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Abstract

Spike time-dependent plasticity is a fundamental adaptation mechanism of the nervous
system. It induces structural changes of synaptic connectivity by regulation of coupling
strengths between individual cells depending on their spiking behavior. As a biophysical
process its functioning is constantly subjected to natural fluctuations. We study theoreti-
cally the influence of noise on a microscopic level by considering only two coupled neurons.
Adopting a phase description for the neurons we derive a two-dimensional system which
describes the averaged dynamics of the coupling strengths. We show that a multistability
of several coupling configurations is possible, where some configurations are not found in
systems without noise. Intriguingly, it is possible that a strong bidirectional coupling, which
is not present in the noise-free situation, can be stabilized by the noise. This means that
increased noise, which is normally expected to desynchronize the neurons, can be the
reason for an antagonistic response of the system, which organizes itself into a state of
stronger coupling and counteracts the impact of noise. This mechanism, as well as a high
potential for multistability, is also demonstrated numerically for a coupled pair of Hodgkin-
Huxley neurons.

1 Introduction

Spike time-dependent plasticity (STDP) is an adaptive change of connections between neurons
dependent on the relative timing of their action potentials. It seems to be a key mechanism
involved in the processes of memory and learning by the nervous system. STDP was envisioned
by Hebb already in 1949 [1], and evidence for its synaptic implementation has been found during
the last decades [2–12].

For theoretical studies of neuron ensembles with adaptive coupling structure, mathematical
models of different complexity have been used, which incorporate variable coupling strengths
and exhibit different types of synchronization such as (cluster-)coherence and incoherence [13–
19]. Among those, some of the simplest models are networks of phase oscillators whose cou-
pling strengths are subjected to plasticity. A more realistic description is obtained if more com-
plex neuron models, e.g. Hodgkin-Huxley, are included as interacting elements.

Networks of phase oscillators with plasticity have been considered by several studies [13–
15, 18, 20–22]. Seliger et al. [20] investigated ensembles of phase oscillators with phase-
difference-dependent plasticity (PDDP) and examined the influence of plasticity parameters,
in particular, the rate of the adaptive dynamics. They found parameter regions where a non-
synchronized, weakly coupled regime coexists with multiple stable clustered states with en-
hanced mutual connections within each cluster. Maistrenko et al. [21] studied oscillators with
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a different type of PDDP and showed a similar phenomenon: multistability of the desynchro-
nized and partially synchronized cluster states. Clustering phenomena were also observed in
the works [15, 23, 24].

Tass and Majtanik [13] suggested to use a desynchronizing stimulation to reliably shift a neu-
ronal target population from coexisting strongly coupled and synchronized regime to weakly
coupled and desynchronized regime. Such an approach can have an important impact on the
treatment of neurological disorders characterized by abnormal neuronal synchronization like
Parkinson’s disease or tinnitus. As shown by several modeling, experimental and clinical studies
[13, 25–35], pathological neuronal connectivity and synchrony can be counteracted by a desyn-
chronizing stimulation on a long-term basis, which may lead to a significant and long-lasting
amelioration of symptoms.

A recent study by Popovych et al. [18] considered a situation where ensembles of phase oscil-
lators and spiking neurons with adaptive coupling were perturbed by an independent random
input, which is known to be a powerful method for counteracting synchronization in coupled
oscillators without STDP [36]. In neuronal networks with adaptive synapses, however, random
noise stimulation administered to a population of strongly coupled and synchronized neurons
with STDP may enhance the amount of synaptic coupling among the neurons [18]. For such
a stimulation the phenomenon of self-organized resistance to noise has been reported that is
characterized by an increase of the overall coupling and preservation of synchrony in the neu-
ronal populations with STDP in response to the growth of the noise strength [18].

In this article, we study the mechanism underlying this phenomenon in detail and investigate the
dynamics of the synaptic strengths between two coupled oscillatory neurons in the presence of
noise. We first study a model, where the neurons are described by phase oscillators, and nat-
ural fluctuations are modeled by Gaussian additive noise. Considering the situation, when the
adaptation of the coupling strengths (plasticity) occurs on a much slower timescale than the
underlying neural activity, we obtain a reduced system describing the evolution of the coupling
strengths. The analysis of the reduced equation allows us to gain a deeper, to some extent
analytical, insight into the role that noise, natural frequencies, and plasticity play for the long-
term evolution of the synaptic coupling in the case of two oscillators. In particular, we find that
multistability between different coupling regimes (unidirectional, bidirectional, and uncoupled) is
possible. We show how the multistability is mediated by the noise intensity and frequency detun-
ing. We provide an supporting analytical evidence to the observation in [18], that an increased
level of noise can stabilize bidirectional coupling and thereby strengthen the synchronization
properties of the system.

Fokker-Planck equations (FPE) for coupled phase oscillators with noise but without plasticity
have been previously studied in several publications. For instance Nakao et. al [37] derived sta-
tionary solutions for an ensemble of uncoupled oscillators with common noise and Kurebayashi
et. al [38] considered a similar scenario in the presence of a colored noise. Ly and Ermentrout
[39] derived a phase reduction for two coupled oscillators with noise. These studies rely on
FPEs for the phase differences of two oscillators, which, for the uncoupled case, allows infer-
ences about the dynamics of a large ensemble [37, 38].

In the second part of the paper, we consider a more realistic model of two interacting spiking
Hodgkin-Huxley (HH) neurons, where synaptic weights are governed by STDP. The neurons are
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Figure 1: Schematic representation of the model, see Eq. (1).

perturbed by an independent random excitatory synaptic input. For this model the update rule
for the synaptic weights is based on the relative spike timing rather than the phase difference as
for the phase oscillator model and the random perturbations take the form of excitatory synaptic
input generated by a spike train with Gaussian distribution rather than Gaussian noise. In spite
of the different update rule and the different type of random perturbations, HH neurons and
phase oscillators demonstrate much similarity in the dynamics of coupling when parameters
vary. In particular, we observed a noise-induced emergence of bidirectional coupling and a
multistability of different coupling regimes in both models. These results are also in accordance
with Ref. [18] which showed that the emerging coupling structure in a network of HH neurons is
well resembled by the emerging structure in a network of phase oscillators.

The paper is organized as follows. Section 2 introduces the phase model. In Secs 3 and 4
we derive reduced dynamical equations for slowly changing coupling strengths. Section 5 is
devoted to the study of the derived system for the coupling strengths. Two coupled HH neurons
are considered in Secs. 6 and 7, and Sec. 8 gives final conclusions.

2 The model equations

2.1 Phase dynamics

As a simple model for a pair of mutually coupled neurons we consider two phase oscillators
ϑ1(t) and ϑ2(t) with natural frequencies ω1 and ω2, coupled via a 2π-periodic coupling function
g and coupling weights w1 and w2. Further, we consider natural fluctuations in the form of
independent Wiener processes W1 and W2 which act on the dynamics with the intensity

√
µ.

The corresponding stochastic differential equations [40] are given by

dϑ1 = [ω1 + w1g (ϑ2 − ϑ1)] dt+
√
µdW1,

dϑ2 = [ω2 + w2g (ϑ1 − ϑ2)] dt+
√
µdW2,

(1)

see Fig. 1. From the system of two coupled phase oscillators (1) we obtain the equation for the
phase difference ϕ (t) = ϑ2 (t)− ϑ1 (t) ∈ [0, 2π):

dϕ = [∆ω + w2g (−ϕ)− w1g (ϕ)] dt+
√

2µdW, (2)

with ∆ω = ω2 − ω1 and W = (W2 −W1)/
√

2.
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In this work we are interested in the combined effects of noise and synaptic plasticity. This
means, the coupling weights w1,2 = w1,2(t) change in time depending on the dynamics of
the phases ϑ1,2(t). One common modeling assumption is that the change of w1,2(t) depends
continuously on the phase difference, see [15, 20, 21, 41, 42]. This leads to dynamical equations
for w1,2, which take the form

ẇi(t) = Pi(ϕ(t)), (3)

with some functions Pi(·) governing the continuous coupling update. In general these functions
are much smaller in absolute value than the functions governing the dynamics of the neurons
(2), since the plasticity update occurs on a slower time scale. We refer to an update of the form
(3) as “phase-difference-dependent plasticity” (PDDP).

Note that if both connections between ϑ1 and ϑ2 have the same type of plasticity, we have
P1 (ϕ) = P2 (−ϕ). Several different choices for the coupling update have been used in previ-
ous studies. For instance, Aoki et. al [15, 41] considered trigonometric functions of the form

ẇ1 = ε sin (ϕ− β) ,

with a parameter β, which can be adjusted to mimic in a simple way plasticity rules occurring in
neural connections. Maistrenko et al. [21] considered a more specific function of the form

ẇ1 =

(α− w1) exp
(
ϕ
τp

)
, ϕ ∈ [−π, 0] ,

−w1 exp
(
− ϕ
τd

)
, ϕ ∈ [0, π] ,

(4)

which is a straightforward adoption of an experimentally deduced STDP rule. Some other func-
tions can be found in [20, 42]. In the following Sec. 2.2, we show how STDP can be reduced to
a PDDP rule in some situations.

2.2 PDDP versus STDP

In the course of this work we will adopt a PDDP model, but firstly we comment on the relation
between PDDP and STDP. In a model which describes an oscillatory neuron by its phase ϑ(t) ∈
[0, 2π), one can deliberately choose the point ϑ = 0 as corresponding to the moment when a
spike occurs. So let us employ this convention for each neuron of the system (1).

In the case of STDP it is assumed that the coupling strength of a connection is updated each
time, when one of the two connected neurons emits an action potential. Further, we assume
that the STDP function depends on the time difference

∆t = tpost − tpre

between the last spikes of both neurons. Here tpost is the last spike time of the post-synaptic
and tpre of the pre-synaptic neuron, cf. Fig 1. We denote the value of the corresponding change
in the coupling strength by δ∆w (∆t), where δ is a parameter determining the magnitude of
an individual update. Wherever we have to be more specific we will refer to the update function
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Figure 2: (a) Plasticity function (5) with A1 = 1, A2 = 0.5, τ1 = 0.5, and τ2 = 1.4; (b) the
corresponding PDDP dynamics for w(t) ∈ (0, wmax), see (9).

∆w(·) of the following form [2, 3, 7, 10, 43] (see Fig. 2(a))

∆w (∆t) =


∆w+ (∆t) = A1 exp

(
−∆t

τ1

)
, for ∆t > 0,

∆w− (∆t) = −A2 exp
(

∆t
τ2

)
, for ∆t < 0,

0, for ∆t = 0,

(5)

where the plasticity parameters A1, A2, τ1, and τ2 are positive.

The rule (5) implies that the synaptic strength is increased each time when the post-synaptic
neuron spikes at tpost, since the last spike of the pre-synaptic neuron was in the past and
tpre < tpost, hence ∆t > 0. Similarly, the synaptic strength is decreased each time when the
pre-synaptic neuron spikes, since tpost < tpre and ∆t < 0 at this moment. The longer the last
two spike times come apart, the less is the amount of change of the coupling strength.

From a practical point of view it can be desirable to reduce the STDP rule of the phase model
to a PDDP where the update occurs each time when ϑpost = 0 or ϑpre = 0, and the update
function depends on the phase difference ϕ = ϑpre−ϑpost ∈ [0, 2π] only. The main advantage
of the PDDP description is that it reduces the complexity of the model considerably.

In the case, when the evolution of the phase differences is slower than the phase dynamics (e.g.,
if multiple spikes occur prior to a significant change of the phase difference, or if the system is
close to a phase-locked state), this reduction is possible: One can approximate the STDP update
∆w(∆t) by an expression based on the phase difference ϕ. For instance, at the time when the
post-synaptic neuron spikes, i.e. ϑpost = 0, the spike time difference can be approximated
as ∆t ≈ ϕ/Ω, where Ω is the mean spiking frequency (e.g. frequency of the locked state).
Correspondingly, the effective update is approximated by ∆w+(∆t) ≈ ∆w+(ϕ/Ω), where we
indicate the sign of the argument by a subscript as in (5). If the pre-synaptic neuron spikes, the
(negative) spike time difference is approximately given by ∆t ≈ (ϕ−2π)/Ω and ∆w−(∆t) ≈
∆w−((ϕ− 2π)/Ω).

If the changes of coupling strengths take effect on a large time scale, that is, if the update
magnitude δ is small, it is possible to approximate the discontinuous coupling strength update
at spike times by a continuous change according to the update rate

ẇ (t) = δ
Ω

2π

[
∆w+

(ϕ
Ω

)
+ ∆w−

(
ϕ− 2π

Ω

)]
. (6)
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Here Ω/2π is the number of spikes (crossings of ϑpost = 0) per unit time, and the two sum-
mands correspond to the twofold update at spike times of the pre-synaptic and of the post-
synaptic neuron. With the plasticity function (5), we obtain the update

ẇ (t) =
δΩ

2π

[
A1 exp

(
− ϕ

Ωτ1

)
− A2 exp

(
ϕ− 2π

Ωτ2

)]
. (7)

Assuming Ω = 1 (e.g. by rescaling time or redefining the plasticity parameters) and defining
the function

h (ϕ) :=
1

2π

[
A1 exp

(
−ϕ
τ1

)
− A2 exp

(
ϕ− 2π

τ2

)]
, (8)

the corresponding continuous PDDP update rule for w1(t) in (2) reads

ẇ1 (t) = δh(ϕ). (9)

In a similar way, the equation describing the dynamics of the coupling weight w2(t) is obtained
as

ẇ2(t) = δh(2π − ϕ). (10)

Figures 2(a) and (b) compare the STDP update function (5) and the corresponding PDDP func-
tion h(ϕ). One can observe the qualitative similarity of the right part of h (for π < ϕ < 2π)
with the negative part ∆w− of (5), and the left part of h (for 0 < ϕ < π) with ∆w+. This is
because the tails of ∆w(∆t) are exponentially decreasing.

Taking into account Eqs. (9)–(10), in the following, we study the dynamics of system (2) with
PDDP rule

ẇ1 = δh (ϕ) , 0 < w1 < wmax,
ẇ2 = δh (2π − ϕ) , 0 < w2 < wmax.

(11)

To guarantee that the coupling weights remain bounded we restrict them to an interval [0, wmax].
This is achieved modeling the natural saturation of the coupling weights via the following “hard
bounds”:

ẇ1 = min{δh(ϕ), 0}, for w1 = wmax,
ẇ2 = min{δh(2π − ϕ), 0}, for w2 = wmax,

(12)

and
ẇ1 = max{δh(ϕ), 0}, for w1 = 0,

ẇ2 = max{δh(2π − ϕ), 0}, for w2 = 0.
(13)

We note that there are also other ways of introducing the saturation, such as a ”soft cut”, see
Eq. (4) or references [15, 20, 21].

3 Coexistence and switching between synchronous and desyn-
chronous states

Systems with plasticity (STDP as well as PDDP) often exhibit multistability of desynchronized
and synchronized solutions [13, 18, 21, 25]. Desynchronized states are characterized by weak
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Figure 3: Time evolution of the coupling weights and phase differences of two oscillators (2)
with the coupling function g (ϕ) = sin (ϕ) and the PDDP rule (7), see Fig. 2. Plot (a) shows a
unidirectionally coupled state with w1 ≈ wmax = 1 and w2 ≈ 0, and (b) shows the coexisting
desynchronized (and uncoupled) state with w1,2 ≈ 0. For (a) and (b) the same parameters
were used: ∆ω = 0.1, µ = 0.01, δ = 0.001, and plasticity parameters as given in Fig. 2.

coupling strengths when the neurons behave independently from each other. Synchronized or
coherent states appear when the coupling is strong, were the neurons show identical mean
frequencies, and the phase differences are bounded. Multistability appears if several different
configurations of connectivity become dynamically stable.

For instance, the uncoupled state w1,2 ≈ 0 in system (2), with PDDP (9)–(10) and cut-off (12)–
(13), will be stable if the coupling weightsw1,2 are in average depressed whenever they become
slightly positive. Since phase differences of the uncoupled system are uniformly distributed, the
average update is

〈ẇ1〉 = 〈ẇ2〉 =
δ

2π

∫ 2π

0

h (ϕ) dϕ =

=
δ

4π2

[
A1τ1

(
1− e−

2π
τ1

)
− A2τ2

(
1− e−

2π
τ2

)]
. (14)

In the case when this quantity is negative, there appears the following stabilizing (negative)
feedback: a small intermediate increase of w1 and w2 causes only a small deviation of the
phase distribution from the uniform one and therefore the average update still remains negative.
Consequently, the coupling strengths are forced to decrease to zero again.

In Fig. 3 we show typical evolutions of the phase difference ϕ (t) and coupling weights w1 (t)
and w2 (t). For noise intensity µ = 0.1, detuning ∆ω = 0.1, and sufficiently small plasticity
rate δ = 10−3, we observe two states which persist over a very long time. The first state is
characterized by a unidirectional coupling (w1, w2) ≈ (1, 0) and synchronization of the two
neurons [Fig. 3 (a)], while the second one is the uncoupled and desynchronized state with
(w1, w2) ≈ (0, 0) [Fig. 3 (b)]. Both states correspond to attractors of the deterministic system
without noise (µ = 0): a stable unidirectionally coupled state with a constant phase difference
ϕ = arcsin(∆ω/wmax) and a stable uncoupled state with small fluctuations of the coupling
weights with a magnitude δ.

Under the influence of noise, the system may leave the desynchronized state even if the average
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Figure 4: Noise-induced switching between the desynchronized (uncoupled) regime and the
unidirectionally coupled phase-locked regime. Plot (a) shows a single event for δ = 0.005 at
time t0 ≈ 900. Switch events were detected as the first time t0 for which the system reaches
a state with w1(t0) > 0.5. In (b) the mean switching time from the uncoupled state to the
unidirectionally coupled state is shown in dependence of the plasticity rate δ for µ = 0.01, 0.1,
0.2, and 0.3. Other parameters as in Fig. 3.

update (18) is negative. For the parameters as in Fig. 3 we observe switching from the uncou-
pled state to the unidirectionally coupled attracting state which is illustrated in Fig. 4(a). These
switchings occur more often with increasing δ. Figure 4 (b) shows how the mean time needed
until a switch occurs after the initialization with w1 = w2 = 0 decreases with δ for µ = 0.01,
0.1, 0.2, and 0.3. In simulations we also observed that the mean switching times grows further
with increased noise intensity µ > 0.3. Switchings from the unidirectionally coupled state back
to the uncoupled state were not observed for the depicted parameter values and the considered
simulation time.

4 Averaged model for the coupling weights dynamics

Under the assumption that the phase dynamics (11) is much faster than the changes of the
coupling due to plasticity (i.e., δ is small), it can be averaged leading to

ẇ1 = δ
∫ 2π

0
h (ϕ) % (t, ϕ;w1, w2) dϕ,

ẇ2 = δ
∫ 2π

0
h (2π − ϕ) % (t, ϕ;w1, w2) dϕ.

(15)

Here % (t, ϕ;w1, w2) is the probability density for the state of system (2) for fixed values of w1

and w2, and it satisfies the following Fokker-Planck equation (FPE) [40]:

∂t% = −∂ϕ (v (ϕ) %) + µ∂2
ϕ%, (16)

where
v (ϕ) = ∆ω + w2g (−ϕ)− w1g (ϕ) , (17)

see Eq. 2. Note that for the case of the hard bounds (12)–(13), equations (15) hold within the
domain 0 < w1 < wmax, 0 < w2 < wmax, and the boundaries should be treated separately.
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Let us further assume, that the FPE converges to some stationary distribution %s (ϕ;w1, w2)
on a faster timescale than the changes of coupling weights. As a result, we can further simplify
(15) as follows:

ẇ1 = δ
∫ 2π

0
h (ϕ) %s (ϕ;w1, w2) dϕ,

ẇ2 = δ
∫ 2π

0
h (2π − ϕ) %s (ϕ;w1, w2) dϕ.

(18)

Note that for the case of the uniform distribution %s(ϕ; 0, 0) ≡ 1/2π, equations (18) lead to the
update (14). In general, they define a planar vector field with respect to (w1, w2), describing the
slow average evolution of the coupling weights.

Let us determine the stationary distribution %s, which is the last unknown ingredient in Eq. (18).
It must satisfy Eq. (16) with ∂t%s = 0. By integration we obtain:

∂ϕ%s (ϕ) =
1

µ
v (ϕ) %s (ϕ) + C (19)

with the following periodic and normalization conditions

%s (0) = %s (2π) ,

∫ 2π

0

%s (ϕ) dϕ = 1. (20)

For brevity we have dropped the dependence of %s on w1 and w2. Equation (19) can be solved
by variation of constants formula, which yields

%s (ϕ) = e
∫ ϕ
0

1
µ
v(ψ)dψ

(
%0 + C

∫ ϕ

0

e−
∫ χ
0

1
µ
v(ψ)dψdχ

)
, (21)

where the two unknown constants %0 = %s (0) and C can be determined from (20). We find

C =
1

γ

(
1− e

1
µ
v̄
)
,

where v̄ =
∫ 2π

0
v (ϕ) dϕ,

γ =

∫ 2π

0

(∫ ϕ

0

e
∫ ϕ
χ

1
µ v(ψ)dψdχ+

∫ 2π

ϕ

e
1
µ v̄−

∫ χ
ϕ

1
µ v(ψ)dψdχ

)
dϕ,

and

%0 =
1

γ

∫ 2π

0

e
∫ 2π
χ

1
µ
v(ψ)dψdχ. (22)

Figure 5 shows some examples of %s(ϕ) for different parameters. It also demonstrates a good
matching of %s (ϕ) with the numerically calculated histograms of ϕ using (2) for fixed coupling
strength.

Together with the expression (21), which determines the distribution %s (ϕ), Eq. (18) is an ex-
plicit two-dimensional system of ordinary differential equations governing the averaged update
of the coupling weights. In the next section, we use the obtained system to study the influence
of noise and frequency detuning on the dynamics of the coupling weights.
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simulation

(a) (b)

(c) (d)

Figure 5: Panels (a) and (b): Lines show stationary distributions %s(ϕ) given by Eq. (21) in
the case of fixed unidirectional coupling w1 = 1, w2 = 0. Bars show numerically obtained
histograms from the computed phase dynamics (2). The histograms consist of 100 bins, and
are based upon data from a simulation over 10000 units of time. Panels (c) and (d): Stationary
distributions %s for different noise intensities µ (black lines) and fixed unidirectional coupling.
The red line indicates the value of the advection part v (ϕ) of the phase dynamics, see (17).
In (a) and (c): results for the coupling function g (ϕ) = sin (ϕ) and parameters ∆ω = 0.1,
µ = 0.2. In (b) and (d): g (ϕ) = 0.2 sin (ϕ) + cos (2ϕ) and ∆ω = 0.2, µ = 0.2.

5 Dynamics of coupling weights for the case of sinusoidal
coupling

The obtained system (18) – (21) is quite general. It can be used for studying the dynamics of
the coupling for arbitrary plasticity rules h(ϕ) and coupling functions g(ϕ). It also incorporates
the effect of noise, which is included in the expression (21) for %s (ϕ).

In this section, we consider the specific case when the plasticity function is of the form (8)
derived from the STDP rule, and the coupling functiong (ϕ) = sinϕ as in the Kuramoto system.

Before we plot the specific bifurcation diagram, let us make some general remarks about the
properties of the system (18) – (21):

Property 1. For any odd or even coupling function g (ϕ), the admissible region Q = [0, wmax]2

of the dynamics (18) is foliated by straight lines where the vector field takes identical values.
Indeed, in this case the phase difference dynamics (2) and, hence, the function v (ϕ) in Eq. (17)
depends only on the sum w1 + w2 (for odd g (ϕ)), respectively difference w1 − w2 (for even
g (ϕ)). Consequently, the nullclines ofw1 andw2, i.e. the sets with ẇ1 = 0 and ẇ1 = 0, consist
of diagonals where the value of w1 + w2 (respectively w1 − w2) is constant and segments of
the boundary of the domain Q. As a result, if a fixed point (w∗1, w

∗
2) occurs within the interior

of the domain Q, it leads to a line of fixed points corresponding to w1 + w2 = w∗1 + w∗2 (or
w1 − w2 = w∗1 − w∗2, respectively).

Property 2. For the considered plasticity function (8) and the coupling g (ϕ) = sinϕ we observe
numerically that ẇ1 > ẇ2 holds for ∆ω > 0. As a result, we did not observe continua of
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Figure 6: Phase portraits and bifurcation diagram for system (18) with g (ϕ) = sinϕ and h (ϕ)
as in Fig. 2. (a), (c): uncoupled and bidirectionally coupled states are stable; (b): uncoupled,
unidirectionally and bidirectionally coupled states are stable; (d): uncoupled and unidirectionally
coupled states are stable; (e), (f): only the uncoupled state is stable. A bold arrow between
two phase portraits indicates that these regimes are connected by a bifurcation (solid lines in
(g)). Panel (g) shows the corresponding bifurcation diagram in the (∆ω, µ)-plane. Blue-shaded
region: parameters, for which the bidirectional coupling (w1 = w2 = wmax = 1) is stable [cf.
(a)–(c)]. Red-shaded region: parameter for which the unidirectional coupling (w1 = wmax = 1,
w2 = wmin = 0) is stable [cf. (b),(d)]. For all parameters ∆ω 6= 0 and µ, the uncoupled state
w1 = w2 = 0 is stable.

fixed points which may in principle appear when two diagonal nullclines coincide. Furthermore,
maximally one diagonal nullcline exists for each coupling strength and the uncoupled statew1 =
w2 = 0 is attracting, i.e. (14) < 0. As a consequence, all stable fixed points (w∗1, w

∗
2) are

contained in the corners of Q, see Fig. 6(a)–(f). Note that neither the noise intensity µ nor the
frequency detuning ∆ω can change the type of stability of the uncoupled state in (18).

Property 3. For an odd coupling function it is not possible that both unidirectionally coupled
states are attracting, since the vector field takes the same values in the vicinity of the points
(w1, w2) = (wmax, 0) and (w1, w2) = (0, wmax) and therefore the stability of one unidi-
rectionally coupled state implies the instability of its counterpart. However, it is possible that,
besides the uncoupled state, either one unidirectionally coupled state or the bidirectionally cou-
pled state or both of them are stable at the same time [Fig. 6(a)-(f)].

Panel (g) of Fig. 6 shows the a bifurcation diagram in the (µ,∆ω)-plane for system (18) with
g (ϕ) = sinϕ. The stability regions of the bidirectionally coupled state w1 = w2 = wmax and
the unidirectionally coupled state (w1, w2) = (wmax, 0) are indicated. The letters (a)–(f) refer
to the different cases for the flow as depicted in the corresponding panels. The parameter region
where the bidirectionally coupled state is stable is shaded in blue, and the stability regions of the
unidirectionally coupled state is shaded in red. For each state there exist two bifurcation lines,
which can bound the stability region. Each line denotes a set of parameters where one of the
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Figure 7: Three realizations of the stochastic system (1) with (8)–(10) for the case (c) in Fig. 6
(∆ω = 0.05, µ = 1.5).

components of the vector field, ẇ1 or ẇ2, changes its sign. Consider, for example, ∆ω = 0.1
and µ = 2.5 (region (f)), then the bidirectionally coupled state is unstable since ẇ1 < 0 and
ẇ2 < 0, that is, both coupling weights decrease. If we decrease the noise intensity to µ = 1.5
(region (c)) both blue lines are crossed which indicate that ẇ1 and ẇ2 changed their sign at the
bidirectionally coupled state. Hence, at µ = 1.5 and close to the bidirectionally coupled state,
the direction of the flow is now ẇ1 > 0 and ẇ2 > 0, and it points towards (wmax, wmax). Since
the coupling weights are bounded by wmax they get ’trapped’ in the corner w1 = w2 = wmax.
The shaded blue region summarizes all parameter values where bidirectional coupling is stable
(regions (a)–(c)). Similarly, the unidirectionally coupled state w1 = wmax, w2 = 0, is stable if
ẇ1 > 0 and ẇ2 < 0, and the system can be attracted to the corresponding corner of Q. The
parameter region where this is the case is shaded in red (regions (b) and (d)). As mentioned
above, in addition to the considered states, the uncoupled state with w1 = w2 = 0 is stable
independently on µ and ∆ω.

One may notice that the bifurcation curves of unidirectional and bidirectional coupling in Fig. 6(g)
are rescaled copies of each other. This is due to an additional symmetry which is inherent to
Eq. (16) independent of g (ϕ) being even or odd. In fact, the rescaling

(w1, w2) 7→ (cw1, cw2) , c > 0, (23)

of the coupling weights is equivalent to the simultaneous rescaling of time, frequency detuning
and noise intensity as

(t,∆ω, µ) 7→
(
ct,

∆ω

c
,
µ

c

)
. (24)

This means that a weakly coupled pair of neurons may be equally conceived as a strongly
coupled pair with large detuning and high noise intensity.

In the case of an odd coupling g (ϕ) each of the bifurcation curves contains qualitative infor-
mation about the whole vector field. This means for arbitrary values of µ, ∆ω, and w1 + w2 =
cwmax we can determine the value of the vector field (ẇ1, ẇ2) since it coincides with its value
at (µ′,∆ω′) = (µ/c,∆ω/c) for, e.g., w1 + w2 = wmax.

Figure 7 illustrates three trajectories of the original stochastic system (1) starting at the point
(w1(0), w2(0)) = (0.6, 0.92), where ẇ1 = −ẇ2. This point lies close to a separatrix in the
system (18), which bounds the basins of the uncoupled and the bidirectionally coupled state.
It is the stable manifold of the unstable fixed point at the intersection of {ẇ2 = 0} with the
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boundary of the phase space Q. For trajectories of the stochastic system which start near this
separatrix it is possible to end in both attractors either via a rather direct transition or via a longer
transition which spends some time near the seperatrix and the unstable fixed point. The three
shown realizations illustrate these possible behaviors.

The most remarkable observation from the diagram in Fig. 6(g) is that it shows how an in-
creasing noise intensity may lead to a stabilization of a more strongly coupled state. Thereby
the noise indirectly enhances the synchronization properties of the system which is somewhat
counter-intuitive. This phenomenon was first reported in [18] where is was called self-organized
noise resistance.

The simultaneous stability of the uncoupled and the unidirectionally coupled regimes, which can
be observed for vanishing noise intensity µ and finite frequency detuning ∆ω, generalizes to
the case of hierarchical coupling which was found to be stable for ensembles of many coupled
neurons as well [18, 21].

6 Two Hodgkin-Huxley neurons

In this section we consider a system of two interacting Hodgkin-Huxley (HH) neurons [44, 45]

CV̇1,2 = I1,2 − gNam3
1,2h1,2(V1,2 − VNa)

−gKn4
1,2(V1,2 − VK)− gl(V1,2 − Vl)

+0.5(Vr − V1,2)w1,2s2,1 + I input
1,2 ,

ṁ1,2 = αm(V1,2)(1−m1,2)− βm(V1,2)m1,2, (25)

ḣ1,2 = αh(V1,2)(1− h1,2)− βh(V1,2)h1,2,

ṅ1,2 = αn(V1,2)(1− n1,2)− βn(V1,2)n1,2,

ṡ1,2 =
0.5(1− s1,2)

1 + exp(−(V1,2 + 5)/12)
− 2s1,2,

where the variables V1,2 model the membrane potentials of the neurons, andαm(V ) = (0.1V+
4)/[1 − exp(−0.1V − 4)], βm(V ) = 4 exp((−V − 65)/18), αh(V ) = 0.07 exp((−V −
65)/20), βh(V ) = 1/[1+exp(−0.1V −3.5)], αn(V ) = (0.01V +0.55)/[1−exp(−0.1V −
5.5)], and βn(V ) = 0.125 exp((−V − 65)/80). The neurons are excitatorily coupled (with
reversal potential Vr = 20 mV) via chemical synapses with synaptic weights w1,2 modeling the
strength of the coupling from the pre-synaptic neuron to the post-synaptic neuron, see Fig. 1.
The constant currents I1 = I − ∆I and I2 = I + ∆I with I = 11µA/cm2 control the
spiking frequencies f1,2 (number of spikes per second) of the neurons such that, for exam-
ple, f1,2 ≈ 70.71 Hz for ∆I = 0µA/cm2, and f1 ≈ 70.44 Hz and f2 ≈ 70.99 Hz for
∆I = 0.12µA/cm2. Other parameters C = 1µF/cm2, VNa = 50 mV, VK = −77 mV,
Vl = −54.4 mV, gNa = 120 mS/cm2, gK = 36 mS/cm2, and gl = 0.3 mS/cm2.
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The excitatory synaptic input current I input
i , i = 1, 2, reads

I input
i (t) = µ(Vr − Vi(t))

∑
τi,k<t

α(t− τi,k)e−α(t−τi,k). (26)

The α-train in Eq. (26) models the synaptic activity reflecting a pulsatile synaptic input received
by neuron i at times τi,k with the length of inter-pulse intervals ∆τ i,k = τi,k+1 − τi,k ≥ 0
independently drawn from a Gaussian distribution with mean 〈∆τi,k〉 = 14 ms and standard
deviation 4 ms, and α = 24/〈∆τi,k〉. The mean time scale of such an input approximately
equals the mean period of the coupling- and input-free neurons (25), and each neuron receives
an independent random synaptic input of intensity µ, which does not significantly perturb its
natural spiking frequency.

The neural ensemble (25) is equipped with STDP, where the synaptic weights wi = wi(t) are
functions of time and updated as wi → wi + δ∆w(∆t) according to the STDP function (5)
with parameters A1 = 1, A2 = 0.5, τ = 1.8, τ2 = 6, and δ = 0.0005. The synaptic weights
wi are confined to the interval [wmin, wmax] = [0, 0.5] by setting wi to wmin as soon as it is
depressed to a lower value than wmin via STDP or, respectively, to wmax if it is potentiated over
this value.

To illustrate the noise-induced dynamics of the synaptic weights for the HH neurons (25), we
scan the parameter space (∆I, µ) for possible regimes and summarize the results in Fig. 8.
To numerically address the stability of the above coupling regimes we simulate the HH neurons
(25) during 2000 seconds (the time in Eq. (25) is in milliseconds) and check whether the trajec-
tory escapes from a given coupling regime. In such a way the stability regions were obtained,
which are illustrated in Fig. 8(a) with smoothed boundaries. We found that following coupling
configurations can be stabilized by the random input:

Full bidirectional coupling (w1, w2) ≈ (0.5, 0.5). This regime can be observed for parameters
from the blue shaded domain in Fig. 8(a).

Unidirectional coupling (w1, w2) ≈ (0.5, 0.0). This regime can be observed for parameters
from the red shaded domain in Fig. 8(a). In this regime the fast neuron 2 drives the slow neuron
1, and coupling in the opposite direction vanishes. Such a coupling configuration can also be
stable for the input-free (µ = 0) system (25).

Inverse unidirectional coupling (w1, w2) ≈ (0.0, 0.5). This regime can be observed for param-
eters from the green shaded domain in Fig. 8(a), containing parameter values with large random
perturbations and moderate frequency detuning.

Uncoupled state (w1, w2) ≈ (0.0, 0.0). This regime can be observed for parameters from the
gray shaded domain in Fig. 8(a), i.e., for sufficiently large random perturbations but as well for
small random perturbations if the detuning ∆I is sufficiently large. Such a coupling configuration
can also be stable for the input-free (µ = 0) system (25).

Note that there exists a white region in Fig. 8(a), where none of the above states can be found.
This is because in this region the observed mean value 〈w2〉 takes intermediate values between
wmin = 0.0 and wmax = 0.5. Its continuous dependence on the parameters corresponds to
the continuous color-gradient in Fig. 8(b), where the value of 〈w2〉 is color-encoded for coupling
configurations with w1 ≈ 0.5. In the red region of Fig. 8(b) 〈w2〉 reaches its maximal value, i.e.,
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Figure 8: Noise-induced coupling regimes of two interacting HH neurons (25) with random input
versus parameters ∆I and µ. (a) The shaded domains correspond to parameter regions where
different coupling configurations are stable. The stability region of the unidirectional coupling
(w1, w2) ≈ (0.5, 0.0) is shaded in red, and the bidirectional coupling (w1, w2) ≈ (0.5, 0.5)
in blue as in Fig. 6(g). The uncoupled state (w1, w2) ≈ (0.0, 0.0) is stable in the gray shaded
region, and the stability region of the inverse unidirectional coupling (w1, w2) ≈ (0.0, 0.5) is
indicated by green shading. The level curve 〈w2〉 = 0.25 with w1 ≈ 0.5 is depicted by blue
dashed curve. The vertical magenta dashed lines indicate cross sections of the parameter plane
used in (c)–(e) and 9. (b) The values of the time-averaged synaptic weight 〈w2〉 observed in a
stable configurations with w1 ≈ 0.5 are encoded in color.
Plots (c)–(e) showthe mean switching time of (c) uncoupled state, (d) inverse unidirectional cou-
pling, and (e) bidirectional and unidirectional coupling versus input intensity µ for two values of
the parameter detuning ∆I as indicated in the plots (magenta dashed lines in (a)). The vertical
dashed lines indicate values of µ on the border of stability domains (i.e., the intersections of the
vertical magenta dashed lines in (a) with the borders of the corresponding stability regions). In
plot (e) the value µ = 0.049 of the intersection of the vertical magenta dashed line ∆I = 0.05
with the level curve 〈w2〉 = 0.25 is indicated by black dashed line instead. The insets show plots
in linear-log scale. The mean switching time was obtained by averaging over 200 trajectories
initiated at the corresponding coupling regime. The maximal simulation time was 300000 s.

〈w2〉 ≈ 0.5. This domain corresponds to the bidirectional coupling (w1, w2) ≈ (0.5, 0.5) (blue
shaded domain in Fig. 8(a)), whereas the region where 〈w2〉 approaches its minimal value
〈w2〉 ≈ 0.0 corresponds to the unidirectional coupling (w1, w2) ≈ (0.5, 0.0) (red shaded
domain in Fig. 8(a)). In Sec. 7.2 we provide a more detailed illustration of this phenomenon,
which is not observed for the phase oscillators with sinusoidal coupling as considered in Sec. 5.

As discussed for the phase oscillators, the random input may force the system to escape from
a stable state and to switch to a different coupling regime, see Fig. 4. For the above coupling
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regimes we also performed a more detailed analysis (see below) for two fixed values of the
parameter detuning ∆I = 0.05 and ∆I = 0.1 indicated by magenta dashed lines in Fig. 8(a).

As follows from Fig. 8, the uncoupled state (w1, w2) ≈ (0, 0) is unstable if the input intensity
µ < 0.082 for ∆I = 0.05 or if µ ∈ (0.012, 0.087) for ∆I = 0.1 (i.e., in the complement of the
gray domain in Fig. 8(a)). For such parameter values the trajectory escapes from the uncoupled
state and switches to another coupling regime in a relatively short time ranging, for example,
from 27 s (at µ = 0) to 30000 s (at µ = 0.082) for ∆I = 0.05 in average, see Fig. 8(c)
(black circles), where the border value µ = 0.082 is indicated by vertical black dashed line.
The situation is similar for ∆I = 0.1, where the mean switching time in the instability interval
for the uncoupled state can be as small as 113s (at µ = 0.038) in average, see Fig. 8(c) (gray
triangles), where the border values µ = 0.012 and µ = 0.087 are indicated by vertical gray
dashed lines. The mean switching time increases by several orders of magnitude as parameter
µ leaves the instability intervals and quickly reaches the selected maximal simulation time of
300000 s [Fig. 8(c)]. Therefore, for parameter values within the gray domain in Fig. 8(a) the HH
neurons (25) can exhibit the uncoupled regime for very long time.

The inverse unidirectional coupling (w1, w2) ≈ (0.0, 0.5) is apparently unstable in the param-
eter domain complementary to the green shaded region in Fig. 8(a), where the trajectory can
relatively quickly escape from this regime. The mean switching time from the inverse unidirec-
tional coupling is shown in Fig. 8(d) versus µ for ∆I = 0.05 and 0.1, where the border values
of µ of the green shaded region from Fig. 8(a) are indicated by vertical dashed lines. On the
other hand, for parameter values from the stability region [Fig. 8(a), green shaded region], the
mean switching time gets significantly larger [Fig. 8(d)] such that the HH neurons exhibit this
coupling regime for long time in spite of relatively strong random perturbations.

The mean switching time for bidirectional coupling (w1, w2) ≈ (0.5, 0.5) and unidirectional
coupling (w1, w2) ≈ (0.5, 0.0) demonstrates similar rapid growth and exceeds the selected
maximal simulation time [Fig. 8(e)] as parameters enter to the stability regions depicted by blue
and red shaded domains, respectively, in Fig. 8(a). As mentioned above, for small values of the
input intensity µ, there is a gradual transition between these coupling regimes where the mean
synaptic weight 〈w2〉 can attain intermediate values between wmin = 0.0 and wmax = 0.5,
see Figs. 8(a) (white region) and 8(b). We therefore indicate the intersection value µ = 0.049
of the line ∆I = 0.05 [Figs. 8(a), left vertical magenta dashed line] with the intermediate level
curve 〈w2〉 = 0.25 by a vertical black dashed line in Fig. 8(e).

7 Diversity of states in HH neurons

In the following we highlight two aspects of the HH dynamics which were not observed for
phase oscillators with sinusoidal coupling as studied in Sec. 5. Firstly we take a closer look
at the multistability in the HH dynamics and subsequently we explain the presence of a stable
configuration where w2 takes intermediate values between wmin = 0 and wmax = 0.5.
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Figure 9: (a)–(d): Basins of attraction of coexisting coupling regimes of HH neurons (25) depicted
by color in the plane of the initial synaptic weights (w1(0), w2(0)) for (a) µ = 0.1, (b) µ =
0.132, (c) µ = 0.137, and (d) µ = 0.15 and fixed ∆I = 0.05, see Fig. 8(a) (markers on the
left magenta dashed line). The corresponding coupling regimes are indicated in the plots. Black
dot and crosses in (c) indicate initial synaptic weights used for (e)–(h). Any fixed initial synaptic
weight was assigned to the basin of attraction of that coupling regime to which the most of 31
different trajectories have been attracted after skipped transient.
(e)–(h): Examples of the time courses of synaptic weights w1(t) (red curves) and w2(t) (blue
curves) in system (25) for µ = 0.137 [as in (c)], fixed initial synaptic weights (w1(0), w2(0)) =
(0.17, 0.4) [black dot in (c)], and random initial conditions for neurons’ variables. The coupling
regimes reached by the neurons after transient are indicated in the plots.

7.1 Multistability

The noise-induced coupling regimes can coexist with each other, and the HH neurons converge
to a particular state depending on the initial conditions. By varying the initial synaptic weights
w1(0) and w2(0) we calculate the basins of attractions of the above coupling regimes and plot
them in Fig. 9 for a few values of parameter µ and fixed ∆I = 0.05 indicated by crosses on the
left magenta dashed line in Fig. 8(a). As follows from Figs. 8(a) and 9, the four coupling regimes
may coexist in different combinations:

(i) Bistable regime, where uncoupled state (w1, w2) ≈ (0, 0) coexists with bidirectional cou-
pling (w1, w2) ≈ (0.5, 0.5) [Fig. 9(a)] or with unidirectional coupling (w1, w2) ≈ (0.5, 0) (not
shown).

(ii) Three coexisting coupling regimes, where uncoupled state and unidirectional coupling co-
exist with bidirectional coupling [Fig. 9(b)] or with inverse unidirectional coupling (w1, w2) ≈
(0, 0.5) [Fig. 9(d)].

(iii) All four coupling regimes may coexist [Fig. 9(c)].

Since the neurons (25) are perturbed by an independent random input, the system may con-
verge to different coupling regimes even for a fixed initial synaptic weight (w1(0), w2(0)), in
particular, for those close to the boundaries of the basins of attraction [Fig. 9]. This was re-
ported for the phase oscillators, see Fig. 6 (lower panel). To illustrate such a property for
HH neurons, we consider parameters (∆I, µ) = (0.05, 0.137), where the all four coupling
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Figure 10: Time courses of the synaptic weightsw1 andw2 in system (25) for (a) input-free case
with µ = 0 and (b) neurons perturbed by an independent random synaptic input of intensity
µ = 0.03 and different parameter mismatches ∆I as indicated in the legends. As initial state,
the uncoupled regime w1(0) = w2(0) = 0.0 was taken. Plots (c) and (d) show the time-
averaged synaptic weight 〈w2〉 in system (25) versus (c) parameter mismatch ∆I for the input-
free case µ = 0, (d) input intensity µ for different ∆I as indicated in the legend. The other
synaptic weight w1 ≈ wmax = 0.5 [cf. (a),(b)].

regimes coexist [Figs. 8(a) and 9(c)], and simulate system (25) for fixed initial synaptic weights
(w1(0), w2(0)) = (0.17, 0.4) [Fig. 9(c), black dot] and 31 different random initial conditions
for neurons’ variables. We found that 5 of such trajectories were attracted to the bidirectionally
coupled regime [Fig. 9(e)], 14 - to unidirectional coupling [Fig. 9(f)], 4 - to inverse unidirectional
coupling [Fig. 9(g)], and 8 - to uncoupled state [Fig. 9(h)]. Since the most of trajectories con-
verged to the unidirectional coupling, the considered initial synaptic weight has been assigned
to the basin of attraction of this coupling regime [Fig. 9(c)]. The probability of being attracted to
the corresponding coupling regime grows for parameters from the interior of the basins of attrac-
tion shown in Fig. 9. For example, all 31 trajectories are attracted to the bidirectional coupling
for (w1(0), w2(0)) = (0.45, 0.4), to unidirectional coupling for (w1(0), w2(0)) = (0.45, 0.1),
to inverse unidirectional coupling for (w1(0), w2(0)) = (0.05, 0.4), and to uncoupled state for
(w1(0), w2(0)) = (0.05, 0.1), see Fig. 9(c), where the mentioned initial synaptic weights are
indicated by crosses.

Note that in the case of coupled phase oscillators with sinusoidal coupling as considered in
Sec. 5 the inverse unidirectional state (w1, w2) = (0, wmax) was not observed at all. In fact,
the simultaneous stability of all four coupling configurations with w1,2 ∈ {wmin, wmax} is not
possible for odd coupling functions like sin(ϕ) since the vector field takes identical values along
the diagonals w1 − w2 ≡ const. [cf. Fig. 6 and property 3 in Sec. 5].
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Figure 11: Neuronal dynamics in system (25) for (a), (b) fixed synaptic weights (STDP is off)
(w1, w2) = (0.5, 0.5) and (w1, w2) = (0.5, 0.0), respectively, as indicated in the plots and
(c) adaptive synaptic weights (STDP is on) approaching the state (w1, w2) = (wmax, w

∗
2) with

w∗2 ≈ 0.21 due to STDP, see Fig. 10(a) for ∆I = 0.02. In plots (a) and (b) the time courses of
the membrane potentials Vj of the neurons are shown, and (c) depicts the distribution density
of the spiking time difference ∆t = tpost − tpre for the post-synaptic neuron 2 contributing
to the update of synaptic weight w2. (d) Dynamics of the average update 〈∆w2〉 (see text for
definition) for the conditions of the plots (a)-(c), as indicated in the legend. (e) Log-log plot of
〈∆w2〉 for adaptive synaptic weights (blue circles in plot (d), corresponding to conditions of plot
(c) and Fig. 10(a) for ∆I = 0.02). The black dashed line has a slope −1 and is given for
comparison. Parameters ∆I = 0.02 and µ = 0.

7.2 Intermediate values of the coupling strength w2

Another feature which is present for coupled HH neurons, but not for sinusoidally coupled phase
oscillators, is the appearance of stable intermediate values w2 ∈ [wmin, wmax], see Fig. 8. For
small parameter mismatch ∆I these intermediate values can already be found in the noise-free
case µ = 0 [Figs. 10(a) and 10(c)]. They mediate small values ofw2 ≈ 0 for large ∆I and large
(maximal) values of w2 for identical oscillators, i.e. ∆I = 0 [Fig. 10(c)], where the symmetric
bidirectional coupling is stable also in the input-free case. The intermediate values of w2 extend
to the two-parameter plane (∆I, µ) for finite noise intensity µ > 0 [Figs. 10(b) and 10(d)]. In
this section we consider the emergence of intermediate values of w2 for the cases µ = 0 and
µ > 0.

Let us first turn the STDP off and fix the couplingw1 = wmax = 0.5 andw2 = 0 orw2 = wmax
for ∆I = 0.02 and µ = 0. We find that for both coupling cases the neurons are well locked
to each other, where the time lag between spikes is well separated from zero [Fig. 11(a),(b)].
In the case of bidirectional coupling (w1, w2) = (0.5, 0.5) the firing of the faster neuron 2
advances that of the slow neuron 1 [Fig. 11(a)]. In the case of unidirectional coupling (w1, w2) =
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Figure 12: Impact of the random input on the neuronal dynamics of system (25). (a) Distri-
bution densities of the spiking time difference ∆t = tpost − tpre for the post-synaptic neu-
ron 2 contributing to the update of synaptic weight w2 for the fixed coupling (STDP is off)
(w1, w2) = (0.5, 0) (blue histogram) and (w1, w2) = (0.5, 0.5) (red hatched histogram)
and input intensity µ = 0.03. The distribution of ∆t for (w1, w2) = (0.5, 0) and vanishing in-
put (µ = 0) is depicted by black filled histogram (scaling on the right vertical axis). (c) Dynamics
of the average update 〈∆w2〉 for the two conditions of plot (a) with random input and fixed cou-
pling (blue squares and red triangles) and adaptive synaptic weights (green circles) as indicated
in the legend. (d) Log-log plot of 〈∆w2〉 for the case when STDP is on (green circles in plot (d),
corresponding to conditions of Fig. 10(c) for ∆I = 0.04). The black dashed line has a slope−1
and is given for comparison. (b) Distribution density of ∆t for adaptive synaptic weights (STDP
on), where (w1, w2) fluctuates around (wmax, w

∗
2) with w∗2 ≈ 0.2 [Fig. 10(c) for ∆I = 0.04]

corresponding to the case depicted by green circles in plots (c) and (d). Parameters ∆I = 0.04
and µ = 0.03.

(0.5, 0.0), where the fast neuron 2 drives the slow neuron 1, the spiking sequence is reversed
such that the spikes of fast neuron 2 follow the spikes of slow neuron 1 [Fig. 11(b)]. Such a spike
timing leads to that, due to STDP, the synaptic weight w2 must increase when starting from the
unidirectional coupling (w1, w2) = (0.5, 0.0) and decrease when starting from the bidirectional
coupling (w1, w2) = (0.5, 0.5). Indeed, the average update of w2 calculated as 〈∆w2〉 (t) =

N−1
sp

∑Nsp

j=1 ∆wj , where ∆wj is the corresponding update of w2 at j-th spike, and Nsp is
the number of spikes in the time interval [0, t], converges to 0.3 for the fixed unidirectional
coupling [Fig. 11(d), red triangles] and to −0.23 for the fixed bidirectional coupling [Fig. 11(d),
black squares]. With STDP is turned on, w2 approaches w∗2 ≈ 0.21 [Fig. 10(a)], where an
exchange between the two spiking regimes illustrated in Fig. 11(a) and (b) takes place. In this
regime of (w1, w2) = (wmax, w

∗
2) a potentiation of w2 over w∗2 leads to the spiking ordering

as in Fig. 11(a), which induces a depression of w2. On the other hand, for smaller w2 the
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spiking ordering becomes as in Fig. 11(b), which causes a potentiation of w2. The synaptic
weights slightly fluctuate around the above state [Fig. 10(a) for ∆I = 0.02], and the spiking time
difference ∆t = tpost − tpre between the post-synaptic neuron 2 and the pre-synaptic neuron
1 gets distributed around zero [Fig. 11(c)], where the neurons fire spikes in a mixed order. In
this coupling regime, the average update 〈∆w2〉 converges to zero as t−1 [Fig. 11(d),(e), blue
circles], which indicates a saturation of w2 at the intermediate value w∗2.

For a larger parameter mismatch, for instance, ∆I = 0.04, the input-free (µ = 0) neurons fire
in the same well-defined order for both fixed bidirectional and unidirectional couplings, where
the fast neuron advances the slow one. An example of the distribution density of the spiking time
difference ∆t for fixed (w1, w2) = (0.5, 0) and vanishing input is illustrated in Fig. 12(a) (black
filled histogram). We found that the average update 〈∆w2〉 converges to negative values−0.22
for (w1, w2) = (0.5, 0.5) and −0.24 for (w1, w2) = (0.5, 0.0). Therefore, due to STDP, the
input-free system (25) approaches the unidirectional coupling regime (w1, w2) = (wmax, 0)
[Fig. 10(a) for ∆I = 0.04].

With the noise input, however, the synaptic weight w2 can be potentiated. For example, for the
fixed synaptic weight (w1, w2) = (0.5, 0) and noise intensity µ = 0.03, the spiking time
difference ∆t gets broadly distributed [Fig. 12(a), blue histogram], and the average update
〈∆w2〉 of w2 becomes positive [Fig. 12(c), blue squares]. On the other hand, for the fixed
bidirectional coupling (w1, w2) = (0.5, 0.5), the random input of the same intensity leads to
such a neuronal dynamics and distribution of the spiking time difference [Fig. 12(a), red hatched
histogram] that the average update 〈∆w2〉 still remains negative [Fig. 12(c), red triangles].
Therefore, when STDP is switched on, w2 becomes positive of intermediate strength because
it will be potentiated if it approaches zero and will be depressed if it approaches wmax. For
the considered parameters, the synaptic weights were found to fluctuate around (wmax, w

∗
2)

with w∗2 = 〈w2〉 ≈ 0.2 [Fig. 10(b), green circles]. In this coupling regime, the distribution of
∆t is shown in Fig. 12(b), and the average update 〈∆w2〉 of w2 converges to zero as t−1

[Fig. 12(c),(d), green circles]. This indicates that there is no a pronounced trend in changing of
the values of w2 and its average value saturates at intermediate values.

8 Conclusion

In the first part of the paper, we developed an analytical approach to predict the slow dynam-
ics of coupling weights in a pair of coupled oscillatory neurons modeled by phase oscillators
subject to noise and STDP. Our main result is the reduction of the stochastic dynamics to a two-
dimensional system of ordinary differential equations which describe the coupling dynamics. It
is worth to mention two assumptions again. Firstly, in order to transform the STDP rule to a
globally valid PDDP-rule the relative detuning ∆ω/Ω of the natural frequencies has to be small.
Secondly, the coupling dynamics have to be slow enough to render valid the averaging of the
FPE and thereby enable us to obtain the equation (18). Under these assumptions the proposed
technique is very general and can be applied to arbitrary coupling and plasticity functions.

The numerical bifurcation analysis for an example with sinusoidal coupling and an exponential
PDDP rule revealed a possibility of multistability of the uncoupled, the unidirectionally and the
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bidirectionally coupled states and the presence of self-organized resistance to noise.

It is certain that the PDDP model yields qualitatively equivalent results in many situations though
there are some features of the STDP case which may not be captured. For instance the values
of the natural frequencies of the phase oscillators do not enter the calculations. Merely the
frequency detuning ∆ω = ω2−ω1 appears in the equations. However, the natural frequencies
do show up independently when an STDP rule is applied, i.e., the spike time differences are
taken into account for the update of the coupling strength. For instance, this is the reason why
the stability of the uncoupled state is independent on µ and ∆ω in the PDDP model, while it
may change with a variation of µ and ∆I in the Hodgkin-Huxley model [Fig. 8(a)].

The results obtained for the phase oscillators are qualitatively confirmed for a system of two
spiking Hodgkin-Huxley neurons, see Sec. 6. In particular, we show that a random indepen-
dent synaptic input leads to the emergence of bidirectional coupling between neurons, which
strengthens the overall connectivity in the system as observed for large neuronal ensembles
[18]. As for the phase oscillators, the noisy input can induce a multistability in coupled neurons
and switching between different stable coupling regimes. In the case of Hodgkin-Huxley neurons
all four different stable states (combinations of wj ∈ {0, wmax}) can coexist [cf. Fig. 9(c)], while
for the phase model with g(ϕ) = sin(ϕ) a coexistence of both unidirectionally coupled states
is impossible. Moreover, for a certain parameter range we observe for the coupled Hodgkin-
Huxley neurons that the average value of coupling strengths saturates at intermediate values,
i.e. 〈w2〉 ≈ w∗, where w∗ is neither close to zero nor to the maximal coupling strength.

Our findings demonstrate that the reported noise-induced effects are rather general phenom-
ena and take place for very different models of the intrinsic dynamics (phase oscillators or
conductance-based model neurons), plasticity rules (PDDP or STDP), coupling type (based on
the phase differences or chemical synaptic coupling), and random perturbations (noise or ran-
dom synaptic input). For analytical derivations and numerical simulations we used Gaussian
noise for random input. The results are expected to be preserved for input with independent
Poisson spike trains [18].

Our results contribute to a better understanding of stimulation-induced changes of collective
neuronal dynamics, especially of neuronal synchronization. Apart from its clinical relevance [see
Introduction], our findings might be relevant to other neuroscientific issues, e.g. for the relation
between intrinsic dynamics and stimulus responses [46–48]. We have demonstrated that the
firing pattern of a fundamental neuronal building block, two neurons connected through plastic
synapses, is not just a simple reflection of the stimulus’ properties. In fact, already in the pres-
ence of a putatively simple stimulus, uncorrelated noise, a variety of different dynamical regimes
might be present, depending on characteristic parameters intrinsic to the neurons involved. In
networks of phase oscillators with constant coupling it was shown that the response to pulsatile
stimuli may crucially depend on the coupling mechanism [49]. Hence, the interplay between
ongoing input, caused by other neurons and modulated by ongoing sensory input, and pulsatile
(sensory) stimuli may lead to a substantial variety of stimulus-induced responses as observed
experimentally [46–48]. Accordingly, in future studies one could additionally take into account
pulsatile stimuli to study the repertoire of transient stimulus-induced responses and their relation
to the initial spontaneous state.
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