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Abstract

Dynamical systems with multiple, hierarchically long delayed feedback are introduced
and studied. Focusing on the phenomenological model of a Stuart-Landau oscillator with
two feedbacks, we show the multiscale properties of its dynamics and demonstrate them
by means of a space-time representation. For sufficiently long delays, we derive a normal
form describing the system close to the destabilization. The space and temporal variables,
which are involved in the space-time representation, correspond to suitable timescales of
the original system. The physical meaning of the results, together with the interpretation of
the description at different scales, is presented and discussed. In particular, it is shown how
this representation uncovers hidden multiscale patterns such as spirals or spatiotemporal
chaos. The effect of the delays size and the features of the transition between small to
large delays is also analyzed. Finally, we comment on the application of the method and
on its extension to an arbitrary, but finite, number of delayed feedback terms.

1 Introduction

As one of the main subjects of the nowadays research on dynamical systems, the study of
complex networks has soon faced the necessity to treat delayed, nonlocal interactions. In fact,
a finite propagation velocity of the information introduces new relevant timescales, which are
typically comparable or higher than the intrinsic ones of the connected systems. Many fields
[1] including laser physics [2–5], vehicle systems [6], to neural networks [7] and information
processing [8] are reportedly dealing with time delays, mainly in the case of a single delayed
feedback.

The specific feature of delay dynamical systems is that the corresponding phase space is
infinite-dimensional [9]: in order to solve the model equations, the state of the system on a time
interval equal to the delay τ has to be provided as initial conditions. On the other hand, it has
been shown that the dimension of attractors in delay dynamical systems is finite and it scales
linearly with τ [10]; moreover, the spectrum of Lyapunov exponents approaches a continuous
limit for a long delay [11–15]. The latter case is of particular interest, as it indicates that many
features of high-dimensional phenomena are expected to occur, and indeed spatio-temporal
chaos [16], square waves [1, 17], Eckhaus instability [18], coarsening [4] and nucleation [19]
have been observed.

In the above mentioned situations, the inspection of the dynamics reveals the existence of many
different, well separated timescales. This allowed to build a suitable representation in which
the delay time can be interpreted as the size of a one-dimensional, spatially extended system
[16, 20–22] and explain new phenomena [4, 18, 19, 23, 24]. New challenging problems arise
in the general case of a system with several delayed feedbacks, especially when the delays
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are acting on different time scales [25]. In this work, we concentrate on the case of multiple,
hierarchically long delays. In such a configuration, the temporal dynamics shows a rich struc-
ture which can be meaningfully understood by means of suitable representations. Furthermore,
complex patterning in the time domain results in simple structures in the new framework.

In particular, we will focus on a two-delays model and its multiscale analysis. Nevertheless, as
discussed below, we expect that the dynamical behaviour in more complicated cases would be
similar, as it will contribute on different scales each with specific features.

The paper is organized as in the following. In Sec. II we introduce the two-feedbacks model
and report some phenomenology from the numerical integration of it. The multiscale features of
the dynamics are pointed out and a spatio-temporal representation is schematized. We outline
in Sec. III the details of the normal form derivation for the model. In Sec. IV we analyze the
transition from small to large delays, while in Sec. V the extension to higher number of delayed
feedbacks is considered. Finally, in Sec. VI we draw our conclusions.

2 A multiple feedback model: the two delays case

We consider the Stuart-Landau model (describing the Andronov-Hopf bifurcation) for an oscil-
latory instability, with two delayed feedback terms acting on the hierarchically long timescales
1� τ1 � τ2:

ż = az + bzτ1 + czτ2 − dz|z|2. (1)

Here, the variable z(t) is complex, the delayed terms are zτ1 = z(t− τ1) and zτ2 = z(t− τ2),
the parameters a, b, and c determine the instantaneous, τ1-, and τ2-feedback rates, respectively.
Using appropriate scaling transformations of the variable z, the parameter a can be made real
and d = −µ+ i with µ > 0. For µ < 0 the nonlinear term becomes expanding and the system
no longer describes realistic bounded motions.

In Figures 1 and 2 we show the results of the numerical integration of Eq. (1) for two different pa-
rameter choices. In Fig. 1, the time series of the variable |z| exhibit “almost” periodic oscillations,
with a period related to the delay time τ2 (see Fig. 1(a)). However, zooming into a time-delay
τ2 interval (Fig. 1(b)), complex temporal structures appear on a timescale τ1 (Fig. 1(c,d)). The
same occurs for the parameters used in the simulation reported in Fig. 2. In this case, however,
the dynamics is much more complicated at every scale, with large fluctuations of the amplitude
which is often very close to zero.

2.1 Spatio-temporal representation of the dynamics

In order to disclosure the hidden features of long-delayed dynamical systems, a spatio-temporal
representation (STR) has been introduced [16, 20]. In this approach, the temporal variable t is
parametrized by two new variables {σ, θ}, playing the role of the pseudo-space and pseudo-
time respectively:

t = σ + θτ, (2)
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Figure 1: Time series of |z(t)| from (1), shown at different levels of zoom. Time is measured in
units of τ2 in (a-b) and in units of τ1 in (c-d). The parameters values are: a = −0.985, b = 0.4,
c = 0.6 (corresponding to P = 0.015), d = −0.75 + i, τ1 = 100, and τ2 = 10000. Initial
conditions are chosen randomly.
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Figure 2: Same as in Fig. 1, for d = −0.1 + i.

3



where τ is the delay time. The representation (2) is a unique map from t on (σ, θ), if it is
additionally assumed that 0 < σ ≤ τ , and θ = 0, 1, 2, . . . is numbering the delay intervals.
That is, σ = tmod τ , and θ = [t/τ ] with [·] denoting the integer part. Accordingly, a temporal
sequence is cut in slices of length τ : the variable spanning a single (delay) cell is the pseudo-
space σ, while the index numbering the slices is the pseudo-time θ. The STR allows for a
meaningful description of the dynamics observed both in experimental [4] and theoretical [16,
19, 23, 26] setups.

As discussed in [20], the STR is very helpful in the visualization of some peculiar features of
the dynamics of delayed systems. In particular, when the the delay is larger than the typical
timescales of the system without feedback, the system behavior is mainly determined by a local
coupling in the STR coordinates. In this case the main features of the dynamics are indepen-
dent from the boundary conditions ("bulk" dynamics), in a similar way of the attainment of the
thermodynamic limit in a spatially extended system (see e.g. [27]).

The STR for systems with multiple, hierarchically long delayed feedbacks can be generalized as

t = σ0 + n1τ1 + n2τ2 + ..+ nN−1τN−1 + ΘτN , (3)

where 1 � τ1 � τ2 � · · · � τN . Here, similarly, one assumes that 0 ≤ σ ≤ τ1, and
0 ≤ nj ≤ [τj+1/τj]. We notice that σ0 and the n’s play the role of pseudo-space variables,
and Θ of the pseudo-time variable. A more detailed discussion and explanation of the variables
σ, nj , and Θ will be given in Sec.5, where a rescaled speudo-spatial variables are introduced.

Another, but explicit introduction of the multiscale variables can be done as follows: Tj = µjt,
j = 0, . . . N , with µj = 1/τj � 1 are small parameters such that µj+1 � µj . In this case,
the new timescale Tj is the timescale induced by the delay τj . Such an explicit introduction of
the timescale variables is equivalent to the one given by (3) in the sense that

nj =

[
tmod τj+1

τj

]
=

[
Tj mod

τj+1

τj

]
= [Tj]

when Tj is considered on a large interval from 0 to τj+1/τj . The explicit introduction of the
timescales will be used in Secs. 3 for the derivation of the spatio-temporal model.

In the present case, by the use of STR with two delays we obtain a 2D pseudo-spatial pattern
(snapshot) which evolves in the pseudo-time. An an example, in Figs. 3,4, we plot two snapshots
of the system (1), for the sets of parameters corresponding to Fig. 1 and Fig. 2 respectively. The
definition of the pseudo spatial variables (x, y) will be given in the following; here we anticipate
that they are related to specific timescales of the original time series.

As seen in the pictures, the complex temporal dynamics of Figs. 1 and 2 uncovers in fact a
more deep structure. The points with almost zero amplitude and τ1 and τ2 periodicity of Fig. 1
correspond to the cores of spiral (topological) defects of the 2D pattern (Fig. 3(a)), as confirmed
by the analysis of the contour plot for the phase (see Fig. 3(b)). In Fig. 4, even more complicated
temporal structure shows to encode a regime of 2D defect turbulence, with random creation,
motion and annihilation of topological defects.

4



1.0 1.0
1.0 1.0

0.0 0.0

0.5 0.5

0.0 0.00.5 0.5

Figure 3: Spatio-temporal representation (see text) of the dynamics of system (1) in Fig.1: spiral
defects. (a): snapshot of the spatial profile in the pseudo-space coordinates (x, y), plotted for
θ0 = 0.4. (b): constant level lines for the phase of z; the circles denote the positions of defects.
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Figure 4: Spatio-temporal representation (see text) of the system dynamics in Fig.2: defects
turbulence. Plots are as in Fig.3
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Figure 5: Autocorrelation function R of z for the solution of Eq. (2) with a = −0.625, b = 0.4,
c = 0.225, d = 0.1− i, τ1 = τ = 20, and τ2 = τ 2 = 400. R is plotted using three different
rescaling for the shift (see inset).

2.2 Multiscale dynamics

We return to the case of two delays (1). The phenomenology reported in the previous subsection
indicates that the dynamics of system (1) is strongly affected by the two timescales induced by
the delayed feedbacks. A more quantitative analysis can be carried out on the time series by
means of the (normalized) autocorrelation function

R(s) =
〈(|z(t− s)| − µ) (|z(t)| − µ)〉t

σ2 (|z|) , (4)

where 〈·〉t denotes the time-average, µ = 〈|z(t)|〉t, and σ (|z|) = 〈(|z| − µ)2〉t are the
average and the variance of the intensity.

In Fig. 5 we report the typical behavior of R for the time series of (1) for time delays τ1 = τ =
20, τ2 = τ 2 = 400, and the other parameter values as indicated in the figure. The solution at
these parameter values corresponds to spatiotemporal chaos as in Fig. 2. The autocorrelation
R is shown as a function of different rescaled temporal shifts. When plotted in units of τ2 (black,
continuous line), a strong decay is visible within a τ2 cell as a signature of the chaotic nature
of the solution. However, the autocorrelation displays revivals at multiples of τ2, indicating that
there is a coherence between the points at t and ≈ t − τ2, or, in terms of the spatio-temporal
coordinates (3), this is a high coherence between the same points in the pseudo-space with
fixed σ0 and n1, and which are close in the pseudo-time, i.e. n2 and n2 − 1.

When R is displayed in units of τ1 (blue, dashed line), the fine structure of the first peak at
the previous resolution is shown to reveal many peaks corresponding to multiples of τ1. Those
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multiple revivals, decaying within a τ2 interval, indicate that a τ1-long pattern is roughly coherent
over some units. Analogously to the case with τ2, this implies the coherence between the points
corresponding to the same σ0 and n2 but neighboring values of n1. The high correlation along
the coordinates n1 and n2 implies that the solution changes slowly along them, thus allowing
a pseudo continuous description as a 2D spatial pattern with respect to the spatial coordinates
σ0 and n1 and temporal coordinate n2.

Finally, the autocorrelation displays a strong decay (red, dotted line) when plotted without rescal-
ing (the unit is 1), charactering the degree of disorder within a single τ1 unit.

As seen from the Fig. 5, the decay rate of the peaks envelope in the above scalings is of the
same order. As a consequence, the dynamical properties of the system (e.g. coherence length)
as a function of the corresponding rescaled variables are of comparable magnitude. This is a
strong indication that the system can be effectively treated by means of a multiscale analysis, i.e.
there exists a representation of the dynamics in terms of suitable variables where the behavior
is evolving on a scaleO(1).

3 Towards a spatio-temporal model

In the previous section, we have presented the results of a numerical integration of system (1).
A close similarity to the dynamics of a spatially extended system is found, when the STR is
used to represent the results with suitable pseudo-spatial and temporal variables. As a further
indication, the analysis of the autocorrelation function suggests that important features of the
dynamics are connected to specific time scales of the time series, thus paving the way for a
more rigorous approach based on a multiscale expansion of the model. As a consequence, we
expect to obtain a spatio-temporal normal form in terms of suitable space-like and temporal-like
variables related to the above time scales.

As a first step towards the derivation of the normal form from the model (1), we study the
properties of the destabilization of the steady state z = 0.

3.1 Destabilization and spectrum of the steady state

The long time delays τ1 and τ2 can be written as τ1 = 1/ε and τ2 = κ/ε2 with positive
parameters ε and κ. Considering ε as a small parameter ε � 1, the scale separation 1 �
τ1 � τ2 is satisfied. The parameter κ is considered to be of order one. Note that in the case
of more than two delays on different timescales, one can proceed similarly and introduce the
scaling τn = κn/ε

n. In this work, we concentrate on the case of two delays and comment on
the extension to the general case in Sec.5.

The characteristic equation, which determines the stability of the zero steady state z = 0 is
obtained by linearizing Eq. (1) and substituting z = eλt:

χ(λ, ε) := λ− a− be−λ/ε − ce−λκ/ε2 = 0. (5)

Stability of the steady state is equivalent to that all roots λ of Eq. (5) have negative real parts.
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Although the solutions to Eq. (5) are not given explicitly, their approximations can be found using
the smallness of ε [12–14, 28, 29] (largeness of the delays)

λ = γ0 + iω0 + ε (γ1 + iω1) + ε2 (γ2 + iω2) , (6)

where γj and ωj are real. Depending on the leading terms in the real part of this expansion,
the system may develop different types of instabilities: if γ0 > 0, there appear strong instability
induced by the instantaneous term [12, 13, 28, 30]. If γ0 = 0 but γ1 > 0, there appears a
weak instability by the effect of the τ1-feedback [12–14]. In this case, the τ2-feedback does
not play any important role. Hence, in order for the second delay to play the destabilizing role,
one needs γ0 = γ1 = 0 and γ2 becoming positive. Let us consider this in more details and
substitute Eq. (6) into Eq. (5). We obtain the following equation

γ0 + iω0 + ε (γ1 + iω1) + ε2 (γ2 + iω2)− a
− be−(γ0+iω0+ε(γ1+iω1)+ε2(γ2+iω2))/ε (7)

− ce−(γ0+iω0+ε(γ1+iω1)+ε2(γ2+iω2))κ/ε2 = 0

for the unknowns ωj and γj .

Our aim now is to derive the conditions, under which the steady state is destabilized, and the
destabilization is on the order of the largest time delay τ2. We will see that these conditions are:
a < 0, |b| < |a|, and P = a+ |b|+ |c| > 0, with P = 0 playing the role of the destabilization
threshold. In order to make the following reasoning more clear, we split it into steps.
Step 1. Identifying singular terms. Eq. (7) contains terms, which can become singular with ε→
0:

be−(γ0+iω0)/ε − ce−(γ0+iω0+ε(γ1+iω1))κ/ε2 .

While the fast oscillating phases iω0/ε, iω0/ε
2, and iω1/ε are not harmful (the amplitude is

bounded), the remaining terms may become unbounded with the decreasing of ε. This is the
case when either γ0 or γ1 is negative. Hence, the first solvability conditions are γ0 ≥ 0 and
γ1 ≥ 0.
Step 2. Conditions for the absence of strongly unstable spectrum. Let us show that a > 0
implies γ0 > 0, i.e. γ0 is strictly positive. Indeed, when γ0 > 0, the terms from Eq. (7) that are
not vanishing with ε are

γ0 + iω0 − a = 0,

implying γ0 = a > 0 and ω0 = 0. This corresponds to so called strong instability of the
zero steady state, see also [13, 18, 28] or [30] where it is called anomalous spectrum. As it was
already mentioned, we would like to avoid such a case, since the perturbations are growing here
on the time interval of order 1/a ∼ 1 which is much smaller that time delays. In such a case,
there is no chance to see high correlations for the times τ1 = 1/ε or τ2 = κ/ε2. Hence, we
make the following assumption, which guarantees that γ0 = 0 and there is no strongly unstable
spectrum:
Assumption (I):

a < 0.
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In fact, this assumption means the stability of the system without feedbacks. Under the assump-
tion (I), one has γ0 = 0, and the expansion (7) reduces to

iω0 + εγ1 + ε2γ2 − a− be−(iω0+εγ1+ε2γ2)/ε−
− ce−(iω0+εγ1+ε2γ2)κ/ε2 = 0, (8)

where the higher order terms εiω1 + ε2iω2 are omitted.
Step 3. Conditions for the absence of τ1-spectrum. Now let us find the conditions, for which
γ1 = 0, since otherwise the perturbations will grow exponentially on the timescales of the order
1/εγ1 ∼ τ1 and no correlation of the timescale τ2 can be observed. For this, we assume γ1 > 0
(it cannot be negative accordingly to p. 1). Then the non-vanishing terms from Eq. (8) are

iω0 − a− be−(iω0/ε+γ1) = 0. (9)

From Eq. (9), one obtains

γ1 = − ln

∣∣∣∣iω0 − a
b

∣∣∣∣ = −1

2
ln
ω2

0 + a2

|b|2
(10)

and

ω0 = −εarg

[
iω0 − a

b

]
+ ε2πk, k ∈ Z. (11)

Eq. (11) allows for a countable setω0,k of solutions forω0. It is not difficult to see that |ω0,k+1 − ω0,k| ∼
ε, i.e., for small ε they are covering densely any interval −L < ω0 < L. For any such ω0,
the real part γ1 is given by γ1(ω0) from (10). This part of the spectrum was called pseudo-
continuous [13, 18, 28–30], since with ε → 0, the solutions are converging to a curve λ =
εγ1(ω0) + iω0 in the complex plane and this curve describes the stability properties.

We are interested for the case when this spectrum with γ1 disappears, i.e.

γ1(ω0) = −1

2
ln
ω2

0 + a2

|b|2
< 0 (12)

for all ω0, thus contradicting to our assumption γ1 > 0. It is easy to see that (12) holds for all
ω0 if and only if |a| > |b|, which becomes our second assumption:
Assumption (II):

|a| > |b| .
Under the assumptions (I) and (II), the simplified ansatz (instead of (6)) capturing the leading
terms of the spectrum is

λ = iω0 + ε2γ2 (13)

and the expansion (7) reads

iω0 + ε2γ2 − a− be−(iω0+ε2γ2)/ε − ce−(iω0+ε2γ2)κ/ε2 = 0. (14)

Step 4. Expression for τ2-spectrum. From Eq. (14), the non-vanishing terms with ε→ 0 are

iω0 − a− be−iω0/ε − ce−iκω0/ε2−κγ2 = 0. (15)
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Figure 6: Geometric representation of solutions to Eqs. (18)–(19). The solutions are given as
the intersection points of two functions: φ = −ω0/εmod 2π and φ = φk(ω0), where the latter
function is given implicitly by Eq. (19). Since the distance between the neighboring solutions is
∼ ε, the distance from any point of the domain to a solution is also ∼ ε.

Eq. (15) can be rewritten as

iω0 − a− be−iω0/ε

c
= e−iκω0/ε2−κγ2 . (16)

Taking the absolute value of Eq. (16), one obtains

γ2 = − 1

2κ
ln

1

|c|2
(

(ω0 − |b| sin (φ+ φb))
2 + (17)

+ (a+ |b| cos (φ+ φb))
2
)
,

where φb := arg b and
φ = −ω0/ε. (18)

By taking the phase of Eq. (16), we obtain

1

ε
φ = arg

(
iω0 − a− beiφ

c

)
+ 2πk, k ∈ Z. (19)

Step 5. Showing that solutions (ω0, φ) of Eqs. (18)–(19) are covering densely a whole domain
φ ∈ [0, 2π], ω0 ∈ [−L,L] with some L > 0. Let us discuss the properties and meaning of the
obtained Equations (17)–(19). Omitting detailed analytical investigation of Eq. (19), we illustrate
and argue geometrically, that the set of solutions (ω0, φ) of Eqs. (18)–(19) covers a domain
ω0 ∈ [−L,L], φ ∈ [0, 2π] such that for any point (ω0, φ) from this domain, there is a solution
to Eqs. (18)–(19), which isO(ε) close to (ω0, φ). The corresponding geometric arguments are
illustrated in Fig. 6. Eq. (18) determines the set of lines with the slope ε, and Eq. (19) the set of
functions φk(ω0), which are shifted by approximately 2πε. The solutions (ω0, φ) are given by
the intersection points. Hence, the distance from any point in the domain to a nearby solution is
of the order ε.
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As a result, in the limit of large delays (small ε), we obtain the asymptotically continuous set of
eigenvalues

λ(ω0, φ) = iω0 + ε2γ2(ω0, φ) (20)

with γ2 given by Eq. (17) and ω0 and φ can be considered as continuous and independent
parameters.
Step 6. Condition for the destabilization of the steady state by the τ2-feedback. Finally, using the
eigenvalues approximation by Eq. (20), one can obtain the stability conditions. If the condition
|c| < −a − |b| is satisfied, the function γ2(ω0, φ) is negative for all ω0 and φ, implying the
stability of the steady state. Otherwise, γ2 becomes positive and the steady state is unstable for
all small enough ε. In this case, a nontrivial dynamics is expected.

The obtained conditions determine when the τ2-feedback destabilizes the steady state. Namely,
we have a < 0, |b| < |a|, and

P = a+ |b|+ |c|, (21)

with P as the destabilization parameter. The desired destabilization occurs for positive values
of P .

3.2 Derivation of the normal form

3.2.1 Equation close to the destabilization

Taking into account that perturbation parameter is given by Eq. (21), as well as Assumptions (I)
and (II), the unperturbed system (P = 0) can be written as

z′(t) = az(t) + bz (t− 1/ε)−
− (a+ |b|) eiφcz

(
t− κ/ε2

)
− dz(t)|z(t)|2 (22)

where we substituted c = (−a− |b|) eiφc in order to fulfill Eq. (21) with P = 0. We also
substituted τ1 = 1/ε and τ2 = κ/ε2. Accordingly to the assumptions (I) and (II), we have also
a < 0 and |b| < −a. Further, we consider the perturbed system

z′(t) =
(
a+ pε2

)
z(t) + bz (t− 1/ε)− (23)

− (a+ |b|) eiφcz
(
t− 1/ε2

)
− dz(t)|z(t)|2,

where P = pε2 is a small perturbation parameter. It should be pointed out that the choice of
the parameter that is perturbed (here it is a) is arbitrary, one can consider also more general
perturbations of the other parameters b, c, as well as a nonlinearity. As soon as the smallness of
the perturbation is ε2, the following derivation of the normal form remains practically the same.
The reason for the ε2 order of the perturbation is the same as in the case of the normal form for
the Hopf bifurcation [31].
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3.2.2 Multiscale ansatz

We use the following general multiscale ansatz

z(t) =
∑
j=1

εjuj (T1, T2, T3, T4, . . . ) , (24)

where Tk = εkt are different timescales. The factor ε in front indicates that we are interested in
small solutions close to the destabilization.

The main idea is to substitute the ansatz (24) into the dynamical equation (23) and split terms
with different smallness with respect to ε. Before doing this, let us calculate different terms. The
time derivative is

z′(t) = ε2D1u1 + ε3 (D2u1 +D1u2) + . . . ,

where Dk are corresponding partial derivatives ∂/∂Tk. The first and the second delayed terms
up to the order ε3 read

z

(
t− 1

ε

)
= εu1 (T1 − 1, . . . ) + ε2 (−D2u1 (T1 − 1, . . . ) + u2 (T1 − 1, . . . ))+

+ε3
[
−D3u1 (T1 − 1, . . . ) +

1

2
D2

2u1 (T1 − 1, . . . )−D2u2 (T1 − 1, . . . ) + u3 (T1 − 1, . . . )

]
z
(
t− κ

ε2

)
= εu1(T1−

κ

ε
, T2−κ, . . . )+ε2

[
−D3u1(T1 −

κ

ε
, T2 − κ, . . . ) + u2(T1 −

κ

ε
, T2 − κ, . . . )

]
+

+ε3
[
1

2
D2

33u1(T1 −
κ

ε
, T2 − κ, . . . )−D4u1(T1 −

κ

ε
, T2 − κ, . . . )−D3u2(T1 −

κ

ε
, T2 − κ, . . . ) + u3(T1 −

κ

ε
, T2 − κ, . . . )

]
,

and the nonlinear terms start form the third order in ε:

z(t)|z(t)|2 = ε3u1|u1|2 + · · · .

In the following we consider separately terms of different orders in ε.

3.2.3 Solvability conditions for the order ε terms

By substituting the obtained expansions into Eq. (23), and leaving only the terms of the lowest
order ε, we obtain

au1(T1, T2, ...) + bu1 (T1 − 1, T2, ...) = (25)

= (a+ |b|) eiφcu1(T1 − κ/ε, T2 − κ, ...).

Equation (25) can be considered as a linear discrete dynamical system (2-dimensional map)
of two variables (T1, T2), which determines the value of the function u1 in the point (T1, T2)
given the values of that function in the points (T1 − 1, T2) and (T1 − κ/ε, T2 − κ). The
only possible bounded solutions in such a system, due to the linearity, are solutions satisfying
u1(T1, T2, . . . ) = eiψ1u1(T1−1, T2, . . . ) and u1(T1, T2, . . . ) = eiψ2u1(T1− κ

ε
, T2−κ, . . . )

with some phases ψ1 and ψ2. By substituting it into Eq. (25), we obtain

a+ |b|e−iψ1+iφb = (a+ |b|) eiφc−iψ2 . (26)

12



Since a < 0 and |b| < a by the assumptions (I) and (II), Eq. (26) is only solvable when the
corresponding arguments are zero, thus ψ1 = φb and ψ2 = φc. Therefore, we arrive at the
conditions

u1(T1, T2) = eiφbu1(T1 − 1, T2), (27)

u1(T1, T2) = eiφcu1

(
T1 −

κ

ε
, T2 − κ

)
= (28)

= ei(φc−φb[κ/ε])u1

(
T1 −

{κ
ε

}
f
, T2 − κ

)
Here {·}f is the fractional and [·] integer parts of a number. Note that κ/ε = τ2/τ1. In the case
when the ratio of the delay times is integer

{
κ
ε

}
f = 0, the condition (28) can be simplified

u1(T1, T2) = ei(ξ−φκ/ε)u1(T1, T2 − κ).

Equations (27) and (28) are the main solvability conditions resulting from the order ε terms. In
fact, they will lead to boundary conditions for the resulting normal form equation. From another
perspective, the obtained to this order discrete dynamical system (25) is equivalent to the limiting
discrete map obtained by setting the derivative to zero. Such a limiting map is often used in the
case of one large delay [1, 32] for an approximate description of the dynamics of a delay system.
In our case, such a limiting map is neutrally stable for the unperturbed system (22).

3.2.4 Solvability conditions for the order ε2

By collecting terms of the order ε2, we obtain

D1u1 = −bD2u1 (T1 − 1, T2) +

+ (a+ |b|) eiφcD3u1(T1 −
κ

ε
, T2 − κ) + au2+

+ bu2 (T1 − 1, T2)− [a+ |b|] eiφcu2(T1 −
κ

ε
, T2 − κ).

The part of the obtained equation with the terms u2 have the same form as Eq. (25). By assum-
ing that u2 satisfies the same solvability conditions (27) and (28) as u1, the remaining terms
are

D1u1 = −bD2u1 (T1 − 1, T2) +

+ (a+ |b|) eiφcD3u1(T1 −
κ

ε
, T2 − κ).

We remind here, that the arguments T3, T4, . . . are omitted for brevity. Taking into account the
conditions (27) and (28), one can eliminate the terms with shifted arguments and obtain

D1u1 = −|b|D2u1 + (a+ |b|)D3u1. (29)
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The obtained Eq. (29) connects the derivatives D1u1, D2u1, and D3u1, i.e. a transport equa-
tion. Solutions of Eq. (29) are arbitrary functions of the form (solutions along characteristics):

u1(T1, T2, T3, T4) = Φ (T4, T1 − νT3, T2 − ν|b|T3) , (30)

where we denoted ν := (−a− |b|)−1 > 0. The new arguments are

x = T1 − νT3, y = T2 − ν|b|T3, θ = T4. (31)

We do not write here the slower variables T5, T6, . . . , since the dynamics we are interested in
are limited to T4. Summarizing the solvability conditions from the ε2 terms is given by Eq. (30).
This relation tells that there is a simple transport on the timescale ε3t, which results into the
relation (30) between the timescales. As we will see later, this transport will be responsible for
the drift in the spatiotemporal representation of the solutions of the delay system, see Sec. 3.3.

3.2.5 Solvability conditions for the order ε3

The final order, which we consider here, is ε3, and it will lead to the normal form equation of
the Ginzburg-Landau type for the function Φ(θ, x, y) introduced above by Eqs. (30)–(31). By
collecting terms of the order ε3, we obtain

D2u1+D1u2 = au3+pu1+b

{
1

2
D22u1 (T1 − 1)−D3u1 (T1 − 1)−D2u2 (T1 − 1) + u3 (T1 − 1)

}
−du1|u1|2

− (a+B) eiφc
{1
2
D33u1(T1 −

κ

ε
, T2 − κ)−D4u1(T1 −

κ

ε
, T2 − κ)−D3u2(T1 −

κ

ε
, T2 − κ)

+u3(T1 −
κ

ε
, T2 − κ)

}
The terms with u3 can be eliminated assuming the same conditions (25) as for u1 and u2.

Further, the u2 terms satisfy the transport equation (29). The remaining part contains only terms
with u1. It can be simplified using (27) and (28) by eliminating shifted arguments, leading to the
expression

− (a+ |b|)D4u1 = pu1 −D2u1 −BD3u1+ (32)

+
|b|
2
D22u1 − (a+ |b|) 1

2
D33u1 − du1|u1|2.

Now we use the properties given by Eqs. (30)–(31) and rewrite the Eq. (32) with respect to the
function Φ and new coordinates x, y, and θ:

ν−1Φθ = pΦ + ν|b|Φx −
(
1− ν|b|2

)
Φy (33)

+
ν

2
(Φxx + 2|b|Φxy + |ab|Φyy)− dΦ|Φ|2.

The obtained equation (33) is already the Ginzburg-Landau type normal form equation, which
we are aiming at. The corresponding boundary conditions follow from the ε1 solvability condi-
tions (27) and (28), which should be rewritten with respect to Φ and have the following form:

Φ(x, y, θ) = eiφbΦ (x− 1, y, θ) , (34)
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Φ(x, y, θ) = ei(φc−φb[
κ
ε ])Φ

(
x−

{κ
ε

}
f
, y − κ, θ

)
. (35)

In the case when the ration τ2/τ1 is integer, and, hence
{
κ
ε

}
f = 0, the second condition (35)

reduces to
Φ(x, y, θ) = ei(φc−φbτ2/τ1)Φ(x, y − κ, θ).

3.2.6 Summary of the normal form equations

Summarizing, we have obtained the normal form equation (33), which should be equipped with
the boundary conditions (34) and (35). The equation is a Ginzburg-Landau type system. The
solutions Φ of this equation are supposed to approximate the solutions of the delayed equation
(23), with the following relation between the solutions:

z(t) = εΦ
(
ε4t, εt− νε3t, ε2t− ν|b|ε3t

)
+ · · · . (36)

The relation (36) follows directly from Eqs. (24) and (30). Note that the temporal variable θ =
ε4t of the function Φ is the slowest timescale. This means, that the typical Ginzburg-Landau
dynamics given by the temporal changes accordingly to dynamical Eq. (33) will be visible on
the timescales ∼ τ 4 = 1/ε4 in the dynamics of the delay systems. We will call the variable
θ pseudo-time. The two other variables x and y are scales T1 = εt and T2 = ε2t corrected
by a shift on the timescale T3 = ε3t. We will call these variables as pseudo-space. The first
pseudo-spatial variable is connected to the first time-delay τ1, since the change of the real time
t by an amount τ1 corresponds to the change of x by 1. Similarly, the second pseudo-spatial
variable y is connected to τ2.

Let us describe how the STR in Figs. 3 and 4 have been obtained. The spatial coordinates on the
figures are as introduced above: x = (1− νε2) εt and y = (1− ν|b|ε) ε2t. By this relation,
for any time point t , there is the corresponding point (x, y) in the pseudo-space, and the point of
the pseudo-time θ, and the value of the function Φ in this point is given by Φ(θ, x, y) := z(t)/ε.
In this way, given a solution z(t) of the delayed equation (1), one finds the value of the function
Φ on some points in the space (x(t), y(t), θ(t)) determined by (31) . If ε is small, then the
these points are densely located with the distances of the order ε, and a good approximation of
the spatio-temporal function Φ can be made. The resulting functions are plotted in Figs. 3 and
4 as a color plot for some fixed value of the pseudo-time θ. As the pseudo-time is varied, one
obtains dynamical patterns, see more details in the Supplemental Material to [25].

3.2.7 Discussion of boundary conditions

The obtained boundary condition (35) still depends on the parameter ε, although, in a non-
singular way:
– The simplest case of the periodic boundary conditions on the domain G1 = [0, 1] × [0, κ]
arise for φb = φc = 0 (real positive parameters c and b), and τ2/τ1 = j, where j is an integer
number.
– If only the assumption τ2/τ1 = j is made, then the boundary condition makes just a phase

15



Figure 7: Snapshots for the solutions of the normal form equation (37). (a) Spiral defects, pa-
rameter values: p = 250, a1 = 1.11, a2 = −1.22, a3 = 1.39, a4 = 1.11, a5 = 0.56,
d = −0.75+ i. (b) Defect turbulence, parameter values are the same except for d = −0.1+ i.
Initial values are random and close to zero.

shift on the boundaries of the domain G1.
– If no assumptions are made, the condition (35) becomes non-local, and it connects not only
the points on the boundary of the domain, but also a point inside (x = x−{κ/ε}f , y = y−κ).
In this case, it is reasonable to consider classes of systems, corresponding to the same value
of {κ/ε}f = µ < 1. Any sequence εj of the form εj = κ/(µ+ j), j = 1, 2, . . . , corresponds
to the same class of systems, which involves the points (x = x−µ, y = y−κ) as a non-local
boundary condition.

3.2.8 Reduced normal form by neglecting boundary conditions

By neglecting boundary conditions, one can eliminate the convective terms with Φx and Φy and
cross-derivative Φxy in the normal form (33) by using an appropriate coordinate transformation.
The resulting equation has a simpler form:

Φθ = pΦ + |a|−1 (Φxx + Φyy) + dΦ|Φ|2, (37)

with the real diffusion coefficient |a|−1. The dynamics of (37) is known [27, 33, 34] to possess
various phase transitions, spiral defects (e.g. for d = −0.75 + i), and defect turbulence (e.g.
for d = −0.1 + i).

We found numerically a good qualitative correspondence between the dynamics of systems (37)
and (1) [25]. As an example, we report in Fig.7a,b the results of the integration of (37) in the
cases corresponding to Fig.3 and Fig.4 respectively.
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3.3 Drift

3.3.1 Drift in a multiscale temporal dynamics

The dynamics of patterns takes place on the slow time scale ε−4, as follows from (36) and (33).
By restricting the consideration up to time scales ε−3 one observes just a drift. In order to see
this, let us introduce the uncorrected, “natural”, spatial variables x̄ = εt, ȳ = ε2t, and ū = ε3t
capturing the dynamics up to the scale ε−3. On time scales ε−3, the dynamics is described
by a two-dimensional function Φ(θ0, x, y) with a fixed θ0. Taking into account the relation (31),
we have x = x̄ − δū and y = ȳ − |b|δū, and, hence, the solution is described by (36) with
Φ(θ0, x̄ − δū, ȳ − |b|δū) meaning just a translation in the natural coordinates x̄, ȳ along the
vector Vd = (−1,−|b|). Practically, this means that the dynamics in the natural coordinates
x̄, ȳ exhibit a drift on the timescale ε−3, which is faster than the timescale ε−4 of the dynamics
given by the normal form. The corrected coordinates x and y eliminate this fast drift so that the
remaining variables are governed by the Ginzburg-Landau equation.

3.3.2 Drift and comoving Lyapunov exponents

The above mentioned drift could be determined as a consequence of the properties of the
maximal comoving Lyapunov exponent [35]. We give some details of its calculation, since it
could be employed for higher number of delays as well. The linearization of (1) in z = 0 is

ż = az + bzτ1 + czτ2 . (38)

We consider now the STR
t = σ + nτ1 +mτ2,

where σ ∈ [0, τ1), m and n are positive integers such that n = 0, 1, . . . , [τ2/τ1]. The new
coordinates are relevant to the previously introduced coordinates x̄, ȳ, and z̄, such that σ ∼
x̄/ε, n ∼ ȳ/ε, and m ∼ z̄/ε. The multiple scale ansatz in this case reads z(t) = Xn,m(σ),
and Eq. (38) rewrites as

LXn+1,m+1(σ) = bXn,m+1(σ) + cXn+1,m(σ), (39)

where L is the linear operator L = ∂σ − a. Equation (39) can be solved e.g. using the Laplace
transform, with the initial conditions X(0)

n,m(σ) = δn,1 × δ1,m × δ(σ). It is found that

Xn+1,m+1(σ) = (
bn

n!
σn) (

cm

m!
σm) (b+ c)eaσ. (40)

This expression generalizes Eq. (8) of [16].

In order to evaluate the maximal comoving Lyapunov exponent, we introduce the spherical
coordinates m = ρ cosα, n = ρ sinα cos β, σ = ρ sinα sin β, and define as usual the
maximal comoving Lyapunov exponent as

Λ(α, β) = lim
ρ→∞

log |Xn,m(σ)|
ρ

. (41)
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Figure 8: Drift in the propagation of defect structures, from the integration of (1). Parameters are
those used in Fig.1. Using the STR with the uncorrected pseudo-space variables the defects
are moving in the pseudo-time (a). The components of the (vectorial) drift can be evidenced
by plotting two successive, τ2-long (b) and τ1-long slices (c). The separations between the two
vertical dashed lines are ȳ (b) and x̄ (c) drift components respectively.

Using the Stirling approximation and after some calculations, it is found that

Λ(α, β) = a sinα sin β +
(
1 + log (|b| tan β)

)
× sinα cos β

+
(
1 + log (|c| sin β tanα)

)
× cosα . (42)

A geometrical interpretation (see Fig.8a)) can be introduced using the velocityV = (sin β tanα, cos β tanα),
along which the perturbations evolve with a multiplier eΛ(α,β). The propagation cone’s bound-
aries can be defined as the set (α, β) such that Λ(α, β) = 0. The bifurcation point, attained
when the maximum of Λ is equal to zero, is obtained at V = V0 = ( −1

a+|b| ,
−|b|
a+|b|) = δVd,

corresponding to (α0, β0) = (tan−1(

√
1+|b|2
a+|b| ), tan−1( 1

|b|)).

The components of the vectorial drift can be shown in their effects in shifting the time series
at the corresponding scales; we plot in Fig.8b,c such quantities along the uncorrected ȳ and x̄
variables respectively.

The above result (42) extends the standard linear stability analysis by indicating the direction
along which the destabilization takes place. We remark that, since for an arbitrary parameters
choice the angles are generically nonzero and bounded below π/2, the disturbances always
propagate with a drift. We notice how the comoving exponent diverges logarithmically close to
the axis α = 0 and β = 0, i.e. istantaneous propagations are forbidden. In the opposite limit,
α → π/2 (resp. β → π/2), Λ approaches the value for the single delay case c = 0 (b = 0).
Finally when both α, β → π/2 (infinite velocity), Λ = a and the dynamics is governed by the
local term as expected.
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Figure 9: Temporal series from system (1) for different values of the delays. The parameters
used are those of Fig.2. Left column: timeseries of |z| with amplitude rescaled by τ1, for increas-
ing values of τ1 (from top to bottom: τ1 = 3, 5, 8, 15). Time is expressed in units of τ2. Right:
maximum and minimum of the amplitude |z| (a) and of the rescaled amplitude |z|/ε = |z|τ1

(b), evaluated after a transient.

4 FROM SMALL TO LARGE DELAYS

For large delays, the normal form (33) seems to reproduce the dynamics of the delayed system
(1). However, for smaller delays, differences between the two models appear and become more
and more relevant. The effects, related to the finiteness of the delays involved, are similar to the
(finite) size effects observed in spatially extended systems. We can estimate those effects by
evaluating the convergence of behaviors and/or statistical and dynamical indicators when de-
creasing the delay values. A transition is expected, where the finite size results are significantly
different (or scale differently) from the asymptotic values (or behaviors).

We report in Fig. 9 the dynamics of Eq. (1) for increasing values of τ1 = ε−1. In the left part,
we show the time-series obtained after a transient. The amplitude is rescaled and the time is
expressed in units of τ2 to compare the results. For the parameters used, the corresponding
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Figure 10: Autocorrelation functionR for |z(t)|. Dependence of the autocorrelation on the delay
τ .

normal form displays defects turbulence, as shown in Fig.7(b). In the delayed system, for τ1 &
15, time series similar to those of the CGL and defects appear. For smaller values of τ1, the
solutions converge to periodic or bounded, non-zero oscillations after a transient.

This behavior is better evidenced in the right part of Fig. 9, where we plot the maximum and
minimum of the amplitude (evaluated on a long interval after a transient) (a) and their rescaled
values (b) as a function of τ1. A transition between two regimes is clearly visible at τ1 ' 10 (ε '
0.1), above which a stationary defects turbulence behavior can be observed.

A more quantitative investigation is presented in Fig. 10, where we plot the contour lines of the
normalized autocorrelation R function of the signal |z(t)|, as a function of τ1. The shift variable
s is rescaled to τ2. As shown in the figure, the autocorrelation converges to a well-defined
structure for high values of τ1 (larger than 15), characterized by main peaks at (almost) integer
values, with satellite peaks separated by 1/τ1. Such structure changes for small values of τ1,
where the satellite peaks are modulated or disappear, indicating that the dynamical regime there
is drastically different.

As a further criterium, a statistical description has been introduced in [25]. In that work, the char-
acterization of the regimes is based on the analysis of the scaling of the amplitude distribution.

From the above analysis, it is evident that finite size (delays) effects in our system are increas-
ingly important, leading to significant differences with the asymptotical results, for ε ≥ 0.1.
While this result is specific to the case considered, we expect that a similar result can be ob-
tained for different models, in the very same way it holds for spatially extended systems.
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5 Higher number of delays

The above considerations can be applied to an arbitrary number of delays. In the general case,
we consider a dynamical system characterized by a natural timescale t0 in the absence of
feedback, with N feedback loops each with a delay τk (k = 1, ..., N). We assume a hierarchy
of magnitudes, introducing a smallness parameter ε = t0/τ1 � 1 and considering τk = t0ε

−k.
The multiple scales are then defined as Tl = εlt, l being a natural number.

In this case, we expect that {Tl, l = 1, .., N} are the "spatial" scales. The TN+1 is the scale
of the "drift"; it can be measured by means e.g. of the comoving Lyapunov exponent (on the
microscopic amplitude scales) or the autocorrelation (on the macroscopic scale) method [36].
Finally, the scale for the equivalent CGL dynamics is TN+2.

While the multiple scale expansion focuses on the dynamical role of the different timescales, the
spatio-temporal representation separates the first N timescales as geometricaly independent,
"spatial" variables.

In the general case, we consider the STR (Eq. 3), where the variables σ0, {n} and Θ are
defined by

[t/τN ] = Θ

[(t−ΘτN)/τN−1] = nN−1,

[(t−ΘτN − nN−1τN−1)/τN−2] = nN−2,

...

[(t−ΘτN − nN−1τN−1 − ...− n2τ2)/τ1] = n1,

t−ΘτN − nN−1τN−1 − ...− n1τ1 = σ0.

It is apparent that σ0 ∈ [0, τ1]. Since the pseudo-spatial variables nk can be large and are
bounded by [τk+1/τk], we define the rescaled pseudo-spatial variables S0 = σ0/(τ1/t0) and
Sk = nk/(τk+1/τk), k = 1, . . . N − 1, which are confined to the interval [0, 1], and the
pseudo-temporal variable T = Θ/(t/τN). Then we have

σ0/t0 = σ0/τ1 · τ1/t0 = S0ε
−1,

n1τ1/t0 = n1/(τ2/τ1) · (τ2/τ1) · (τ1/t0) = S1ε
−2,

...

nN−1τN−1/t0 = nN−1/(τN/τN−1) · ...(τ1/t0) = SN−1ε
−N

ΘτN/t0 = Θ/(t/τN) · (t/t0) = Tε−(N+1),

The STR hence rewrites as

t̄ = t/t0 = S0ε
−1 + S1ε

−2 + ..+ SN−1ε
−N + Tε−(N+1). (43)

The STR can now be related to the multiscale analysis: the dynamics on the timescale Tl = εlt
is visible on the coordinate l only, since the scales k < l are too fast and the k > l too slow.

The drift (over the scale TN+1) and the effective CGL dynamics (in the comoving reference
frame, with scales equal or longer than TN+2) can be visualized in the STR using a time interval
t/τN ' ε−1 and t/τN ' ε−2 respectively.
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The above definitions set the formal framework for a discussion in a general case and provide
an interpretation of the STR; however, the rigorous derivation of the normal forms or even the
interpretation of the interplay between the different time scales will have to be discussed case
by case.

6 Conclusions

We have presented a class of dynamical systems, namely, multiple, hierarchically long delayed
systems. In the case of two delays, we have shown that the complex time series obtained via
the numerical integration of a Stuart-Landau oscillator with two feedbacks are encoding, in a
suitable representation, the evolution of two-dimensional spatial patterns. The equivalent space
and temporal coordinates are related to specific time scales of the system, thus suggesting the
possibility of a multiscale approach. Accordingly, we derived a Ginzburg-Landau normal form
close to the bifurcation point: such model, in the limit of infinite size (long delays) reproduces the
observed behaviors of the delay system. The approach allows for a clear definiton of the space-
like and time-like variables in terms of the timescales of the original system. The definition
of a drift and the identification of the (pseudo) time scale where it can be observed and its
properties in terms of the maximum comoving Lyapunov exponent are also given. Moreover,
we discussed the limit of the correspondence set by finite size effects by evaluating different
qualitative and quantitative indicators. Finally, a formal framework in the general case of n delays
has been introduced and suggested as the starting point for the analysis of different models
and/or experimental setups.
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