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Abstract

Oscillatory systems with time-delayed pulsatile feedback appear in various applied and
theoretical research areas, and received a growing interest in recent years. For such
systems, we report a remarkable scenario of destabilization of a periodic regular spik-
ing regime. At the bifurcation point numerous regimes with non-equal interspike intervals
emerge. We show that the number of the emerging, so-called “jittering” regimes grows
exponentially with the delay value. Although this appears as highly degenerate from a dy-
namical systems viewpoint, the “multi-jitter” bifurcation occurs robustly in a large class of
systems. We observe it not only in a paradigmatic phase-reduced model, but also in a
simulated Hodgkin-Huxley neuron model and in an experiment with an electronic circuit.

Interaction via pulse-like signals is important in neuron populations [1–3], biological [4, 5], op-
tical and optoelectronic systems [6]. Often, time delays are inevitable in such systems as a
consequence of the finite speed of pulse propagation [7]. In this letter we demonstrate that the
pulsatile and delayed nature of interactions may lead to novel and unusual phenomena in a
large class of systems. In particular, we explore oscillatory systems with pulsatile delayed feed-
back which exhibit periodic regular spiking (RS). We show that this RS regime may destabilize
via a scenario in which a variety of higher-periodical regimes with non-equal interspike intervals
(ISIs) emerge simultaneously. The number of the emergent, so-called “jittering” regimes grows
exponentially as the delay increases. Therefore we adopt the term “multi-jitter” bifurcation.

Usually, the simultaneous emergence of many different regimes is a sign of degeneracy and
it is expected to occur generically only when additional symmetries are present [2, 8]. How-
ever, for the class of systems treated here no such symmetry is apparent. Nevertheless, the
phenomenon can be reliably observed when just a single parameter, for example the delay, is
varied. This means that the observed bifurcation has codimension one [9]. In addition to the
theoretical analysis of a simple paradigmatic model, we provide numerical evidence for the oc-
currence of the multi-jitter bifurcation in a realistic neuronal model, as well as an experimental
confirmation in an electronic circuit.

As a universal and simplest oscillatory spiking model in the absence of the feedback, we con-
sider the phase oscillator dϕ/dt = ω, where ϕ ∈ R ( mod 1), and ω = 1 without loss of
generality. When the oscillator reaches ϕ = 1 at some moment t, the phase is reset to zero
and the oscillator produces a pulse signal. If this signal is sent into a delayed feedback loop
[Fig. 1(a)] the emitted pulses affect the oscillator after a delay τ at the time instant t∗ = t + τ .
When the pulse is received, the phase of the oscillator undergoes an instantaneous shift by
an amount ∆ϕ = Z(ϕ(t∗ − 0)), where Z(ϕ) is the phase resetting curve (PRC). Thus, the
dynamics of the oscillator can be described by the following equation [3, 10–13]:

dϕ

dt
= 1 + Z(ϕ)

∑
tj

δ(t− tj − τ), (1)

where tj are the instants when the pulses are emitted. Note that we adopt the convention that
positive values of the PRC lead to shorter ISIs. For numerical illustrations we use Zex(ϕ) :=
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Figure 1: (a) Scheme of the model. (b) Shape of the PRC Zex(ϕ) for q = 5 (dashed green) and
q = 28 (solid blue). The stars indicate points with slope −1. (c) Construction of the map (2):
the new ISI Tj+1 depends on the pulse emitted at t = tj−P . (d) Periods T of the RS versus
the delay τ for q = 5, obtained from Eq. (3). Solid lines indicate stable RS regimes, dashed
unstable. Diamonds indicate saddle-node bifurcations.

0.1 sinq (πϕ) , where q controls the steepness of Zex (ϕ) [see Fig. 1(b)]. However, our analysis
is valid for an arbitrary amplitude or shape of the PRC.

In [14] it was proven that a system with pulsatile delayed coupling can be reduced to a finite-
dimensional map under quite general conditions. To construct the map for system (1) let us
calculate the ISI Tj+1 := tj+1 − tj . It is easy to see that Tj+1 = 1 − Z(ψj), where ψj =
ϕ(t∗j − 0) = t∗j − tj is the phase at the moment of the pulse arrival t∗j = tj−P + τ [Fig. 1(c)].
Here, P is the number of ISIs between the emission time and the arrival time. Substituting
tj = tj−P + Tj−P+1 + ...+ Tj , we obtain the ISI map

Tj+1 = 1− Z

(
τ −

j∑
k=j−P+1

Tk

)
. (2)

The most basic regime possible in this system is the regular spiking (RS) when the oscillator
emits pulses periodically with Tj = T for all j. Such a regime corresponds to a fixed point of
the map (2) and therefore all possible periods T are given as solutions to

T = 1− Z (τ − PT ) , (3)
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Figure 2: (a) ISIs Tj versus the delay τ for (1) with Z = Zex and q = 28. Solid lines correspond
to stable, dashed and dotted to unstable solutions. Black color indicates RS regimes, red stands
for bipartite solutions (with two different ISIs). Diamonds indicate saddle-node bifurcations and
stars multi-jitter bifurcations. (b), (c), (d), and (e) are zooms of (a) for P = 1, 2, 3, 4. The lower
panels show examples of stable bipartite solutions, for which the corresponding sequences of
ISIs are plotted versus time. Solutions within the same dashed frame coexist at a common value
of τ , which is also indicated by a vertical blue line in the corresponding zoom.

where P = [τ/T ], and hence τ − PT = τ(modT ). Figure 1(d) shows the period T as a
function of τ for Zex(ϕ) and q = 5.

To analyze the stability of the RS regime, we introduce small perturbations δj such that Tj =
T + δj , and study whether they are damped or amplified with time. The linearization of (2) in δj
is straightforward and leads to the characteristic equation

λP − αλP−1 − αλP−2 − ...− αλ− α = 0, (4)

where α := Z ′(ψ) is the slope of the PRC at the phase ψ = τ mod T (cf. [3, 15]).

There are two possibilities for the multipliers λ to become critical, i.e. |λ| = 1. The first scenario
takes place at α = 1/P when the multiplier λ = 1 appears, which indicates a saddle-node bi-
furcation [diamonds in Fig. 1(d)]. In general these folds of the RS-branch lead to the appearance
of multistability and hysteresis between different RS regimes [15–17].

The second scenario is much more remarkable and takes place at α = −1, where P critical
multipliers λk = ei2πk/(P+1), 1 ≤ k ≤ P , appear simultaneously. This feature is quite unusual
since in general bifurcations one would not expect more than one real or two complex-conjugate
Floquet multipliers become critical at once [9]. In the following we study this surprising bifurca-
tion in detail and explain why we call it ”multi-jitter”.

In order to observe the multi-jitter bifurcation, the PRC Z(ϕ) must possess points with suf-
ficiently steep negative slope Z ′(ϕ) = −1. For instance, in the case Z(ϕ) = Zex(ϕ),
such points exist for q > q∗ ≈ 27. For such q, two points ψA, ψB ∈ (0, 1) exist where
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Z ′ex (ψA,B) = −1 [see stars in Fig. 1(b)]. This means that for appropriate values of the delay
time τ , such that τ (modT ) ∈ {ψA, ψB}, it holds α = −1, and the multi-jitter bifurcation takes
place. Using Eq. (3) one may determine the corresponding values of τ for each possible P ≥ 1:

τPA,B = P (1− Z(ψA,B)) + ψA,B. (5)

Figure 2 shows the numerically obtained bifurcation diagram for q = 28. All values of its ISIs Tj
observed after a transient are plotted by solid lines versus the delay τ . Black lines correspond
to RS regimes, while irregular regimes with distinct ISIs are indicated in red color. Black dashed
lines correspond to unstable RS solutions obtained from Eq. (3). For the intervals τ ∈ (τPA , τ

P
B ),

the RS regime destabilizes and several stable irregularly spiking regimes appear.

Let us study in more detail the bifurcation points τ = τPA,B for different values of P . For P =
1, only one multiplier λ = −1 becomes critical. Note that in this case the map (2) is one-
dimensional and the corresponding bifurcation is just a supercritical period doubling giving birth
to a stable period-2 solution existing in the interval τ ∈ (τ 1A, τ

1
B) [Fig. 2(b)]. For this solution the

ISIs Tj form a periodic sequence (Θ1,Θ2), where the periodicity of the sequence is indicated
by an overline. It satisfies

Θ2 = 1− Z (τ −Θ1) and Θ1 = 1− Z (τ −Θ2) . (6)

For P ≥ 2, P multipliers become critical simultaneously at τ = τPA,B and the RS solution is un-
stable for τ ∈ (τPA , τ

P
B ). Numerical study shows that various irregular spiking regimes appear

in this interval. We observe solutions, which have ISI sequences of period P +1 but exhibit only
two different ISIs in varying order [see Fig. 2, bottom]. As a result, each solution corresponds
to only two, and not P + 1, points in Figs. 2(a),(c)–(e). In the following we call such solutions
“bipartite”. For larger P , a variety of different bipartite solutions with (P + 1)-periodic ISI se-
quences can be observed in τ ∈ (τPA , τ

P
B ). The stability regions of these solutions alternate

and may overlap leading to multistable regimes [see Appendix, Figs.A.1–A.4].

The bipartite structure of the observed solutions can be explained by their peculiar combinatorial
origin. Indeed, all bipartite solutions can be constructed from the period-2 solution(Θ1,Θ2)
existing for P = 1. Consider an arbitrary (P +1)-periodic sequence of ISIs (T1, T2, ..., TP+1),
where each Tj equals one of the solutions Θ1,2 of (6) for some delay τ = τ0 ∈ [τ 1A, τ

1
B]. Let

n1 ≥ 1 and n2 ≥ 1 be the number of ISIs equal to Θ1 and to Θ2 respectively. Then it is readily
checked that the constructed sequence is a solution of (2) at the feedback delay time

τn1,n2 = τ0 + (n1 − 1) Θ1 + (n2 − 1) Θ2. (7)

Red dotted lines in Figs. 2(c), (d), and (e) show the branches of bipartite solutions constructed
from (6) with P = n1 + n2 − 1 = 2, 3, 4. Note that these solutions lie exactly on the nu-
merical branches which validates the above reasoning. However, some parts of the branches
are unstable and not observable. Since each bipartite solution corresponds to a pair of points
(τn1,n2 , T1) and (τn1,n2 , T2), solutions with identical n1 and n2 correspond to the same points
in the bifurcation diagrams in Fig. 2. For instance, when P = 3 the branches corresponding to
the solutions (Θ1,Θ2,Θ1,Θ2) = (Θ1,Θ2) and (Θ1,Θ1,Θ2,Θ2) lie on top of each other.

Let us estimate the number of different bipartite solutions for a given P ∈ N. The number of dif-
ferent binary sequences of the length P + 1 equals 2P+1. Subtracting the two trivial sequences
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corresponding to the RS one gets 2P+1 − 2. Disregarding the possible duplicates by periodic
shifts (maximally P + 1 per sequence) one obtains an estimate for the total number NP of
bipartite solutions for a given value of P as

NP ≥
2P+1 − 2

(P + 1)
. (8)

Notice that all these bipartite solutions exist at the same value of P but for different ranges of
the delay τ . Nevertheless, all emerge from the RS solution in the bifurcation points τPA,B . To
see this, let us consider the limit τ0 → τ 1A. In this case the ISIs Θ1(τ0) and Θ2(τ0) tend to the
same limit TA = 1 − Z (ψA) which is the period of the RS at the bifurcation point. Then, (7)
converges to τ 1A + (n1 +n2− 2)TA = τPA , while all bipartite solutions converge to the RS with
period TA.

Thus, all bipartite solutions branch off the RS in the bifurcation points τPA,B . This finding is clearly
recognizable in Figs. 2(c)–(e), where stars indicate the multi-jitter bifurcation points. Numerical
simulations show that many of the bipartite solutions stabilize leading to high multistability. In
particular, we observe that all bipartite solutions with same values of n1 and n2 exhibit identical
stability. This emergence of numerous irregular spiking, or jittering, regimes motivates the choice
of the name “multi-jitter bifurcation”.

High multistability is a well-known property of systems with time delays. A common reason is
the so-called reappearance of periodic solutions [18]. This mechanism may cause multistability
of coexisting periodic solutions, whose number is linearly proportional to the delay. Due to multi-
jitter bifurcation, multistability can develop much faster, since the number of coexisting solutions
grows exponentially with the delay [cf. Eq. (8)]. This suggests that the underlying mechanism is
quite different.

Irregular spiking regimes similar to the ones described here were reported previously for sys-
tems exhibiting a dynamical “memory effect”, where the effect of each incoming pulse lasts for
several periods [19]. In system (1), however, the effect of a pulse decays completely within one
period. Therefore the origin of jittering must be different. In fact, it relies on another kind of
memory, which is provided by the delay line and stores the last P ISIs. This memory preserves
fundamental properties of time, which are responsible for the degeneracy of the multi-jitter bi-
furcation. To explain this let us consider (2) as a P -dimensional mapping (Tj−P+1, ..., Tj) 7→
(Tj−P+2, ..., Tj+1) . Disregarding the calculation of the new ISI Tj+1 as in (2), all the map does
is to move the timeframe by shifting all ISIs one place ahead. The rigid nature of time allows
no physically meaningful modification of this part of the map which could unfold the degenerate
bifurcation. Moreover, the new ISI Tj+1 depends exclusively on the sum of the previous ISIs
which has the effect that all past intervals have an equal influence on the new ISI regardless
of their order. As a consequence the combinatorial accumulation of coexisting solutions with
differently ordered ISIs is generated.

Besides the delayed feedback, another essential ingredient for the multi-jitter bifurcation is the
existence of points where the PRC fulfills Z ′(ϕ) < −1. Since the PRC is a characteristic that
can be measured for an arbitrary oscillator [5], this condition gives a practical criterion for the
occurence of jittering regimes. In this context it is worth noticing that the condition Z ′(ϕ) < −1
is equivalent to the non-monotonicity of the system’s response to an external pulse, i.e. there
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Figure 3: Bifurcation diagrams for (a) an electrically implemented FitzHugh-Nagumo system
and (b) a simulated Hodgkin-Huxley neuron model. RS solutions are indicated by black dots,
solutions with more than one ISI by red dots. The branches of RS solutions obtained from the
measured PRCs and (3) are plotted as dashed grey lines. Multi-jitter bifurcations are indicated
by star-shaped markers. The values of the delay τ are given in ms. The panels below the
diagrams show examples of stable bipartite solutions (ISIs versus time). The values of τ for
which the solutions exist are also indicated by vertical blue lines in the corresponding diagrams.

are such phases ϕ1 < ϕ2 that a pulse can reverse their order as ϕ1 +Z(ϕ1) > ϕ2 +Z(ϕ2).
Note that for a smooth one-dimensional system as (1) the reversal of phases is only possible
if the feedback takes the form of δ-pulses. With pulses of finite duration two continuous orbits
connecting the different phase values before and after the pulse cannot cross each other. This
prevents a reversal of phases. However, for oscillators with a phase space of dimension larger
than one the phase points ϕ1 and ϕ2 can exchange their order without necessitating the orbits
to intersect.

In order to evaluate the practical relevance of the theory described above we consider two
realistic systems: (i) an electronic implementation of the FitzHugh-Nagumo oscillator [20–23]
with time-delayed pulsatile feedback, and (ii) a numerically simulated Hodgkin-Huxley model [24]
with a delayed, inhibitory, chemical synapse projecting onto itself [15, 17]. A detailed description
of the systems is given in the Appendix [Secs. B and C]. In both cases the measured PRC
exhibits parts with slope less than−1 [ see Figs. B.1 and C.1]. Therefore the existence of multi-
stable jittering can be conjectured on the basis of our results for system (1). Figure 3 presents
experimentally (for the FitzHugh-Nagumo oscillator) and numerically (for the Hodgkin-Huxley
model) obtained bifurcation diagrams showing ISIs for varying delays. Both systems clearly
show that a stable RS solution destabilizes closely to the multi-jitter bifurcation points. Where
the RS regime is unstable, the system switches to irregular spiking, and we mainly observe
(P + 1)-periodic bipartite solutions. The insets in the lower part of Fig. 3(a) show two such
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period-5 bipartite regimes of the FitzHugh-Nagumo oscillator. Note that both of them coexist at
τ = 126 ms, which illustrates the multistability of the system. Similarly, two period-4 bipartite
regimes coexisting for τ = 60 ms for the Hodgkin-Huxley model are shown in 3(b).

Bipartite solutions are a basic form of jittering both in phase-reduced models and realistic
systems. However, beyond the multi-jitter bifurcation the bipartite solutions may undergo sub-
sequent bifurcations. In system (1), we observed higher-periodic, quasiperiodic and chaotic
regimes for larger steepnesses of the PRC (q > 70). Similar regimes were also found for
the Hodgkin-Huxley model. An example showing aperiodic jittering is shown in Fig. 3(b) for
τ = 59.5 ms. In the Appendix we show more examples of aperiodic jittering [see Fig. D.1].

To conclude, in a phase oscillator with delayed pulsatile feedback (1) we discovered a surpris-
ing bifurcation leading to the emergence of a large number (∼ exp τ ) of jittering solutions. We
showed that this multi-jitter bifurcation does not only appear in phase-reduced models, but also
in realistic neuron models and even in physically implemented electronic systems. These find-
ings support our theoretical results and provide motivation for a deeper study of the multi-jitter
phenomenon.

The possibility of jittering depends on the steepness of the PRC which is an easily measurable
quantity for most oscillatory systems [5]. Thus, our findings provide an easy criterion to check
for the existence of jittering in a given system. This may prove useful in a variety of research
areas, where pulsatile feedback or interactions of oscillating elements takes place. For instance,
this might be one of the mechanisms behind the appearance of irregular spiking in neuronal
models with delayed feedback [25] and timing jitter in semiconductor laser systems with delayed
feedback [26]. For applications which exploit complex transient behavior such as liquid state
machines [27] the high dimension of the unstable manifold at the bifurcation can be interesting.
Furthermore, in view of the possibility of a huge number of coexisting attracting orbits beyond the
bifurcation the system can serve as a memory device by associating inputs with the attractors
to which they make the system converge.
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Appendix

A Maps and basins for P = 1, 2, 3, 4

In this section we illustrate the ISI maps for cases P = 1, 2, 3, 4. In all cases we useZex(ϕ) :=
0.1 sinq (πϕ) with q = 28.

P = 1. In this case the map is one-dimensional:

Tj+1 = 1− Z (τ − Tj) . (A.1)

The dynamics of the map can be illustrated on a coweb diagram which is depicted in Fig. A.1
for τ = 1.5. For this value of the delay, the only attractor is a stable period 2 solution [cf. Fig. 2
of the main text].

0.9 0.92 0.94 0.96 0.98

0.9

0.92

0.94

0.96

0.98

Tj

T
j+

1

Figure A.1: Cob-web diagram of (A.1) for τ = 1.5. The black solid dots correspond to a stable
period 2 solution and the white hallow dot corresponds to unstable regular spiking.
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P = 2. In this case the map is two-dimensional and reads

Tj+1 = 1− Z (τ − Tj − Tj−1) . (A.2)

This can be equally rewritten in the vector form:(
T1
T2

)
7→
(

T2
1− Z (τ − T2 − T1)

)
.

Figure A.2 shows attractors and their attraction basins of the map (A.2) for τ = 2.414. For this
value of the delay we observe a coexistence of a stable regular spiking solution and a stable
irregular period-3 solution of the form (Θ1,Θ1,Θ2) [cf. Eq. 6 of the main text].

0.9 0.92 0.94 0.96 0.98

0.9

0.92

0.94

0.96

0.98

Tj

T
j+

1

Figure A.2: Phase plane of (A.2) for τ = 2.414. The black solid dots correspond to a stable
period 3 solution and the white hallow dot corresponds to stable regular spiking. The blue region
is the attraction basin of the period-3 solutions, red of regular spiking.
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P = 3. In this case the map is three-dimensional and reads

Tj+1 = 1− Z (τ − Tj − Tj−1 − Tj−2) , (A.3)

or, written in an equivalent vector form T1
T2
T3

→
 T2

T3
1− Z (τ − T3 − T2 − T1)

 .

For τ = 3.37 three different stable bipartite solutions of this map coexist: (Θ1,Θ1,Θ1,Θ2),
(Θ1,Θ1,Θ2,Θ2), and (Θ1,Θ2). Figure A.3 depicts the basins of attractions confined to the
two-dimensional plane

H = {(T1, T2, T3) | T1, T2 ∈ [0.9, 0.98], T3 = T1} (A.4)

of the three-dimensional phase space.

0.9 0.92 0.94 0.96 0.98

0.9

0.92

0.94

0.96

0.98

T
1

T
2

Figure A.3: Planar section of the attractor basins of the map (A.3) by the plane (A.4) for τ =
3.37. The corresponding attracting bipartite solutions are depicted in the right part.
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P = 4. In this case the map is four-dimensional and has the form

Tj+1 = 1− Z (τ − Tj − Tj−1 − Tj−2 − Tj−3) . (A.5)

Here we omit the vector form for brevity. For τ = 4.32 four different stable bipartite solutions co-
exist: (Θ1,Θ1,Θ2,Θ2,Θ2), (Θ1,Θ2,Θ1,Θ2,Θ2), (Θ1,Θ1,Θ1,Θ2,Θ2), and (Θ1,Θ1,Θ2,Θ1,Θ2).
An intersection of the attractors basins with the 2-dimensional plane

H = {(T1, T2, T3, T4)|T1, T2 ∈ [0.9, 0.98], T3 = T1, T4 = T2} (A.6)

is shown in Fig. A.4.
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Figure A.4: Planar section of the attractor basins by the plane (A.6) of the map (A.5) for and
τ = 4.32. The corresponding attracting bipartite solutions are depicted in the right part.
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B Electronic FitzHugh-Nagumo oscillator

The circuitry of the electronic FitzHugh-Nagumo oscillator as used in the experiment [cf. Fig. 3(a)
of the main text] is depicted in Fig. B.1(a), see Refs. [22, 23] for details. Here, R = 1kΩ,
C = 47nF, L = 103.4H, Pin is an input from the delay line, and F (u) = αu(u−u0)(u+u0)
is the current-voltage characteristic of the nonlinear resistor with α = 2.02×10−4Ω−1V−1 and
u0 = 0.82V. The autonomous oscillations have period T ≈ 30ms. The delay line is realized
as a chain of monostable multivibrators. A pulse of the amplitude A = 5V and duration θ =
0.42ms is delivered with a delay τ each time the voltage u reaches the threshold uth = −0.7V.

The noise level in the circuit was ≈ −40dB (this means fluctuations of ≈ 20mV for a signal
amplitude of ≈ 2V).

The measured phase resetting curve for the given parameters is depicted in Fig. B.1(b). The
interval where the PRC slope is less than minus one is highlighted in red.
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Figure B.1: (a) Circuitry of the Fitzhugh-Nagumo oscillator. (b) The measured PRC of the
FitzHugh-Nagumo oscillator. The interval with the slope less than minus one is highlighted in
red.
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C Hodgkin-Huxley model

The periodically spiking Hodgkin-Huxley neuron model, which was used for the numericalresults
in Fig. 3(b) of the main text, is given by the following set of equations [15, 17, 24]

CV̇ (t) = I − gNam3h(V (t)− VNa)− gKn(V (t)− VK)

− gl(V (t)− Vl)− κ(V (t)− Vr)s(t− τ), (C.1)

ṁ(t) = αm(V (t))(1−m(t))− βm(V (t))m(t),

ḣ(t) = αh(V (t))(1− h(t))− βh(V (t))h(t),

ṅ(t) = αn(V (t))(1− n(t))− βn(V (t))n(t),

ṡ(t) = 5(1− s(t))/(1 + exp(−V (t)))− s(t),

where V (t) models the membrane potential, αm(V ) = (0.1V + 4)/(1− exp(−0.1V − 4)),
βm(V ) = 4 exp((−V − 65)/18), αh = 0.07 exp((−V − 65)/20), βh(V ) = 1/(1 +
exp(−0.1V − 3.5)), αn(V ) = (0.01V + 0.55)/(1 − exp(−0.1V − 5.5)), βn(V ) =
0.125 exp((−V − 65)/80), C = 1µF/cm2, I = 10µA/cm2, gNa = 120mS/cm2, VNa =
50mV, gK = 36mS/cm2, VK = −77mV, gl = 0.3mS/cm2, Vl = −54.5mV, Vr = −65mV,
and κ = 0.38mS/cm2.

Figure C.1 shows the PRC of (C.1), which was measured by replacing the delayed feedback
by an external stimulation line through which singular synaptic pulses sampled from the same
system were applied at different phases.

Figure C.1: PRC of the Hodgkin-Huxley model (C.1). The region, where Z ′ (ϕ) < −1 is indi-
cated by red.

D Emergence of chaotic jittering in the Hodgkin-Huxley model

Figure D.1 illustrates the emergence of chaotic jittering states for increasing feedback strength
κ. It shows three different trajectories for τ = 59.3 and κ = 0.38, 0.4, 0.41. In plot (a), the
ISIs of a quasiperiodic solution are shown for c = 0.38. A black dot is placed at (tj, Tj), where
tj is the moment when the j-th ISI ends and Tj is its duration. Subsequent dots are joined

15



by a blue line. The sequence is contained in a torus in the phase-space, whose projection to
the (Tj, Tj+1)-plane is shown in plot (b). For each Tj from the sequence of approximately
thousand observed ISIs, a blue dot was placed at the coordinates (Tj, Tj+1). Plots (c) and (d)
depict a solution close to the onset of chaotic jittering for c = 0.4. The corresponding Lyapunov
exponent is positive but small [see Fig. D.2(b)]. A more pronounced chaos is exhibited by the
solution existing at c = 0.41, which is shown in plots (e) and (f). Note that the emergence
of chaos is accompanied by a loss of smoothness of the torus consisting of the quasiperiodic
trajectories [28].

Figure D.1: Emergence of chaotic jittering in (C.1). The plots (a), (c), and (e) show ISI se-
quences of trajectories observed at the indicated feedback strengths κ = 0.38, 0.4, 0.41.
(a),(b): Quasiperiodic jittering for c = 0.38; (c),(d): weakly chaotic jittering for c = 0.4; (e),(f):
clearly recognizable chaotic jittering for c = 0.41.

Figure D.2 shows the numerically calculated Lyapunov exponents (LE) for different values of the
feedback strength κ. For each value of κ the four largest exponents are shown. Starting from
τ = 58 on the RS solution with maximal period [cf. Fig. 3(b) for κ = 0.38] each computation
for τ ∈ [58, 60.5] was initialized with a solution on the previous attractor as initial data. Note
that there exists always one LE which has real part zero, since the corresponding attractors are
not steady states. For each value of τ , the point where the multi-jitter bifurcation occurs can
clearly be recognized as all four depicted LE approach zero nearly at the same value of τ = τA
(τA ≈ 58.75 for κ = 0.38, τA ≈ 58.4 for κ = 0.4, and τA ≈ 58.3 for κ = 0.41). Dynamics
found in the depicted range beyond these points, i.e. for τA < τ < 60.5, are irregularly spiking
regimes. For κ = 0.38, two LE are zero in the interval τ ∈ [59.25, 59.8], which indicates a
torus, i.e. quasiperiodic behavior as illustrated in Fig. D.1(a). For all other values of τ in the
depicted range, we observe periodic solutions which exhibit ISI sequences of period 4 [see
Fig.3(b) of the main text]. When the feedback strength is increased to κ = 0.4 the dynamics
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in the corresponding interval τ ∈ [59.2, 59.5] become weakly chaotic. For κ = 0.41 the LE
become larger in the interval τ ∈ [58.75, 59.2] which indicates a more pronounced chaos. Note
that even for feedback strengths where chaotic jittering is observed, periodic solutions still exist
at other values of τ .

Figure D.2: Four largest Lyapunov exponents of (C.1) with τ ∈ [58, 60.5] and feedback
strengths (a) κ = 0.38; (b) κ = 0.4; (c) κ = 0.41. Arrows indicate the delays, for which
the trajectories in Fig. D.1 are shown.
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