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Abstract

We study a mesh smoothing algorithm based on the moving mesh PDE (MMPDE)
method. For the MMPDE itself, we employ a simple and efficient direct geometric discretiza-
tion of the underlying meshing functional on simplicial meshes. The nodal mesh velocities
can be expressed in a simple, analytical matrix form, which makes the implementation of
the method relatively easy and simple. Numerical examples are provided.

1 Introduction

Meshes generated with automatic tools often contain poorly shaped elements especially near
domain boundaries and their quality needs to be improved before they can be used in the
numerical solution of PDEs or other applications. Common means for improving the mesh quality
include edge and face swapping, mesh smoothing, centroidal Voronoi tessellations (CVTs), and
optimal Delaunay triangulations (ODTs).

Edge and face swapping improves mesh quality by improving connectivity while fixing vertex
locations and is the most economic and efficient way to improve the mesh quality [10, 14]. In
3D, it is much more difficult to implement than in 2D and it tends to stuck locally; when it stucks,
more complicated operations have to be applied.

CVTs are a special type of Voronoi tessellation where the site of each Voronoi cell is positioned at
the centroid of the cell [5]. The major effort in CVT methods is to generate a CVT from a Voronoi
tessellation by improving vertex locations. Commonly used methods include Lloyd’s method [20]
(which in 3D is not as efficient as in 2D) and a quasi-Newton method [19]. Voronoi tessellation
leads to general polygonal/polyhedral meshes. Their duals, Delaunay triangulations, can also be
used. In 2D, a CVT gives a Delaunay triangulation of high quality; however, in 3D, a Delaunay
triangulation resulting from a CVT may contain slivers.

ODT, a more recent concept proposed by Chen and Xu [4], achieves an optimal Delaunay
triangulation by improving vertex locations, although it is slow in convergence. An improved
algorithm that updates vertex locations simultaneously in each iteration (global updating) is
proposed by Alliez et al. [1].

Mesh smoothing improves the mesh quality by improving vertex locations, typically through
Laplacian smoothing or some optimization-based algorithms. It is often quite effective in elimi-
nating extremal dihedral angles in the mesh. Most commonly used mesh smoothing methods
are Laplacian smoothing and its variants (Field [7] and Lo [21]), where a vertex is moved to
the geometric center of its neighboring vertices. While economic, easy to implement, and often
effective, Laplacian smoothing does not actually guarantee an improvements of the mesh quality.
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Alternatives are optimization-based methods that are effective for a variety of mesh quality
measures. For example, Bank [2] uses the ratio of the area to the sum of the squared edge
lengths for triangular meshes, Shephard and Georges [22] employ the ratio of the volume to
a power of the sum of the squared face areas for tetrahedral meshes, Freitag and Ollivier-
Gooch [10] use various angle-based measures, and Freitag and Knupp [9] utilize the condition
number of the Jacobian matrix of the affine mapping between the reference element and physical
elements. Knupp [15, 17] proposes several shape quality measures based on the Jacobian
matrix and Canann et al. [3] propose a distortion metric for triangles and quadrilaterals. The
mentioned optimization-based methods are local and sequential (by nature), with Gauss-Seidel-
type iterations being combined with location optimization problems (over each patch). A parallel
algorithm that solves a sequence of independent subproblems is proposed by Freitag et al. [8] for
a class of local mesh-smoothing techniques. These methods are based on optimization of some
shape regularity measure. They are all local (Gauss-Seidel-type iterative) smoothing methods,
sequential in nature, and, thus, not amenable to parallel computation.

The objective of this paper is to study a mesh smoothing algorithm based on the moving mesh
PDE (MMPDE), defined as the gradient flow equation of a meshing functiona to move mesh
continuously in time (i.e., an objective functional in the context of optimization). Typically, such a
functional is based on error estimation, physical and/or geometric considerations. We consider
here two functionals, Winslow’s functional based on variable diffusion and Huang’s functional
based on mesh uniformity in the metric specified by a tensor M = M(x). The uniformity
requirement is equivalent to the equidistribution and alignment conditions combined. We shall
use a simple and efficient approach recently developed by Huang and Kamenski [12] for the
implementation of variational mesh generation and adaptation. The approach is based on a
direct geometric discretization of the underlying meshing functional on simplicial meshes. Most
importantly, the nodal mesh velocities can be expressed in a simple, analytical matrix form,
which makes the implementation of the method relatively easy and simple. It also makes the
method amenable to development of efficient solvers and parallel computation. The approach is
incorporated into the implementation of the MMPDE method.

Compared to existing optimization-based (local) mesh smoothing methods, the current method
has several advantages:

� it is based on a continuous functional for which the existence of minimizers is known,

� the functional has a clear geometric meaning for controlling mesh shape and size quality,

� mesh velocities have a simple, analytical matrix form, which makes programming relatively
easy,

� the resulting ODE systems can be solved locally (e.g., by a Gauss-Seidel-type iteration) or
globally,

� it is amenable to parallel computation.
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2 The MMPDE method

In the moving mesh context, it is common to describe a moving mesh in terms of coordinate
transformations. Assume that we are given a computational domain Ωc, which can be the same
as the physical domain Ω ⊂ Rd, d ≥ 1. A moving mesh on Ω is the image of a computational
mesh on Ωc under a time dependent coordinate transformation x = x(ξ, t) : Ωc → Ω. The
coordinate transformation in the MMPDE method is determined as the solution of the gradient
flow equation of a meshing functional (i.e., an objective functional to optimize). Many existing
functionals can be written in the form

I[ξ] =

∫
Ω

G(J, det(J),M,x)dx, (1)

where ξ = ξ(x, t) : Ω → Ω is the inverse coordinate transformation of x = x(ξ, t), G is a
sufficiently smooth function in all of its arguments, J = ∂ξ

∂x
is the Jacobian matrix of ξ = ξ(x, t),

and M is the metric tensor used for controlling mesh concentration (assumed to be symmetric
and uniformly positive definite on Ω). Note that (1) is formulated in terms of the inverse coordinate
transformation since functionals formulated this way are known to be less likely to produce
singular coordinate transformations [6].

A number of meshing functionals have been developed in the past based on error estimates
and physical and geometric considerations, e.g., see [13, 16, 18] and references therein. Here,
we consider two functionals: Winslow’s functional based on variable diffusion [24] and Huang’s
functional based on mesh uniformity (or equidistribution and alignment combined) [11].

Example 2.1 (generalized Winslow’s functional). The first example is a generalization of Winslow’s
variable diffusion functional [24],

I[ξ] =

∫
Ω

tr(JM−1JT ) dx, (2)

where tr(·) is the trace of a matrix and M−1 serves as the diffusion matrix. The functional is
coercive and convex and has a unique minimizer [13, Example 6.2.1].

Since our interest is in the MMPDE method as a mesh smoothing scheme (in the Euclidean
metric), we consider the morst simple case M = I , for which the functional becomes

I[ξ] =

∫
Ω

tr(JJT ) dx. (3)

For this functional, we have

G = tr(JJT ),
∂G

∂J
= 2JT ,

∂G

∂ det(J)
= 0,

which are needed for computing the nodal mesh velocities.

Example 2.2 (Huang’s functional). The second functional is

I[ξ] = θ

∫
Ω

√
det(M)

(
tr(JM−1JT )

) dp
2 dx

+ (1− 2θ)d
dp
2

∫
Ω

√
det(M)

(
det(J)√
det(M)

)p

dx, (4)

3



where 0 ≤ θ ≤ 1 and p > 0 are dimensionless parameters. This functional was proposed by
Huang [11] based on M-uniformity (requiring the mesh to be uniform in the metric M). The M-
uniformity is mathematically equivalent to the so-called alignment (first term) and equidistribution
(second term) conditions combined. For 0 < θ ≤ 1

2
, dp ≥ 2, and p ≥ 1, the functional is

coercive and polyconvex and has a minimizer [13, Example 6.2.2].

For the case M = I , (4) becomes

I[ξ] = θ

∫
Ω

(
tr(JJT )

) dp
2 dx+ (1− 2θ)d

dp
2

∫
Ω

det(J)p dx, (5)

and derivatives are

G = θ
(
tr(JJT )

) dp
2 + (1− 2θ)d

dp
2 det(J)p,

∂G

∂J
= dpθ

(
tr(JJT )

) dp
2
−1JT ,

∂G

∂ det(J)
= p(1− 2θ)d

dp
2 det (J)p−1.

We note that the first term in (5) associated with alignment with M = I represents a shape
regularity measure while the second term associated with equidistribution represents a volume
uniformity measure (when p > 1). If θ = 1

2
and dp = 2 then the functional reduces to the

Winslow’s functional (3).

The MMPDE is defined as the gradient flow equation of I[ξ], i.e.,

∂ξ

∂t
= −P

τ

δI

δξ
,

where δI
δξ

is the functional derivative of I , τ is a positive constant used for adjusting the time
scale of mesh movement, and P = P (x, t) is a positive function used for preserving certain
scaling invariances; in our computation we choose P = 1. For the functional (1), this becomes

∂ξ

∂t
=
P

τ
∇ ·
(
∂G

∂J
+

∂G

∂ det(J)
det(J)J−1

)
. (6)

Using the identity
∂x

∂t
= −J−1∂ξ

∂t
,

we can rewrite the MMPDE into

∂x

∂t
= −PJ

−1

τ
∇ ·
(
∂G

∂J
+

∂G

∂ det(J)
det(J)J−1

)
. (7)

After exchanging the roles of dependent and independent variables ξ and x on the right-hand
side, the equation can be discretized on a computational mesh of Ωc and a set of mesh equations
for the nodal mesh velocities can be obtained. Then, the mesh equations can be integrated with
proper boundary conditions for the vertex locations of the underlying moving mesh.
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3 The MMPDE mesh smoothing scheme

A simple approach was proposed in [12] for the implementation of variational mesh generation
and adaptation. This approach can also be used for implementing the MMPDE method described
in the previous section. More specifically, we denote by Th and Th,c simplcial meshes on Ω and
Ωc, respectively, and assume that they have the same numbers of elements and vertices and the
same connectivity. We also assume that Ωc has been chosen to be almost uniform in the sense
that all of its elements have almost the same size and are almost equilateral. We will see below
that Ωc and Th,c are used only as an intermediate step and do not appear in the final formulation.

With the approach, the functional (1) is first approximated on Th using a midpoint quadrature
rule with J being approximated by the Jacobian matrix of the affine mapping between elements
in Th and their counterparts in Th,c. Notice that the Jacobian matrix can be computed using
the edge matrices. The discretized functional is a function of the locations of the vertices of Th.
By assumption, Th,c is known and so are the locations of its vertices and thus the discretized
functional is a function of the locations of the vertices of Th only. The mesh equation for the
locations of the vertices of Th is then obtained as the gradient equation of the discretized
functional with respect to the locations. The derivatives of the discretized functional with respect
to the locations can be expressed in a simple, analytical matrix form; the interested reader is
referred to [12] for details on the derivation. It is worth mentioning a significant simplification in
the derivation. Notice that the functionals (2) and (4) are invariant under translations and rotations
of the computational coordinate ξ. This implies that the elements in Th,c, which are assumed to
be almost equilateral, can be made to be similar to the master element K̂ by translations and
rotations. Moreover, they can be made almost identical to 1

N
K̂, where N is the number of the

elements in the mesh, since they are also assumed to have almost the same size. Thus, as long
as the functional (1) is invariant under translations and rotation of ξ, the computational elements
appearing in the final formulation of the mesh equation can be replaced by 1

N
K̂ where K̂ is the

master element assumed to be chosen as a regular simplex with the unitary volume.

Denote the locations of the vertices of Th by xi, i = 1, . . . , Nv, the element patch associated
with vertex xi by ωi, the generic element in Th by K, and the volume of K by |K|. Then the
mesh equation for these locations is given by

dxi
dt

=
1

τ

∑
K∈ωi

|K|vKiK , i = 1, . . . , Nv (8)

where iK is the local index of vertex xi on K and the local mesh velocities are given by(vK1 )
T

...

(vKd )
T

 = −GE−1
K + E−1

K

∂G

∂J
ÊE−1

K +
∂G

∂ det(J)

det(Ê)

det(EK)
E−1
K , (9)

(vK0 )
T

= −
d∑
j=1

(vKj )
T
. (10)

In the above equation, Ê and EK are the edge matrices of K̂ and K and G, ∂G
∂J , and ∂G

∂ det(J)

are evaluated at J = ÊE−1
K and det(J) = det(Ê)/ det(EK).
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The mesh velocities need to be modified for boundary vertices. For example, if xi is a fixed
boundary vertex, we can replace the corresponding equation by

∂xi
∂t

= 0.

When xi is allowed to move on a boundary curve (in 2D) or surface (in 3D) represented by

φ(x) = 0, (11)

then the mesh velocity ∂xi

∂t
needs to be modified such that its normal component along the curve

or surface is zero, i.e.,

∇φ(xi) ·
∂xi
∂t

= 0. (12)

The mesh equation (8) can be integrated using explicit or implicit ODE solvers. It can also be first
discretized in time and the linear system is solved globally (such as a Krylov-subspace method
with preconditioning) or locally (such as Gauss-Seidel or Jacobi iteration). We can also just solve
the balance equations (i.e., set velocities be zeros) using global or local iterative methods.

4 Numerical examples

In the following we provide examples for MMPDE-based smoothing to improve the mesh quality
of the tetrahedral meses obtained by TetGen [23]: a simple cube mesh (Fig. 1), an L-shape
domain (Fig. 2) and cami1a part (Fig. 3). For our computation, we use the Huang’s functional
(Example 2.2 with θ = 1/3 and p = 2), which provides a better control of the mesh element
sizing (equidistribution) than the Winslow’s functional.

For each of the examples we compare the dihedral angle statistics of the original TetGen mesh
with the dihedral angle statistics after a mesh smoothing iteration. For the first example we also
provide both cases: using fixed boundary (11) and allowing the boundary nodes to move along
the corresponding surfaces (12) (denoted as BM in Fig. 1b); in the other two examples we always
allow the boundary nodes to move along the corresponding boundary surfaces.

In all three examples, the proposed smoothing step significantly reduces the number of small
(0◦–20◦) as well as large (150◦–180◦) dihedral angles. These first results look quite promising.
However, more work needs to be done to investigate the potential of the MMPDE approach for
the mesh smoothing. Especially the combination of mesh smoothing with a reconnection step
can provide a further improvement to the mesh quality.

6



(a) meshes before (left) and after (right) smoothing

(b) statistics of dihedral angles before and after smoothing

angle before after after (BM) angle before after after (BM)

0 – 5 0 0 0 80 – 110 15 289 14 870 15 065
5 – 10 43 2 0 110 – 120 2 211 2 712 2 811
10 – 20 937 193 50 120 – 130 1 369 2 132 2 219
20 – 30 2 246 1 964 1 731 130 – 140 921 1 279 1 137
30 – 40 4 862 6 606 6 622 140 – 150 567 294 101
40 – 50 8 277 9 333 9 512 150 – 160 346 33 1
50 – 60 10 480 9 905 1168 160 – 170 123 3 0
60 – 70 9 974 9 052 8 991 170 – 175 0 0 0
70 – 80 8 349 7 616 7 586 175 – 180 0 0 0

Figure 1: Cube example
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(a) mesh example

(b) statistics of dihedral angles before and after smoothing

angle before after angle before after

0 – 5 0 0 80 – 110 5 470 5 421
5 – 10 22 0 110 – 120 807 823
10 – 20 398 51 120 – 130 444 608
20 – 30 773 903 130 – 140 273 476
30 – 40 1 652 2 017 140 – 150 192 152
40 – 50 2 995 3 143 150 – 160 163 3
50 – 60 3 649 3 547 160 – 170 44 0
60 – 70 3 404 3 291 170 – 175 0 0
70 – 80 3 006 2 857 175 – 180 0 0

Figure 2: L-shape example, 3 882 elements
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(a) mesh example

(b) statistics of dihedral angles before and after smoothing

angle before after angle before after

0 – 5 1 0 80 – 110 30 060 30 087
5 – 10 335 15 110 – 120 5 417 5 607
10 – 20 4 086 3 617 120 – 130 4 329 5 026
20 – 30 8 083 8 701 130 – 140 2 895 3 830
30 – 40 12 172 13 704 140 – 150 1 676 1 739
40 – 50 15 338 15 389 150 – 160 1 033 458
50 – 60 17 175 16 740 160 – 170 307 3
60 – 70 15 208 14 851 170 – 175 0 0
70 – 80 15 703 14 051 175 – 180 0 0

Figure 3: cami1a example, 22 303 elements
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