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Abstract 

Motivated by recent experimental results by Glasauer (7], a ther-
modynamic theory of shape memory alloys is proposed, which includes 
not only the high temperature - pseudoelastic - behavior but also the 
low temperature range of quasiplasticity. Due to the occurance of 
three different phases - austenite and two martensitic variants - several 
cases of two-phase equilibria and a three-phase equilibrium have to be 
taken into account. Their relevance is determined by minimization of 
the total free energy and subsequently illustrated by the construction 
of phase charts. A special point of interest is the influence of interfacial 
energy effects on these phase charts, resulting in phenomena like, for 
example, the apparent violation of Gibbs' phase rule. Furthermore, 
their role in the hysteretic load-displacement behavior is discussed in 
the light of the additional quasiplastic case. 

1 Introduction 
Shape memory alloys show a strongly temperature dependent load-displace-
ment behavior, termed pseudoelastic at elevated and quasiplastic at lower 
temperatures. A diversity of experimental and theoretical research results 
can be found, for example, in the various proceedings of the International 
Conference on Martensitic Transformations (ICOMAT) [16, 5, 19, 17, 15]. 
For a general overview of the behavior and different approaches to thermo-
dynamic modeling of quasi plasticity and pseudoelasticity, see [13]. 

In both cases, one observes the occurance of hysteresis loops, connected 
with phase transitions in the underlying crystal structure. Due to its acces-
sibility in a simple tensile experiment, the pseudoelastic hysteresis has been 
the subject of detailed investigations for some years now. For example, Xu 
[11] studied its temperature dependence in the case of CuZnAl single crys-
tals, and in [6], Fu found a complex structure of load-deformation paths in 
the interior of the hysteresis. In a further experiment, he recorded the num-
ber of interfaces evolving during the phase transition [9]. These observations 
have been modeled by Huo and Muller in (6, 9] and [8], who developed a 
systematic thermodynamic theory of pseudoelasticity. 

Only recently, Glasauer [7] performed experiments in the entire tension-
compression range, which made it possible to study the complete quasiplastic 
hysteresis, including its internal structure. In [18], an extension of the ex-
isting thermodynamic theory of shape memory alloys is given to account for 
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these new observations. The main ideas of this work are reviewed in the 
present paper. 

For this purpose, the following section starts with a brief overview of the 
key aspects of Glasarier's results. 

Section 3 then recalls the fundamental concept of equilibrium thermo-
dynamics and provides the constitutive theory necessary to describe phase 
transitions. Equilibrium conditions are derived, which - in the context of 
deformation-controlled experiments - lead to the requirement for the total 
free energy of the specimen to attain a minimum. 

This minimization is performed in the first part of section 4. In con-
trast to pseudoelasticity, the occurance of three phases - austenite and two 
martensitic variants - gives rise to several possible multi-phase configura-
tions of the body. Their relevance is illustrated by the construction of phase 
charts, which resemble the temperature-composition phase diagrams of bi-
nary alloys. As in that case, they indicate the domain of control parameters 
- here temperature T and displacement D, where the corresponding config-
urations represent stable equilibrium states. In particular, the influence of 
interfacial energy on these phase charts is studied. For example, it allows for 
the existence of three-phase equilibria along line segments instead of confin-
ing them to a single point as predicted by the classical Gibbs' phase rule. 
Moreover, it leads to the observation that the phase deformations no longer 
coincide with phase boundaries as they do for vanishing interfacial energy. 
Finally, load-displacement diagrams are constructed, and the comparison of 
the pseudoelastic and quasiplastic hysteresis loops shows that interfacial en-
ergy cannot be the sole ingredient to hysteretic behavior. 

2 Experimental Observations 
In [7], Glasauer has studied the load-deformazion behavior of CuZnAl single 
crystals. With a specially designed device he was able to perform not only 
tensile experiments, but to enter· the compressive range as well. This made 
it possible to record a complete quasiplastic hysteresis, including the paths 
in its interior. Fig. 1 shows several such paths, which are the result of 
unloading upon partial yield or reloading upon partial recovery. Even though 
the behavior is not as pronounced as in the pseudoelastic case (see [ 6] for 
comparison), it shows very similar characteristics. For each internal path, 
there is a point that indicates the onset of internal yielding or recovery, 
respectively, and the connection of these points also produces a diagonal line 
like in the pseudoelastic case. 

Fig. 2 - 4 show the results of complete tensile-compressive loading cycles 
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Figure 1: Internal load-deformation paths of the quasiplastic hysteresis in a 
CuZnAl single crystal 

at different temperatures. Fig. 2 depicts the pseudoelastic behavior at high 
temperatures with two hysteresis loops, fig. 4 shows the quasiplastic hys-
teresis, and fig. 3 is recorded at an intermediate temperature, showing the 
transition between the two extremes. 

Observation of the specimen surface reveals that it is necessary to account 
for at least three phases. The tensile pseudoelastic hysteresis is connected 
with a load-induced transformation from austenite to a variant of martensite, 
oriented favorably to the direction of the applied load 1. During the compres-
sive hysteresis, we observe the formation of a symmetry-related variant, which 
- under the reversed load - is now sheared to the opposite direction as in the 
tensile case. The quasiplastic hysteresis turns out to be the consequence of 
a transformation from one martensitic variant to the other. 

Furthermore, it can be observed that all phase transitions proceed by the 
formation and annihilation of an immense number of alternating layers, thus 
causing a corresponding number of interfaces between the individual phases. 
In the pseudoelastic case, this phenomenon has been studied by Fu [9], who 
counted the number of these interfaces as a function of phase fraction, see 
fig. 5. 

Finally, it is important to note that all reported experiments have been 
performed quasistatically. In addition to this, only negligibly small relaxation 
effects have been observed [14], so that we interpret the state in the material 
as a state of - at least metastable - thermodynamic equilibrium. 

1 For an introduction to the theory of martensitic transformations, see (2, 3, 4] and [20], 
for example. 
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Figure 2: Pseudoelastic behavior of a CuZnAl single crystal in tension and 
compression f 7} 
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Figure 4: Quasiplastic hysteresis loop {7} 

3 Equilibrium Thermodynamics 
Application of the first and second law of thermodynamics to a one-dimensional 
tensile experiment yields the following thermodynamic stability criterion: 

d dTo dD - (U - ToS) :::; -S- + P- . dt - dt dt (1) 

U and S are internal energy and entropy of the botj.y under consideration. 
Dis the end displacement of the bar, Pis the load necessary to maintain it 
and T0 is the temperature at the surface of the specimen. 
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Figure 5: Number of interfaces vs. phase fraction during a complete pseu-
doelastic hysteresis loop {9} 
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Obviously, this criterion is useful if temperature and displacement are 
the quantities that are controlled in the experiment. In particular, if they 
are fixed, the combination U - T0S decreases with time until it reaches a 
stationary value in equilibrium, where the equality sign in (1) is valid. This 
implies the equilibrium condition 

U - T0S to be minimal. (2) 

It is relevant in a quasistatic experiment, because here, experimental 
observation suggests that the adjustment of equilibrium is considerably faster 
than the change in displacement. Thus, the latter is seen by the body as 
a sequence of constant levels, under which it establishes a corresponding 
sequence of equilibria. 

3.1 Availability 
For further evaluation of (2), it is necessary to specify the availability AD := 
U -T0S, which - in the context of this paper - will be subject to the following 
assumptions: 

1. The body is one-dimensional, in particular the displacement vector is 
of the form Ui = (u1(x),0, 0). 

2. The only phases occuring are the austenitic phase A and two marten-
sitic phases M+ and M_. These are the oppositely sheared twins of the 
only variant observed in a uniaxial experiment. In the one-dimensional 
picture, M+ contributes to an elongation of the bar and M_ to its 
shortening. 

3. The mass density pis assumed to be constant and equal for all three 
phases. 

4. The contribution of an individual interface to the availability is given 
by 

a tl.rbh. 

a tl.r is called interfacial energy coefficient between the phases .6. and r. 
It is a measurable quantity and- due to crystal symmetry- is the same 
for combinations A/ M+ and A/ M_. b and h are thickness and height 
of the bar, respectively. 
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Accounting for the fact that the phase transformation proceeds by the 
formation of alternating layers of different phases, we write the availability 
as sums over the individual layers and intermediate interfaces: 

AD 
bh 

N r¥ 
- L 't J p (ur -Tosr) dx + L Nt:.rat:.r, 

r a=l la Atfr r 

with r,~ E [A,M+,M-]. 

(3) 

l£ and r£ are the left- and right-hand side coordinates oflayer a in phaser. 
Nr denotes the total number of layers in this phase, and N Ar is the number 
of interfaces between ~ and r. To avoid lenghty notation, a summation 
over the three phases is introduced which is indicated by the subscript r' 
and the subscript ~ =f. r symbolizes that the corresponding summation is 
to be performed over all three possibilities of differing indices. Due to the 
constitutive quantities u = u ( E, T) and s = s ( E, T) , AD depends on the 
deformation field E(x) := 8uif 8x and the temperature field T (x) as well as 
on the distribution of the phases, characterized here by N Ar' Nr' z; and r£. 
It has to be minimized subject to the three constraints 

N r¥ 
L - Lijdx, 

r a=l la r 

N r¥ 
D - Lijdx)dx 

r a=l la 
r 

0 = 2.:Nr-1- 2.:NAr· 
r .A,t:r 

(4) 

and (5) 

(6) 

The first condition expresses the fact that the phase arrangement has to take 
place under fixed length of the bar, while the second one gives the resulting 
end displacement D as the sum of integrals over the deformation field in each 
layer. The last condition connects the number of interfaces with the number 
of layers. 

The constraints are incorporated into the functional by Lagrange multi-
pliers so that the subsequent minimization can be performed without con-

7 



straints on the expression 

+ A D-~~ ZE(x)dx) 
+ / LNr -1- L Nt:..r). 

r t:..=1=r 
(7) 

a, A and/ are the Langrange multipliers mentioned above. 

3.2 Equilibrium Conditions I 
From (7) follows the necessary condition for equilibrium 

8A~ = 0, (8) 

which is evaluated in two steps. First, the variation with respect to the 
temperature field T ( x) and the deformation field E ( x) gives2 

(a;; t -To(~; t p~h - o 
(~).-To(~i), = o. 

and (9) 

(10) 

( 9) and ( 10) represent three equations each, valid in every single layer of 
phaser. 

Assuming local equilibrium, one can further exploit (9) and (10), using 
the Gibbs equation 

(}' 
Tds = du - -dE , 

p 
(11) 

where O' is the 11-component of the stress tensor. Its application yields the 
conditions for thermal and mechanical equilibrium 

T(x) = T0 and (12) 

requiring temperature and stress to be constant throughout the bar. More-
over, if (12)2 is applied to the end of the bar, A can be identified as the load 
P. 

The resulting deformation field, however, cannot be calculated without 
further knowledge of the constitutive functions ur ( E, T) and sr ( E, T) , or -

2For a detailed discussion of the derivation, see ?? . 
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with (12)1 - the free energy density fr ( E, T). Additionally, the insertion of 
these quantities considerably simplifies the evaluation of the remaining con-
ditions for phase equilibrium. For this reason, the following section derives 
an expression for the free energy density suitable for the description of phase 
transitions. 

3.3 A Model Free Energy Density for Shape Memory 
Behavior 

The calculation of the free energy density again relies on the local validity of 
the Gibbs equation. The simplest case is the one of a linearly elastic material 
without thermal expansion obeying a generalized Hooke's law: 

(13) 
Here, the Young's modulus Eis the same for each phase and Er is the known 
stress-free transformation strain 

{ 

ET (martensite M+) 
Er = O (austenite A) 

-ET ( martensite M_) 
(14) 

If also the specific heat c is taken to be the same for each phase and inde-
pendent of temperature, the Gibbs equation in the form 

O"r dfr = -srdT + -dE 
p 

can be integrated to yield 

fr ( €, T) = 8r (T) + 2~ E ( € - Er )2 

with 
8r (T) = -cTln.!_ + c(T-TR) - s~ (T-TR) . 

TR 

(15) 

(16) 

(17) 

Thus, the free energy is given by a parabolic dependence on strain, shifted 
along the E-axis according to the phase under consideration. The functions 
8r (T) must be such that martensite is stable at low temperatures and 
austenite at high temperatures. They are adjusted by a proper choice of 
the entropy constants sf!', which is the reason that this behavior is termed 
entropic stabilization of austenite. Note that, due to crystal symmetry, s~ = 
s!!:. 

Figure 6 shows the free energy density for several different temperatures. 
The intermediate diagram, where all three minima are at the same height, 
refers to the case T2 =TR, the temperature of the reference state. 
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f (E, T) 

Figure 6: Free energy density vs. strain for three characteristic temperatures 

3.4 Equilibrium Conditions II 
From the condition (12)2 , O" (x) =canst., it follows with (13) that there are 
three different solutions for the deformation field. Depending on the phase 
at hand, it takes on the values E (x) =Er, being constant in each layer. This 
circumstance turns AD into a function of the discrete variables Er which, 
because of T ( x) = T0 , has become the total free energy F, reading 

(18) 

Note that thus the explicit dependence on Nr, lr and rr has vanished. In-
stead, upon introduction of specific quantitites, the phase distribution is 
solely given by the phase fractions 

ra 1 Nr r 

zr :=LL J dx, 
a=l za r 

10 
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and the specific free energy reads 

(20) 

Insertion of the free energy density (16) also modifies the constraints to 

1 - Lzr and (21) 
r 

D 
LzrEr. - -L r 

(22) 

The third condition is rendered superflous, because Nr does not appear 
among the list of variables anymore. 

A final remark has to be given with respect to the dependence on the 
number of interfaces N D.r. According to the present model, the first sum 
in (20), representing the bulk contribution of the phases, depends only on 
the phase fraction regardless of the number of layers and thus the number 
of interfaces. Upon minimization of f with respect to N D.r, this leads to the 
circumstance that the number of interfaces will always take on the values 
N D.r = 1 if the phases ~ and r are present. As this is not in good agreement 
with experimental observations, N D.r are dropped from the list of variables 
and rather interpreted as constitutive quantities, for which an ansatz of the 
form 

ND.r = CD.rZD.Zr (no summation) (23) 

is made. This goes back to a proposition originally made by Mi.iller [10]. It 
links the number of interfaces to the phase fraction in such a way that they 
are zero for the case of pure phase ~ or r, respectively, and run through a 
maximum inbetween. This corresponds to the results of figure 5, which also 
allow for the determination of the proportionality coefficients CD.r· 

As a conclusion of the foregoing results, the possible equilibrium states 
of a shape memory bar are obtained from the minimization of the following 
augmented free energy function 

a(1-~:zr) 
+ A ( ~ - ~ ZrEr) . 

(24) 
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4 Equilibrium States 
For the subsequent treatment, it is useful to introduce the dimensionless 
quantities 

€r -

D -

where 

Er 
ET ' D 
LET 

and 

(martensite M+) 
(austenite A) 

(martensite M_) 
A.6.r denote the dimensionless interfacial energy coefficients with 

A ·= (j .6.rC .6.r 
~r . EL (ET)2 ' 

and the augmented free energy reads 

with a and~ being the dimensionless Lagrange multipliers 

.-\ 
.-\ and .- EETbh 

a a .- E (ET)2 . 

4.1 Necessary Conditions for Equilibrium 
The resulting necessary conditions for equilibrium read 

0 (
8fA) - - ---- - A = EA - A ' 8EA T 

(al+) - _ -0 - --- - .-\ = (E+ -1)- .-\, 
8E+ T 

0 ( ~u T - ); = (€_ + l) - ); ' 
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0 (Of*) - -oz = f A - a - AEA + AAM (z+ + z_) ' (31) 
A T,er,zr#zA 

0 (Of*) - - -- oz = f+ - a- AE+ +AAMZA +A+_z_, 
+ T,er,zr#z+ 

0 (of•) - - -- oz_ = f- - a - AE_ + AAMZA + A+-Z+, 
T,er,zr#z-

1 - ZA+z++z_ and 

jj - ZAEA + Z+E+ + z_e_ . 

In (31) 1,2,3, the first three equations represent the conditions for mechani-
cal equilibrium, while (31) 4,5,6 is the one-dimensional form of those for phase 
equilibrium. Together with the last two equations - representing the con-
straints - (31) is a system for the determination of the unknown deformation 
in each phase, its phase fraction and the two Lagrange multipliers. Note that 
thermal equilibrium is already taken into account by replacing the availability 
by the free energy. 

So far, the entire treatment assumed equilibrium among all three phases. 
Even though this is the general case, there are also the cases of two-phase 
equilibrium or single-phase existence, which need to be taken into account. 
Altogether, there are seven different configurations for the body, which will 
be discussed in a systematic manner as special cases of the general system 
(31). 

4.1.1 Single-phase existence 

Austenite A: The martensite phase fractions are identically zero, z+ = 
z_ = 0, and the relevant equations for the evaluation are (31)i,4,7,8 . From 
(31)7, it follows 

ZA = 1 (32) 
3and, from (31) s, 

EA=D. (33) 

With (31) i, one concludes 
A=D, (34) 

3For readability's sake, the tildes have been omitted again so that from here on all 
quantities are understood to be dimensionless. 
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and due to (31) 4 , it is possible to identify 

(35) 

as the free enthalpy. The free energy f finally reads 

(36) 

Martensite M+ or M_: In this case, the following phase fractions vanish, 
ZA = z_ = 0 or ZA = z+ = 0, respectively. The evaluation relies on (31)2,5,7,8 
or (31)3,6,7,8 . In analogy to the previous case, (31)7 yields 

Z± = 1, 

and (31) 8 gives 
E± =D. 

From (31)2, it follows 
,,\=D=Fl, 

and due to (31 )s, it is again possible to identify 

a = j ± - O"E± = 9± . 

(37) 

(38) 

(39) 

(40) 

The upper sign is valid for the case" M+" and the lower one for" M_". As 
before, the free energy f depends on D and T, reading 

1 2 J = J ± ( E±, T) = 2 ( n =F 1) + e M (T) = f ( n, T) ( 41) 

4.1.2 Two-phase Coexistence 

M+ and M_: Here, the austenite phase fraction vanishes, ZA = 0, and 
(31)2,3,5,6,7,8 are the relevant equations for this case. From (31)2,3, one 
deducts 

E+ - €_ = 2, 

from which follows, together with (31) 5 - (31) 6 and (31) 7,8, 

1 ,,\ = 2A+- (1- D + c) . 
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The phase deformation as well as the Lagrange multiplier A are determined 
by ( 43) and (31) 2,3 to give 

E+ 1- ~A+- D (44) 
1- ~A+-

E_ -1- ~A+- D and (45) -
1- ~A+-

.\ ~A+- D. (46) -
1- ~A+-

From ( 31) 7,8, the phase fractions can be calculated, 

Z+ = D- c 1 (l D ) =- + 1 
E+ - E_ 2 1 - 2 A+-

as well as (47) 

z_ = E+ - D = ~ (1 - ~ ) ' 
. E+ - E_ 2 1 - 2 A+-

(48) 

and from (31)5,6 , one obtains the other Lagrange multiplier 

a = 9+ + A+-Z+ = 9- + A+_z_ . (49) 

Finally, the free energy of the mixture reads 

(50) 

Range of admissibility: From the condition 

O<z+<l, 

it follows with A+- <:: 2 that .this case is only admissible , when - independent 
of temperature T - the control parameter Dis in the range 

1 1 
-1+'2A+-<D<1- 2A+- . (51) 

A and M+ or A and M_: This case is characterized by z_ = 0 or z+ = 0, 
and the relevant equations are (31) 1,2,4,5,7,8 or (31) 1,3,4,6,7,8, respectively. From 
(31) 1,2 or (31) 1,3 , one calculates the relation between the phase deformations 

EA - E± = ={=1, (52) 
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and with (31) 4 - (31)s,6 and (31)7,8 it is possible to identify A as 

with 

A = ±B (T) ± AAM (l =f 2D) 
1- 2AAM 

(53) 

(54) 
Again, the upper sign is valid for" M+" and the lower one for" M_". (31) 1,2,3 
then yield the phase deformations 

±B (T) ± AAM (1 =f 2D) 
1- 2AAM 

±1 + ±B (T) ± AAM (1 =f 2D) 
1- 2AAM 

as well as - due to (31)7,8 - the phase fractions 

and 

E± - D = 1 - ±D - B (T) - AAM 
E±-EA l-2AAM 

and 

Z± = D - EA ±D - B (T) - AAM 
-

E± - EA 1 - 2AAM 

(31)s,6 serve to compute the Lagrange multiplier a: 

Finally, the free energy follows as 

f - ZAfA(E,T)+z±f±(E,T)+AAMZAZ±= 

(55) 

(56) 

(57) 

(58) 

(59) 

- f A (E, T) + Z± [!± (E, T) - !A (E, T)] + AAMZAZ± = (60) 

- ~d+eA(T)+z:t[B(T)+AAM(l-z±)]. 

Range of admissibility: The admissibility of this case is limited to 

B (T) < D < 1 + B (T) - AAM 

-l-B(T)+AAM < D < -B(T)-AAM 

assuming AAM < · 1 /2 . 
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4.1.3 Three-phase Coexistence 

The evaluation of the three-phase case requires all eight equations. (31) 1,2,3 
give 

EA = E+ - 1 = E_ + 1 . 

and from (31)s - (31)6, it follows 

1 
A= -2A+- (z+ - z_.) , 

or - together with (31) 1 and (31) 1,s -

A= ~~+- D. 
1- 2A+-

The phase deformations are calculated from (31)i,2,3 to be 

. lA 
EA - 2 +- D 

1- tA+-
1 . 

E+ - 1- 2A+- D 
1- !A+-

lA 
c = -1 + . 2 1+- D 

1- 2A+-

and from (31) 4,s,6, one obtains 

and 

(62) 

(63) 

(64) 

(65) 

a= 9A + AAM (z+ + z_) = 9+ + AAMZA + A+-z- = 9- + AAMZA + A+-Z+. 
(66) 

The phase fractions ZA, z+ and z_ are determined from (31) 4 - (31)s, (31)s 
- (31) 6 and (31)7,s: 

(67) 

and (68) 

(69) 

Insertion into the free energy finally gives 
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f A + Z+ [f + - f A] + Z_ [f- - f A] + 
+AAM (1- z+ - z_) (z+ + z_) + A+-Z+Z-

l 2 
- 2€A + eA (T) + (z+ + z_) [B (T) + AAM (l - Z+ - z_)] + 

+A+-Z+Z-. (70) 

Range of admissibility: With AAM > A+-/4, the equation for ZA (69) re-
stricts the admissible temperatures to 

(71) 

This, together with z+ > 0 und z_ > 0, then limits the end displacement D 
to the range: 

1- kA+- 1- kA+-
- [B (T) + AAM] 2AAM - kA+- < D < [B (T) + AAM] 2AAM - kA+-

(72) 
From the previous results, the values of er, zr, a and A. are known for 

each of the seven cases. However, they follow from the necessary conditions 
only, and the question remains, which of the possible configurations is the 
one prevailing in equilibrium. 

4.2 Sufficient Conditions for Equilibrium 
To answer this question, it is necessary to determine the configuration which 
- for a given set of control parameters ( D, T) - actually minimizes the free 
energy. In the case of vanishing interfacial energy, illustrative methods are 
provided by the well-known Maxwell construction and the common tangent 
construction. Unfortunately, these construction~ are no longer applicable in 
the general case. The tangents to the free energy at the points Er are not 
equal to the slope of the line given by the difference quotient anymore. In-
stead, they differ from each other by an amount that depends on the actual 
value of D, which renders the method impracticable. To circumvent this 
inconvenience, a variant of the Maxwell construction has been employed by 
Muller and Bornert [1] for the treatment of the pseudoelastic phase transi-
tion. However, this method involves a cumbersome measuring of areas, and 
moreover, the Maxwell construction does not provide any evidence on the 
minimality characteristic of the considered case. As the latter is not a prob-
lem in pseudoelasticity, it is crucial for cases with more than two possible 
phases involved. 
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For this reason, the present paper follows a different path. With the 
knowledge of the individual free energies from the previous section, it is possi-
ble to calculate the transition points from one solution to another. Graphical 
methods are only employed in order to illustrate the behavior. 

Figures 7 - 10 show plots of the seven total free energies4 as functions of 
the end displacement D for several characteristic temperatures, represented 
by the function B (T) := 8M (T) - 8A (T). The solid lines denote the single 
phases, while the phase rnixt1:1res can be identified by the following table: 

...... A/M+/M_ 
-·-·- A/M± 
--- M+/M_ 

The underlying values for the interfacial energy coefficients are AAM = 0.1 
and A+- = l/lOAAM = 0.01.5 Their ratio reflects the fact that the interfacial 
energy arises because of a misfit at the phase boundaries. Due to the differing 
lattice parameters between austenite and martensite, the misfit of such a 
combination is considerably larger than the one of two martensite variants. 
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Figure 7: Free energies for the seven possible phase configuration at low 
temperatures 

Figure 7 shows the free energies at low temperatures. Differing from the 
case without interfacial energy, where - according to the common tangent 

4Note that despite the similarity to figure 6, the following diagrams do not show the 
mass density of free energy, which is a local quantity depending on Er and T. Rather they 
illustrate the global free energy of the bar as a function of Dan T, which is the quantity 
to attain a minimum. 

5The order of magnitude of these coefficients has b~n chosen for illustrative purposes 
only. A realistic estimate based on interfacial energy coefficients for coherent interfaces 
produces a value for AAM ~ 2 · 10-6 • 
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construction - they are given by straight lines, the free energies of the phase 
mixtures here are concave parabolae. Nevertheless, for -1 + A+-/2 < D < 
l-A+-/2, the mixture M+/M_ represents the stable equilibrium, minimizing 
the total free energy in this range. 
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Figure 8: Free energies for the case of equal height of the three minima 

In figure 8, the case of equal height of all three minima is depicted. It is 
interesting to note that, for small values of IDI, it is energetically favorable for 
the bar to exist as one purely austenitic phase. This is due to the interfacial 
energy which has to be "paid" in the M+/ M_-case because, in this range, 
the number of interfaces is maximal. 
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Figure 9: Free energies for the case of intermediate temperatures 

For B (T) = 0.02 (figure 9), yet another case can be observed. In a 
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small intermediate range of IDI, the body forms a mixture A/M+ or A/M_, 
respectively. However, with increasing end displacement and thus inreasing 
number of interfaces forming, this becomes unfavorable again compared to 
the case M+/M_. 
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Figure 10: Free energies for the case high temperatures 

For high temperatures, there are no more values of D for which the mix-
ture M+/M_ minimizes the free energy, see figure 10. This is the temperature 
range of purely pseudoelastic behavior. Note that the plotted case also marks 
the disappearance of the three-phase mixture, which for no temperature rep-
resented the state of stable equilibrium, though. 

4.3 Phase Charts 
From the previous section, the energy minimizing configurations can be de-
termined for an arbitrary set of D and T. For a convenient overview, it is 
useful to assemble these results in the form of a map. This map is constructed 
by determination of those values of D which - for a given temperature - in-
dicate the equality of the free energy of two phase configurations. The lines 
thus entered into the map are called phase boundaries. 

Of particular interest in the context of this paper is the influence of inter-
facial energy on these phase boundaries, and to study this, at first the case 
of zero interfacial energy is presented in figure 11. 

From here, the regions in ( D, T)-space can be extracted, where the in-
dividual phase configurations represent the stable equilibrium state. At low 
temperatures (B (T) < 0), the pure martensite phases or a mixture of them 
are relevant, and at higher temperatures - depending on the value of D -
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Figure 11: Phase chart for a shape memory bar in a tensile experiment 
witout the influence of interfacial energies. 

either pure austenite or an austenite-martensite mixture becomes important. 
For D = 0 and B (T) = 0, there exists a point E which strongly resembles the 
eutectoidal point in the composition-temperature phase diagram of a binary 
alloy with a miscibility gap. This, together with the overall resemblence of 
the two diagrams, gives rise to a detailed discussion of the analogy in the 
thermodynamic treatment, which will be presented in a forthcoming paper. 
Note, however, that even though it is termed alloy, the shape memory bar 
in the context of this paper is treated as a one-component material. This is 
because it does not change composition in a tensile experiment and we are 
only interested in its deformation-temperature behavior. To avoid confusion, 
the paper always speaks about phase charts instead of phase diagrams in 
this context. 

Figure 12 shows the influence of interfacial energy for combinations A/ M±. 
It is evident that all neighboring regions expand at the expense of the one 
penalized by the interfacial energy. Moreover, the point E from figure 11, 
allowing for a direct transition from austenite to martensite, has developed 
into a curved line. 

This feature calls for a discussion because, at first glance, it seems to pose 
a violation of Gibbs' phase rule. This rule states that, for a one-component 
material in three phases, there should be no degree of freedom, thus confining 
the possible equilibrium states to a point. The explanation for this apparent 
contradiction is due to the fact that the phase rule in its original form has 
been derived from the equilibrium condition without interfacial energy. This 
condition requires the continuity of the chemical potential at each interface 
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Figure 12: Phase chart for a shape memory bar in a tensile experiment with 
interfacial energy only between A/M± (A1 = 0.1, A2 = 0). 

or - in the case of a one-component material - the continuity of the free 
enthalpy. Inspection of (59) for example reveals that this is no longer valid in 
the presence of interfacial energy. Instead, the continuity of the combination 

9A + AAMZ± = 9± + AAMZA 

is required so that the additional quantities zr enter the condition. In equi-
librium, these have been computed as functions of D so that the phase rule 
can still be considered valid, only now for every prescribed value of D. Thus, 
in the presence of interfacial energy, three-phase equilibrium is not confined 
to a point in the phase chart but rather is it possible to exist along a line of 
varying D. 

Figure 13 shows the picture with interfacial contribution between A/ M± 
as well as M+ / M_. Note that the order of magnitude of the coefficient A+-
has been chosen extremely large in order to stress its influence. As before, 
the domain of the phase mixtures is reduced due to the energetical penalty, 
but there is also a competition between A/M± and M+/M_, which causes a 
shift of the phase boundary in favor of A/ M± as compared to figure 12. 

Finally, the interfacial energy gives rise to yet another phenomenon. Fig-
ure 14 shows a cooling process under fixed displacement D = D* indicated 
by the arrows on the dotted line. Starting at high temperatures where the 
specimen is purely austenitic, the temperature is lowered until a state on 
the boundary between A and A/ M+ is reached. On further cooling, the 
body forms a phase mixture of which the corresponding phase deformations 
EA and E+ are drawn as dashed lines. In contrast to the case of vanishing 
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Figure 13: Phase chart for a shape memory bar in a tensile experiment with 
interfacial energy between A/M± and M+/M_ (A1 = 0.1, A2 = 0.05). 
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Figure 14: Cooling of a shape memory bar under fixed end displacement 
D=D*. 
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interfacial energy where these quantities mark the onset of the phase tran-
sition, here, they do not coincide with the phase boundaries. This feature, 
too, makes it necessary to evaluate the sufficient conditions for equilibrium 
in order to construct a phase diagram. In the case without interfacial energy, 
the phase boundaries could be determined from the knowledge of the phase 
deformations following from the necessary conditions alone. 

4.4 Load-displacement. Diagrams 
With the knowledge of the stable equilibrium configurations of the shape 
memory bar, it is possible to generate load-displacement diagrams that can 
be compared to experimental data. The load P had been identified as the 
Lagrange multiplier ,\ from (12) and is shown in figures 15 and 16 as func-
tion of D for temperatures corresponding to quasiplastic and pseudoelastic 
behavior. 

0.1 

0.075 

0.05 

0.025 p 0 

·0.025 

·0.05 

·0.075 

-0.1 
·1.5 ·1 -0.5 0 

D 
0.5 

I 
I 
I 
I 
I B(7J = · 0.01 

1.5 

Figure 15: Load-displacement diagram of a shape memory bar at low tem-
peratures ( quasiplastic behavior). 

The low temperature behavior is illustrated in figure 15. The descending 
line reflects the behavior during the phase transition, while the other two 
straight lines correspond to the elastic branches of the martensitic variants. 
One clearly recognizes the major drawback of a model that relies on the 
assumption of total equilibrium - it does not produce hysteretic behavior. 
Apparently, this behavior is the result of a state of only partial equilibrium 
in the body, reflecting metastability. Nevertheless, the model motivates the 
interpretation of the experimentally observed diagonal line in the interior of 
the hysteresis as a total equilibrium property. Furthermore, adopting the 

25 



ideas of Muller [11], one can deduct the size of the hysteresis from it. For the 
pseudoelastic case, he showed that this is determined by the coefficient of 
interfacial energy. If the interfacial energy is neglected in the treatment, the 
diagonal line becomes horizontal, which corresponds to a totally reversible 
phase transition without hysteresis. 
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Figure 16: Load-displacement diagram of a shape memory bar at high tem-
peratures (pseudoelastic behavior). 

Figure 16 gives an illustration of the high temperature behavior derived 
from the model. Again, there is no hysteresis, but, along with the preceding 
arguments, it reproduces the pseudoelastic load-deformation behavior. 

5 Discussion 
A one-dimensional model for the temperature dependent load-deformation 
behavior of shape memory alloys has been proposed in this paper. It relies 
on the assumption of total equilibrium in the body and covers the tempera-
ture range of pseudoelasticity as well as the one of quasiplasticity. The be-
havior is dictated by transitions between three different phases. This makes 
it. necessary to take seven different phase configurations of the body into 
account, for which a systematic theory of thermodynamic equilibrium is de-
veloped. Phase charts and load-displacement diagrams are generated and 
discussed. It turns out that the temperature dependence can be reproduced 
in accordance with experimental observations, but that the theory of total 
equilibrium does not provide a sufficient description of hysteretical phenom-
ena. In the pseudoelastic case, an ansatz for the interfacial energy allowed 
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for an interpretation of some characteristics of the hysteresis like size and 
internal diagonal line. Transferring these ideas to the present case, the latter 
remains valid, but the former points to a problem now. The identical lat-
tice parameters had motivated a smaller interfacial energy for a combination 
of two martensitic variants than for one of austenite and martensite. Con-
sequently, this should lead to a smaller hysteresis in the quasiplastic case. 
Experimental observations, however, show that it is approximately of the 
same order of magnitude as in the pseudoelastic case, a circumstance that 
points to yet another mechanism responsible for hysteretic behavior. 
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