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Abstract 

In this article, existence and stability of N-front travelling wave solutions of par-
tial differential equations on the real line is investigated. The N-fronts considered 
here arise as heteroclinic orbits bifurcating from a twisted heteroclinic loop in the 
underlying ordinary differential equation describing travelling wave solutions. It is 
proved that the N-front solutions are linearly stable provided the fronts building the 
twisted heteroclinic loop are linearly stable. The result is applied to travelling waves 
arising in the FitzHugh-Nagumo equation. 

1 Introduction 

In this article, existence and stability of N-front solutions of parabolic equations 

(1.1) Ut=AU+F(U,c) x ER 

on the real line is investigated. Here, the differential operator A generates a C0-semiflow 
on B U (R, Rm) - the space of bounded, uniformly continuous functions from R to Rm -
and F is typically a Nemitskii operator defined on the same space. Fronts and backs are 
travelling wave solutions U(e) = U(x+ct) which are asymptotically constant fore~ ±oo. 
Transforming (1.1) into a moving coordinate frame (x, t) r--r (x +et, t) = (e, t) yields 

(1.2) Ut=AU-cUe+F(U,c) 

Then fronts and backs of (1.1) with wave speed c correspond to equilibria of (1.2) solving 

(1.3) AU-cUe+F(U,c) - 0 

lim U(e) - U±. 
e-+-±oo 

Stability of a front U is often determined by the spectrum of the linearized operator 

(1.4) L(U) V =AV - clfe + DuF(U, c) V. 

A front or back is called linearly stable if the spectrum of L is contained in the left half 
plane with the exception of a simple eigenvalue at zero which is inevitable due to transla-
tional invariance. Under rather general assumptions on A, linear stability implies nonlinear 
stability, see [Hen81] or [BJ89]. 

Suppose now that for ( c, €) = ( c0 , co) linearly stable front and back waves do exist simul-
taneously. Then, upon varying µ := ( c, c), other front solutions may arise. In particular, 
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····u 
simple front simple back N-front 

Figure 1: N-front solutions consist of 2N + 1 concatenated copies of a simple front and 
back. 

so-called N-fronts may bifurcate which are formed by alternately concatenating 2N + 1 
copies of the simple front and back, see Figure 1. A natural and interesting question is 
whether the bifurcating N-fronts UN inherit the linear stability from the simple front and 
back. For a fairly general class of operators A, it follows from [AGJ90] that the spectrum 
of L(U N) is bounded to the left of the imaginary axis except for 2N + 1 eigenvalues near 
zero. It therefore suffices to calculate these critical eigenvalues, that is solutions (A, V) of 

(1.5) 

for,,\ close to zero, where UN is the N-front existing for (c, c) = (cN, EN)· 

Notice that the steady-state equation (1.3) and the eigenvalue problem (1.5) are ordinary 
differential equations in the time variable e. As such they can be written as first-order 
systems 

(1.6) 

(1.7) 

u f(u,µ) 

V - (Duf(u, µ) + .AB) v, 

µ = (c, E) 

respectively. Simple fronts and backs of (1.3) correspond to heteroclinic solutions q1(e) 
and q2(e) of (1.6) connecting two equilibria p1 and p2. 

In this article, we investigate the existence and stability of N-fronts (and N-backs) under 
the assumption that the simple heteroclinic orbits q1 and q2 form a twisted heteroclinic 
loop, see Figure 2. Under certain generic assumptions, we prove existence of N-fronts of 
(1.6) for any N > 1 and determine all eigenvalues,,\ of (1.7) with I.Al small. The N-fronts 
are either all stable or all unstable depending only on condit~ons on the simple front and 
back solution. The proof relies on a geometric reduction of the flow onto a two-dimensional 
invariant manifold containing the heteroclinic loop, see [Hom93], [San93] and [San95a]. The 
reduction allows for a smooth linearization of the vector field near both equilibria. The 
existence of N-fronts is then proved using Ljapunov-Schmidt reduction for the resulting 
vector field in ~ 2 in the spirit of [Lin90] and [San93]. Finally, the critical eigenvalues of 
the operator (1.5) are calculated using [San95b]. 
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Deng [Den91a] proved the existence of N-fronts bifurcating from a twisted heteroclinic 
loop under the additional assumption that the stable manifolds of the relatively contractive 
equilibria P1 and P2 are one-dimensional using topological methods, see [Den91a, section 
7(a)]. Shashkov [Sha92] asserts the existence of N-fronts for two-dimensional vector fields 
of class C3 , however, without giving a proof. 

Finally, we apply the stability result to the FitzHugh-Nagumo equation 

Ut - Uxx + J ( U) - W 

Wt - c(u -1w). 

Deng [Den91b] showed that the hypotheses of his existence result [Den91a] are satisfied, 
while Yanagida [Yan89] proved that the simple front and back are both linearly stable. Nii 
[Nii95b] proved linear stability of the 1-front provided f is linear near both equilibria. We 
show that in fact all N-fronts are linearly stable. Recently, Nii (private communication) has 
extended his result to N-fronts under the same restrictive hypothesis on fusing topological 
methods. 

The paper is organized as follows. In section 2, we state the basic assumptions and the 
main results about existence and stability of N-front solutions. The existence theorem is 
proved in section 3, the stability result in section 4. Finally, in section 5, the application 
to the FitzHugh-Nagumo system is given. 

Acknowledgement. I am very grateful to Sanjeeva Balasuriya, Christopher K.R.T. Jones 
and Daniela Peterhof for helpful discussions. Moreover, I wish to thank Hiroshi Kokubu 
and Shunsaku Nii for informing me about their related work. This work was partially 
supported by a Feodor-Lynen-Fellowship of the Alexander von Humboldt Foundation. 

2 Main results 

Consider the equation 

(2.1) it= f(u,µ) 

where f : Rn x R 2 ~Rn is C2 • We assume that equation (2.1) possesses two hyperbolic 
equilibria p1 (µ) and p2 (µ) for all µ. Moreover, the spectrum of the linearized vector field 
at these equilibria decomposes as follows. 

(Hl) We assume that dim W 8 (p1(0), 0) =dim ws(p2(0), 0) and 

a(Duf(Pk(µ), µ)) = ai/ U {-aj.(µ), ak(µ)} U a;:u, 0 < ak(µ) < ak(µ) 

3 



hold with Re of/< -elk(µ), Re O"r > ak (µ) for k = 1, 2 and all µ. Moreover, -ak (µ) 
and ak(µ) are simple eigenvalues fork= 1, 2. We define ak(µ) = ak(µ)/c4(µ) > 1. 

We choose coordinates such that the equilibria do not depend onµ. Suppose that forµ= 0 
there exist two heteroclinic orbits q1 (t) and q2(t) connecting p1 to p2 and vice versa, that 
IS 

(H2) The solution qi(t) fulfills lim q1(t) ~ p1 and lim q1(t) = P2 while q2(t) satisfies 
t-+-oo t-+oo 

lim q2(t) = P2 and lim q2(t) = P1· 
t-+-oo t-+oo 

Owing to hypothesis (Hl), the next assumption is satisfied for generic vector fields. 

(H3) The heteroclinic solutions q1 (t) and q2(t) are non-degenerate, that is 

Tqi(o) Wu(pi, 0) n Tq1 (o) Ws(p2, 0) - 1Rq1(0) 
Tq2 (o) wu(p2, 0) n Tq2 (o) ws(p1, 0) 1Rq2(0) 

hold. 

Due to (H3), there exist two unique (up to constant multiples) bounded solutions 'lfJk(t) of 
the adjoint variational equation 

evaluated at qk(t) for k = 1, 2, respectively. As a matter of fact, they satisfy 

(2.2) 

Upon changing the parameterµ, the heteroclinic solutions qk(t) should break up. That is 
made precise in the next hypothesis. 

(H 4) The Melnikov integrals 

Nk := L: (i/lk(t), D,J(qk(t), 0)) dt E JR2 

are linearly independent (and in particular non-zero). 

k = 1,2 

We need to assume that qk(t) and 'lfJk(t) converge along the leading directions to the equi-
libria and zero, respectively. 

(H5) Assume that the limits 

lim e-aT:tqk(t) -. v; 
t-+-oo 

lim eak+1tqk(t) -. 
t-+oo 

lim cakt'l/Jk(t) -. 
t-+-00 

lim eaT:+1 t'l/Jk( t) -. 
t-+oo 

are non-zero for k = 1, 2, see Figure 2. 
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Figure 2: A twisted heteroclinic loop. 

Then vt and wt are right and left eigenvectors of Duf(pk, 0) for the eigenvalues a~,u. 

Due to (2.2), hypothesis (H5) is equivalent to the strong inclination property. Finally, we 
suppose that both heteroclinic orbits are twisted. 

(H6) Suppose that the scalar products (w"k, vk) > 0 and (wt, vt) > 0 are positive for 
k == 1, 2, see Figure 2. Note that the scalar products do not vanish according to 
hypotheses (Hl) and (H5). 

Choose two sections :Ek transverse to the vector field and placed at qk(O) for k == 1, 2. 
We call the heteroclinic solutions q1(t) and q2(t) simple fronts and backs, respectively. An 
N-front solution is a heteroclinic orbit connecting p1 to P2 and intersecting :E2 N-times, 
see Figure 3. In other words, it follows the heteroclinic loop N +~-times and hits the set 
:E1 U :E2 2N +1-times. Similarly, an N-back is defined connecting p2 to p1 • 

The first result is an extension of the existence theorem proved by Deng [Den91a]. 

Theorem 1 Assume that (H1) - (H6) are satisfied. Then for each N > 1 there exists 

a unique curve µN(r) for r E [O, r0 ) in parameter space such that µN(O) == 0 and (2.1) 
possesses an N -front precisely forµ = µN(r) for some r. The N-fronts are unique and the 

curve µN is of class C1 . See Figure 4 for the bifurcation diagram. 

Assume that µ1 = 0 and µ2 = 0 correspond to the existence of a simple front or back) 

respectively. Then the return times of the N -fronts with respect to the Poincare sections 
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1-front 

Figure 3: N-Front solutions. 
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1-back 
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"<__ heteroclinic loop 

Figure 4: The bifurcation diagram. 
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'E1 and 'E2 are given by 

T2z+i - _ a2+·Yz+1 ln r time spent near p1 as 1 
(2.3) T2z - -llnr time spent near p2 as 2 

µN (ra2(l + o(l)), r), 

for l = 0, ... , N - l as r ~ 0, where the sequence /l is defined recursively by /N = 0) 

/N-l = a1a2 - 1 > 0 and /l-l := 0'.1/l + /N-l > /z, see {3.20). Note that 11 ~ oo as 
N ~ oo. Analogous results hold for N -backs. 

Next we describe the bounded solutions v E C1(1R, JRn) of the equation 

(2.4) 

for,\ E Us(O) CC, where qN(r) denotes the N-front existing forµ= µN(r). Here, Bis a 
bounded, continuous and matrix-valued function. Equation (2.4) is a generalized eigenvalue 
problem of the form 

Lv = .\Bv. 

Generalized eigenfunctions of (2.4) corresponding to an eigenvalue ,\ are functions Vi sat-
isfying 

with v0 = 0. The algebraic multiplicity of eigenvalues can be defined in the usual way. We 
assume a non-degeneracy assumption with respect to ,\. 

(H7) Suppose that the Melnikov integrals 

Mk := j_: ('ifJk(t), B(t) <ik(t)) dt =f 0 

are non-zero for k = 1, 2, where 'l/Jk is chosen according to hypothesis (H6). 

The next theorem - which is the main result of the present paper - describes the set of 
· ,\ E U8(0) C C for 8 > 0 small for which (2.4) possesses a bounded solution v. 

Theorem 2 Suppose that the assumptions {H1) - {H1) are satisfied. Then there exists a 

8 > 0 independent of N such that the following holds. For any N > 1 and ro = ro( N) > 0 
sufficiently small there exist precisely 2N + 1 solutions ( Aj, Vj) E C x 0 1 (JR, JRn) of {2.4) 
with l.\I < 8. The eigenvalues are counted with multiplicity and are given by 

A2z-1 ( c21-1 + o(l)) r 
A2z - ( C2z + o( 1)) ra2 +"'Yz 

A2N+l - 0, 
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for l = 1, ... , N as r -+ 0, where the exponents /l have been defined in Theorem 1. 

The constants Cj are non-zero and fulfill sign c2z = sign M 1 and sign c2z+i = sign M 2 • In 

particular, the eigenvalues Aj are contained in the left half plane for j = 1, ... , 2N provided 

M1, M2 < 0 are negative. Analogous results hold for N-backs. 

The second theorem establishes stability of the N-front solutions with respect to the un-
derlying partial differential equation, see section 5 for an example. 

Notice that there exist precisely two pulses corresponding to p1 and p2 , see Figure 4. The 
existence proof is implicitly contained in section 3.3. As far as their stability is concerned, 
the same statement as for the N-fronts holds. This follows from [Nii95a] or section 4 of 
the present article. 

3 Existence 

In order to prove existence of N-fronts, a geometric reduction onto a two-dimensional 
invariant manifold in phase space is employed. The manifold is diffeomorphic to an annulus. 
Next, a system of 2N + 1 equations is derived using Ljapunov-Schmidt reduction applied 
to the flow on the invariant manifold. In the final subsection, this system is being solved 
for using an implicit function theorem. 

Throughout we assume that hypotheses (Hl) to (H6) are fulfilled. 

3.1 Center-manifold reduction 

We have the following lemma. 

Lemma 3.1 There exists a two-dimensional, locally invariant and normally hyperbolic 

manifold Whom c lR n of class C 1,p jointly. in ( u, µ) for some p > 0. All solutions staying 

near the heteroclinic loop for all times and for parameter values close to zero are contained 

in Whom. The manifold is homeomorphic to an annulus. 

Moreover, the flow restricted to Whom is C 1 -conjugated to the flow of an appropriate vector 

field g( u, µ) of class C 1 defined on lR 2 • The hypotheses {H1) to {H6) are still satisfied for 

g and, in addition, g is linear locally near ,both equilibria. 

Proof. The existence of Whom is an application of [San95a, Theorem 1]. We shall verify 
the assumptions of that theorem using the decomposition 
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Then [San95a, (Hl ), (H3)] are satisfied due to (Hl) and (H5), while [San95a, (H4)] is void. 
It remains to verify [San95a, (H2)] which reads 

Tq1(0) wuu(P1) E9 Tq1(0) wu,s,ss(P2) Rn 
Tq1(0) ws,u,uu(P1) E9 Tq1(0) wss(P2) Rn 

and the analogous condition for q2 (t). Here, wu,s,ss(p2) denotes an invariant manifold 
tangent to the generalized eigenspace Eu,s,ss associated with 0"~8 U O"~ at p2 and similarly 
for ws,u,uu(p1). Owing to (Hl), it suffices to prove that 

(3.1) 

We have 

Tq1(0) wuu(p1) n Tq1(0) wu,s,ss(p2) 
Tq1 (o) ws,u,uu (P1) n Tq1 (o) wss (p2) 

{O} 
{O}. 

Tq1(o) wu,s,ss(p2) = Tq1(o) W 8 (P2) E9 Rvu 

for some non-zero vu. Because of (H3) and (H5), the intersection 

is trivial. Therefore, if ( 3 .1) ( i) does not hold, there exists a vector w E Tq1 (o) W s (p2 ) such 
that 

vu+ w E Tq1(o) wuu(p1) n Tq1(o) wu,s,ss(p2). 

Choose q1 (0) close to p2, whence Tq1 (o) wu,s,ss(p2) is close to Eu,s,ss. Then, due to (H5), 
(7,b1 (0), vu) # 0. However, the solution vu(t) + w(t) E Tq1 (t) wuu(p1) decays exponentially 
to zero for t --+ -oo, while 

is independent oft as 7,b1(t) solves the adjoint equation. This is a contradiction to 7,b1(t) 
being bounded, whence 

The argument for the other equation (3.1 )(ii) is similar. Thus we can apply [San95a, 
Theorem 1] to conclude the existence of an invariant manifold Wt0 m. Moreover, Whom is 
homeomorphic to an annulus owing to (H6). That the flow on Whom is C1-conjugated to 
the flow of a C1-vector field in R 2 follows from [San95a, Section 3.5]. The statement about 
the smooth linearization is proved in [Hom93]. D 

Hence we can restrict the analysis to a C1-vector field gin R 2 fulfilling (Hl), (H2) to (H6), 
and being linear locally near both equilibria, where hypothesis (Hl) is given by'"' -
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O"(Duf(Pk(µ), µ)) = {-aJ.(µ), ak(µ)} 0 < ak(µ) < ak(µ) 

hold fork= 1, 2. We define ak(µ) = ak(µ)/ak(µ) > 1. 

3.2 Lin's method in JR2 

According to the last subsection, it suffices to consider a vector field 

(3.2) u =g(u,µ) 

with g E C1 such that (Hl) and (H2) up to (H6) are satisfied and the flow near the 
equilibria Pk for k = 1, 2 is linear. Choose Poincare sections :Ek and :Ek for k = 1, 2 as in 
Figure 5. All sections are chosen inside the regions near the equilibria Pk where the flow 
is linear. Moreover, we shall identify the one-dimensional sections with intervals in lR as 
shown in Figure 5. Next, we compute various Poincare maps. The map from :E1 to :E2 is 

given by 

(3.3) 

using that the vector field is linear. Similarly, the map from :E2 to :E1 equals 

(3.4) 

Figure 5: The choice of the sections in Ill2• The arrows denote the positive direction once 
sections, are identified with intervals in Ill. 
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The maps 

(3.5) 
~k -+ ~k 

u r--7 -Ih(u,µ)-dk(µ) 

are diffeomorphisms with Ih( u, µ) E C1, Ih(O, µ) = 0 and Duih(O, µ) > 0 for k = 1, 2. 
The sign appearing in (3.5) is a consequence of hypothesis (H6), see Figure 5. Owing to 
hypothesis (H4), we may assume that dk(µ) = µk by a C1-transformation of parameters. 
Indeed, dk (µ) is the separation function measuring the distance of the one-dimensional sta-
ble and unstable manifolds of the equilibria at the section ~k. The integrals Nk appearing 
in (H4) are in fact the derivatives of dk(µ) at µ = 0 up to sign. 

Summarizing the above, we obtain a map 

(3.6) ~l 

-Il1(e-Qf(µ)T, µ) - µ1. 

All solutions being mapped from ~2 to ~1 are captured by the above parametrization. 
The next step consists in formulating the Poincare map by means of the return time with 
respect to the sections ~k instead of the one for :Ek. 

The times needed for initial points u E :Ek to reach the sections ~k are given by functions 
fh( u, µ ). Both functions fh( u, µ) are in C1 and bounded uniformly in u. Thus the time 
T needed for the initial point 

to reach 

is given by 

By the implicit function theorem, we can solve this equation with respect to T yielding a 
C1-function r(T, µ ), whence 

(3.7) 

Therefore, we obtain the following lemma. 

Lemma 3.2 The Poincare maps from ~1 to ~2 and vice versa are given by 

(3.8) 
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and 

(3.9) :E1 
-II1 ( e-af(µ) r(T,µ)' µ) - µ1, 

respectively. The C 1-function r(T, µ) defined in {3. 7) satisfies 

and the maps Dk(u,µ) are bounded uniformly in u. Moreover, ITk(u,µ) E C1
J IIk(O,µ) = 0 

and Duih(O, µ) > 0 fork= 1, 2. 

Up to this point, the construction looks pretty much like using Shilnikov variables. How-
ever, in order to describe solutions following the original heteroclinic loop several times, 
we shall adopt a boundary-value-point-of-view. That is, we are not going to iterate the 
Poincare maps given in the previous lemma, but shall derive matching conditions in the 
sections. 

Using Lemma 3.2, the existence of N-front solutions is equivalent to the existence of return 
times Tj < oo for j = 0, ... , 2N -1 and parameter values µ such that 

e-a2(µ)To - -µ1 

(3.10) 
e-o:2 (ti)T2j -II2( co:f (µ) r(T2J+i.µ)' µ) - µ2 j = 0, ... ,N -1 
e-a2(µ)T2j -II1 ( e-af(µ) r(T2j-i.µ)' µ) - µ1 j = 1, ... , N -1 

0 - -IIl(e-af(µ)r(T2N-1,µ), µ) _ µ 1 

holds. Indeed, then the various pieces of solutions defined in between the sections will fit 
together. Moreover, the first and last equation assert that the solution is contained in the 
unstable and stable manifolds of the equilibria p1 and p2 , respectively. In fact, T2j+i and 
T2j are the times spent near the equilibria p1 and p2, respectively. Define 

(3.11) 
a2j+1 s - e-ai(µ) r(T2j+i.µ) 

a2j r e-a2(µ)T2j 

S e-ai(µ) r(T2N-1,µ) 

r - e-a2(µ)To 

for j = 0, ... , N -1 such that a0 = a 2N-l = 1 and a1, .•. , a2N_2 are bounded. In the new 
variables aj, r and s, equation (3.10) reads 

µ1 + ra2(µ) 0 
r + µ2 + II2((a1s)ai(µ), µ) 0 

(3.12) II1 ( a2j-1S, µ) + µ1 + ( a2jr)°'2(µ) - 0 j = l, ... ,N -1 
a2jr + µ2 + II2( ( a2j+1S )ai(µ), µ) - 0 j = 1, ... ,N -1 

µ1 + II1(s, µ) 0 
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with ak(µ) = a1k(µ)/ak(µ) > l. Whenever (aj,r,s) solve (3.12) such that aj > O and 
r, s > 0, we obtain associated return times Tj < oo which solve (3.10) by using (3.11). 
Indeed, we have 

r(T2j+1,µ) = -ai(µ)ln(a2j+iS) 

T2j = - a 2(µ) ln( a2jr) 
(3.13) 

and Lemma 3.2 implies that r(T, µ) is invertible with respect to T. Hence, it suffices to 
consider (3.12) keeping in mind that only positive solutions of this system correspond to 
solutions of the original problem. 

3.3 Existence of N-fronts bifurcating from a twisted heteroclinic 
cycle 

We shall solve (3.12). Note that the functions II1 and II2 are in 0 1. By convention, for 
a > 1, define xa to be zero for negative values of x yielding a 0 1-function, too. Then 
(3.12) is defined for all aj bounded and r, s small including negative values. Throughout 
this subsection, the range of the index j is j = 1, ... , N - l. 

First, solve 

(3.14) 
µ1 + ra2(µ) - 0 
ra2(µ) - II1(s, µ) - 0 

with respect to (µi, s) near (r, s, µ) = 0 by the implicit function theorem using Lemma 3.2. 
Denote the solutions by µ1 (µ2 , r) and s(µ2, r) both of which are of class 0 1. Observe that, 
owing to II1(0, µ) = 0, the estimates 

(3.15) 

hold for arbitrary small positive 8. Using the ansatz µ2 =er, the second equation in (3.12) 
reads 

(3.16) r + µ2 + II2((a1st1 (µ),µ) = r +Er+ II2((a1s(e.r,r)t 1 (€r,r),µ1(e.r,r),Er) = 0. 

Here and in the following, we will be a bit sloppy concerning the dependence of ak(µ) and 
Ilk on E and r to avoid unnecessary complicated notation. Dividing (3.16) by r yields 

(3.17) 

which is 0 1 in ( E, ai) for r ~ 0 owing to (3.15) and because of the fact that the dependence 
on E is due to µ2 = Er. Using (3.15), we can solve (3.17) with respect to E near E = -1, 
r = 0 and arbitrary bounded a1 yielding a 0 1-function 

(3.18) E = E(a1,r) = -1- r-1rr2((a1.S(a1,r))&i{ai,r),,U1(ai,r), E(a1,r)r), 
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where 
s(a1,r) 
ak(a1,r) 
P,1(a1, r) -

s(c(a1,r)r,r) 
o:k(c(a1,r)r,r) 
µl(c(a1,r)r,r). 

Notice that the dependence of all these functions on a1 is due to terms of the form c( a1, r )r. 
It remains to solve the system 

II1(a2j-1s(ai,r),jl(a1,r)) + jl1(ai,r) + (a2jr)&2 (ai,r) - 0 
a2jr + c( al, r )r + II2 ( ( a2j+1.5( ai, r) )&i(ai,r), jl( al, r)) 0 

for j = 1, ... , N -1. Dividing by r&2 (ai,r) and r, respectively, yields 

(3.19) 
0 
0. 

The functions 
r-&2 (ai,r) II1 ( a2j-1.5( al, r ), jl( ai, r)) 

r-1 II2 (( a2j-1.5( al, r) )&i(ai,r), jl( ai, r)) 

are C1 in ( a2j_1, a1) up to r = 0 owing to (3.14) and the above comment about the 
dependence on a1. Moreover, the derivative with respect to a2j-l at r = 0 equals one 
for the first and zero for the second function. Therefore, a2j = 1 and a2j-1 = 0 for 
j = 1, ... , N - l solve (3.19) with r = 0 and we can use .the implicit function theorem to 
obtain solutions a2j(r) and a2j_1(r) for positiver. 

It remains to show that a2j-l (r) > 0 is positive for r > 0. Define constants /i recursively 
by 

JN .- 0 
(3.20) JN-1 .- 0:10:2 - 1 > 0 

/j-1 .- 0:1 /j + JN-1 > /j 
and set 

(3.21) 
a2j-1 - b2j-1 r'Yi 
a2j 1 - b2j r'Yi 

for j = 1, ... , N-1. Let b2N-l = 1. Substituting these expressions together with (3.18) into 
equation (3.19) yields 

0 - r-&2 (bi,r) rr1(b2j-1r'Yis(bi,r),µ(bi,r)) -1 + (1- b2jr7i)&2 (bi,r) 

0 - b2jr'Yi + r-1 (rr2 ( (b1r71 s(bi, r) )&i(bi,r)' µ(b1, r) )-
-II2 ( ( b2H1r7i+1 s(bi, r) )&1 (b11r), µ(bi, r))), 
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where 
s(b1, r) s ( E ( b1 r l'i , r) r, r) 

(3.22) &k(b1, r) - ak(E(b1r,,1 ,r)r,r) 
ft1(b1, r) µi(E(b1r,,1 ,r)r,r) 
ft2(b1, r) E( b1 rl'1 , r )r. 

Dividing these equations by rl'i reads 

0 - r-(&2 (bi,r)+l'i) II1(b2j-1rl'is(bi,r),µ(bi,r)) + r-l'i ((1- b2jr,,i)&2 (bi,r) -1) 
(3.23) 0 b2i + r-(i+,,1) ( II2 ( ( b1r,,1 s(bi, r) )&1 (bi ,r), ft( b1, r) )-

-II2 ( (b2j+1 rl'i+1 s(b1, r) )&i(b.i,r), jt(b1, r))). 

As before, using the recursive relations (3.20), it is tedious but straightforward to see that 
the functions appearing in (3.23) are C1 up to r = 0. Moreover, for r = 0, (3.23) boils 
down to 

(3.24) 
b2i-l - 0'.2 b2i 

b2i - DuII2(0, 0) DuII1(0, ota1 b~l+i 

b2N-2 - DuIT2(0, 0) DuII1(0, ota1 

- 0 
0 
0 

i = 1, ... , N - 1 
i = l, ... ,N - 2 

owing to (3.14). It is straightforward to check that the Jacobian of (3.24) with respect to 
(bi) is upper-triangular with non-zero diagonal elements. Equation (3.23) can therefore be 
solved near 

(3.25) 
b2N-2 - DuII2(0, 0) DuII1(0, Ota1 

b2i-l - 0'.2 b2i 
b2i-2 - b2N-2 b~:_l 

by invoking an implicit function theorem. This proves that 

(3.26) 
a2j-1 - (b2j-1 + o(l)) rl'i 
a2i - 1 - (b2j + o(l)) rl'i 

i = 1, ... ,N -1 
i=2, ... ,N-l 

holds for j = 1, ... , N -1. In particular, a2j-l (r) > 0 is positive for r > 0 thanks to (3.25) 
and Lemma 3.2. 

The expansion (2.3) of the return times is now an easy consequence of (3.13) and (3.26). 
Moreover, the claim about the ordering of the bifurcation curves in Figure 4 follows from 
(3.16) and (3.14). 

Hence the proof of Theorem 1 is complete. D 
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4 Stability 

This section is devoted to the proof of Theorem 2. The basic technique used is Lin's 
method applied to the eigenvalue problem (2.4). We shall use the abstract results from 
[San95b] together with certain modifications needed in the present situation. As for the 
concrete bifurcation investigated here, we are again going to exploit the reduction to a 
two-dimensional invariant manifold. Finally, the eigenvalues of the resulting tridiagonal 
matrix are calculated. 

Throughout we suppose that hypotheses (Hl) to (H7) are fulfilled. 

Convention. Throughout this section, we use the convention that the ranges of the indices 
i and j are i = 1, ... , 2N + 1 and j = 1, ... , 2N as long as stated otherwise. Moreover, we 
define i mod 2 E { 1, 2} by convention. The Landau symbol o( 1) is taken with respect to 
r -7 0. 

4.1 Abstract reduction of the eigenvalue problem 

We consider equation (2.1) and (2.4) in Rn keeping in mind that the N-fronts are actually 
contained in the invariant C1-manifold Whom· We also extend the sections :Ek for k = 1, 2 
to sections in Rn without changing notation. 

Any solution with initial point in :Ek and end point in :Ek+l is uniquely described by the 
associated return time T. In particular, any N-front qN(t) is determined by 2N return 
times Tj for j = 0, ... , 2N -1, see Theorem 1 and the proof in the last section. Define u"f= ( t) 
by 

(4.1) ( 
i-2 ) { u-;(t) 

qN t+ ~Tj = ut(t) 
for t E [-!Ti-2, OJ 
for t E [O, !Ti-1] 

for i = 1, ... , 2N +1 and with T_1 = T2N = oo, see Figure 6. As qN(t) is a solution of (2.1), 
the functions u"f= fulfill 

(4.2) ut(O) - u-;(O) 
uj(!Tj-1) u.f+1(-!Tj-1) 

i = 1, ... , 2N + 1 
j = 1, ... ,2N. 

The eigenvalue problem (2.4) 

t ER 
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Figure 6: Description of N-Front solutions. 

can be written as 

(4.3) 

v-:-
i 

·+ V· i 

vt(o) 
vj(!Ti-1) 

- (Duf(u;(t), µN) + ,.\B(t)) v£ 
- (Duf(ut(t), µN) + ,.\B(t)) vt 

v£(0) 
vj+1 (-!Ti-1) 

fort E (-!Ti-2, 0) 
fort E (0, tTi-1) 

considered as equations over the complex field. Exploiting the fact that qN(t) solves (2.4) 
for,.\= 0 and using (4.1), we take the ansatz 

vr(t) = ur(t) di+ wr(t), 

with di E Ill. Owing to [San95b, section 3.1] and ( 4.2), equation ( 4.3) is then equivalent to 

·± (Duf( u[(t), µN) + ,.\B(t)) wt+,.\ B(t) u[(t) di W· -i 

fort E (-!Ti-2, 0) and t E (0, !Ti-1), respectively 
( 4.4) wt(O) - w£(0) 

wr(O) E Ximod2 
wj(!Ti_i) - wj+i (-!Ti-1) + uj+i (-!Ti-1)( di+i - di), 

where the ( complexified) subspaces Xk are defined by :Ek = qk(O) + Xk for k - 1, 2. 
Following [San95b], we shall investigate the system 

wt - (Duf(ur(t),µN) + ,.\B(t))wr + ,.\B(t)ur(t)di 
fort E (-!Ti-2, 0) and t E (0, !Ti-1), respectively 

(4.5) wt(O) - w£(0) E CTut(o)Whom(µN) n Ximod2 ~ C 
wr(O) E Ximod2 
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Define the signed distances 

(4.6) 

see Figure 5. Then we have the following lemma. 

Lemma 4.1 Equation (4.5) possesses a unique solution w = W(,\)d linear in d and ana-

lytic in ,\, Moreover, w solves (4-4) if and only if 

(4.7) e = S(,\) d = (A(r) - ,\ (M + o(l)) + O(l,\1 2
)) d = 0 

for some analytic, matrix-valued function S(,\) and 

with K 1 , K 2 > 0 positive. The matrix A(r) is determined by (4.5) with,\= 0. Any solution 

of (2.4) with 1,\1 small is given by the above function W(,\). In particular, d = (1, ... , 1) 
solves S(O) d = 0. 

With the equivalence of (2.4) and (4.1) as well as Lemma 4.1 at hand, it therefore remains 
to solve the reduced equation 
(4.8) det S(,\) = 0. 

Proof. The proof of the lemma is essentially contained in [San95b], where the analysis 
was done for N-pulses. We will briefly mention the changes needed here. 

The hypotheses (Hl) and (H3) ensure that the technique developed in [San95b] works in 
the present context. The only difference is that the linearized flows for the heteroclinic 
solutions are used instead of linearizing along a single homoclinic orbit. The major change 
made here in comparison with [San95b] is that we allow for jumps in 

wt(O) - w£(0) E CTut(o)Whom(µN) n Ximod2 ~ <C 

compared with jumps in <C,,P(O) 

wt(O) - w£(0) E <C,,Pimod2(0), 

where ,,Pk(t) are the unique bounded solutions of the adjoint equation, see section 2. How-
ever, the only property of <C,,Pk(O) used in [San95b] is the transversality condition 

for k = 1, 2, see [San95b, Lemma 3.5]. The corresponding relations 

k = imod2 
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are satisfied. Indeed, this is a consequence of (2.2) and the proof of Lemma 3.1. The state-
ment about the matrix M follows from [San95b, Lemma 3.6] and the above discussion. 
Indeed, taking the limit r --+ 0 is equivalent to computing the matrix M by investigat-
ing the eigenvalue problem (2.4) for the primary heteroclinic orbits qk(t) for k = 1, 2 as 
Ui --+ qimod2 for r --+ 0 in the sup-norm. The positive factors K1 and K 2 stem from the 
projection of 'lfJk(O) onto the tangent spacesTqk(o) Whom for k = 1, 2. D 

4.2 Determining the reduced problem using center-manifolds 

In order to solve ( 4.8) 

<let S(,\) = det(A(r) - ,\ (M + o(l)) + O(l.\12)) = 0, 

we have to determine the matrix A(r). By definition, with,\= 0, 

e = ( ('l/Jimod2(0), wt(o) - w;(O)) )i=l, ... ,2N+l = A(r) d, 

where w = vV(O) d solves ( 4.5) with ,\ = 0, that is 

(i) ·± Duf(ur, µN) wr W· -,i 

for t E (-!Ti-2, 0) and t E (0, !Ti-1), resp~ctively 

(4.9) (ii) wt (0) - w; (0) E <CTut(o)Whom(µN) n Ximod2 
(iii) wr(O) E Ximod2 
(iv) wj(tTi-1) - wj+i (-tTj-1) + uj+i·(-tTi-1)( di+i - di). 

Therefore, the solutions Wi have to solve the variational equation along the N-front. Be-
cause whom is locally invariant and 0 1 ' its continuous tangent bundle is invariant under the 
linearized flow. Since Ui E TqN whom and the jumps of Wi are required to be in TqN whom' 
too, we expect that the solutions Wi E TqN Whom are contained in the tangent bundle as 
well. By uniqueness of w as stated in Lemma 4.1, it is therefore sufficient to prove that we 
can solve ( 4.9) with Wi E Tui whom. Since the linearized flow is still C0-conjugated to the 
linearized flow in lR2, see Lemma 3.1, it suffices to consider (4.9) for the vector field in lR2 

investigated in section 3 - not~ that we do not need any differentiability further on. 

Hence consider w E lR 2 from now on. Denote the evolution of 

by <Pr(t, s ), whence wr(t) = <Pr(t, 0) wf (O) solves ( 4.9)(i) and (iii) for arbitrary w[(O) E 

Xk. Note that ( 4.9)(ii) is then satisfied~ too, as the subspaces Xk c lR2 are one-dimensional. 
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We shall solve ( 4.9) (iv) 

(4.10) w j ( ! Tj-1) = w ]+ 1 ( -! Tj-1) + u ]+1 ( -! Tj-1) (di+ 1 - di) 

for given d = ( di)i=l, ... ,2N+l and j = 1, ... , 2N. Observe that these equation decouple as we 
can choose Wf (0) E Xk arbitrarily. 

First, consider (4.10) for odd j = 21+1 for l = 0, ... , N-1. Then 

as the flow is linear. Also, 

and 
wtz+l ( !T21) = (0, eta2(µ)T2z wtz+l (0)) 
W - ( l rp ) _ (e~a2(µ)T2z w- (0) O) 2z+2 -21 2t - 2t+2 ' ' 

identifying the subspaces Xk with IR as in Figure 5. Thus, we conclude that 

o(r) ( d21+2 - d2z+i) 
a2(1 + o(l)) r (d2t+2 - d2z+i), 

using (3. 7) and (3.26). 

Next, consider ( 4.10) for even j = 21 for l = 1, ... , N. Then 

<I>t(t, 0) 

<l>2z+i ( -t, 0) 

for t > 0 large and with 
n 1 _ Di ( e-ai(µ) r(T2z-1,µ), µ) 
n2 - D2(caf(µ)r(T2z-1,µ),µ), 

see section 3.2. Therefore, we obtain 

wt(!T2t-1) 
w2z+i (-!T21-i) 

for some constants 7r~l? 7r~z+i uniformly bounded in T2z_1 for k = s, u such that 

( 4.12) 
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for some 8 owing to the sign convention for the sections - we identify the subspaces Xk 
with IR in the same way as we did for ~k, see Figure 5. The time derivative is given by 

and it is straightforward to calculate that for some 8 > 0 

( 4.13) 

wt(O) - ar(µ) e-af(µ)(T2z-1_-n1-n2) 1l"~z (1 + 0( e-ST2z-1)) ( d2z+i - d21) 
- o:r(µ) e-af(µ)r(T2z-d 1l"~z (1 + O(e-Sr(T2z-1))) (d2z+i - d2z) 

o( ra2+1'z) ( d2z+i - d2z) 
w2z+l(O) o:i(µ) e-af(µ)(T2z-1-n1-n2) 7r2z+i (1 + O(e-ST2z-1)) (d2z+i _ a21 ) 

- o:i(µ) e-af(µ) r(T2z-1) 7r2z+i (1 + 0( e-Sr(T2z-1))) ( d2z+1 - d21) 

- o:~ (b2z-1+o(l))7r2z+i ra2+1'z (d2z+i - d2z), 

see again (3.7) and (3.26). It is convenient to check the signs appearing in (4.11) and (4.13) 
by inspecting Figure 5 and 6. 

Thus, the differences of wr(O) for i = 1, ... , 2N + 1 with .\ = 0 are given by 

wiz(O) - w2z(O) - o(ra2+"z) (d21+i - d21) - o:~ (1 + o(l)) r (d2z - d2z-1) 
wiz+l (0) - w2z+i (0) - o(r) ( d21+2 - d21+i) - o:~ (b2z-1 + o(l)) 7r2z+i ra2+1'z ( d2z+1 - d21), 

whence the jumps ei read 

6z - (7/;2(0), wiz(O) - w2z(O)) 

(4.14) 
- r( o(ra2+1'z-1) (d21+i - d21) + o:~ (1 + o(l)) (d21 - d21-d) 

6z+i - (7fa1(0),wiz+i(O)-w2z+i(O)) 
- r( o(l) (d2z+2 - d21+1) - o:f (b21-1+o(l))7r2z+i ra2+1'z-l (d21+i - d2z)). 

Notice that the sign changes in the first equation since 7/;2(0) points in the negative direction 
of X 2 , see Figure 5. We rewrite (4.14) according to 

6z - r (-K.21-1 d2z-1 + (K.21-1 - K,2z) d2z + K,2z d2z+i) 
6z+i - r (- K.21 d21 + ( K.21 - K,21+1) d21+1 + K,2Z+l d2z+2), 
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using the definitions 

"'2t-1 .- C2t-l + o(l) .- a~ (1 + o(l)) 
"'21-1 .- o(l) 

( 4.15) 
(c21 + o(l)) rf31 s ( b + ( 1)) s a2 +'Yi -1 "'2l .- -al 21-1 o 7r 2l+i r 

"'2t .- o(rf31) .-
for l = 1, ... , N and 

The exponents /31 and the constants Cj fulfill 

(4.16) 
f3z : = a2 + 'ft - 1 

0 < a2 - 1 = f3N < /31 < /31-1 

Cj > 0 

due to (3.20), (3.25) and ( 4.12}. 

o( ra2+-Y1-l) 

Therefore, we end up with computing solutions of 

l = l, ... ,N 
l = 2, ... ,N -1 
j = 1, ... ,2N, 

( 4.17) det(rA(r) - M).. + O(l>..1(1>..I + o(l))) = 0, 

where 

for some positive constants Ki, K2 > 0 and 

-K,1 "'1 

-K,1 "'1-"'2 "'2 

( 4.18) A(r) = -K,2 K,2-K,3 K,3 

As we are mainly interested in stable N-front solutions, we assume sign M1 =sign M2 = -1 
from now on, whence, by rescaling the solutions 'l/Jk(t), we obtain 

M =-id. 

The other cases can be handled similarly. 

4.3 Solving the reduced eigenvalue problem 

Thus we shall solve (4.17). By Rouche's Theorem, there exist precisely 2N +1 solutions of 
(4.17), since S(>..) is analytic in).. and 

<let S(>..) = >.. 2NH + o(l) 
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near A= 0. 

One of these solutions is equal to zero 

( 4.19) 

due to translational invariance. By construction, the associated eigenvector is given by 
v = (1, ... , 1), see Lemma 4.1. 

Substituting A = vr and M = - id into ( 4.17) and dividing by r2N+l yields 

( 4.20) det(A(r) + v (id+o(l))) = 0. 

There are another N eigenvalues which can be computed easily. Indeed, setting r = O in 
( 4.20), we obtain 

N 
det(A(O) + vid) = vN+i Il(c2z-1 + v). 

l=l 

Hence, again by Rouche's Theorem, there exist precisely N solutions v2z_1(r) of (4.20) 
counted with multiplicity and continuous in r such that 

They correspond to N eigenvalues Azz-1 ( r) of ( 4.17) given by 

( 4.21) l = l, ... ,N. 

It remains to calculate the remaining N eigenvalues of ( 4.20). The columns of the matrix 
S(v,r) = A(r) + v (id+o(l)) are given by 

C· J - (0, ... , 0, kj-1' "'i-l - Kj + v, -Kj, 0, ... , 0) + o(l)v 
jth 

C2N+1 - (0, ... , 0, 'k2N, K2N + v) + o(l)v, 

j = 2, ... , 2N 

see ( 4.18). Adding successively the jth column Ci to Cj-l for j = 2N + 1, ... , 2 yields a 
matrix with columns 

C1 (v, ... , v) + o(l)v 
Ci (0, ... , 0, Kj-i, "'i-l + v, v, ... , v) + o(l)v j=2, ... ,2N ._______.., 

jth 
C2N+i - (0, ... , 0, k2N, K2N + v) + o(l)v. 
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Note that this transformation does not change the determinant. Moreover, recall from 

(4.15) that 

K2t-1 - c2z-1 + o(l) K2l-1 - o(l) 
K2t - ( c2z + o ( 1)) rt'1 K-2z o( rt'1) 

for positive constants Cj > 0 and exponents /3z > 0 strictly decreasing in l, see ( 4.16). This 
suggests the ansatz 

v = rt'k 77 

for fixed k with k = 1, ... , N. Substituting it into the matrix yields 

[(77, ... ,77)+0(1)] rt'k 

[ (0, ... , 0, c2z-1, 0 ... , 0) + o(l)] ...___..,, 
(2l)th 

[ ( 0, ... , 0, ~ , 77, ... , 77) + o ( 1)] rt' k 

(2l+i)th 

[ (0, ... , 0, C2k + 77, 77, ... , 77) + o(l)] rt'k 
'--...--' 
(2k+1)th 

[(o, ... , O, ~ , 0, ... , O) + o(l)] rt'1 

(2l+i)th 

l < k 

l = k 

l > k 

for l = 1, ... , N. Thus, factorizing the powers of r multiplying each column, the determinant 
of the matrix S ( rt'k 77, r) equals 

N 
det S(rt'k 71, r) = ( det S( 77, r)) r(k+l)t'k IT rt'1, 

where the columns of S( 77, r) are given by 

[(77, ... ,77) + o(l)] 
[ (0, ... , 0, C2z-1, 0 ... , 0) + o(l)] ...___..,, 

(2l)th 

[(o, ... ,o, ~ ,77, ... ,77)+0(1)] 
(2l+i)th 

[ ( 0, ... , 0, C2k + 77 , 77, ... , 77) + o( 1)] 
'--...--' 
(2k+i)th 

[(o, ... ,o, ~ ,0, ... ,0)+0(1)] 
(2l+1)th 

As we are interested in zeroes for r > 0, it suffices to solve 

( 4.22) <let S(77, r) = 0. 
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This matrix, however, is upper-triangular up to terms of order o(l ). Its determinant is 
therefore given by 

det S( 17, r) det S(77, 0) + o(l) 

T/k(IJ~k+l C2z)(7J + C2k)(IJ~1 C2z-1) + o(l). 

Again by Rouche's Theorem, there is a unique solution 772z(r) of (4.22) satisfying 

for l = 1, ... , N. The corresponding solution .X2z(r) of ( 4.17) is given by 

for l = 1, ... , N, see (4.16) for the last identity. Note that these solutions are not the same 
for different values of l owing to ( 4.16). Moreover, they converge faster to zero than the 
eigenvalues A2z-i obtained in ( 4.21 ). 

Summarizing the facts obtained above, we have calculated 2N + 1 solutions Aj of ( 4.17) 
appearing in (4.19), (4.21) and (4.23). According to the remark above, they are pairwise 
distinct, whence we have found all solutions. This proves Theorem 2. D 

5 Application to the FitzHugh-Nagumo equation 

Consider the FitzHugh-Nagumo equation 

Ut - Uxx + J ( U) - W 

Wt c(u -1w) 
(5.1) 

for x E lR with f(u) = u(l-u)(u-a) and a E (0, t) fixed. This equation is a simplification 
of the Hodgkin-Huxley equation modelling the propagation of impulses in nerve axons. 
Being interested in travelling waves (u, w)(x, t) = ( u, w)(x+ct), we introduce new variables 
(e, t) = (x +et, t) in which (5.1) takes the form 

(5.2) 
ut - uee - cue + f ( u) - w 
Wt - -ewe+ c(u -1w). 

The existence of fronts travelling with wave speed c boils down to investigating heteroclinic 
orbits of the ordinary differential equation 

u v 
(5.3) v - cv-f(u)+w 

w ~(u -1w), 
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Figure 7: The N-front wave solution for N = 3. The distances of the layers are given by 
T and DjT = a2:~2 'Yi T with Ii > 0 strictly decreasing in j, see Theorem 1. 

1 

which is the steady-state equation corresponding to (5.2). Here · = d/ de. Linearized 
stability of equilibria ( u, w) of (5.2) is determined by the spectrum of the linear operator 

(5.4) L(U, W) = ( Uee - cUe + Duf(u)U - W) . 
-cWe + c(U -1W) 

In particular, eigenvalues A with corresponding eigenfunction (U, W) of L are given by 
bounded solutions of 

(5.5) 
t; - v 
V - cV-Duf(u)U+W+AU 
W - ~(U-1W)- ~W. 

Deng proved in [Den91 b] that there is a curve (I ( E), c( E)) for all E > 0 sufficiently small 
such that the FitzHugh-Nagumo equation (5.3) possesses as twisted heteroclinic loop for 
these values of parameters. In particular, he concluded the existence of N-fronts for any 
N > 1 using his result [Den91a]. Theorem 1 of the present article provides the distance 
of the layers, see Figure 7. Yanagida proved in [Yan89] that the simple fronts q1(t) and 
q2(t) building the heteroclinic loop are linearly stable with respect to the partial differential 
equation, that is the spectrum of the linearized operator ( 5.4) is contained in the left half 
plane except for a simple eigenvalue at zero. Finally, Nii [Nii95b] proved that the 1-fronts 
are linearly stable, too, using topological methods - however, he had to assume that the 
flow of (5.3) is linear near both equilibria. The next result asserts that in fact all N-fronts 
are linearly stable and provides asymptotic expansions of the critical eigenvalues. 

Theorem 3 The N-fronts (and N-backs} of (5.1} proved to exist by Deng {Den91b} are 

linearly stable for all N. The 2N + 1 critical eigenvalues near zero are given by Theorem 2. 

Note that linear stability implies nonlinear stability by [BJ89]. 
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Proof. We shall use Theorem 2 to conclude linear stability of the N-fronts. First note that 
the hypotheses (Hl) - (H6) needed in that theorem are fulfilled by [Den9lb]. Moreover, 
by the results in [AGJ90] and the stability of the simple fronts proved in [Yan89], it is 
sufficient to calculate eigenvalues of the linearized operator (5.4) near zero, see for example 
[Nii95b] for a discussion. Indeed, the spectrum of (5.4) does not contain eigenvalues with 
non-negative real part and large modulus, see [Eva75]. Comparing the eigenvalue problem 
(5.5) and the travelling wave equation (5.3) with equation (2.1) and (2.4), we see that they 
are of the same form by taking B according to 

Hence it suffices to prove that the Melnikov integrals 

(5.6) ;_: (1/;j(t), Bij_j(t)) dt < 0 

are negative, where 't/Ji(t) are chosen according to hypothesis (H6), see Figures 2 or 8. 
Indeed, then· the statement of the theorem follows immediately from Theorem 2. 

In order to do so, notice that for any solution ( u, v, w) of (5.3) 

B ( ~ ) == ( ~ ) == ( ~ ) == DcF( u, v, w, c) 
w -~w -c~(u-1w) 

'f1(0) 

Figure 8: Conventions used by Deng and the present article .. 
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holds, where F denotes the right-hand side of (5.3). In particular, we obtain 

(5.7) 

The second integral in the above formula is the derivative with respect to c of the signed 
distance of unstable and unstable manifolds measured in the direction 'l/;j(O), that is 

(5.8) 

where pj(c) E Wu(phc) and pj(c) E W 8 (phc), see for example [Kok88], [Lin90] or 
[Den9lb]. The last quantity appearing in (5.8) has been computed in [Den9lb]. What 
is actually computed therein, is 

(5.9) :c Qj = :c (ehP}+i ( c) - pj( c)) < 0, 

see [Den9lb, (3.1)] for the definition and [Den9lb, (5.3a),(5.4a)] for the actual computation. 
Moreover, the vectors ej appearing in (5.9) above are chosen in [Den9lb, pages 1641 and 
1644] such that 
(5.10) ei = -'l/;j{O), 

see Figure 8. Summarizing, we obtain from (5.7) and (5.8) that the Melnikov integrals 

(5.7)J5.8) :c (1/;j(O),pj( c) - P}+i ( c)) 

:c (-ei(O),pj(c)- P}+1 (c)) 
d 
de Qj < O 

are indeed negative. Thus the theorem is proved. 
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