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Abstract

We prove that the evolution of marginals associated to the empirical measure of a finite system
of hard spheres is driven by the BBGKY hierarchical expansion. The usual hierarchy of equations
for L1 measures is obtained as a corollary. We discuss the ambiguities arising in the correspond-
ing notion of microscopic series solution to the Boltzmann-Enskog equation.

1 Introduction

The hard-sphere dynamics plays a central role in the theory of dynamical systems and as underly-
ing microscopic model in kinetic theory. The aim of this paper is to study some features of the time
evolution associated to the finite hard-sphere model, namely we consider N identical hard spheres of
diameter ε moving in the whole space R3, H-S system in the sequel. Let

z = {zi}Ni=1 , zi = (xi, vi) ∈ R6 , i = 1, 2, · · ·N ,

be the initial configuration of the system. Here we denote by (xi, vi) the position and velocity of the
i-th particle. The evolution is deterministic and given by the usual laws of elastic reflection. Let

z(t) = {zi(t)}Ni=1 , zi(t) = (xi(t), vi(t)) ∈ R6 , i = 1, 2, · · ·N ,

be the configuration at time t. On a full-measure set of initial configurations, the flow z→ z(t) exists
for all times [1].

Choosing an initial configuration z for which the dynamics is well posed, one defines the empirical
measure as

µN(t, dz) =
1

N

N∑
i=1

δ(z − zi(t)) dz , (1.1)

where δ(·) is the Dirac measure at the origin (we drop the dependence of µN on z). The sum of Dirac
masses is transported through the H-S flow. Observe that the evolution of (1.1) is simpler than the
evolution of, say, L1 measures, since it amounts to follow one single trajectory.

Is there a partial differential equation describing the evolution of µN? Of course the empirical measure
will not satisfy any closed equation, but rather a hierarchy of equations involving the higher order
“empirical marginals” associated to (1.1), exactly as in the case of absolutely continuous distributions
which evolve through the hard-sphere BBGKY hierarchy. The latter hierarchy has been studied in detail
by several authors [5, 8, 17, 21, 16, 7]. In contrast with the well-known BBGKY holding for smoothly
interacting systems, its derivation is delicate because of the singular character of the H-S flow. Indeed
the collision operators appearing in the hierarchy are defined by integrals on manifolds of codimension
one, while the H-S flow is defined only away from a null-measure set. This problem is even more
delicate when one tries to give a meaning to the hierarchy for singular measures of type (1.1), since
the integration of delta functions is performed on the boundary of the space where the H-S flow takes
place.
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In this paper, we show how to establish and rigorously justify the H-S hierarchy for empirical marginals.
To do this, we make use of a series solution representation as introduced first in [10], where any inte-
gration over boundaries is carefully avoided. In particular, we show that among all the terms appearing
in such representation, the “real” H-S trajectory is singled out by a mechanism of cancellations.

As in the case of non-singular measures, the result can be obtained with several different methods.
We point out that the method of reference [16] does not require any regularity property and therefore
can be easily extended to a general measure including singular parts. Approximation with smooth
measures can be also used, together with some detailed information on the H-S flow. In the present
paper we shall use a different approach, which is simpler and more natural in the case of empirical
marginals. The ingredients of the proof are the semigroup property of the flow and the boundedness
of the number of collisions. Moreover, once established the result for empirical marginals, the validity
of the H-S BBGKY hierarchy for absolutely continuous measures of class L1 can be recovered by
computing expectation values. Hence, the method of this paper can be also seen as an alternative
approach to the validation issue discussed in the quoted references.

Connected with the above analysis is the problem of describing the so called microscopic solutions
to the Enskog equation, on which we comment in the last part of the paper. In the literature, sev-
eral versions of the Enskog equation may be found. Here we will consider the form sometimes called
Boltzmann-Enskog equation. This is a kinetic equation in which, in contrast with the Boltzmann equa-
tion, the diameter ε of the particles enters in the expression of the collision operator. More precisely, it
reads as

(∂t + v · ∇x)f(x, v, t) = λ−1

∫
R3×S2

+

dv1dω (v − v1) · ω (1.2)

×
{
f(x− ωε, v′1, t)f(x, v′, t)− f(x+ ωε, v1, t)f(x, v, t)

}
,

where the unknown f denotes the probability distribution of a given particle. As usual x, v and t
denote position, velocity and time respectively. Moreover S2

+ = {ω ∈ S2| (v − v1) · ω ≥ 0},
S2 is the unit sphere in R3 (with surface measure dω), (v, v1) is a pair of velocities in incoming
collision configuration and (v′, v′1) is the corresponding pair of outgoing velocities defined by the elastic
reflection rules {

v′ = v − ω[ω · (v − v1)]

v′1 = v1 + ω[ω · (v − v1)]
. (1.3)

Finally λ is the mean free path. Note that the Boltzmann equation is recovered, at least formally, for
ε = 0. In this paper, we will keep fixed ε > 0.

In 1975 N.N. Bogolyubov [4] observed that there exist solutions to eq. (1.2) of the form (1.1), where
{zi(t)}Ni=1 denotes the evolution of an N−particle H-S system. These are called microscopic solu-
tions.

Let us add here a comment concerning this terminology. We recall that, forN large and corresponding
small ε, the (1.1) should provide the normalized density of particles in the microscopic description
of the gas evolving along (1.2). Considering z as a random variable and under a suitable “chaotic”
assumption, (1.1) can be actually shown to be very close to the solution of the Boltzmann-Enskog
equation [15]. However the convergence takes place only in the continuum limit where N → ∞ as
ε−2.

Bogolyubov’s statement concerns instead (1.1) and (1.2) for finite N and ε. The result may look
surprising, the Enskog equation being a genuine irreversible kinetic equation. To see this, one may
introduce the free-energy functional H(f) =

∫
f log f dx dv + 1

2
λ−1

∫
R3 dx

∫
B(x,ε)

dy ρ(x) ρ(y) ,
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where ρ is the spatial density and B(x, ε) is the ball around x and of radius ε. Then it turns out that
H decreases if f is a solution to (1.2), see e.g. [3]. But since the functional H does not make sense
on solutions of the type (1.1), there is no a priori contradiction.

As in the case of the H-S hierarchy, the Boltzmann-Enskog collision operator appearing in the right
hand side of (1.2) is not well defined when evaluated in f = µN , so that a discussion on the precise
mathematical meaning of the microscopic solutions of [4] is required. In [18, 19, 20] a suitable regu-
larization has been used to give a sense to (1.2) in terms of a limiting procedure. In this paper, we will
approach the problem in a different way.

Motivated by the fact that the concept of series solution appears to be convenient to justify the micro-
scopic solutions to the H-S hierarchy, we shall focus on the same notion of solution for the Boltzmann-
Enskog equation and on the comparison between them. We find it interesting to observe that such
a comparison is rather non-trivial. The series solution of the H-S system provides a unique well de-
fined result, when applied to microscopic initial data. In contrast, the corresponding expansion for the
Boltzmann-Enskog equation does not allow to avoid the integration of singular measures over bound-
aries. As a consequence, not only the single term of the expansion depends on the regularization,
but the series is not even absolutely convergent for short times. The origin of the ambiguity is that the
space of singular solutions of the kinetic hierarchy allows contractions, i.e. different particles having
the same configuration. Unfortunately, a natural prescription preventing this phenomenon seems to be
missing.

The plan of the paper is the following. In the next section we introduce the H-S and Enskog hierarchies
for L1 data, together with the tree expansion, which is a basic tool for our analysis. In Section 3 we
introduce the microscopic states, namely states which are concentrated on a single configuration,
and extend the notion of hierarchy to this context. After that, we analyze the series solution to the
Boltzmann-Enskog equation for microscopic initial data.

2 Hierarchies

In Section 2.1 below we introduce the H-S system, recall the preliminary results on the H-S dynamics
and explain how to describe the evolution of a class of absolutely continuous measures, by means of
a hierarchy of equations similar to the usual BBGKY hierarchy for smooth potentials. An analogous
description is also given for the Boltzmann-Enskog evolution. In both cases, we provide in Section 2.2
the explicit representation of the series solution in terms of the tree expansion and of a class of special
flows of particles evolving backwards in time. We mainly follow Sec. 2 of ref. [15] in this part. Finally in
Section 2.3 we show how to properly formulate the series solution in order to extend it to the case of
singular measures. This requires a discussion on the invertibility properties of the flows.

2.1 Preliminary results

We consider a system of N hard spheres of unit mass and of diameter ε > 0 moving in R3. With
zi = (xi, vi) ∈ R6 we indicate the state of the i–th particle, i = 1, 2, · · · , while for groups of particles
we use the notation zj = (z1, · · · , zj) . “Particle i” is a particle whose configuration is labelled by the
index i.

The particle configuration lives in the phase space of the system, defined as the subset of R6N in
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which any pair of particles cannot overlap, namely

MN =
{
zN ∈ R6N

∣∣∣ |xi − xk| > 0, i, k = 1, · · · , N, k 6= i
}
. (2.1.1)

Given a time–zero configuration zN ∈MN , we introduce the flow of the N–particle dynamics (equa-
tions of motion)

t 7→ TN(t) zN , (2.1.2)

by means of the following prescription. Between collisions each particle moves on a straight line with
constant velocity. When two hard spheres collide with positions xi, xj at distance ε, normalized relative
distance

ω = (xi − xj)/|xi − xj| = (xi − xj)/ε ∈ S2

and incoming velocities vi, vj (i.e. (vi − vj) · ω < 0), these are instantaneously transformed to
outgoing velocities v′i, v

′
j (i.e. (vi − vj) · ω > 0) through the relations

v′i = vi − ω[ω · (vi − vj)] ,
v′j = vj + ω[ω · (vi − vj)] . (2.1.3)

Such a collision transformation is invertible and preserves the Lebesgue measure on R6. Notice also
that the flow TN(t) is piecewise continuous in t

The above prescription does not cover all possible situations, e.g. triple collisions (three or more par-
ticles simultaneously at distance ε) and grazing collisions ((vi − vj) · ω = 0) are excluded. However
what is important is that the flow is globally defined, almost everywhere inMN . In fact we have from
[1] (see also [11, 6]) that there exists inMN a subset, whose complement is a Lebesgue null set,
such that, for any zN in the subset, the mapping (2.1.2) is a solution of the equations of motion having
TN(0) zN = zN . Moreover, the shifts along trajectories t 7→ TN(t) zN define a one-parameter group
of Borel maps onMN which leave the Lebesgue measure invariant.

In particular, it follows that the number of collisions in any finite interval is finite for almost all initial
configurations. Actually, in our situation one has a stronger result [9, 22]:

Proposition 1 There exists N ∈ N such that the total number of collisions in the H-S flow is at most
N .

We shall make use of this property in the present paper. It is worth stressing that everything that
follows would automatically apply also to N spheres enclosed in a region Λ ⊂ R3 with elastically
reflecting boundaries, as in [1], in which case the above proposition is generally true in any finite time
interval only after removing a suitable Lebesgue null set (one single particle in a box may undergo
infinitely many collisions in a finite time).

A statistical description of the system is provided by assigning onMN an absolutely continuous prob-
ability measure with density W , initially - and hence at any positive time - symmetric in the exchange
of the particles. Its time evolution is described by the Liouville equation, which in integral form reads

W (zN , t) = W0(TN(−t) zN) , (2.1.4)

a.e. inMN , where W0 is the assigned initial datum. The j-particle marginals for j = 1, · · · , N are
given by

fj(zj, t) =

∫
S(xj)N−j

dzj+1 · · · dzN W (zj, zj+1, · · · , zN , t) , (2.1.5)
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where zj ∈Mj and

S(xj) =
{
z = (x, v) ∈ R6

∣∣∣ |x− xk| > ε for all k = 1, · · · , j
}
. (2.1.6)

Moreover, to simplify the following notations we shall extend the definition over R6j by

fj(zj) = 0 , zj ∈ R6j \Mj . (2.1.7)

The evolution equations for the considered quantities were first derived formally by Cercignani in [5]
and take the form (H-S BBGKY hierarchy)

(∂t + Lj) fj(zj, t) = ε2(N − j)
j∑
i=1

∫
S2×R3

dω dvj+1 B(ω; vj+i− vi) fj+1(zj, xi + εω, vj+1, t) ,

(2.1.8)
where Lj denotes the generator of the j−particle dynamics defined by

Sεj (t)fj(zj, ·) =

{
e−Ljtfj(zj, ·) = fj(Tj(−t)zj, ·) zj ∈Mj

0 zj ∈ R6j \Mj

(2.1.9)

and the collision kernel is

B(ω; vj+i − vi) = ω · (vj+i − vi) . (2.1.10)

Notice that, by virtue of (2.1.7), the integration dω is restricted over the subset of the sphere

{ω ∈ S2 | min
`=1,··· ,j;`6=i

|xi + ωε− x`| > ε} . (2.1.11)

The series solution of the hierarchy, obtained perturbing the j−particle evolution, is

fj(t) =

N−j∑
n=0

α(N − j, n)

∫ t

0

dt1

∫ t1

0

dt2 · · ·
∫ tn−1

0

dtn

Sεj (t− t1)Cj+1Sεj+1(t1 − t2) · · · Cj+nSεj+n(tn)f0,j+n , (2.1.12)

where fj(·, 0) = f0,j is the initial datum (marginals of W0),

α(r, n) = r(r − 1) . . . (r − n+ 1) ε2n (2.1.13)

(α(r, 0) = 1), and Cj+1 is the collision operator, given by the sum in the right hand side of Eq. (2.1.8),
i.e.

Cj+1 =

j∑
i=1

Ci,j+1 (2.1.14)

Ci,j+1fj+1(zj, t) =

∫
S2×R3

dω dvj+1 B(ω; vj+i − vi) fj+1(zj, xi + εω, vj+1, t) .

The rigorous validation of formula (2.1.12) has been discussed in [17, 8, 16, 7] and can be proved
under rather weak assumptions on the absolutely continuous initial measure. An alternative proof will
be presented in Section 3 (Corollary 1).
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Finally, we introduce the so called Enskog hierarchy.

Let g be a solution to the Boltzmann-Enskog Equation (1.2). Then the products

gj(zj, t) := g(t)⊗j(zj) (2.1.15)

satisfy (
∂t +

j∑
i=1

vi · ∇xi

)
gj = λ−1 Cj+1gj+1 . (2.1.16)

This can be easily obtained performing a change of variables ω → −ω inside the positive part of the
collision operator in (1.2). The corresponding series solution is:

gj(t) =
∑
n≥0

λ−n
∫ t

0

dt1

∫ t1

0

dt2 · · ·
∫ tn−1

0

dtn

·Sj(t− t1)Cj+1Sj+1(t1 − t2) · · · Cj+nSj+n(tn)g0,j+n , (2.1.17)

where now Sj(t) is the free flow operator, defined as

Sj(t)fj(zj, ·) = fj(x1 − v1t, v1, · · · , xj − vjt, vj, ·) , (2.1.18)

and
g0,j = g⊗j0 (2.1.19)

is the family of initial data. Existence and uniqueness for the solutions to the Enskog hierarchy have
been discussed in [2, 3, 13].

In spite of their formal similarity, the two expansions (2.1.12) and (2.1.17) are deeply different as
explained in [15] and as confirmed also by the discussion in Section 3.1 below.

Let us conclude here by establishing a fundamental property of both the series expansions introduced
above, namely the semigroup property, which is a consequence of the same property holding for the
operator (2.1.9) and can be formulated in the following way.

First we introduce the operator Tn(zj, t) acting on the marginal of order j + n and describing the
n−th term of the expansion (2.1.12):

Tn(zj, t)fj+n = α(N − j, n)

∫ t

0

dt1

∫ t1

0

dt2 · · ·
∫ tn−1

0

dtnSεj (t− t1)Cj+1 · · · Sεj+n(tn)fj+n .

(2.1.20)
For reasons that will be clear in the next section, we may call Tn(zj, t) the n−particle tree operator
for the interacting flow. Eq. (2.1.12) can be written

fj(zj, t) =

N−j∑
n=0

Tn(zj, t)fj+n(0) . (2.1.21)

If t = t1 + t2, by simple algebraic manipulations it follows that

fj(zj, t) =

N−j∑
n=0

Tn(zj, t1)fj+n(t2). (2.1.22)

In a similar way for the Enskog flow we define the n−particle tree operator

T En (zj, t)gj+n = λ−n
∫ t

0

dt1

∫ t1

0

dt2 · · ·
∫ tn−1

0

dtnSj(t− t1)Cj+1 · · · Sj+n(tn)gj+n , (2.1.23)
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so that

gj(zj, t) =
∞∑
n=0

T En (zj, t)gj+n(0) (2.1.24)

and there holds

gj(zj, t) =
∞∑
n=0

T En (zj, t1)gj+n(t2) . (2.1.25)

2.2 Tree expansion

In this section we shall write formulas (2.1.12) and (2.1.17) in a convenient and more explicit way. We
follow [15, 14].

Extracting the sums from (2.1.14) in formula (2.1.12), one has

fj(t) =

N−j∑
n=0

∑
kn

∗
α(N − j, n)

∫ t

0

dt1

∫ t1

0

dt2 · · ·
∫ tn−1

0

dtn

·Sεj (t− t1)Ck1,j+1Sεj+1(t1 − t2) · · · Ckn,j+nSεj+n(tn)f0,j+n , (2.2.1)

where ∑
kn

∗
=

j∑
k1=1

j+1∑
k2=1

· · ·
j+n−1∑
kn=1

. (2.2.2)

To describe the summation rule we introduce a useful notation. The n−collision, j−particle tree,
denoted by Γ(j, n), is defined as the collection of integers k1, · · · , kn that are present in the sum
(2.2.2), i.e.

k1 ∈ Ij, k2 ∈ Ij+1, · · · , kn ∈ Ij+n−1 , with Is = {1, 2, · · · , s} . (2.2.3)

In this way ∑
kn

∗
=
∑

Γ(j,n)

. (2.2.4)

The name “tree” is justified by its natural graphical representation, which we explain by means of an
example: see Figure 1 corresponding to Γ(2, 5) given by 1, 2, 1, 3, 2. In the figure, we have also drawn
a time arrow in order to associate times to the nodes of the trees: at time ti the line j + i is “created”.
Lines 1 and 2 of the example, existing for all times, are called “root lines”.

Note that a j−particle tree is not a collection of j one-particle trees because, in the latter case, the
ordering of particles belonging to different one-particle trees is not specified.

Given a j–particle tree Γ(j, n) and fixed a value of all the integration variables in the expansion
(2.2.1) (times, unit vectors, velocities), we associate to it a special trajectory of particles, which we call
interacting backward flow (IBF in the following), since it will be naturally defined by going backwards in
time. The rules for the construction of this evolution are explained as follows.

First, we introduce a notation for the configuration of particles in the IBF, by making use of Greek
alphabet i.e. ζ(s), where s ∈ [0, t] is the time1. Note that there is no label specifying the number

1In previous work [14, 15] the notation ζε(s) has been used for the IBF (and ζ(s) for the corresponding “Boltzmann
flow”). Here we drop the superscript, since we will keep ε fixed throughout the paper.
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Figure 1: The two–particle tree Γ(2, 5) = 1, 2, 1, 3, 2.

of particles. This number depends indeed on the time. If s ∈ (tr+1, tr) (with the convention t0 =
t, tn+1 = 0), there are exactly j + r particles:

ζ(s) = (ζ1(s), · · · , ζj+r(s)) ∈Mj+r for s ∈ (tr+1, tr) , (2.2.5)

with
ζi(s) = (ξi(s), ηi(s)) , (2.2.6)

the positions and velocities of the particles being respectively

ξ(s) = (ξ1(s), · · · , ξj+r(s)) ,
η(s) = (η1(s), . . . , ηj+r(s)) . (2.2.7)

Our final goal is to write Eq. (2.2.1) in terms of the IBF (to be defined below). More precisely, (2.1.20)
shall be rewritten as

Tn(ζj, t)fj+n = α(N − j, n)
∑

Γ(j,n)

∫
dΛ(tn,ωn,vj,n)

n∏
i=1

Bε(ωi; vj+i − ηki
(ti))fj+n(ζ(0)) ,

(2.2.8)
where ζj = ζj(t) := zj , (ζ(s))s∈[0,t) is defined below, dΛ is the measure on Rn × S2n × R3n

dΛ(tn,ωn,vj,n) = 1{t1>t2···>tn}dt1 . . . dtndω1 . . . dωndvj+1 . . . dvj+n , (2.2.9)

with the abbreviation

(tn,ωn,vj,n) = (t1, t2, · · · , tn, ω1, · · · , ωn, vj+1, · · · , vj+n) ,

while

Bε(ωi; vj+i − ηki
(ti)) = B(ωi; vj+i − ηki

(ti))1{|ξj+i(ti)−ξk(ti)|>ε ∀k 6=ki} (2.2.10)

with B defined by (2.1.10). Summarizing, the term Tn(ζj, t)fj+n(0) is the sum over all trees Γ(j, n),
of terms where the initial datum f0,j+n is integrated, with the suitable weight, over all the possible
time-zero states of the IBF associated to Γ(j, n).
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In formula (2.2.8), the triple (ti, ωi, vj+i) is thought as associated to the node of Γ(j, n) where line
j + i is created (see Figure 1). In the rest of the paper, we shall further abbreviate∫

dΛ(tn,ωn,vj,n)
∏

Bε =

∫
dΛ(tn,ωn,vj,n)

n∏
i=1

Bε(ωi; vj+i − ηki
(ti)) , (2.2.11)

where the ηki
(ti) in the factors B have to be computed through the rules specified below, starting

from the set of variables (tn,ωn,vj,n), the corresponding j–particle tree (whose nodes are labeled
by (tn,ωn,vj,n)), together with the associated value of ζj, t.

Let us finally construct ζ(s) for a fixed collection of variables Γ(j, n), ζj, tn,ωn,vj,n, with

t ≡ t0 > t1 > t2 > · · · > tn > tn+1 ≡ 0 , (2.2.12)

and ωn satisfying a further constraint that will be specified soon. The root lines of the j–particle
tree are associated to the first j particles, with configuration ζ1, · · · , ζj. Each branch j + ` (` =
1, · · · , n) represents a new particle with the same label, and state ζj+`. This new particle appears,
going backwards in time, at time t` in a collision state with a previous particle (branch) k` ∈ {1, · · · j+
`− 1}, with either incoming or outgoing velocity.

More precisely, in the time interval (tr, tr−1) particles 1, · · · , j + r − 1 flow according to the usual
dynamics Tj+r−1. This defines ζj+r−1(s) starting from ζj+r−1(tr−1). At time tr the particle j + r is
“created” by particle kr in the position

ξj+r(tr) = ξkr(tr) + ωrε (2.2.13)

and with velocity vj+r. This defines ζ(tr) = (ζ1(tr), · · · , ζj+r(tr)). After that, the evolution in
(tr+1, tr) is constructed applying to this configuration the dynamics Tj+r (with negative times).

The characteristic function in (2.2.10), is a constraint on ωr ensuring that two hard spheres cannot be
at distance smaller than ε.

We have two cases. If ωr · (vj+r − ηkr(tr)) ≤ 0, then the velocities are incoming and no scattering
occurs, namely after tr the pair of particles moves backwards freely with velocities ηkr(tr) and vj+r.
If instead ωr · (vj+r − ηkr(tr)) ≥ 0, the pair is post–collisional. Then the presence of the interaction
in the flow Tj+r forces the pair to perform a (backwards) instantaneous collision. The two situations
are depicted in Fig. 2.

ωr

vj+rηkr(tr)

vj+r
ηkr(tr)

Figure 2: At time tr, particle j+r is created by particle kr, either in incoming (ωr·(vj+r−ηkr(tr)) ≤ 0)
or in outgoing (ωr · (vj+r − ηkr(tr)) ≥ 0) collision configuration. Particle kr is called “progenitor” of
particle j + r.

Proceeding inductively, the IBF is thus constructed for all times s ∈ [0, t].
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Remark 1 Between two creation times tr, tr+1 any pair of particles among the existing j+r, different
from the couple (kr, j + r), can possibly interact. These interactions are called recollisions, because
they may involve particles that have already interacted at some creation time (in the future) with an-
other particle of the IBF. In our language, recollisions are the “interactions different from creations”.

To conclude, we have obtained the following representation for the series solution to the BBGKY
hierarchy:

fj(zj, t) =

N−j∑
n=0

∑
Γ(j,n)

α(N − j, n)

∫
dΛ(tn,ωn,vj,n)

∏
Bε f0,j+n(ζ(0)) . (2.2.14)

For future purpose, we write also the version of the expansion where we split positive and negative
part of B by setting

Bε = Bε
+ +Bε

−

with
Bε
±(ω, V ) = Bε(ω, V )1±ω·V≥0 .

If σn = (σ1, · · · , σn) where σi = ±, one has

fj(zj, t) =

N−j∑
n=0

∑
Γ(j,n)

∑
σn

α(N − j, n)

∫
dΛ(tn,ωn,vj,n)

∏
Bε

σn
f0,j+n(ζ(0)) , (2.2.15)

where
∏
Bε

σn
=
∏n

i=1B
ε
σi

(ωi; vj+i − ηki
(ti)). We underline that, according to our previous defini-

tions, Bε
− gives a negative contribution to the series expansion (2.2.15).

We also notice that the trajectories entering into expansion (2.2.15) have nothing to do, in principle,
with the real trajectories performed by the particle system. However the latter can be recovered by
the expansion, by means of a complex system of cancellations. The forthcoming discussion on the
hierarchy for empirical measures will clarify this point.

Finally, a similar analysis can be done for the Enskog hierarchy. We introduce the backwards flow
ζE(s), called Enskog backwards flow (EBF), which is constructed as ζ(s) with the additional pre-
scription that all the recollisions are ignored. In this flow, particles are still created at distance ε from
their progenitor, but they may overlap, i.e. they may reach a distance smaller than ε during the evolu-
tion. In particular, the time-zero state ζE(0) lies in R6(j+n).

Alternatively, we may say that the EBF is constructed exactly as the IBF, except for the following
differences:

- the interacting dynamics T is replaced by the simple free dynamics;

- there is no constraint on ωr.

In terms of this flow, Eq. (2.1.17) can be written explicitly

gj(zj, t) =
∞∑
n=0

∑
Γ(j,n)

∑
σn

λ−n
∫
dΛ(tn,ωn,vj,n)

∏
Bσn g0,j+n(ζE(0)) . (2.2.16)

where
∏
Bσn =

∏n
i=1Bσi

(ωi; vj+i − ηEki
(ti)) and B±(ω, V ) = B(ω, V )1±ω·V≥0 .

It is not difficult to check that the EBF allows a complete factorization, whenever the initial datum does
[15]. Namely if gε0,j is taken as in (2.1.19), then (2.2.16) gives gj(zj, t) = g1(t)⊗j(zj).

We end this section by summarizing the differences between (2.2.15) and (2.2.16):
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�
∑N−j

n=0 vs.
∑

n≥0 (total number of particles of the system) ;

� α(N − j, n) vs. λ−n (multiplicative coefficient in the expansion) ;

� Bε
σn

vs. Bσn (overlap of created spheres prevented / allowed) ;

� f0,j+n vs. g0,j+n (initial data, respectively non-tensorized / tensorized) ;

� IBF vs. EBF (backwards flow with recollisions / overlaps).

In particular, we observe once more that, in contrast with g0,j which can be taken as a product state,
f0,j cannot factorize because it must prevent the overlap between different spheres (condition (2.1.7)).

2.3 Weak formulation of hierarchical expansions

In this section we discuss a weak formulation of the above introduced series solution to the H-S
hierarchy, suitable to deal with singular measures.

Let us consider the right hand side of (2.2.15) in the case that the initial data f0,j+n are replaced by
suitable measures, not absolutely continuous. To give a precise meaning to the formula, we need to
integrate with respect to the initial configuration variables ζ(0). This amounts to study in some more
detail the IBF-map defined, for fixed t > 0, Γ(j, n) and σn, by

ζj, tn,ωn,vj,n −→ ζj+n(0) , (2.3.1)

where ζj ≡ zj . It follows from the properties of the H-S flow that the above transformation is a
Borel map almost everywhere defined over the domain specified in the previous section, with image
A(t,Γ,σn) ⊂ Mj+n

2; see e.g. Lemma 1 in [16], or [21] for a different method of proof. More-
over, a simple computation shows that the Jacobian determinant of the transformation is in modulus
ε2n
∏n

i=1 |Bσi
(ωi; vj+i − ηki

(ti))|, so that the map induces the equivalence of measures

dζj dΛ ε2n
∏
|Bε

σn
| = dζj+n(0) . (2.3.2)

We construct now the inverse of the map. To do so, we introduce the interacting forward flow (IFF)

ζj+n(0) −→
(
ζF (s)

)
s∈[0,t]

defined in the following way. As for the IBF, the IFF has a number of particles which depends on time.
At s = 0, one has j + n particles. Let us take for such particles a configuration ζj+n(0) in the image
A of (2.3.1) (which depends on t, Γ(j, n) and σn). We let the configuration evolve forward in time via
the H-S dynamics Tj+n up to the first collision between particle j+n and particle kn (j+n is the last
one created in the IBF and generated by particle kn according to the tree Γ(j, n)). Such an instant of
time exists because ζj+n(0) belongs to A. There are two possibilities.

2I.e., dζj+n−essentially,
A(t,Γ(j, 0), ∅) =Mj+n ,

A(t,Γ(j, 1) = k1, σ1) =
{
ζj+n+1(0) ∈Mj+n+1

∣∣∣ “j + n+ 1 and k1 collide in (0, t)”
}

and so on.
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� This interaction is a creation. Then particle j + n disappears, while particle kn interacts or not
according to σn = + or σn = − respectively. Next, particle kn evolves together with the other
j + n − 2 particles in the H-S dynamics Tj+n−1, up to the next collision dictated by Γ(j, n),
namely the collision between particles j + n− 1 and kn−1.

� This interaction is a recollision. Then we let evolve the system further with the dynamics Tj+n
up to the next contact between j + n and kn. Clearly, meanwhile other recollisions occur. If
there is no next contact in [0, t] between j+n and kn3, we simply eliminate this second option.

As we shall see in Section 2.3.1, there are cases in which both options are possible. Therefore, the iter-
ation of the above procedure generates M different flows ζF,i(s), i = 1, · · · ,M , with M depending
on ζj+n(0). Of course by Proposition 1, there exists N ∈ N such that 1 ≤M ≤ 2N .

We conclude that (even though locally invertible) the map (2.3.1) is not globally invertible and integrat-
ing Eq. (2.2.15) against a bounded continuous function φ = φ(ζj) : R6j → R, the following weak
formulation of the time-integrated H-S BBGKY hierarchy is obtained:∫
fj(t)φ =

N−j∑
n=0

∑
Γ(j,n)

∑
σn

n∏
r=1

σr α(N − j, n) ε−2n

∫
A(t,Γ,σn)

dζj+n f0,j+n(ζj+n)
M∑
i=1

φ(ζF,ij (t)) ,

(2.3.3)
where M = M(ζj+n) : A → N. Note that the latter function is an a.e.-defined step function over
Mj+n, strongly dependent on the details of the H-S flow. Observe also that the right hand side of
(2.3.3) makes sense even for initial marginals which are measures df0,j(ζj).

Though the above formula is not very handable for practical purposes, we shall use it only in the
case of discrete measures. Remind that by (2.3.2), the transformation (2.3.1) is nonsingular out of
the grazing collisions Bσi

= 0. Therefore for any Dirac measure supported in points of A(t,Γ,σn)
“avoiding” grazing collisions, (2.3.3) can be rewritten without ambiguity as∫

fj(t)φ =

N−j∑
n=0

∑
Γ(j,n)

∑
σn

α(N − j, n)

∫
dζj dΛ

∏
Bε

σn
f0,j+n(ζj+n(0))φ(ζj) . (2.3.4)

In other words, we describe the discrete measure as a pushforward measure along the mapping
(2.3.1).

In Section 3 we will show that the empirical marginals associated to (1.1) and supported on “good”
configurations of the H-S flow satisfy indeed (2.3.3). We shall call these solutions the microscopic
solutions of the H-S hierarchy. An obvious way to proceed would be by taking a sequence of data
(f0,j)k approximating the singular measure as k → ∞ and using some topological information on
the function M = M(ζj+n). Instead, we shall present in Section 3 a more constructive approach.

We conclude by observing that the EBF-map defined, for fixed t > 0, Γ(j, n) and σn, by

ζEj , tn,ωn,vj,n −→ ζEj+n(0) (2.3.5)

with ζEj ≡ zj , is globally invertible over its domain of definition. This follows immediately from the fact
that each pair of particles in the EBF may interact at most once. As a consequence, from (2.2.16) we
easily deduce the following weak formulation of the time-integrated Enskog hierarchy:∫

gj(t)φ =
∞∑
n=0

∑
Γ(j,n)

∑
σn

n∏
r=1

σr λ
−n ε−2n

∫
AE(t,Γ,σn)

dζEj+n g0,j+n(ζEj+n)φ(ζEj (t)) , (2.3.6)

3More generally, if iteration of the procedure becomes impossible.
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where AE(t,Γ,σn) ⊂ R6(j+n) is the image of (2.3.5). In Section 3.1 we show that this formula is not
well-defined for the empirical measure, since ambiguities arise from the contractions in g0,j+n and the
corresponding integral of the singular measure over the boundary of AE .

2.3.1 Non-invertibility of the IBF

We show the non-invertibility of the map (2.3.1) by means of an example.

Let us consider the case of N = 3 hard spheres, with initial configuration ζ3(0) such that the dynam-
ics admits the sequence of collisions as in the figure that follows, i.e. c1 = (2, 3), c2 = (1, 2), c3 =
(2, 3), c4 = (1, 2).

12

3

1

2

3

(2.3.11)

Many configurations of this type can be constructed in two or three dimensions [12]. The above figure
is an IBF for the following tree Γ(1, 2) with positive nodes σ2 = (+,+):

12 3

.

(2.3.12)

The collisions c1 and c2 correspond to the nodes of the tree, while c3 and c4 are recollisions.

A different IBF for the same Γ(1, 2) and σ2 is obtained by taking c3 and c4 as creation times, as
in the figure below which, for the same initial configuration and tree, yields a different sequence
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ζ1, t2,ω2,v1,2.

12

3

3

2

1

(2.3.13)

3 Microscopic solutions to the H-S hierarchy

Let us start by introducing the probability measure overMN having as 1−particle marginal the empir-
ical measure. The densityW and marginals fj introduced in Section 2.1 for the absolutely continuous
case are here replaced by the empirical marginals, which are higher order probability measures con-
centrated on subsets of the H-S configuration.

Let zN = (z1, · · · , zN) ∈MN be a given configuration. A symmetric probability measure overMN

concentrated on zN is given by the empirical density

∆(ζN) =
1

N !

∑
π

N∏
i=1

δ(ζi − zπ(i)) , (3.1)

where π is the generic permutation.

The empirical marginals ∆j(ζj) are defined overMj , as usual, by

∆j(ζj) =

∫
dζj+1 · · · dζN ∆(ζj, ζj+1, · · · , ζN) . (3.2)

It follows that

∆1(ζ1) =

∫
dζ2 · · · dζN ∆(ζ1, ζ2, · · · , ζN)

=
1

N !

∑
π

∫
dζ2 · · · dζN

N∏
i=1

δ(ζi − zπ(i))

=
1

N !

∑
π

δ(ζ1 − zπ(1))

=
1

N

N∑
i=1

δ(ζ1 − zi) , (3.3)

namely
∆1(ζ)dζ = µN(dζ)
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is the empirical measure (1.1) at given time. By a similar computation:

∆j(ζj) =
1

N !

∑
π

j∏
i=1

δ(ζi − zπ(i))

=
(N − j)!
N !

∑
i1,··· ,ij
ia 6=ib

j∏
s=1

δ(ζs − zis)

=
1

N(N − 1) · · · (N − j + 1)

∑
i1,··· ,ij
ia 6=ib

j∏
s=1

δ(ζs − zis) . (3.4)

Observe that overMj one has the identity:

∆j(ζj) =
N j

N(N − 1) . . . (N − j + 1)
µ⊗jN (ζj) (3.5)

Next we consider the time evolution of the marginals.

First of all, we need to take care on how to fix the initial configuration zN . By the results of [1, 11, 6]
quoted in Section 2.1, one can identify the full Lebesgue-measure set of good H-S configurations

M∗
N ⊂MN (3.6)

with the set for which triple (or multiple) collisions, grazing collisions and simultaneous collisions4 are
forbidden. The evolution of such configurations is defined for all times. The following set has still full
measure:

M?
N =

{
zN ∈M∗

N

∣∣∣ zk ∈M∗
k ∀zk ⊂ zN

}
. (3.7)

From now on, we shall fix zN ∈ M?
N . This is needed to ensure well defined flows in the right hand

side of (2.3.3)-(2.3.4).

By definition,

∆(ζN , t) = ∆(TN(−t)ζN) =
1

N !

∑
π

N∏
i=1

δ(ζi − zπ(i)(t)) (3.8)

and (as in (3.4))

∆j(ζj, t) =
1

N(N − 1) . . . (N − j + 1)

∑
i1,··· ,ij
ia 6=ib

j∏
s=1

δ(ζs − zis(t)) , (3.9)

where here and below we indicate
zN(t) = TN(t)zN .

We want to show that the sequence formed by the empirical marginals of the time evolved measure,
{∆j(ζj, t)}Nj=1, satisfies the H-S hierarchy, Eq. (2.3.4).

4Namely two pairs of particles colliding at the same time. This does not lead to an ill-defined dynamics, but is conve-
niently removed to simplify the following argument.
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To do this, we use Proposition 1 and call S the number of collisions delivered by zN(·) in the time
interval [0, t). We partition [0, t) by a sequence of S + 1 intervals

[0, t) =
S⋃
i=0

[ti, ti+1) (3.10)

where 0 = t0 < t1 < · · · < tS+1 = t and the following properties are satisfied:

Property 1 In each time interval (ti, ti+1) with i = 0, · · · , S − 1, the H-S system delivers a single
collision at time τi+1. In the last interval [tS, tS+1) the motion is free.

Property 2 If the collision at time τi+1 occurs between particles α and β, then ti+1 − τi+1 is chosen
so small that the following two different H-S flows are free:

s→ TN−1(s)
(
z1(ti), · · · , zα−1(ti), zα+1(ti), · · · , zN(ti)

)
s ∈ [0, ti+1 − ti)

and

s→ TN−1(s)
(
z1(ti), · · · , zβ−1(ti), zβ+1(ti), · · · , zN(ti)

)
s ∈ [0, ti+1 − ti) .

Note that Property 2 means that if we remove particle α (or β) just before the collision instant τi+1,
then we see a free flow up to ti+1. This will allow to restrict the computation of (2.3.4) to n = 1, 2.

The existence of the above partition is guaranteed by the assumption zN ∈M∗
N and by the continuity

of the free flow.

Now notice that, in view of the semigroup property Eq. (2.1.22), it is enough to prove (2.3.4) for any
time interval in the partition. Therefore in what follows we shall restrict to a time interval (0, t) in which
at most one collision takes place and t is so small that Property 2 is fulfilled. Without loss of generality
we set α = 1, β = 2.

For simplicity of notation, we drop the integration
∫
dζjφ(ζj) in many of the following formulas. Fur-

thermore, we abbreviate ∆j(0) = ∆j .

Let us consider first the case j = 1.

The term n = 0 in the expansion (2.3.4) is

T0(ζ1, t)∆1 = Sε1(t)∆1(ζ1)

= ∆1(ξ1 − η1t, η1)

=
1

N

N∑
i=1

δ(ξ1 − (xi + vit))δ(η1 − vi) . (3.11)

If S = 0 (no collision is delivered by zN(·)), this reproduces trivially ∆1(t). Otherwise if S = 1 (one
single collision occurs), all the terms in the above sum contribute to ∆1(t) except those with i = 1, 2,
which therefore must be cancelled by some other terms of the expansion with n > 0.

If S = 0, all such terms are easily shown to be zero. Let us assume S = 1 and consider the term
with n = 1 and σ1 = +, namely

T +
1 (ζ1, t)∆2 ≡ (N − 1)ε2

∫
dΛ(t1, ω, v2)Bε

+ ∆2(ζ2(0)) (3.12)

=
(N − 1)

N(N − 1)
ε2

∫
dΛ(t1, ω, v2)Bε

+

·
[
δ(ζ1(0)− z1)δ(ζ2(0)− z2) + δ(ζ1(0)− z2)δ(ζ2(0)− z1)

]
.
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Observe that only two of all the terms defining ∆2 appear in the right hand side of the equation,
because all the pairs formed with particles different from 1 and 2 do not interact by the above assumed
properties, so that they fall away from the image of the IBF-map. In order to have other contributions it is
then necessary that particle 1 (or particle 2), ignoring particle 2 (or particle 1), collides with some other
particle. But such events are absent because of Property 2, invoked just to avoid these contributions.

To compute the integral in (3.12) we proceed as in (2.3.3), namely we change variables according to
ζ1, t1, ω1, v2 → ζ1(0), ζ2(0) and use (2.3.2):∫
dζ1φ(ζ1)T +

1 (ζ1, t)∆2 =
1

N

∫
dζ1 dζ2 φ(ζF1 (t))

[
δ(ζ1−z1)δ(ζ2−z2)+δ(ζ1−z2)δ(ζ2−z1)

]
,

(3.13)
where the integral on the right hand side is now extended over A(t,Γ(1, 1),+), i.e. on the set of
couples of particles leading to a collision. Since (z1, z2) lies inside this set, the integral is equal to
φ(z1(t)) + φ(z2(t)). Therefore we obtain

T +
1 (ζ1, t)∆2 =

1

N

{
δ(ζ1 − z1(t)) + δ(ζ1 − z2(t))

}
. (3.14)

With the same computation we get for the term with n = 1 and σ1 = −:

T −1 (ζ1, t)∆2 = − 1

N

{
δ(ξ1 − (x1 + v1t))δ(η1 − v1) + δ(ξ1 − (x2 + v2t))δ(η1 − v2)

}
. (3.15)

The term (3.15), which is negative, cancels the two terms in (3.11) with i = 1, 2. Hence we conclude
that

∆1(ζ1, t) = T0(ζ1, t)∆1 + T +
1 (ζ1, t)∆2 + T −1 (ζ1, t)∆2 . (3.16)

It remains to show that all the other terms in the expansion (2.3.3) with n > 1 vanish. This follows
immediately from Property 1 and Property 2. In fact, in order to find a subset of 1 + n particles of
zN lying inside the image of the IBF-flow with n > 1, we would need at least one more collision with
respect to those allowed by the properties.

For j > 1, we proceed in the same way. The term T0(ζj, t)∆j is given by

Sεj (t)∆j(ζj) =
1

N(N − 1) . . . (N − j + 1)

∑
i1,··· ,ij
ia 6=ib

j∏
s=1

δ(ζs − zis(t)) . (3.17)

As before if S = 1 and particles 1 and 2 collide, then the terms which contribute to ∆j(t) are those
with either

(1, 2) ⊂ {i1 · · · ij}
or

(1, 2) ∩ {i1 · · · ij} = ∅ .
The other terms, namely those for which 1 ∈ {i1 · · · ij} and 2 /∈ {i1 · · · ij}, or the reverse situation,
are exactly compensated by T −1 (ζj, t)∆j+1, while the contributions missing in (3.17) to reconstruct
∆j(t) are produced by T +

1 (ζj, t)∆j+1. Finally the same arguments used for j = 1 show that all the
terms with n > 1 are vanishing.

In conclusion, we have proved the following result.
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Theorem 1 Let zN ∈ M?
N . The empirical marginals ∆j(ζj, t) defined in (3.4) and supported in zN

verify, for any t > 0, the BBGKY expansion (2.3.3). Namely, for any bounded continuous φ : R6j →
R, ∫

∆j(t)φ =

N−j∑
n=0

∑
Γ(j,n)

∑
σn

α(N − j, n)

∫
dζj dΛ

∏
Bε

σn
∆j+n(ζj+n(0), 0)φ(ζj) .

By virtue of (3.5), this result can be formulated, in terms of the empirical measure µN overMj , as

(µN(t))⊗j =

N−j∑
n=0

∑
Γ(j,n)

∑
σn

(Nε2)n
∫

dΛ
∏

Bε
σn
µ
⊗(j+n)
N (ζj+n(0)) , (3.18)

where we set µN(0) = µN , or, equivalently:∫
Mj

(µN(t))⊗j φ =

N−j∑
n=0

∑
Γ(j,n)

∑
σn

n∏
r=1

σrN
n

∫
A(t,Γ,σn)

dζj+n µ
⊗(j+n)
N (ζj+n)

M∑
i=1

φ(ζF,ij (t)) .

(3.19)

Remark 2 The semigroup property has been used as essential ingredient to simplify the above proof.
Indeed, even without arguing on the time derivative, we can still restrict to such a small interval of time,
that only a single collision takes place, in both the N−particle dynamics and the dynamics of proper
subsets of particles. This allows in turn to compute just the value of 0−collision and 1−collision trees,
showing compensations among terms of type T0 and terms of type T −1 . In contrast, a control of the
full expansion in the generic time interval would require to detect more complicated cancellations.
Some of them have been classified in [16]. Our proofs, however, do not characterize the complete set
of compensations leading from the virtual trajectories of the expansion to the unique, real motion of
particles appearing on the left hand side.

We provide one example of such compensations, in the case of N = 3 hard spheres already consid-
ered in Section 2.3.1. The collisions therein called c1, c2, c3, c4 are all the collisions exhibited by the
dynamics in [0, t]; see Figure (2.3.11). Let ∆1(s) the empirical distribution supported on this trajec-
tory. Then the Dirac mass of particle 1 at time t is produced in z1(t) by the term Γ(1, 2) = (1, 2) with
σ2 = (+,+) in the BBGKY expansion (i.e. the tree pictured in (2.3.12)). But the same term produces
also a virtual Dirac mass in a configuration z̃1(t) 6= z1(t), according to (2.3.13). This Dirac mass
is compensated by a different term of the expansion. That is, the negative contribution coming from
Γ(1, 2) = (1, 2) with σ2 = (−,+). To find this contribution, just let particle 1 ignore the last collision
with particle 2 in Figure (2.3.11).

We deduce now from Theorem 1 the validity of the BBGKY hierarchy for L1 measures:

Corollary 1 Given an initial measure onMN with density W0 ∈ L1(MN) and invariant for permu-
tations of particles, let {fj(t)}Nj=1 be the family of time-evolved marginals as defined in (2.1.4)-(2.1.5).
Then, the expansion (2.1.12) holds for any t > 0, almost everywhere inMN .

To prove the corollary, let zN(t) be distributed according to W (t) and consider ∆j(t) as a random
probability measure over R6j . By Theorem 1, the family of point processes {∆j(·, ·)}Nj=1 satisfies
(2.1.12):

∆j(t) =

N−j∑
n=0

α(N − j, n)

∫ t

0

dt1

∫ t1

0

dt2 · · ·
∫ tn−1

0

dtn

Sεj (t− t1)Cj+1Sεj+1(t1 − t2) · · · Cj+nSεj+n(tn)∆j+n (3.20)
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for any zN ∈ M?
N . Thus, we just need to compute the expectation E of the above relation with

respect to W0. Observe that this amounts to apply
∫
MN

dzNW0(zN) in both sides. Using (2.1.4)-

(2.1.5), the symmetry in the exchange of particles and (3.9), it easily follows that E
[∫
Mj

∆j(t)φ
]

=∫
Mj

fj(t)φ . On the other hand, in the assumptions of the corollary,

∫
MN×A(t,Γ,σn)

dzNdζj+n ∆j+n(ζj+n)
M∑
i=1

φ(ζF,ij (t))W0(zN)

=
∑

i1,··· ,ij+n

ia 6=ib

∫
MN×A(t,Γ,σn)

dzNdζj+n

∏j+n
s=1 δ(ζs − zis)

N(N − 1) . . . (N − j − n+ 1)

M∑
i=1

φ(ζF,ij (t))W0(zN)

=

∫
MN×A(t,Γ,σn)

dzNdζj+n

j+n∏
s=1

δ(ζs − zs)
M∑
i=1

φ(ζF,ij (t))W0(zN)

=

∫
A(t,Γ,σn)

dζj+n

M∑
i=1

φ(ζF,ij (t))

∫
Mj+n

dzj+n

j+n∏
s=1

δ(ζs − zs) f0,j+n(zj+n)

=

∫
A(t,Γ,σn)

dζj+n f0,j+n(ζj+n)
M∑
i=1

φ(ζF,ij (t))

= ε2n

∫
dζj dΛ

∏
|Bε

σn
| f0,j+n(ζj+n)φ(ζj) ,

where in the last step we applied the change of variables (2.3.2). Therefore, the expectation of the right
hand side of (3.20) represented in the weak formulation (2.3.3) is equal to the (integrated) expansion
(2.1.12), i.e. (2.3.4) holds for any bounded continuous φ. This concludes the proof of the corollary.

3.1 Microscopic series solution to the Enskog hierarchy

In this section we consider, at a formal level, the Enskog hierarchy and its series solution, denoted by
µE(t), for initial microscopic states µN(0) = µN with Nε2 = λ−1 supported in zN ∈ M∗

N , which
reads (see (2.1.17), (2.2.16), (2.3.6)):

µE(t) =
∑
n≥0

λ−n
∫ t

0

dt1

∫ t1

0

dt2 · · ·
∫ tn−1

0

dtn

·S1(t− t1)C2S2(t1 − t2) · · · C1+nS1+n(tn)µ
⊗(1+n)
N

=
∞∑
n=0

∑
Γ(1,n)

∑
σn

λ−n
∫
dΛ(tn,ωn,v1,n)

∏
Bσn µ

⊗(1+n)
N (ζE(0)) , (3.1.1)

or also:∫
R6

µE(t)φ =
∞∑
n=0

∑
Γ(1,n)

∑
σn

n∏
r=1

σr λ
−n ε−2n

∫
AE(t,Γ,σn)

dζE1+n µ
⊗(1+n)
N (ζE1+n)φ(ζEj (t)) . (3.1.2)

The aim is to understand whether one may conclude that µE(t) = µN(t). Since the expansion for
(µE(t))⊗j satisfies the semigroup property (see (2.1.25)), we are allowed to proceed exactly as done
in the previous section for the H-S hierarchy and focus on the single time interval in the partition (3.10).
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In doing so, we shall compare the result (3.19) with the right hand side of (3.1.2). Since we fix Nε2 =
λ−1, the only difference between the two is the use of the IFF instead of the EBF and, correspondingly,
the different domains of integration (remind also the summary at the end of Section 2.2). In particular,
while the domains in (3.1.2) cover all R6(1+n), there holds in contrast A(t,Γ,σn) ⊂ Mj+n, which
takes into account the non factorization of the initial state in (3.19). Of course, outsideMj , the tensor
product µ⊗jN 6= 0 because of the contractions of type

δ(ζ1 − zi)δ(ζ2 − zi) . (3.1.3)

In other words, (3.5) holds only over the phase space “with holes”Mj .

Observe now that the expansions in (3.19) for j = 1 and in (3.1.2) appear to be identical when
t is so small that Properties 1 and 2 are satisfied in the single time interval (0, t)5. Indeed in this
case there are no recollisions, thus the interacting flow and the Enskog flow are the same. However,
strictly speaking, the identity µE(t) = µN(t) remains doubtful because the contractions in (3.1.2) give
contributions which are absent in (3.19). When considering such contributions, we face an ambiguity,
as explained by the example that follows.

Let us consider the simplest case N = 2, Nε2 = λ−1 and assume that the two particles with initial
configuration z2 collide in the time interval (0, t).

The term n = 0 in (3.1.2) is the free flow T E0 (ζ1, t)µN . As before, this term cancels with the negative
part of the term n = 1, i.e. T E1 (ζ1, t)µN , which is the contribution due to the trees

+ −

where the decorations +, − correspond to σ1 = +,− respectively.

Therefore we can write
µN(t) = T E0 (ζ1, t)µN + T E1 (ζ1, t)µN . (3.1.4)

But there are other terms in (3.1.2) which must be evaluated.

For instance, consider the tree

+

−
.

5The main statement of [4] is in fact that the first equation of the BBGKY hierarchy for empirical marginals reduces to the
Boltzmann-Enskog equation. But this relies on the interpretation of the second marginal at the boundary via the product
formula (3.5).
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The associated contribution, integrated against φ, gives

λ−2 ε−4

∫
AE

dζE1 dζ
E
2 dζ

E
3 µ

⊗3
N (ζE1 , ζ

E
2 , ζ

E
3 )φ(ζE1 (t)) (3.1.5)

=
1

N

∫
AE

dζE1 dζ
E
2 dζ

E
3 φ(ζE1 (t))

·
[
δ(ζE1 − z1) δ(ζE2 − z2) δ(ζE3 − z2) + δ(ζE1 − z2) δ(ζE2 − z1) δ(ζE3 − z1)

]
,

where AE is the image of the EBF-map ζE1 , t2,ω2,v1,2 → ζE3 (0), namely the set defined by the
condition: “the free flow leads first particle 3 and then particle 2 at ε−distance from particle 1”. Note
that all the other contributions arising from the definition of µ⊗3

N do vanish identically.

The dynamical content of (3.1.5), in terms of the EBF, is the following. Particle 1 creates particles 2
and particle 3 simultaneously, at times t1 = t2. Hence the deltas are evaluated on the border of AE .
One can be tempted to interpret the numerical value of the above term as just −µN(t). This would
cancel the contribution (3.1.4). On the other hand, by a similar computation, the value of µN(t) would
be restored e.g. by

+

−
.

−

Furthermore, observe that the term

+

+

corresponds to a triple collision in the Enskog flow for which ζE1 (t) is not clearly defined.

The ambiguity we are dealing with cannot be easily solved by regularizing the initial δ-functions. The
obtained value of trees would depend on the regularization we choose. For instance, a symmetric
regularization yields −1

2
µN(t) from (3.1.5), as a consequence of the time ordering present in the

definition of AE . Moreover, families of trees yielding the same contribution with alternate signs can be
constructed, as in the example above, so that the resulting series is divergent (or at most converging
in the Cesàro sense). In conclusion, it is difficult to give a definite meaning to (3.1.2) without further
prescriptions.

It is not possible, however, to solve the problem by giving a prescription that simply eliminates contrac-
tions6. These are indeed essential to reconstruct the H-S dynamics. In fact remind that, in the EBF, the
only interactions are creations of particles (see Sec. 2.2). Now consider for instance a case N = 3
with three or more interactions in the H-S dynamics, as in (2.3.11). In order to generate such a dy-
namics in (3.1.2), we strictly need a term Γ(j, n) with n > 2, which will have total number of particles

6Or by considering the Enskog hierarchy (2.3.6) with correlated initial data g0,j = δj≤N∆j .
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j + n > 3. Since N = 3, this means that at least 2 particles occupy the same configuration. In other
words, recollisions in the H-S dynamics are replaced by creations and contractions in the EBF.

One way to eliminate the pathologies we have discussed for the simple example of a single collision,
is to consider a regularization based on the separation of times in the Duhamel series:

µE(t) =
∑
n≥0

λ−n lim
η→0

∫ t

0

dt1

∫ t1−η

0

dt2 · · ·
∫ tn−1−η

0

dtn

·S1(t− t1)C2S2(t1 − t2) · · · C1+nS1+n(tn)µ
⊗(1+n)
N . (3.1.6)

With this definition, all the contraction terms discussed above are avoided. In particular, the same
computation of the proof of Theorem 1 for the case j = 1 shows that, in the single time interval of the
partition (3.10), µE(t) = µN(t) holds. However, the regularized series does not converge to µN(t)
for arbitrary times (notice that the semigroup property fails).

We conclude with the remark that many singular solutions to the Boltzmann-Enskog equation which
are not corresponding to the particle dynamics may be easily constructed. For instance, consider
N = 2 and the initial condition

1

2

[
δ(ξ − x1)δ(η − v1) + δ(ξ − x2)δ(η)

]
(3.1.7)

with support outsideM2, namely |x1 − x2| < ε . Then the unique solution to the equation is

1

2

[
δ(ξ − x1 − v1t)δ(η − v1) + δ(ξ − x2)δ(η)

]
, (3.1.8)

because only the term n = 0 is non-vanishing. Clearly, many other examples may be provided, but it
seems hard to construct a solution reproducing the physical dynamics, at least in the sense of (2.3.6).

Acknowledgments. We are grateful to Maxime Hauray, Herbert Spohn and Anton Trushechkin for
interesting discussions on the subject.
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