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Abstract

We propose a fast method for high order approximations of the solution of n-dimensional

parabolic problems over hyper-rectangular domains in the framework of the method of approxi-

mate approximations. This approach, combined with separated representations, makes our method

effective also in very high dimensions. We report on numerical results illustrating that our formulas

are accurate and provide the predicted approximation rate 6 also in high dimensions.

1 Introduction

Multidimensional boundary value problems arise in mathematical physics, financial mathematics, biol-

ogy, chemistry and other applied fields. The computational complexity of the algorithms grows expo-

nentially in the dimension. This effect was called "curse of dimensionality"(Bellmann) and it was the

greatest impediment to solving real-world problems.

In [6] and [7], Beylkin and Mohlenkamp introduced the strategy of ßeparated representations"(also

tensor structured approximations ) which allowed to perform numerical computations in higher dimen-

sions. In recent years modern methods based on tensor product approximations have been applied

successfully (e.g. [2, 3, 5, 9, 11, 12, 13, 15] and the references therein) to some class of multidimen-

sional integral operators.

Some algorithms approximate the operator kernel by a linear combination of exponentials or Gaus-

sians leading to a tensor product approximation. Other methods are based on piecewise polynomial

approximations of a separated representation of the density. Then the integral operator applied to the

basis functions is approximated by computing a number of one-dimensional integrals.

A different method with high accuracy, which does not approximate or modify the kernel of the integral

operator, was introduced in [16] and [18] for the cubature of high dimensional Newton potential over

the full space and over half spaces. Here the integral density is approximated by basis functions

introduced in the method of approximate approximations, which provides high order semi-analytic

cubature formulas. This approach, combined with separated representations, makes the method fast

and effective also in very high dimensions. The new approach can be generalized to potentials of

other elliptic differential operators acting on densities on hyper-rectangular domains. In [17] and, more

generally, in [19], a corresponding cubature method was introduced for stationary advection-diffusion

equations, which provides very efficiently high order approximations.

In this paper we show that our approach can be extended to parabolic problems. We propose a fast

method in the framework of approximate approximations for the n−dimensional time dependent prob-

lem

∂u

∂t
− ∆xu + 2b · ∇xu + c u = f(x, t),

u(x, 0) = g(x)
(1.1)

for (x, t) ∈ R
n×R+ with R+ = [0,∞), b ∈ C

n, c ∈ C. We suppose that f and g are supported with

respect to x in a hyper-rectangle [P,Q] = {x = (x1, ..., xn) ∈ R
n : Pj ≤ xj ≤ Qj, j = 1, ..., n},
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supp f ⊆ [P,Q] × R+, supp g ⊆ [P,Q]. The solution of (1.1) can be written as [8, p. 49]

u(x, t) = H(c,b)
[P,Q] f(x, t) + P(c,b)

[P,Q] g(x, t) , (1.2)

where

P(c,b)
[P,Q]g(x, t) =

e−ct

(4π t)n/2

∫

[P,Q]

e−|x−y−2bt|2/(4t) g(y)dy , (1.3)

H(c,b)
[P,Q]f(x, t) =

t∫

0

e−csds

(4π s)n/2

∫

[P,Q]

e−|x−y−2bs|2/(4s) f(y, t − s)dy

=

t∫

0

(P(c,b)
[P,Q] f(·, s))(x, t − s)ds.

(1.4)

Our method consists in approximating the functions f and g via the basis functions introduced by ap-

proximate approximations, which are product of Gaussians and special polynomials. The action of the

potential P(c,b)
[P,Q] applied to the basis functions admits a separated representation, i.e., it is represented

as product of functions depending only on one of the space variables. Then a separated representa-

tion of the initial condition g (see (2.9)) provides a separated representation of the potential. Moreover,

the action of H(c,b)
[P,Q] on the basis functions allows for one-dimensional integral representations with

separated integrands. This construction, combined with an accurate quadrature rule as suggested in

[22] and a separated representation of the density f , provides a separated representation of the inte-

gral operator (1.4). Thus for the computation of (1.1) only one-dimensional operations are used. We

derive formulas of an arbitrary high order, fast and accurate also in high dimensions. The accuracy of

the method and the convergence orders 2, 4 and 6 are confirmed by numerical experiments.

The paper is organized as follows. We start in section 2 by describing the method in the case of second

order approximations. We then consider higher order approximations in section 3 and, for f and g
with separated representation, we derive a tensor product representation of H(c,b)

[P,Q]f and P(c,b)
[P,Q] g

which admits efficient one-dimensional operations. Finally, in section 4, we report on numerical results,

illustrating that our formulas are accurate and provide the predicted approximation rates 2, 4 and 6
also if the dimension is high.

2 Description of the method

In this section we describe the basic algorithm. First, we introduce approximate quasi-interpolants and

describe their use to approximate f and g in (1.1). Second, we show how that formulas are used to

obtain approximation formulas for the solution of (1.1). Third, for densities f and g with separated rep-

resentation, we derive a tensor product representation for the integral operators H(c,b)
[P,Q]f and P(c,b)

[P,Q]g.

2.1 Approximate quasi-interpolants

The method of approximate approximations consists in approximating the function f and g in (1.1) by
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quasi-interpolants on the rectangular grids {(hm, τ i)} and {hm}, respectively,

Mh,τf(x, t) =
1√D0Dn

∑

i∈Z

m∈Z
n

f(hm, τ i) η̃

(
t − τi

τ
√D0

)
η

(
x − hm

h
√
D

)
, (2.1)

Nhg(x) =
1√
Dn

∑

m∈Zn

g(hm) η

(
x − hm

h
√
D

)
. (2.2)

Here τ and h are the steps; D0 and D are positive fixed parameters; η̃ ∈ S(R) and η ∈ S(Rn)
are the generating functions, which belong to the Schwartz space S of smooth and rapidly decaying

functions.

We say that the generating functions fulfill the moment condition of order N0 and N , respectively, if

∫

R

η̃(t) tsdt = δ0,s, 0 ≤ s < N0;

∫

Rn

η(x)xαdx = δ0,α, 0 ≤ |α| < N. (2.3)

The main feature of the approximate quasi-interpolation is expressed in the following

Theorem 2.1. ([21, p. 34]) Suppose that the generating functions satisfy conditions (2.3). Given ε > 0
there exist D > 0 and D0 > 0 such that, for any f ∈ CL

0 (Rn × R) with L = max(N,N0)
and g ∈ CN

0 (Rn), the approximation errors of the quasi-interpolants (2.1), (2.2) can be estimated

pointwise by

|f(x, t)−Mh,τf(x, t)| ≤ c1(h
√
D)N + c2(τ

√
D0)

N0

+ ε

(
N−1∑

|α|=0

(h
√
D)|α|

α!
||∂α

xf ||L∞ +

N0−1∑

s=0

(τ
√D0)

s

s!
||∂s

t f ||L∞

)
,

|g(x)−Nhg(x)| ≤ c1(h
√
D)N + ε

N−1∑

|α|=0

(h
√
D)|α|

α!
||∂α

xg||L∞ ,

(2.4)

where the constants c1 and c2 do not depend on h, τ , D, D0.

To construct an approximate solution of (1.1) we approximate f and g such that the integrals P(c,b)
[P,Q]

and H(c,b)
[P,Q] applied to it can be computed, analytically or at least efficiently. This can be done if g in

[P,Q] and f in [P,Q] × R+ are approximated by quasi-interpolants (2.1), (2.2) with appropriately

chosen generating functions.

The functions g and f are CN with respect to x in [P,Q], but vanish for x /∈ [P,Q]. Thus the sum

1

Dn/2

∑

hm∈[P,Q]

g(hm) η

(
x − hm

h
√
D

)

approximates g only in a subdomain of [P,Q], similarly

1√D0Dn

∑

(hm,τ i)∈[P,Q]×R+

f(hm, τ i) η̃

(
t − τi

τ
√D0

)
η

(
x − hm

h
√
D

)
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approximates f only in a subdomain of [P,Q] × R+. Therefore we extend g and f into a larger

domain with preserved smoothness such that the extensions g̃ and f̃ satisfy

‖g̃‖W N
∞(Rn) ≤ C‖g‖W N

∞([P,Q]) , ‖f̃‖W L
∞(Rn×R) ≤ C‖f‖W L

∞([P,Q]×R+), C > 0 .

The quasi-interpolants of the extensions f̃ and g̃ approximate f in [P,Q] × R+ and g in [P,Q]
with the error estimate (2.4).The extensions can be done, for example, by using Hestenes reflection

principle ([14], see also [20, p. 27]). This is considered in section 4.

Since η and η̃ are smooth and of rapid decay, for any error ε > 0 one can fix r > 0, r0 > 0 and

positive parameters D and D0 such that the quasi-interpolants

M(r)
h,τf(x, t) =

1√D0Dn

∑

τi∈eΩr0τ

hm∈Ωrh

f̃(hm, τ i) η̃

(
t − τi

τ
√D0

)
η

(
x − hm

h
√
D

)
,

N (r)
h g(x) =

1

Dn/2

∑

hm∈Ωrh

g̃(hm) η

(
x − hm

h
√
D

)
,

provide the error estimates

|f(x, t) −M(r)
h,τf(x, t)| = O((h

√
D)N + (τ

√
D0)

N0) + ε ,

|g(x) −N (r)
h g(x)| = O((h

√
D)N) + ε

(2.5)

for all x ∈ [P,Q] and t ∈ [0, T ], T > 0. Here Ω̃r0τ = (−r0τ
√D0, T + r0τ

√D0, ) and Ωrh =∏n
j=1 Ij with Ij = (Pj − rh

√
D, Qj + rh

√
D).

2.2 Approximation of the solution (1.2)

Cubature formulas for (1.3) and (1.4) are derived by replacing the densities g and f with the quasi-

interpolants N (r)
h g and M(r)

h,τf . Then the sum

P(c,b)
[P,Q](N

(r)
h g)(x, t) =

1

Dn/2

∑

hm∈Ωrh

g̃(hm)
e−ct

(4πt)n/2

∫

[P,Q]

e−|x−y−2bt|2/(4 t) η

(
y − hm

h
√
D

)
dy

=
1

Dn/2

∑

hm∈Ωrh

g̃(hm)P(C,B)
[Pm,Qm]η

(
x − hm

h
√
D

,
t

h2D

)

with C = h2Dc, B = h
√
Db, Pm = (P − hm)/(h

√
D) and Qm = (Q − hm)/(h

√
D) pro-

vides an approximation of P(c,b)
[P,Q] g(x, t) in [P,Q] × [0, T ]. Similarly,

H(c,b)
[P,Q](M

(r)
h,τf)(x, t)

=
1√D0Dn

∑

τi∈eΩr0τ

hm∈Ωrh

f̃(hm, τ i)

t∫

0

η̃
(s − τi

τ
√D0

)
P(C,B)

[Pm,Qm]η
(x − hm

h
√
D

,
t − s

h2D
)
ds

approximates H(c,b)
[P,Q] f(x, t) in [P,Q] × [0, T ]. Denoting

uh,τ (x, t) = H(c,b)
[P,Q](M

(r)
h,τf)(x, t) + P(c,b)

[P,Q](N
(r)
h g)(x, t) , (2.6)

it is easy to deduce the following
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Theorem 2.2. For any ε > 0 there exist D > 0 and D0 > 0 such that uh,τ in (2.6) approximates the

solution of the Cauchy problem (1.1) with the error estimate

|u(x, t) − uh,τ (x, t)| ≤ c1,T (h
√
D)N + c2,T (τ

√
D0)

N0

+ ε

(
N−1∑

|α|=0

(h
√
D)|α|

α!

(
‖∂α

xg‖L∞ + ‖∂α
xf‖L∞

)
+

N0−1∑

s=0

(τ
√D0)

s

s!
‖∂s

t f‖L∞

)
,

for all (x, t) ∈ R
n × [0, T ]. The constants c1,T and c2,T depend only on N and N0.

Consider, for example, the generating functions η2(x) = e−|x|2/πn/2 and η̃2(t) = e−t2/
√

π. Then

the conditions of Theorem 2.1 are fulfilled with N = N0 = 2. Hence, from (2.6), at the points of the

uniform grid {(hk, τ`)},

uh,τ (hk, τ`) =
1

Dn/2

∑

hm∈Ωrh

g̃(hm)P(C,B)
[Pm,Qm] η2

(k − m√
D

,
τ`

h2D
)

+
1√

πD0Dn

∑

τi∈eΩr0τ

hm∈Ωrh

f̃(hm, τ i)

τ`∫

0

e
− (σ−τ(`−i))2

τ2D0 P(C,B)
[Pm,Qm] η2

(k − m√
D

,
σ

h2D
)

dσ .
(2.7)

It can be easily seen that from (1.3)

P(c,b)
[P,Q] η2 (x, t) = e−c t

n∏

j=1

(
φ

(bj)
Pj

(xj, t) − φ
(bj)
Qj

(xj, t)
)

(2.8)

with the analytic expression

φ
(b)
P (x, t) =

e−(x−2bt)2/(1+4t)

2
√

π
√

1 + 4t
erfc

(√
1 + 4t

4t

(
P − x − 2bt

1 + 4t

))
.

Here erfc denotes the complementary error function ([1, p. 262])

erfc(x) =
2√
π

∞∫

x

e−t2dt.

Using the idea of approximate approximations, cubature formulas for the Poisson integral (1.3) were

constructed in [21, p. 120]. However, due to the number of operations which grows exponentially in n,

these formulas are practical only for n ≤ 3.

2.3 Tensor product formulas

The computation of the convolutions in (2.7) is very efficient if the functions g̃(x) and f̃(x, t) allow a

separated representation; that is, within a prescribed accuracy ε, they can be represented as sum of

products of univariate functions

g̃(x) =
P∑

p=1

αp

n∏

j=1

g
(p)
j (xj) + O(ε) , f̃(x, t) =

P∑

p=1

βp

n∏

j=1

f
(p)
j (xj, t) + O(ε) (2.9)

5



with suitable functions g
(p)
j and f

(p)
j , chosen such that the separation rank P is small. Low-rank

separated representations have been studied for many years and various approaches have been

proposed (see [10, 2.7] and the references therein). The class of functions that can be approximated

accurately with small P is wide enough to include important examples of functions of many variables,

and so the methods are useful in practice and allow algorithms that scales linearly in n [4].

Let us denote the two sums on the right in (2.7) by Σ1 and Σ2. Then Σ1 is approximated by the product

of one-dimensional sums

Σ1 =
1

Dn/2

∑

hm∈Ωrh

g̃(hm)P(C,B)
[Pm,Qm] η2

(k − m√
D

,
τ`

h2D
)
≈ e−cτ`

Dn/2

P∑

p=1

αp

n∏

j=1

S
(p)
j (kj, τ`)

where

S
(p)
j (kj, t) =

∑

hmj∈Ij

g
(p)
j (hmj)

(
φ

(h
√
Dbj)

Pmj

(kj − mj√
D

,
t

h2D
)
− φ

(h
√
Dbj)

Qmj

(kj − mj√
D

,
t

h2D
))

.

Here we set

Pmj
=

Pj − hmj

h
√
D

, Qmj
=

Qj − hmj

h
√
D

.

The second term Σ2 involves additionally an integration

K2(hk, hm, τ`, τ i) =

τ`∫

0

e−(τ`−σ−τi)2/(τ2D0) P(C,B)
[Pm,Qm] η2

(k − m√
D

,
σ

h2D
)

dσ ,

which cannot be taken analytically. Therefore we use an efficient quadrature based on the classical

trapezoidal rule, which is exponentially converging for rapidly decaying smooth functions on the real

line (see [23, 22]). Making the substitution

σ =
τ`

2

(
1 + tanh

(π
2

sinh ξ
))

=
τ`

1 + e−π sinh ξ
, (2.10)

introduced in [22], K2 transforms to the following integral over R with doubly exponentially decaying

integrand

K2(hk, hm, τ`, τ i)

=
πτ`

2

∞∫

−∞

e−(`/(1+eπ sinh ξ)−i)2/D0 cosh ξ

1 + cosh(π sinh ξ)
P(C,B)

[Pm,Qm] η2

(k − m√
D

,
τ`

h2D(1 + e−π sinh ξ)

)
dξ .

The trapezoidal rule with step size κ gives for sufficiently large S ∈ N

K2(hk, hm, τ`, τ i) ≈ πτ`κ

2

S∑

s=−S

ωs e−(`/(1+eπ sinh(sκ))−i)2/D0 P(C,B)
[Pm,Qm] η2

(k − m√
D

,
τ`

ash2D
)

where we denote

ωs =
cosh(sκ)

1 + cosh(π sinh(sκ))
, as = 1 + e−π sinh(sκ) . (2.11)
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Then for Σ2 one gets

Σ2 ≈
τ`κ

√
π

2
√D0Dn

S∑

s=−S

ωs

∑

τi∈eΩr0τ

hm∈Ωrh

e−(`/(1+eπ sinh(sκ))−i)2/D0 f̃(hm, τ i)P(C,B)
[Pm,Qm] η2

(k − m√
D

,
τ`

ash2D
)

.

By using the separate representation (2.9) of f̃ and (2.8) we can approximate similar to Σ1

∑

hm∈Ωrh

f̃(hm, τ i)P(C,B)
[Pm,Qm] η2

(k − m√
D

,
τ`

ash2D
)
≈ e−c τ`/as

P∑

p=1

βp

n∏

j=1

T
(p)
j (kj, τ`, τ i, as),

where

T
(p)
j (kj, τ`, τ i, as) =

∑

hmj∈Ij

f
(p)
j (hmj, τ i)

×
(

φ
(h

√
Dbj)

Pmj

(kj − mj√
D

,
τ`

ash2D
)
− φ

(h
√
Dbj)

Qmj

(kj − mj√
D

,
τ`

ash2D
))

.

Thus we get the efficiently computable second order approximation (2.7) of the initial value problem

(1.1)

uh,τ (hk, τ`) ≈ e−cτ`

Dn/2

P∑

p=1

αp

n∏

j=1

S
(p)
j (kj, τ`)+

τ`κ
√

π

2
√D0Dn

S∑

s=−S

ωse
−c τ`/as

∑

τi∈eΩr0τ

e−(`/(1+eπ sinh(sκ))−i)2/D0

P∑

p=1

βp

n∏

j=1

T
(p)
j (kj, τ`, τ i, as) .

(2.12)

In the following we show that the same ideas hold also for higher order approximations.

3 High order cubature formulas

We assume that η(x) is the product of univariate basis functions of the form Gaussians times special

polynomials

η(x) =
n∏

j=1

η2M(xj); η2M(xj) =
(−1)M−1

22M−1
√

π(M − 1)!

H2M−1(xj)e
−x2

j

xj

, (3.1)

where Hk are the Hermite polynomials

Hk(x) = (−1)kex2

(
d

dx

)k

e−x2

and η̃(t) = η2M0(t). The functions η̃ and η satisfy the moment conditions of order N0 = 2M0 and

N = 2M , respectively (cf. [21, p. 56]).

To get formulas similar to (2.12) for higher order approximations, we approximate the density with

quasi-interpolants based on (3.1). We start with the following

7



Theorem 3.1. Let M ≥ 1. The integral (1.3) applied to the generating function
∏n

j=1 η2M(xj) in

(3.1) can be written as

(P(c,b)
[P,Q](

n∏

j=1

η2M(·)))(x, t) = e−c t

n∏

j=1

(ΦM(4t, xj − 2bjt, Pj) − ΦM(4t, xj − 2bjt, Qj)) (3.2)

where

ΦM(t, x, p) =
e−x2/(1+t)

2
√

π

(
erfc

(
F (t, x, p)

)
RM(t, x) − e−F 2(t,x,p)

√
π

QM

(
t, x, p

))
,

with

F (t, x, p) =

√
1 + t

t

(
p − x

1 + t

)
,

RM(t, x) =
M−1∑

k=0

1

(1 + t)k+1/2

(−1)k

4kk!
H2k

(
x√

1 + t

)
,

Q1(t, x, p) = 0,

QM(t, x, p) = 2
M−1∑

k=1

(−1)k

k! 4k

2k∑

`=1

(−1)`

t`/2

(
H2k−`(p)H`−1

(p − x√
t

)

−
(2k

`

)
H2k−`

( x√
1 + t

)H`−1

(
F (t, x, p)

)

(1 + t)k+1/2

)
, M > 1.

RM and QM are polynomials in x of degree 2M−2 and 2M−3 (provided that M > 1), respectively.

Proof. The computation of the integral (1.3) applied to a generating function with tensor product form

is reduced to the computation of one-dimensional integrals

(P(c,b)
[P,Q](

n∏

j=1

η2M(·)))(x,
t

4
) = e−c t/4

n∏

j=1

1√
πt

Qj∫

Pj

e−(xj−bjt/2−yj)
2/tη2M(yj) dyj.

Using the representation ([21, p. 55])

η2M(y) =
1√
π

M−1∑

j=0

(−1)j

j!4j

∂2j

∂y2j
e−y2

we have proved in [17, Theorem 1], that

1√
πt

∞∫

p

e−(x−y)2/tη2M(y) dy = ΦM(t, x, p) ,

and (3.2) follows.
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For M = 1, 2, 3 the functions RM and QM are given by

R1(t, x) =
1√

1 + t
; Q1(t, x, p) = 0 ,

R2(t, x) = R1(t, x) +
1

2(1 + t)3/2
− x2

(1 + t)5/2
, Q2(t, x, p) =

√
t

(1 + t)

( x

1 + t
+ p
)
,

R3(t, x) = R2(t, x) +
3

8(1 + t)5/2
− 3 x2

2(1 + t)7/2
+

x4

2(1 + t)9/2
,

Q3(t, x, p) = −
√

t

4(1 + t)

( 2x3

(1 + t)3
+

2px2 − 5x

(1 + t)2
+

(2p2 − 5)x − 3p

1 + t
+ p(2p2 − 7)

)
.

Using Theorem 3.1, we can specify the high order approximation

P(c,b)
[P,Q](N

(r)
h g)(x, t) =

1

Dn/2

∑

hm∈Ωrh

g̃(hm)
(
P(C,B)

[Pm,Qm]

n∏

j=1

η2M(·)
)(x − hm

h
√
D

,
t

h2D
)

=
e−c t

Dn/2

∑

hm∈Ωrh

g̃(hm)
n∏

j=1

(
ΦM

( 4t

h2D ,
xj − hmj − 2bjt

h
√
D

, Pmj

)

− ΦM

( 4t

h2D ,
xj − hmj − 2bjt

h
√
D

, Qmj

))

for the generating function η defined in (3.1). This is a semi-analytic cubature formula for P(c,b)
[P,Q]g(x, t)

with the error O((h
√
D)2M). If additionally g̃ allows a separated representation

g̃(x) ≈
P∑

p=1

αp

n∏

j=1

g
(p)
j (xj), (3.3)

then we derive at the points of the uniform grid {(hk, τ`)}

1

Dn/2

∑

hm∈Ωrh

g̃(hm)
(
P(C,B)

[Pm,Qm]

n∏

j=1

η2M(·)
)(k − m√

D
,

τ`

h2D
)
≈ e−cτ`

Dn/2

P∑

p=1

αp

n∏

j=1

S
(p)
j (kj, τ`)

where now

S
(p)
j (kj, t) =

∑

hmj∈Ij

g
(p)
j (hmj)

(
ΦM

( 4t

h2D ,
kj − mj√

D
− 2bjt

h
√
D

, Pmj

)
−ΦM

( 4t

h2D ,
kj − mj√

D
− 2bjt

h
√
D

, Qmj

))
.

Similarly, we specify the approximation

H(c,b)
[P,Q](M

(r)
h,τf)(x, t) =

1√D0Dn

∑

τi∈eΩr0τ

hm∈Ωrh

f̃(hm, τ i)

t∫

0

η2M0

(s − τi

τ
√D0

) (
P(C,B)

[Pm,Qm]

n∏

j=1

η2M(·)
) (x − hm

h
√
D

,
t − s

h2D
)
ds.
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At the points {(hk, τ`)} we have

H[P,Q](M(r)
h,τf)(hk, τ`)

=
1√D0Dn

∑

τi∈eΩr0τ

hm∈Ωrh

f̃(hm, τ i)

τ`∫

0

η2M0

(
τ` − σ − τi

τ
√D0

)(
P(C,B)

[Pm,Qm]

n∏

j=1

η2M(·)
)(k − m√

D
,

σ

h2D
)
dσ

=
1√

πD0Dn

∑

τi∈eΩr0τ

hm∈Ωrh

f̃(hm, τ i)KM,M0(hk, hm, τ`, τ i)

where, in view of (3.1) and Theorem 3.1

KM,M0(hk, hm, τ`, τ i) =
(−1)M0−1τ

√D0

22M0−1(M0 − 1)!

τ`∫

0

e−c σ e−(τ`−σ−τi)2/(τ2D0)

τ` − σ − τi
H2M0−1

(τ` − σ − τi

τ
√D0

)

×
n∏

j=1

(
ΦM

( 4σ

h2D ,
kj − mj√

D
− 2bjσ

h
√
D

, Pmj

)
− ΦM

( 4σ

h2D ,
kj − mj√

D
− 2bjσ

h
√
D

, Qmj

))
dσ.

Again, by making the substitution (2.10), the integrals are transformed to

(−1)M0−1πτ`
√D0

22M0(M0 − 1)!

∞∫

−∞

e−(`/(1+eπ sinh ξ)−i)2/D0 e−c τ`/(1+e−π sinh ξ)

`/(1 + eπ sinh ξ) − i
H2M0−1

(`/(1 + eπ sinh ξ) − i√D0

)

× cosh ξ

1 + cosh(π sinh ξ)

n∏

j=1

(
ΦM

( 4τ`

h2D(1 + e−π sinh ξ)
,
kj − mj√

D
− 2bjτ`

h
√
D(1 + e−π sinh ξ)

, Pmj

)

− ΦM

( 4τ`

h2D(1 + e−π sinh ξ)
,
kj − mj√

D
− 2bjτ`

h
√
D(1 + e−π sinh ξ)

, Qmj

))
dξ

with integrands decaying doubly exponentially. Then the trapezoidal rule with step size κ and S ∈ N

gives

KM,M0(hk, hm, τ`, τ i)

≈ (−1)M0−1πτ`κ
√D0

22M0(M0 − 1)!

S∑

s=−S

e−c τ`/as
e−(`/(1+eπ sinh(κs))−i)2/D0

`/(1 + eπ sinh(κs)) − i
H2M0−1

(`/(1 + eπ sinh(κs)) − i√D0

)

× ωs

n∏

j=1

(
ΦM

( 4τ`

ash2D ,
kj − mj√

D
− 2bjτ`

ash
√
D

, Pmj

)
− ΦM

( 4τ`

ash2D ,
kj − mj√

D
− 2bjτ`

ash
√
D

, Qmj

))

with ωs, as given in (2.11). By using the separate representation (2.9) of f̃ we derive

H[P,Q](M(r)
h,τf)(hk, τ`) ≈

√
π

Dn

(−1)M0−1τ`κ

22M0(M0 − 1)!

S∑

s=−S

ωs e−c τ`/as

∑

τi∈eΩr0τ

e−(`/(1+eπ sinh(κs))−i)2/D0

`/(1 + eπ sinh(κs)) − i
H2M0−1

(`/(1 + eπ sinh(κs)) − i√D0

) P∑

p=1

βp

n∏

j=1

T
(p)
j (kj, τ`, τ i, as)
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where now the one-dimensional sums T
(p)
j are given by

T
(p)
j (kj, τ`, τ i, as) =

∑

hmj∈Ij

f
(p)
j (hmj, τ i)

×
(
ΦM

( 4τ`

ash2D ,
kj − mj√

D
− 2bjτ`

ash
√
D

, Pmj

)
− ΦM

( 4τ`

ash2D ,
kj − mj√

D
− 2bjτ`

ash
√
D

, Qmj

))
.

Thus we get a computable approximation of the initial value problem (1.1)

uh,τ (hk, τ`) ≈ e−cτ`

Dn/2

P∑

p=1

αp

n∏

j=1

S
(p)
j (kj, τ`)+

τ`κπ

2
√D0Dn

S∑

s=−S

ωse
−c τ`/as

∑

τi∈eΩr0τ

η2M0

(`/(1 + eπ sinh(κs)) − i√D0

) P∑

p=1

βp

n∏

j=1

T
(p)
j (kj, τ`, τ i, as) ,

which has the order O((h
√
D)2M + (τ

√D0)
2M0) for (x, t) ∈ R

n × [0, T ], T > 0.

3.1 A generalization of problem (1.1)

Consider the initial value problem for the parabolic equation

∂u

∂t
− A∇x · ∇x u + 2b · ∇xu + c u = f(x, t) in R

n × R+ (3.4)

u(x, 0) = g(x) on R
n. (3.5)

where the matrix A of order n is supposed to be real, symmetric and positive definite. There exist

an orthogonal matrix O and a diagonal matrix D with positive entries such that A = OT D2O. By

introducing new coordinates ξ = D−1Ox we have ∇x = OT D−1∇ξ and A∇x · ∇x = ∆ξ. Hence,

if we set U(ξ, t) = u(x, t), F (ξ, t) = f(x, t), G(ξ) = g(x), β = D−1Ob, then the problem (3.4),

(3.5) reduces to the initial value problem

∂U

∂t
− ∆ξU + 2β · ∇ξU + c U = F (ξ, t) in R

n × R+ (3.6)

U(ξ, 0) = G(ξ) on R
n. (3.7)

The solution of (3.6), (3.7) can be represented as

U(ξ, t) = P(c,β)(G(·))(ξ, t) +

t∫

0

(P(c,β)F (·, s))(ξ, t − s) ds (3.8)

where

P(c,β)(f(·))(ξ, t) =
e−ct

(4π t)n/2

∫

Rn

e−|ξ−y−2βt|2/(4 t)f(y) dy.

An approximate solution of (3.6),(3.7) can be obtained by using the generating function [21, p. 55]

η(x) = π−n/2L
(n/2)
M−1(|x|2)e−|x|2 , where L

(γ)
j are the generalized Laguerre polynomials defined by

L
(γ)
j (y) =

eyy−γ

k!

(
d

dy

)k

(e−yyk+γ), γ > −1
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and η̃(t) = η2M0(t) (cf. [21, p. 120] ).

In order to get an approximate formula which can be used in high dimensions we use the quasi-

interpolants

G(ξ) ≈ 1

Dn/2

∑

m∈Zn

G(hm)
n∏

j=1

η2M

(ξj − hmj

h
√
D

)
,

F (ξ, t) ≈ 1√D0Dn

∑

i∈Z

m∈Z
n

F (hm, τ i) η2M0

( t − τi

τ
√D0

) n∏

j=1

η2M

(ξj − hmj

h
√
D

)
.

From (3.8) we obtain the following approximation of U at the nodes (hk, τ`)

Uh,τ (hk, τ`) =
e−cτ`

(πD)n/2

∑

m∈Zn

G(hm)
n∏

j=1

PM

( 4τ`

h2D ,
hkj − hmj − 2βjτ`

h
√
D

)

+
1√

πnD0Dn

∑

i∈Z

m∈Z
n

F (hm, τ i)

τ`∫

0

e−cση2M0

(τ` − τi − σ

τ
√D0

) n∏

j=1

PM

( 4σ

h2D ,
hkj − hmj − 2βj σ

h
√
D

)
dσ,

where we denote

PM(Θ, ζ) = e−ζ2/(1+Θ) RM(Θ, ζ) .

By making the substitution (2.10), the trapezoidal rule with step size κ provides the quadrature of the

integrals

πτ`κ

2

S∑

s=−S

ωs e−cτ`/asη2M0

(`(1 − 1/as) − i√D0

) n∏

j=1

PM

( 4τ`

ash2D ,
kj − mj√

D
− 2βjτ`

ash
√
D
)

with ωs, as given in (2.11). Assuming separated representations

G(ξ) =
P∑

p=1

αp

n∏

j=1

G
(p)
j (ξj) + O(ε) , F (ξ, t) =

P∑

p=1

βp

n∏

j=1

F
(p)
j (ξj, t) + O(ε),

we derive an approximation uh,τ (hA−1k, τ`) = Uh,τ (hk, τ`) of the solution u of (3.4)

uh,τ (hA−1k, τ`) ≈ e−cτ`

(πD)n/2

P∑

p=1

αp

n∏

j=1

∑

mj∈Z

G
(p)
j (hkj)PM

( 4τ`

h2D ,
hkj − hmj − 2βjτ`

h
√
D

)

+
πτ`κ

2
√

πnD0Dn

S∑

s=−S

ωs e−cτ`/as

∑

i∈Z

η2M0

(`(1 − 1/as) − i√D0

)

×
P∑

p=1

βp

n∏

j=1

∑

mj∈Z

F
(p)
j (hmj, τ i)PM

( 4τ`

ash2D ,
kj − mj√

D
− 2βjτ`

ash
√
D
)

.
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4 Numerical Results

4.1 Initial-value problem

In this section we provide results for the approximation of the solution of the problem

∂u

∂t
− ∆xu = 0, (x, t) ∈ R

n × R+; u(x, 0) = g(x), x ∈ R
n

(4.1)

with supp g ⊆ [p, q]n,

g(x) =
n∏

j=1

w(xj), x = (x1, ..., xn) ∈ [p, q]n (4.2)

and w ∈ CN([p, q]). Then, by using Hestenes reflection principle, we can construct an extension of

w(x) outside [p, q] as

w̃(x) =





N+1∑

s=1

csw(−αs(x − q) + q), q < x ≤ q +
q − p

A

w(x), p ≤ x ≤ q
N+1∑

s=1

csw(−αs(x − p) + p), p − q − p

A
≤ x < p

(4.3)

where {α1, ..., αN+1} are different positive constants, A = max1≤s≤N+1 αs and cN = {c1, ..., cN+1}
satisfy the system

N+1∑

s=1

cs(−αs)
k = 1, k = 0, ..., N.

For example, if αs = 1/2s (extension 1) we have

c2 = {15,−54, 40}, c4 = {561/7,−10098/7, 7480,−95040/7, 52224/7},
c6 = {522665/1519,−5644782/217, 4181320/7,

− 265636800/49, 145966080/7,−7114162176/217, 25490882560/1519};

if αs = 1/s (extension 2) then

c2 = {6,−32, 27}, c4 = {15,−640, 3645,−6144, 3125},
c6 = {28,−7168, 153090,−917504, 2187500,−2239488, 823543};

if αs = s (extension 3) then

c2 = {6,−8, 3}, c4 = {15,−40, 45,−24, 5}, c6 = {28,−112, 210,−224, 140,−48, 7}.

Obviously w̃ ∈ CN([p − q−p
A

, q + q−p
A

]) and

||w̃||W N
∞([p− q−p

A
,q+ q−p

A
] ≤ c1||w||W N

∞([p,q]) .

Hence an extension of g(x) with preserved smoothness is

g̃(x) =
n∏

j=1

w̃(xj)
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and an approximate solution of (4.1) is given by

P̃M,h(g)(x, t) =
n∏

j=1

1

D1/2

∑

hmj∈I

w̃(hmj)
(
ΦM

( 4t

h2D ,
xj − hmj

h
√
D

,
p − hmj

h
√
D
)
−ΦM

( 4t

h2D ,
xj − hmj

h
√
D

,
q − hmj

h
√
D
))

(4.4)

with I = (p − r
√
D, q + r

√
D).

We provide results of some experiments which show accuracy and numerical convergence orders of

the method. If we assume [p, q] = [−1, 1] and w(x) = e−x2+ax in (4.2), then problem (4.1) has the

solution

u(x, t) =
n∏

j=1

e
a2t+axj−x2

j
4t+1

2
√

4t + 1

(
erfc

(2(a − 2)t + xj − 1

2
√

t
√

4t + 1

)
− erfc

(2(a + 2)t + xj + 1

2
√

t
√

4t + 1

))
.

In Table 1 we compare the values of the exact solution and the approximate solution at some points

in dimension n = 1. We choose the Hestenes extension corresponding to αs = 1/s. In Figure 1 we

report on the absolute error for the solution of (4.1) at some grid points for space dimensions n = 10h,

h = 1, ..., 5. We considered Hestenes extension with αs = 1/2s. The approximations in Table 1 and

Figure 1 have been computed on a uniform grid with step size h = 1/80 and N = 6. We assumed

D = 4 in order to have the saturation error comparable with the double precision rounding errors.

If g allows the representation (3.3), then, denoting by ε
(p)
j the 1−dimensional error for each function

g
(p)
j , the forms of the exact and the approximate solution obviously imply that the total error εn =

O(
P∑

p=1

n∑

j=1

ε
(p)
j ). Our numerical results confirm for the special choice of g that the n−dimensional

error εn depends on the 1−dimensional error ε1 like εn = O(n ε1).

x exact value approximation absolute error

-0.4 0.8612199065523 0.8612199065860 3.365E-011

-0.2 0.9367660745147 0.9367660745540 3.931E-011

0.0 0.9999999999999 1.000000000044 4.465E-011

0.2 1.047614431487 1.047614431536 4.937E-011

0.4 1.077003231155 1.077003231208 5.322E-011

0.6 1.086497191179 1.086497191235 5.598E-011

0.8 1.075520922252 1.075520922309 5.749E-011

1.0 1.044650316417 1.044650316475 5.769E-011

Table 1: Exact, approximated values and absolute errors for the solution of (4.1) with w(x) = e−x2+ax

in (4.2), a = 2.97109077126449, and the Hestenes extension corresponding to αs = 1/s using

P̃3,0.0125, in x ∈ R, t = 1.

In Tables 2 and 3 we show that formula (4.4) approximates the exact solution with the predicted ap-

proximate orders (2.5) in the space dimensions n = 3, 10, 102, 103, 104, 105. We assumed w(x) =
e(x+a)2 which gives the exact solution of (4.1)

u(x, t) =
n∏

j=1

e−
(a+xj)2

4t−1

2
√

4t − 1

(
erfi

(4(a + 1)t + xj − 1

2
√

t
√

4t − 1

)
− erfi

(4(a − 1)t + xj + 1

2
√

t
√

4t − 1

))
.
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n=10

n=102

n=103

n=104

n=105

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-5

-6

-7

-8

-9

Absolute Error

Figure 1: Absolute errors, using log10 scale on the vertical axes, for the solution of (4.1) with w(x) =
e−x2+ax in (4.2), a = 2.97109077126449, and the Hestenes extension corresponding to αs = 1/2s

using P̃3,0.0125, in (x, 0, ..., 0) ∈ R
n, t = 1, x ∈ [−1, 1].

erfi denotes the imaginary error function defined as erfi(z) = −i erf(iz). We choose

a = 0.575770212624068, the extension w̃(x) = w(x) in Table 2 and the Hestenes extension with

αs = 1/2s in Table 3. For very high dimensional cases the second order formula fails, whereas the

sixth order formula approximates with the predicted approximation rate. In all the cases the numerical

results coincide with those if using other Hestenes extensions.

M = 1 M = 2 M = 3

h
−1 error rate error rate error rate

80 3.468E-03 4.231E-06 4.904E-09

n = 3 160 8.655E-04 2.00 2.640E-07 4.00 7.633E-11 6.00

320 2.162E-04 2.00 1.649E-08 4.00 1.141E-12 6.06

80 1.154E-02 1.403E-05 1.624E-08

n = 10 160 2.875E-03 2.00 8.753E-07 4.00 2.529E-10 6.00

320 7.182E-04 2.00 5.468E-08 4.00 3.782E-12 6.06

80 0.121E+00 1.400E-04 1.625E-07

n = 100 160 2.908E-02 2.06 8.735E-06 4.00 1.670E-09 6.60

320 7.194E-03 2.01 5.457E-07 4.00 2.006E-11 6.37

Table 2: Absolute errors and approximation rates for the solution of (4.1) with w(x) = e(x+a)2 in (4.2),

a = 0.575770212624068, at the point x = (0.3, 0, ...0), t = 2 using the approximation formula

(4.4) and the extension w̃(x) = w(x).

4.2 Nonhomogeneous problem

Here we provide results for the approximation of the solution of the problem

∂u

∂t
− ∆xu = f(x, t), (x, t) ∈ R

n × R+, u(x, 0) = 0, x ∈ R
n

(4.5)

with supp f ⊆ [−1, 1]n × R+.
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M = 2 M = 3

h
−1 error rate error rate

80 1.395E-03 1.625E-06

n = 1000 160 8.727E-05 3.99 1.669E-08 6.60

320 5.455E-06 3.99 2.007E-10 6.37

80 1.386E-02 1.617E-05

n = 10000 160 8.724E-04 3.99 1.669E-07 6.60

320 5.455E-05 3.99 2.007E-09 6.37

80 0.130E+00 1.625E-04

n = 100000 160 8.690E-03 3.90 1.669E-06 6.60

320 5.453E-04 3.99 2.007E-08 6.37

Table 3: Absolute errors and approximation rates for the solution of (4.1) with w(x) = e(x+a)2 in (4.2),

a = 0.575770212624068, at the point x = (0.3, 0, ...0), t = 2 using the approximation formula

(4.4) and the Hestenes extension αs = 1/2s .

Assuming (2.9), the approximate solution of (4.5) is

H̃(M,M0)
h,τ (f)(hk, τ`) =

τ`κπ

2
√D0Dn

S∑

s=−S

ωs

T/τ+r0
√
D0∑

i=−r0
√
D0

η2M0

(`/(1 + eπ sinh(κs)) − i√D0

)
×

P∑

p=1

βp

n∏

j=1

∑

|mj |≤1/h+r
√
D

f
(p)
j (hmj, τ i)

(
ΦM

( 4τ`

ash2D ,
kj − mj√

D
, Pmj

)

− ΦM

( 4τ`

ash2D ,
kj − mj√

D
− 2bjτ`

ash
√
D

, Qmj

))
.

First we demonstrate the effectiveness of the method on 1−dimensional examples, where an explicit

solution can be obtained in a closed analytic form. We computed the solution of (4.5) with fi(x, t) =
v(t)wi(x), supp wi ⊆ [−1, 1], i = 1, 2, with v(t) = t, w1(x) = x ex and w2(x) = ex.

We extend wi(x) outside [−1, 1] by (4.3) and v(t) outside R+ by

ṽ(t) =





v(t), t ≥ 0

N+1∑

s=1

csv(−αs t), t < 0

where {cs} and {αs} are defined in section 4.1.

In Table 4 we compare the exact value H(0,0)
[−1,1]f1 and the approximate value H̃(3,3)

h,τ f1 at some points

(x, t) of the grid. In numerical calculation we used the x−step size h = 0.025, the t−step size

τ = 0.05 and the Hestenes extension with αs = s, T = 2. The computational time on a 2 cpu

Xeon Quad-Core processor with 2.4 Ghz is 0.26 seconds. If the dimension n is greater than 1, the

approximation of the potential requires to compute 2 S P n of one-dimensional operations and then

the computational time scales linearly in the space dimension n. In Table 5 we report on the absolute

errors and the approximation rates for H(0,0)
[−1,1]f2. We used the approximation H̃

(M,M)
h,τ f2 for M =
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1, 2, 3, with the extension w̃ = w, ṽ = v (top) and the Hestenes extension αs = 1/s (bottom). Other

parameters were T = 1, D = D0 = 4, and κ = 0.01, S = 611 in the trapezoidal rule.

x t exact value approximation error

-0.2 2 0.241701111254 0.241701111067 0.187E-09

0.0 2 0.375668941931 0.375668941588 0.343E-09

0.2 2 0.523215078618 0.523215078096 0.522E-09

0.4 2 0.668323882248 0.668323881517 0.732E-09

0.6 2 0.786080733070 0.786080732090 0.980E-09

0.8 2 0.839219032083 0.839219030806 0.128E-08

1.0 2 0.773578882908 0.773578881325 0.158E-08

1.2 2 0.636739215551 0.636739214238 0.131E-08

Table 4: Exact, approximated values and absolute error for the solution of (4.5) with f1(x, t) = t x ex

in [−1, 1], at the point (x, t) using H̃(3,3)
0.025,0.05 and the Hestenes extension corresponding to αs = s.

M = 1 M = 2 M = 3

h
−1

τ
−1 error rate error rate error rate

20 20 0.928E-03 0.155E-05 0.129E-08

40 40 0.232E-03 2.00 0.966E-07 4.00 0.201E-10 6.00

80 80 0.579E-04 2.00 0.604E-08 4.00 0.315E-12 5.99

160 160 0.145E-04 2.00 0.377E-09 4.00 0.477E-14 6.04

M = 1 M = 2 M = 3

h
−1

τ
−1 error rate error rate error rate

20 20 0.124E-02 0.154E-05 0.128E-08

40 40 0.309E-03 1.99 0.965E-07 3.99 0.201E-10 5.99

80 80 0.773E-04 1.99 0.604E-08 3.99 0.310E-12 6.01

160 160 0.193E-04 2.00 0.377E-09 3.99 0.268E-13 3.53

Table 5: Absolute error and rate of convergence for H(0,0)
[−1,1]f2(0.2, 1) using H̃(3,3)

h,τ with the extension

w̃ = w, ṽ = v (top) and the Hestenes extension corresponding to αs = 1/s (bottom) .

The method is effective also if the dimension n is greater than 1, but we don’t know any closed

form analytic solution for right hand sides f(x, t) with nonvanishing values on the boundary ∂[P,Q].
Therefore we conclude this section with some results for right hand sides

f(x, t) =
( ∂

∂t
− ∆x

) n∏

j=1

w(xj)v(t) =
n∑

p=1

n∏

j=1

f
(p)
j (xj, t), x = (x1, ..., xn) ∈ [−1, 1]n;

f
(p)
j (x, t) = w(x) if j 6= p, f

(j)
j (x, t) =

1

n
v′(t)w(x) − v(t)w′′(x)

(4.6)

where supp w ⊆ [−1, 1] and supp v ⊆ R+. If w(±1) = w′(±1) = 0 and v(0) = 0, then the

solution of (4.5) is u(x, t) =
∏n

j=1 w(xj)v(t).

Figure 2 shows absolute errors at some grid points for the solution of (4.5) in dimensions n =
10, 20, 40, 60, 80, 100. The approximations have been computed using H̃(3,3)

h,τ on a uniform grid with

x−step size h = 1/160 and t−step size τ = 1/160, with M = M0 = 3, T = 2, the Hestenes
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extension corresponding to αs = 1/2s, w(x) = ex(x2 − 1)2 and v(t) = t. The parameters were

D = D0 = 4, and κ = 0.02, S = 305 in the trapezoidal rule.

If f allows the representation (2.9), then the n− dimensional error εn = O(
P∑

p=1

n∑

j=1

ε
(p)
j ), where ε

(p)
j

denotes the 1− dimensional error for each function f
(p)
j . Our numerical experiments confirm that, for

the special choice of f in (4.6) with the separation rank P = n, the total error εn = O(n2ε1).

n=10
n=20
n=40
n=60
n=80
n=100

-1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 1
x

-5

-6

-7

-8

-9

-10

-11

-12

Absolute Error

Figure 2: Absolute errors, using log10 scale on the vertical axes, for the solution of (4.5) with f(x, t)
in (4.6) where w(x) = ex(x2 − 1)2 and v(t) = t, at the point (x, 0.1, ..., 0.1, 2) ∈ R

n × R+ using

H̃(3,3)
h,τ with h = τ = 1/160 and the Hestenes extension corresponding to αs = 1/2s.

In Table 6 we report on the absolute errors and the approximation rates in the space dimensions

n = 3, 10, 100, 200 for the solution of (4.5). We assumed w(x) = ex(x2 − 1)2 and v(t) = 1 − e−t

in (4.6). The approximations have been computed by H̃(M,M)
h,τ for M = 1, 2, 3, T = 4 and the

Hestenes extension with αs = 1/s. The results show that, for high dimensions, the second order

formula fails whereas the forth and sixth order formulas approximate with the predicted approximation

rates.
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M = 1 M = 2 M = 3

h
−1

τ
−1 error rate error rate error rate

80 40 0.799E-03 0.383E-05 0.175E-08

n = 3 160 80 0.214E-03 1.90 0.244E-06 3.97 0.277E-10 5.98

320 160 0.553E-04 1.95 0.154E-07 3.98 0.485E-12 5.83

640 320 0.137E-04 2.01 0.955E-09 4.00 0.933E-14 5.70

80 40 0.831E-02 0.148E-05 0.335E-08

n = 10 160 80 0.208E-02 1.99 0.917E-07 4.00 0.523E-10 6.00

320 160 0.521E-03 1.99 0.572E-08 4.00 0.809E-12 6.01

640 320 0.131E-03 1.99 0.337E-09 4.08 0.133E-14 9.24

80 40 0.239E-01 0.455E-04

n = 100 160 80 0.149E-02 4.00 0.710E-06 6.00

320 160 0.931E-04 4.00 0.110E-07 6.01

640 320 0.579E-05 4.00 0.196E-10 9.13

80 40 0.269E+00

n = 200 160 80 0.891E+01 0.420E-02 6.00

320 160 0.556E+00 4.00 0.651E-04 6.01

640 320 0.347E-01 4.00 0.122E-06 9.06

Table 6: Absolute errors and approximation rates for the solution of (4.5) with f(x, t) in (4.6) where

w(x) = ex(x2 − 1)2 and v(t) = 1− e−t, at the point x = (−0.2, 0.1, ..., 0.1); t = 4 using H̃(M,M)
h,τ

and the Hestenes extension corresponding to αs = 1/s ...
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