ∂BR0
2

(z0)

i.e., for n ≥ 3,

φ(x) = C(n)m
( Rn−2

0

|x− z0|n−2
− 1
)
.

Since ui is harmonic in Bµ(y0) and ui ≥ φ on ∂BR0(z0) ∪ ∂BR0
2

(z0), by comparison principle

ui ≥ φ in {R0
2 < |x− z0| < R0}. In particular, for any x ∈ {R0

2 < |x− z0| < R0} and belonging

to the segment between z0 and x̄, using that φ is convex in the radial direction,

∂φ

∂νi
|∂BR0

(z0) =
C(n)(n− 2)m

R0

where νi is the interior normal at ∂BR0(z0), and (2.2), we get

ui(x) ≥ C(n)(n− 2)m
R0

d(x, ∂BR0(z0)) = C(n,R0)md(x, ∂Bµ(y0)) ≥ C1dρ(x, ∂Bµ(y0)) .

Therefore, letting x̄ vary in ∂Bµ(y0) we get

ui(x) ≥ C1dρ(x, ∂Bµ(y0)) for any x ∈ Bµ(y0) with d(x, ∂Bµ(y0)) ≤ R0

2
.

Using (2.2), Claim 1 follows.

Claim 2: There exist δ > 0 and C2 > 0 such that in B1+δ(y1) we have

ui(x) ≤ C2dρ(x, ∂B1(y1)) .

Again using barriers, the fact that ui is subharmonic in Ω and that B1 satisfies the interior

uniform ball condition, Claim 2 follows.

Next, let e0 = y0/ρ(y0) and fix σ < µ so small that Bσ(σe0) ⊂ {µ′ < ρ(x−y0) < µ}∩B1+δ(y1).

For r ∈ [σ − υ, σ + υ] and small υ < σ, let us define

uεi := inf
∂Br(σe0)

uεi and ui := inf
∂Br(σe0)

ui .

21



Since for r ∈ [σ, σ + υ], ∂Br(σe0) ∩ (S(ui))c 6= ∅ and ui ≡ 0 on (S(ui))c, we have

(7.2) ui = 0 for r ∈ [σ, σ + υ] .

By Claim 1, we know that in Bσ(σe0) we have

ui(x) ≥ C1dρ(x, ∂Bµ(y0))

≥ C1dρ(x, ∂Bσ(σe0))

= C1(σ − ρ(x− σe0)).

We deduce that for r ∈ [σ − υ, σ]

ui = inf
∂Br(σe0)

ui ≥ inf
∂Br(σe0)

C1(σ − ρ(x− σe0)) = C1(σ − r).

From the previous inequality and (7.2), we infer that

(7.3) ui ≥ C1(σ − r)+, r ∈ [σ − υ, σ + υ].

Similarly, using Claim 2 and making a Taylor expansion of ρ(y1 − x) and ρ(σe0 − x) at 0, in

Bσ(σe0) we have

ui(x) ≤ C2dρ(x, ∂B1(y1))

= C2(ρ(y1 − x)− 1)

= C2(−∇ρ(y1) · x+ o(|x|))

= C2(∇ρ(σe0) · x+ o(|x|))

= C2(σ − ρ(σe0 − x)) + o(|x|).

(7.4)

Here we have used that ∇ρ(y1) = −∇ρ(σe0) being the balls B1(y1) and Bσ(σe0) tangent at 0.

Remark that for r ∈ [σ − υ, σ], from (2.2) we have

inf
∂Br(σe0)

|x| ≤ inf
∂Br(σe0)

c2ρ(x) = c2dρ(∂Br(σe0), 0) = c2(σ − r).
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Therefore, from (7.4), for r ∈ [σ − υ, σ] we have

ui = inf
∂Br(σe0)

ui(x)

≤ inf
∂Br(σe0)

C2(σ − ρ(x− σe0)) + o(|x|)

= inf
∂Br(σe0)

C2(σ − r) + o(|x|)

≤ C̃2(σ − r).
From the previous inequalities and (7.2), we infer that

(7.5) ui ≤ C̃2(σ − r)+, r ∈ [σ − υ, σ + υ].

Next, for j 6= i, r ∈ [σ − υ, σ + υ], let us define

ūεj := sup
∂B1+r(σe0)

uεj and ūj := sup
∂B1+r(σe0)

uj .

The functions uεi and ūεj are respectively solutions of

∆ru
ε
i ≤

1
ε2
uεi
∑

i 6=j
sup
B1(zir)

uεj

∆ru
ε
j ≥

1
ε2
uεj sup
B1(z̄jr)

uεi

(7.6)

where

∆ru = urr −
(n− 1)

r
ur =

1
rn−1

∂

∂r

(
rn−1∂u

∂r

)

and zir and z̄jr are respectively the points where the infimum of uεi on ∂Br(σe0) and the supremum

of uεj on ∂B1+r(σe0) are attained. Note that in spherical coordinates

∆u = ∆ru+ ∆θu

and that if we are on a point where u attains a minimum value in the θ for a fixed r then

∆θu ≥ 0 and the opposite inequality holds if we are on a maximum point. We also remark that

yjr := σe0 +
r

r + 1
(z̄jr − σe0) ∈ ∂Br(σe0) ∩ ∂B1(z̄jr) ,

therefore

(7.7) sup
B1(z̄jr)

uεi ≥ uεi (ȳjr) ≥ uεi .
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Moreover, since B1(zir) ⊂ B1+r(σe0) and uεj is a subharmonic function, we have

sup
B1(zir)

uεj ≤ sup
B1+r(σe0)

uεj

= sup
∂B1+r(σe0)

uεj

= ūεj .

(7.8)

From (7.6), (7.7) and (7.8), we conclude that

∆ru
ε
i ≤ ∆r

(∑

j 6=i
ūεj

)
.

In other words, for any φ ∈ C∞c (σ − υ, σ + υ), φ ≥ 0, we have

∫ σ+υ

σ−υ
uεi

∂

∂r

(
rn−1 ∂

∂r

( 1
rn−1

φ
))

dr ≤
∫ σ+υ

σ−υ

∑

j 6=i
ūεj

∂

∂r

(
rn−1 ∂

∂r

( 1
rn−1

φ
))

dr .

Passing to the limit as ε→ 0 along a uniformly converging subsequence, we get

∫ σ+υ

σ−υ
ui
∂

∂r

(
rn−1 ∂

∂r

( 1
rn−1

φ
))

dr ≤
∫ σ+υ

σ−υ

∑

j 6=i
ūj

∂

∂r

(
rn−1 ∂

∂r

( 1
rn−1

φ
))

dr .

The linear growth of ui away from the free boundary given by inequalities (7.3) and (7.5),

implies that ∆rui develops a Dirac mass at r = σ and

∫ σ+υ

σ−υ
ui
∂

∂r

(
rn−1 ∂

∂r

( 1
rn−1

φ
))

dr > 0,

for υ small enough. Hence, ∆r(
∑

j 6=i ūj) is a positive measure in (σ − υ, σ + υ) and therefore

there exists j 6= i such that uj cannot be identically equal to zero in the ball B1+σ(σe0). Since

σ small is arbitrary, the result follows. �

8. Classification of singular points in dimension 2

From the results of the previous sections we know that the solutions uε1, . . . , u
ε
K of system

(2.7), through a subsequence, converge as ε → 0 to functions u1, . . . , uK which are Lipschitz

continuous in Ω and harmonic inside their support. For i = 1, . . . ,K, let us denote the interior

of the support of ui by

Si := {ui > 0}

24



u1 > 0S1
∂S1

x0

Figure 1. Asymptotic cone at x0

and the union of the interior of the supports of all the other functions by

(8.1) Ci := ∪j 6=iSj .

Since the sets Si are disjoint we have ∂Ci = ∪j 6=i∂Sj . As a consequence of semiconvexity we

know that the free boundaries ∂Si are Lipschitz curves on the plane. Moreover, from Theorem

7.1 we know that Si and Ci are at ρ-distance 1, therefore for any point x ∈ ∂Si there is a point

y ∈ ∂Ci such that ρ(x− y) = 1. We say that x realizes at y the distance from Ci.

Definition. A point x ∈ ∂Si is a singular point if it realizes the distance from Ci to at least

two points in ∂Ci. We say that x ∈ ∂Si is a regular point if it is not singular.

Geometrically, we can describe regular and singular points as follows. Let x ∈ ∂Si be a

singular point and y1, y2 ∈ ∂Ci points where x realizes the distance from Ci. Then the balls

B1(y1) and B1(y2) are tangent to ∂Si at x. Consider the convex cone determined by the two

tangent lines to the two tangent ρ-balls which does not intersect the two ρ-balls. The intersection

of all cones generated by all ρ-balls of radius 1 tangent at x defines a convex asymptotic cone

centered at x, see Figure 1. If x ∈ ∂Si is a regular point the cone at x ∈ ∂Si is an half-plane,

because there is only one point y ∈ ∂Ci where x realizes the distance from Ci. If θ ∈ (0, π] is

the opening of the cone at x, we say that Si has an angle θ at x.

25



We start by proving that positive functions which are harmonic in a cone and vanishes on its

boundary, growth linearly away from the boundary of the cone and far from the vertex, with a

constant of linear decay which depends on the distance from the vertex and on the opening of

the cone.

Lemma 8.1. Let θ0 ∈ (0, π]. Let C be the cone defined in polar coordinates by C = {(%, θ) | % ∈

[0,+∞), 0 ≤ θ ≤ θ0}. Let u be a function harmonic and positive in the interior of C ∩ B2r0,

which vanishes on ∂C ∩ B2r0. Then for r < r0/5 there exist R = R(θ0, r), and c, C constants

just depending on (θ0, ‖u‖∞, r0), such that for any x ∈ [r, 3r]×
[
0, R2

]
we have

(1) u(x) ≥ crαd(x, ∂C)

(2) u(x) ≤ Crαd(x, ∂C)

where α is given by

1 + α =
π

θ0
.

Proof. Let us introduce the function

v(%, θ) := %1+α sin((1 + α)θ).

Notice that v is harmonic in the interior of C, since it is the imaginary part of the function z1+α,

where z = x+ iy, which is holomorphic in the set C \ (−∞, 0]. Moreover v is positive inside C

and vanishes on its boundary. Since v and u have linear growth away from the boundary of C,

for ρ ∈ [r0/2, 3r0/2] (far from the vertex and from ∂B2r0), and are positive inside the cone, we

can find constants c, C > 0 depending on ‖u‖∞, r0 and θ0, such that

cv ≤ u ≤ Cv on C ∩ ∂Br0 .

Since in addition u and v vanish on ∂C ∩Br0 , the comparison principle implies

(8.2) cv ≤ u ≤ Cv in C ∩Br0 .

In what follows we denote by C several constants independent of r.
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(1) Let xr := (r, 0), with 0 < r < r0/5. If R := rmin{1, tan(θ0/2)}, there exists z such that

the Euclidian ball BR(z) is contained in C ∩Br0 and xr ∈ ∂BR(z). Let us introduce the barrier

function

φ(x) :=
m

log 2
log
(

R

|x− z|

)
,

where

m = inf
∂BR

2
(z)
u.

Remark that φ is, up to translations and multiplicative and additive constants, the fundamental

solution of the Laplacian in dimension 2. Therefore φ satisfies




∆φ = 0 in BR(z) \BR
2

(z)

φ = 0 on ∂BR(z)

φ = m on ∂BR
2

(z).

Since u ≥ φ on ∂BR(z) ∪ ∂BR
2

(z) the comparison principle then implies

u ≥ φ in BR(z) \BR
2

(z).

If νi is the inner normal vector of BR(z), then for x ∈ ∂BR(z),

∂φ

∂νi
(x) =

m

R log 2
,

and the convexity of φ in the radial direction gives, for any x ∈ BR(z)\BR
2

(z) belonging to the

segment between z and xr

u(x) ≥ m

R log 2
dist(x, ∂BR(z)).

Let us estimate m. If a point x with polar coordinates (%, θ) belongs to ∂BR
2

(z), then

% ≥ R

2

and

θ1 ≤ θ ≤ max
{
θ0,

π

2

}
− θ1,

where θ1 is such that

tan θ1 =
R

2
1
r

=
1
2

min
{

1, tan
(
θ0

2

)}
.
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Therefore (8.2) implies that

m = inf
∂BR

2
(z)
u ≥ c

(
R

2

)α+1

sin ((1 + α)θ1) ≥ crα+1.

We infer that for any x ∈ BR(z) \BR
2

(z) belonging to the segment between z and xr

u(x) ≥ crαdist(x, ∂BR(z)) = crαd(x, ∂C).

Repeating this argument with balls tangent to ∂C from inside at any point in the segment

[xr, 3xr], we get (1).

(2) Consider u extended by zero outside of C. Consider z now such that the Euclidian ball

BR(z) is contained in Cc and xr = (r, 0) ∈ ∂BR(z), where R is defined as above. Let us take

now as barrier the function

ψ(x) :=
M

log 3
2

log
( |z − x|

R

)
,

where

M = sup
∂B 3

2R
(z)
u ≤ Crα+1.

Note that if a point x with polar coordinates (%, θ) belongs to ∂B 3R
2

(z), then % ≤ 5r/2.

Like before the barrier ψ satisfies




∆ψ = 0 in B 3R
2

(z) \BR(z)

ψ = M on ∂B 3R
2

(z)

ψ = 0 on ∂BR(z).

Using the comparison principle and the concavity of ψ in the radial direction, and then letting

the tangent ball moving along the segment [xr, 3xr], we get (2).

In Figure 2 is represented the wall of barriers used in the proof of the lemma. �

Theorem 8.2. Assume n = 2 and p = 1 in (2.4). Let (uε1, . . . , u
ε
K) be viscosity solution of the

problem (2.7) and (u1, . . . , uK) the limit as ε → 0 of a convergent subsequence. For i 6= j, let

x0 ∈ ∂Si and y0 ∈ ∂Sj be points such that Si has an angle θi at x0, Sj has an angle θj at y0

and ρ(x0 − y0) = 1. Then we have

θi = θj .
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Si

R
R

Sj

Figure 2. Wall of barriers

Proof. Without loss of generality we can assume that x0 = 0. It suffices to show the theorem

for y0 belonging to a region that is side by side with Si, in the sense that 0 is the limit as h→ 0

of regular points xh ∈ ∂Si with the property that xh realizes the distance from Ci at yh ∈ ∂Sj

regular points with yh → y0 as h → 0. Let C be the asymptotic cone at 0. Let us suppose for

simplicity that ∂Si and ∂Sj are locally a cone around 0 and y0 respectively. If this is not the

case, we can adapt the proof by approximating the free boundaries at 0 and y0 with cones from

outside and inside. Then there exists r0 > 0 such that ∂Si ∩B2r0 = C ∩B2r0 , where B2r0 is the

Euclidian ball centered at 0 of radius 2r0.

If (%, θ) is a system of polar coordinates in the plane centered at zero, we may assume that

C is the cone given by

C = {(%, θ) | % ∈ [0,+∞), 0 ≤ θ ≤ θi}.

Let us first consider the case (2.5). Let us assume that xh = (2rh, 0), with rh > 0. We know

that rh → 0 as h → 0, then we can fix h so small that rh < r0/5. By Lemma 8.1 applied to

u = ui, we have

(8.3) ui(x) ≥ crαhd(x, ∂Si) for any x ∈ [rh, 3rh]×
[
0,
Rh
2

]
,
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and

(8.4) ui(x) ≤ Crαhd(x, ∂Si) for any x ∈ [rh, 3rh]×
[
0,
Rh
2

]
,

where

(8.5) 1 + α =
π

θi
≥ 1.

Now, we repeat an argument similar to the one in the proof of Theorem 7.1. We look at inf ui

in small circles of radius r that go across the free boundary of ui and we look at supuj in circles

of radius r + 1 across the free boundary of uj , then we compare the mass of the correspondent

Laplacians. Precisely, there exists a small σ > 0 and e ∈ Si such that Bσ(e) ⊂ [rh, 3rh]×[0, Rh/2]

and xh ∈ ∂Bσ(e). In particular, in Bσ(e) the function ui satisfies (8.3) and (8.4). For υ < σ

and r ∈ [σ − υ, σ + υ], we define

(8.6) ui := inf
∂Br(e)

ui and ūj := sup
∂B1+r(e)

uj .

In what follows we denote by C and c several constants independent of h. For r ∈ [σ − υ, σ],

by (8.3) we have

ui ≥ inf
∂Br(e)

crαhd(x, ∂Si) ≥ inf
∂Br(e)

Crαhdρ(x, ∂Si) ≥ Crαh (σ − r).

For r ∈ [σ, σ + υ], the ball Br(e) goes across ∂Si, therefore we have ui = 0. Hence

ui(r) ≥ Crαh (σ − r) for r ∈ [σ − υ, σ]

ui(r) = 0 for r ∈ [σ, σ + υ].
(8.7)

Next, let us study the behaviour of ūj . First of all, let us show that

(8.8) dρ(e, ∂Sj) = ρ(e− yh) = 1 + σ.

Since dρ(e, ∂Si) = σ and dρ(Si, Sj) ≥ 1, it is easy to see that dρ(x, ∂Sj) ≥ 1+σ. The function ρ

is also called a Minkowski norm and from known results about Minkowski norms, if we denote by

T the Legendre transform T : Rn → Rn defined by T (y) = ρ(y)Dρ(y), then T is a bijection with

inverse T−1(ξ) = ρ∗(ξ)Dρ∗(ξ), where ρ∗ is the dual norm defined by ρ∗(ξ) := sup{y ·ξ | y ∈ B1}.
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Now, the ball B1(yh) is tangent to ∂Si at xh and therefore is also tangent to Bσ(e) at xh. This

implies that Dρ(e− xh) = −Dρ(xh − e) = Dρ(xh − yh). Consequently we have

e− xh = T−1(T (e− xh)) = T−1(σDρ(e− xh)) = T−1(σDρ(xh − yh))

= σT−1(T (xh − yh) = σ(xh − yh).

We infer that

(8.9) e = xh + σ(xh − yh)

and

ρ(e− yh) = (1 + σ)ρ(xh − yh) = 1 + σ,

which proves (8.8). As a consequence ∂B1+r(e)∩Sj = ∅ for r ∈ [σ−υ, σ), while if r ∈ (σ, σ+υ]

then ∂B1+r(e) ∩ Sj 6= ∅ and ∂B1+r(e) enters inside Sj at ρ-distance at most r − σ from the

boundary of Sj . In particular we have

(8.10) ūj = 0 for r ∈ [σ − υ, σ].

Next, if θj is the angle of Sj at y0, let β be defined by

(8.11) 1 + β =
π

θj
≥ 1.

Remark that yh is at ρ-distance 2rh from y0. Again by Lemma 8.1 applied to u = uj , (after a

rotation and a translation), we have the following estimate

uj(x) ≤ Crβhd(x, ∂Sj) ≤ Crβhdρ(x, ∂Sj),

in a neighborhood of yh. As a consequence, recalling in addition that the ball B1+r(e) enters

in Sj at ρ-distance r − σ from the boundary, for r ∈ [σ, σ + υ] we get

ūj = sup
∂B1+r(e)

uj ≤ Crβh(r − σ).

The last estimate and (8.10) imply

(8.12) ūj(r) ≤ Crβh(r − σ)+, for r ∈ [σ − υ, σ + υ].
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Now, we want to compare the mass of the Laplacians of ui and ūj . Defining as in (8.6)

uεi := inf
∂Br(e)

uεi , ūεk := sup
∂B1+r(e)

uεk, k 6= i

and arguing as in the proof of Theorem 7.1, we see that

(8.13) ∆ru
ε
i ≤

∑

k 6=i
∆rū

ε
k in (σ − υ, σ + υ),

where ∆ru = 1
r
∂
∂r

(
r ∂u∂r

)
. Remark that since xh is a regular point of ∂Si that realizes the

distance from Ci at yh ∈ ∂Sj , the ball B1+σ+υ(e) does not intersect the support of the functions

uk for k 6= j and small σ. Therefore, multiplying inequality (8.13) by a positive test function

φ ∈ C∞c (σ − υ, σ + υ), integrating by parts in (σ − υ, σ + υ) and passing to the limit as ε→ 0

along a converging subsequence, the only surviving function on the right-hand side is ūj and

we get

(8.14)
∫ σ+υ

σ−υ
ui
∂

∂r

(
r
∂

∂r

(
1
r
φ

))
dr ≤

∫ σ+υ

σ−υ
ūj

∂

∂r

(
r
∂

∂r

(
1
r
φ

))
dr.

Let us choose a function φ which is increasing and (σ − υ, σ) and decreasing in (σ, σ + υ) and

hence with maximum at r = σ, and let us estimates the left and the right hand-side of the last

inequality. Estimates (8.7) imply that ∂ui
∂r (σ−) ≤ −Crαh . Therefore, for small υ we have

∫ σ+υ

σ−υ
ui
∂

∂r

(
r
∂

∂r

(
1
r
φ

))
dr = −

∫ σ

σ−υ

∂ui
∂r

r
∂

∂r

(
1
r
φ

)
dr

= −
∫ σ

σ−υ

(
∂ui
∂r

(σ−) + oσ−r(1)
)
r
∂

∂r

(
1
r
φ

)
dr

≥ −
∫ σ

σ−υ

∂ui
∂r

(σ−)
(
∂φ

∂r
− 1
r
φ

)
dr

− oυ(1)
∫ σ

σ−υ

(
∂φ

∂r
+

1
r
φ

)
dr

≥ −∂ui
∂r

(σ−)
[
φ(σ)− φ(σ) log

(
σ

σ − υ

)]

− oυ(1)
[
φ(σ) + φ(σ) log

(
σ

σ − υ

)]

≥ (Crαh − oυ(1))φ(σ).

Similarly, using (8.12) and integrating by parts, we get
∫ σ+υ

σ−υ
ūj

∂

∂r

(
r
∂

∂r

(
1
r
φ

))
dr ≤ (Crβh + oυ(1))φ(σ).
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From the previous estimates and (8.14), letting υ go to 0, we obtain

rαh ≤ Crβh ,

and therefore, for h small enough

β ≤ α.

Recalling the definitions (8.5) and (8.11) of α and β respectively, we infer that

θi ≤ θj .

Exchanging the roles of ui and uj , the same proof gives the opposite inequality

θj ≤ θi,

and this concludes the proof of the theorem for H defined as in (2.5).

Next, let us turn to the case (2.4). Again we compare the mass of Laplacians of ui and uj

across the free boundaries. For σ < rh let us define

Dσ(xh) := {x ∈ Brh(xh) | d(x, ∂Si) ≤ σ2}.

Then, if we denote by (Dσ(xh))1 and (Dσ(xh))2 the sets of points at ρ-distance respectively

less than 1 and 2 from Dσ(xh), we have

ε2

∫

Dσ(xh)
∆uεi (x)dx =

∑

k 6=i

∫

Dσ(xh)

∫

B1(x)
uεi (x)ϕ

(
ρ(x− y)

)
uεk(y)dydx

=
∑

k 6=i

∫ ∫

Dσ(xh)×(Dσ(xh))1

uεi (x)ϕ
(
ρ(x− y)

)
uεk(y)dxdy

≤
∑

k 6=i

∫ ∫

(Dσ(xh))2×(Dσ(xh))1

uεi (x)ϕ
(
ρ(x− y)

)
uεk(y)dxdy

=
∑

k 6=i

∫

(Dσ(xh))1

∫

B1(y)
uεi (x)ϕ

(
ρ(x− y)

)
uεk(y)dxdy

≤ ε2
∑

k 6=i

∫

(Dσ(xh))1

∆uεk(y)dy,

which implies

(8.15)
∫

Dσ(xh)
∆uεi (x)dx ≤

∑

k 6=i

∫

(Dσ(xh))1

∆uεk(x)dx.
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By Lemma 8.1 the normal derivative of ui with respect to the inner normal νi, at any point on

the boundary ∂C at distance r from the vertex is greater than crα, then
∫

Dσ(xh)
∆ui =

∫

∂C∩Dσ(xh)

∂ui
∂νi

dA ≥ c
∫ Crh

crh

rαdr = Crα+1
h .

Remark that there exists c > 0 such that

(Dσ(xh))1 ∩ ∂Sj ⊂ Brh+cσ(yh) ∩ ∂Sj

therefore, for σ small enough, again from Lemma 8.1 we have
∫

(Dσ(xh))1

∆uj ≤ Crβ+1
h .

Then from the limit in ε of inequality (8.15) we obtain that

β ≤ α

and therefore

θi ≤ θj .

Exchanging the roles of ui and uj we get the opposite inequality

θj ≤ θi.

This concludes the proof of the theorem.

�

Corollary 8.3. Assume n = K = 2. Assume in addition that the supports on ∂Ω of the

boundary data f1 and f2 have a finite number of connected components. Then S1 and S2 have

a finite number of connected components. Moreover, singular points form a finite set.

Proof. Consider all the connected components of S1 and S2, Sji , i = 1, 2 and j = 1, 2, 3, . . ..

Remark that for any i and j

∂Sji ∩ {x ∈ ∂Ω : fi(x) > 0} 6= ∅.

Indeed, if not we would have ui = 0 on the ∂Sji and ∆ui ≥ 0 in Sji . The maximum principle

then would imply u ≡ 0 in Sji , which is not possible. Moreover, since ui is continuous up to the
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Figure 3. Forbidden arc

boundary of Ω, ∂Sji must contain one connected component of the set {x ∈ ∂Ω : fi(x) > 0}; we

say that the components of S1 and S2 reach the boundary of Ω. This implies that the connected

components of S1 and S2 are finite.

Next, let x0 ∈ ∂S1 be a singular point that realizes the distance from S2 at y1, y2 ∈ ∂S2 two

different points (y1, y2 ∈ ∂B1(x0) ∩ ∂S2, see Figure 3). We can choose y1 such that B1(x0) is

the limit as k → +∞ of balls B1(xk) with xk ∈ ∂S1, tangent to points yk ∈ ∂S2 with yk → y1

and xk → x0 as k → +∞. Theorem 8.2 implies that S2 has an angle at y1 and y2 and the

intersection of the arc on ∂B1(x0) between y1 and y2 with ∂S2 must have empty interior. This

means that near y1 there are points on ∂S2 outside B1(x0). These points are at distance greater

than 1 from x0 and from any other point of ∂S1 close to x0 and must realize the distance from

S1 outside B1(y1), see Figure 3. Therefore if we take a sequence zk of such points converging

to y1 and we consider the corresponding tangent balls centered at points that are in ∂S1 where

the zk’s realize the distance, we obtain a second tangent ball B1(x1) for y1 with x1 6= x0, i.e.,

y1 is a singular point of ∂S2.
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Figure 4. A singular point involving four components

Now, let us denote by S1
1 the connected component of S1 whose boundary contains x0.

Remember that since S1 and S2 are at ρ-distance 1, we have u1 ≡ 0 in B1(y1)∪B1(y2). Remark

that B1(y1) and B1(y2) must have not empty intersection, since they are tangent balls to a

Lipschitz curve. Moreover, since the connected components of S2 whose boundaries contain y1

and y2 must reach the boundary of Ω, they separate the components of S1 whose boundaries

contain x0 and x1. Therefore x1 must belong to the boundary of different components of S1,

let us call it S2
1 . The same argument that we have used for x1 and x0 proves also that y1 and

y2 must belong to the boundary of different components of S2.

We conclude that a singular point x0 of S1 involves at least four different connected compo-

nents and there correspond to it another singular point of S1 belonging to a different connected

component of S1, see Figure 4. Moreover, since all the connected components of S1 and S2 must

reach the boundary of Ω, x1 is the only singular point of S2
1 corresponding to a singular point

of S1
1 . Since the connected component of S1 are finite, we infer that there is a finite number of

singular points on ∂S1
1 . This argument applied to any connected component of S1 shows that
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singular points of S1 are finite. In the same way we can prove that singular points of S2 are

finite and this concludes the proof of the theorem.

�

Another corollary of Theorem 8.2 is the C1-regularity of the free boundaries when K = 2

and under the following additional assumptions on Ω, f1 and f2:

(8.16) Ω := {(x1, x2) ∈ R2 | g(x2) ≤ x1 ≤ h(x2), x2 ∈ [a, b]}, b− a ≥ 4

where

(8.17)

{
g, h : [a, b]→ R are Lipschitz functions with
−m2 ≤ g ≤ −m1 ≤M2 ≤ h ≤M1, M2 ≥ −m1 + 4;

the boundary data are such that

(8.18)





f1 ≡ 1, f2 ≡ 0 on {x1 ≤ g(x2)},
f1 ≡ 0, f2 ≡ 1 on {x1 ≥ h(x2)},
f1 is monotone decreasing in x1 on {x2 ≤ a} ∪ {x2 ≥ b},
f2 is monotone increasing in x1 on {x2 ≤ a} ∪ {x2 ≥ b}.

These assumptions imply that −u1 and u2 are monotone increasing in the x1 direction. Then

we have the following

Corollary 8.4. Assume K = n = 2, (8.16), (8.17), (8.18) and p = 1 in (2.4). Then the sets

∂Si, i = 1, 2, are of class C1.

Proof. We know that the sets ∂Si are Lipschitz graph at ρ-distance 1, one from each other.

Suppose by contradiction that ∂S1 has an angle θ < π at y0. In particular, there exist two

ρ-balls of radius 1, centered at two points z, w ∈ ∂S2 that are tangent to ∂S1 at y0. Then, by

the monotonicity property of the ui’s and Theorem 7.1, the arc of the ρ-ball of radius 1 centered

at y0 between the points z and w must be all in ∂S2. This means that any point inside this

arc, which is a regular point of ∂S2, is at ρ-distance 1 from the singular point y0 ∈ ∂S1. This

contradicts Theorem 8.2.

�
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9. A relation between the normal derivatives at the free boundary

In this section we restrict ourself to the following case:

(9.1)





K = 2
H defined like in (2.4), with
p = 1, ϕ ≡ 1 and ρ the Euclidian norm.

Therefore, the system (2.7) becomes

∆uε1(x) =
1
ε2
uε1(x)

∫

B1(x)
uε2(y) dy in Ω,

∆uε2(x) =
1
ε2
uε2(x)

∫

B1(x)
uε1(y) dy in Ω,

where we denote by B1(x) the Euclidian ball of radius 1 centered at x. Let (u1, u2) be the limit

functions of a converging subsequence that we still denote (uε1, u
ε
2) and for i = 1, 2 let

Si := {ui > 0}.

From Section 7 we know that the ui’s have disjoint support and that there is a strip of width

exactly one that separates S1 and S2. Moreover, Corollary 6.2 guarantees that at any point

of the boundary of the two sets, the principal curvatures are less or equal 1. For i = 1, 2, let

xi ∈ ∂Si be such that x1 is at distance 1 from x2, ∂Si is of class C2 in a neighborhood of xi and

all the principal curvatures of ∂Si at xi are strictly less than 1. Without loss of generality we

can assume x1 = 0 and x2 = en, where en = (0, . . . , 1). Let us denote by u1
ν(0) and u2

ν(en) the

exterior normal derivatives of u1 and u2 respectively at 0 and en. Note that the two normals

have opposite direction. We want to deduce a relation between u1
ν(0) and u2

ν(en). Let us start

by recalling some basic properties about the level surfaces of the distance function to a set.

9.1. Level surfaces of the distance function to a set. Some basic Properties. Consider

a set S and its boundary ∂S, of the class C2. Let κi(x) be the principal curvatures of ∂S at x

(outward is the positive direction). Assume that κi(x) < 1− ε. Then:

a) the distance function to S, dS(x) = d(x, S), is defined and is C2 as long as

dS(x) < 1 + ε.
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Figure 5. Curvatures relation

Let S(k) denote the surface that is at distance k from S

S(k) := {x : dS(x) = k},

then, for k < 1 + ε and x ∈ S(k), there is a unique point x0 ∈ S(0), such that

x = x0 + kν(x0) where ν(x0) is the unit normal vector at x0 in the positive direction.

More precisely, if we denote K := max{|κi(x)| : 1 ≤ i ≤ n − 1, x ∈ ∂S} and f(x, t) :=

x + tν(x), then f is a diffeomorphism between ∂S × (−k, k) and the neighborhood of

∂S, Nk(S) = {x+ tν(x) : x ∈ ∂S, |t| < k} with k < 1
K .

b) for all x0 ∈ ∂S if we consider the linear transformation xt = x0 + tν(x0) we obtain

S(t). Hence, since the tangent plane for each S(t) is always perpendicular to ν(x0), the

eigenvectors of the principal curvatures remain constant along the trajectories of dS , for

dS < 1 + ε.

c) the curvatures of S(k) satisfy, see Figure 5

κi(x0 + kν(x0)) =
1

1
κi(x0) − k

=
κi(x0)

1− κi(x0)k
, i = 1, . . . , n− 1, k < 1 + ε

for x0 ∈ ∂S.

d) for x0 ∈ ∂S, the ball B1(x0) touches S(1) at the point x0 + ν(x0), ν the outwards

normal, and separates quadratically from S(1).
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9.2. Free boundary condition. Following Subsection 9.1, we denote by κi(0) the principal

curvatures of ∂S1 at 0 where outward is the positive direction and by κi(en) = κi(0)
1−κi(0) , the

principal curvatures of ∂S2 at en. Remark that since the normal vectors to S1 and S2 respec-

tively at 0 and en, have opposite directions, for κi(en) the inner direction of S2 is the positive

one. The main result of this section is the following:

Theorem 9.1. Assume (9.1). Let 0 ∈ ∂S1 and en ∈ ∂S2. Assume that ∂S1 is of class C2 in

B4h0(0) and that the principal curvatures satisfy: κi(0) < 1 for any i = 1, . . . , n− 1. Then, we

have the following relation:

u1
ν(0)

u2
ν(en)

=
n−1∏

i=1
κi(0)6=0

κi(0)
κi(en)

if κi(0) 6= 0 for some i = 1, . . . , n− 1,

and

u1
ν(0) = u2

ν(en) if κi(0) = 0 for any i = 1, . . . , n− 1.

In order to prove Theorem 9.1, we first prove a lemma that relates the mass of the Laplacians

of the limit functions across the interfaces. For a point x belonging to a neighborhood of ∂S1

around 0, let us denote by ν(x) = ν(x0) the exterior normal vector at x0 ∈ ∂S1, where x0 is

the unique point such that x = x0 + ν(x0). From (a) in Subsection 9.1, ν(x) is well defined.

Lemma 9.2. Under the assumptions of Theorem 9.1, for small h < h0, let

Dh := Bh(0) ∩ {x : d(x, ∂S1) ≤ h2}

and

Eh := {y ∈ Rn | y = x+ ν(x), x ∈ Dh}.

Then
∫

Dh

∆u1 =
∫

Eh

∆u2.
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Proof. Remark that the surface Eh ∩ ∂S2 is of class C2 for h small enough, being κi(0) < 1 for

i = 1, . . . , n− 1, see Subsection 9.1. The Laplacians of the ui’s are positive measures and
∫

Dh

∆u1 = lim
ε→0

∫

Dh

∆uε1(x) dx = lim
ε→0

1
ε2

∫

Dh

∫

B1(x)
uε1(x)uε2(y) dydx,

and
∫

Eh

∆u2 = lim
ε→0

∫

Eh

∆uε2(y) dy = lim
ε→0

1
ε2

∫

Eh

∫

B1(y)
uε1(x)uε2(y) dxdy.

Let s be such that ε
1

4α < s < h, where α is given by Lemma 5.3. We split the set Dh in the

following way

Dh = D+
h,s ∪D−h,s ∪Dh,s,

where

D+
h,s := {x ∈ Dh | d(x, ∂S1) > s2 and u1(x) > 0},

D−h,s := {x ∈ Dh | d(x, ∂S1) > s2 and u1(x) = 0},

Dh,s := {x ∈ Dh | d(x, ∂S1) ≤ s2}.

Similarly

Eh = E+
h,s ∪ E−h,s ∪ Eh,s,

where

E+
h,s := {x ∈ Eh | d(x, ∂S2) > s2 and u2(x) > 0},

E−h,s := {x ∈ Eh | d(x, ∂S2) > s2 and u2(x) = 0},

Eh,s := {x ∈ Eh | d(x, ∂S2) ≤ s2},

see Figure 6. Since ∂S1 is a smooth surface around 0, and ∆u1 = 0 in S1, we have that u1 grows

linearly away from the boundary in a neighborhood of 0. This and the uniform convergence

of uε1 to u1, imply that there exists c > 0 such that uε1(x) > cs2, for any x ∈ D+
h,s for ε small

enough. Then, by Lemma 5.3, uε2(y) ≤ ae−
b(cs2)

α

ε , (a, b positive constants), for y ∈ B1(x) and

any x ∈ D+
h,s. In an analogous way, if y ∈ E+

h,s, we know that for ε small enough uε2(y) > cs2 and

by Lemma 5.3, uε1(x) ≤ ae− b(cs
2)
α

ε for x ∈ B1(y). Since we have chosen s such that s2α > ε
1
2 , we
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Figure 6. Relation between the mass of the Laplacians

have that uε2(y) = o(ε2) uniformly in y, for any y ∈ ∪x∈D+
h,s
B1(x) and uε1(x) = o(ε2) uniformly

in x, for any x ∈ ∪y∈E+
h,s
B1(y). Remark that

D−h,s ⊂ ∪y∈E+
h,s
B1(y).

Therefore we have

1
ε2

∫

x∈Dh

∫

y∈B1(x)
uε1(x)uε2(y)dydx =

1
ε2

∫

x∈D+
h,s

∫

y∈B1(x)
uε1(x) uε2(y)︸ ︷︷ ︸

negligible

dydx

+
1
ε2

∫

x∈Dh,s

∫

y∈B1(x)
uε1(x)uε2(y)dydx

+
1
ε2

∫

x∈D−h,s

∫

y∈B1(x)
uε1(x)︸ ︷︷ ︸
negligible

uε2(y)dydx

=
1
ε2

∫

x∈Dh,s

∫

y∈B1(x)
uε1(x)uε2(y)dydx+ o(1).

(9.2)

Analogously

(9.3)
1
ε2

∫

y∈Eh

∫

x∈B1(y)
uε1(x)uε2(y) dxdy =

1
ε2

∫

Eh,s

∫

B1(y)
uε1(x)uε2(y) dxdy + o(1).

Next, for fixed x ∈ Dh,s,we have

B1(x) ∩ {y | d(y, ∂S2) > s2} ⊂ B1+h(0) ∩ {y | d(y, ∂S2) > s2} ∩ {u2 ≡ 0}.
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Therefore for any y ∈ B1(x) ∩ {y | d(y, ∂S2) > s2}, the ball B1(y) enters in S1 ∩ B2h(0) at

distance at least s2 from ∂S1. Since ∂S1∩B4h(0) is of class C2, u1 has linear growth away from

the boundary in ∂S1 ∩ B2h(0) and therefore there exists a point in B1(y) where u1 ≥ cs2 for

some c > 0. Like before, Lemma 5.3 implies that uε2(y) = o(ε2). We infer that

(9.4)
1
ε2

∫

x∈Dh,s

∫

y∈B1(x)
uε1(x)uε2(y)dydx =

1
ε2

∫

x∈Dh,s

∫

y∈B1(x)∩{y | d(y,∂S2)≤s2}
uε1(x)uε2(y)dydx+o(1).

Finally, remark that (d) of Subsection 9.1 implies that for x ∈ Dh,s

(9.5) B1(x) ∩ {y | d(y, ∂S2) ≤ s2} ⊂ Eh+cs,s

for some c > 0. From (9.2), (9.3), (9.4) and (9.5), we get
∫

Dh

∆uε1(x)dx =
1
ε2

∫

x∈Dh

∫

y∈B1(x)
uε1(x)uε2(y)dydx

=
1
ε2

∫

x∈Dh,s

∫

y∈B1(x)∩{y | d(y,∂S2)≤s2}
uε1(x)uε2(y)dydx+ o(1)

≤ 1
ε2

∫

x∈Dh,s

∫

y∈Eh+cs,s

uε1(x)uε2(y)dydx+ o(1)

≤ 1
ε2

∫

y∈Eh+cs,s

∫

x∈B1(y)
uε1(x)uε2(y)dxdy + o(1)

=
∫

Eh+cs

∆uε2(y)dy + o(1).

Similar computations give

∫

Eh

∆uε2(y)dy ≤
∫

Dh+cs

∆uε1(x)dx+ o(1).

Letting first ε and then s go to 0, the conclusion of the lemma follows.

�

Lemma 9.3. Under the assumptions of Theorem 9.1, let Γ1
h = ∂S1 ∩ Bh(0) and let Γ2

h =

{x+ ν(x) : x ∈ Γ1
h}. Then we have the limits

(9.6) lim
h→0

∫
Γ2
h
dA

∫
Γ1
h
dA

=
n−1∏

i=1
κi(0)6=0

κi(0)
κi(en)

if κi(0) 6= 0 for some i = 1, . . . , n− 1,
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and

(9.7) lim
h→0

∫
Γ2
h
dA

∫
Γ1
h
dA

= 1 if κi(0) = 0 for any i = 1, . . . , n− 1.

Proof. Consider the diffeomorphism ft(x) = f(x, t) = x+ tν(x). Then Γ2
h = f1(Γ1

h) and
∫

Γ2
h

dA =
∫

Γ1
h

|Jf1(x)|dA,

where |Jf1| is the determinant of the Jacobian of f1. Taking as basis of the tangent space at 0

the principal directions, τi, then the differential of f1 at x is given by

(df1)(τi) = τi + (dν)(τi) = τi − κiτi.

So,

|Jf1(x)| =
n−1∏

i=1

(1− κi(x))

and ∫
Γ2
h
dA

∫
Γ1
h
dA

=
1

Area (Γ1
h)

∫

Γ1
h

n−1∏

i=1

(1− κi(x))dA.

Passing to the limit when h converges to zero, we obtain

lim
h→0

∫
Γ2
h
dA

∫
Γ1
h
dA

=
n−1∏

i=1

(1− κi(0)).

Now, if κi(0) 6= 0 for some i = 1, . . . , n− 1, then

n−1∏

i=1

(1− κi(0)) =
n−1∏

i=1
κi(0)6=0

(1− κi(0)) =
n−1∏

i=1
κi(0)6=0

(
1− κi(0)
κi(0)

κi(0)
)

=
n−1∏

i=1
κi(0)6=0

κi(0)
κi(en)

,

and (9.6) follows.

If κi(0) = 0 for any i = 1, . . . , n− 1, then

n−1∏

i=1

(1− κi(0)) = 1

and we get (9.7).

�

Proof of Theorem 9.1.
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Let Γ1
h = ∂S1 ∩Dh and Γ2

h = ∂S2 ∩ Eh. The Laplacians ∆ui, are jump measures along ∂Si,

i = 1, 2, and satisfy
∫

Dh

∆u1 = −
∫

Γ1
h

u1
ν dA and

∫

Eh

∆u2 = −
∫

Γ2
h

u2
ν dA.

Then, using Lemma 9.2 we get

1 =

∫
Dh

∆u1∫
Eh

∆u2
=

∫
Γ1
h
u1
ν dA∫

Γ2
h
u2
ν dA

,

and so ∫
�Γ1

h
u1
ν dA∫

�Γ2
h
u2
ν dA

=

∫
Γ2
h
dA

∫
Γ1
h
dA

.

Since, when h→ 0, ∫
�Γ1

h
u1
ν dA∫

�Γ2
h
u2
ν dA

→ u1
ν(0)

u2
ν(en)

,

by Lemma 9.3 the conclusion of Theorem 9.1 follows.

�
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