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1. ·INTRODUCTION 

In the drift-diffusion model of semiconductor devices the free energy has turned out 
to be a very useful qll:antity. Gajewski and Groger [7) applied it in the analysis 
of the transient initial-boundary value problem. Gajewski [3], (5) also used it to 
control the step width in the time discretization. Considered as a functional of 
the carrier densities, the free energy is a thermodynamic potential and a convex 
functional. With both the properties the free energy becomes a very attractive 
quantity. Moreover, as an integral quantity it is not too sensitive to local deviations 
of either the carrier densities or the electric field. In the case of variable temperature, 

· however, the free energy is ·no convex functional. 

The main topic of this paper is to set up a frame for an investigation of the energy 
model of semiconductor devices in a similar way as H. Gajewski and K. Greger 
dealt with the drift-diffusion model. We formulate the energy model as a system 
of balance equations for the carrier densities n and p and for the density u of the 
total energy. The non-local electrostatic interaction of the carriers is described by 
a boundary value problem for the Poisson equation which includes mixed boundary 
conditions. Although function spaces are not specified yet, the thermodynamic 
calculus for a system of electrons and holes in a semiconductor device is developed 
with regard to functional analysis. We proof, in particular, that the negative entropy 
considered as a functional of the densities n, p and u is a convex thermodynamic 
potential. The current densities in and jp of carriers and ju of the total energy 
are expressed in the conjugate variables Xn := <Pn/T, Xp := <Pp/T and Y := 
l/T, where T denotes the temperature and 'Pn and <Pp denote the electro-chemical 
potentials. In this formulation a Lyapunov function for the system of evolution 
equations is defined, which is closely related to the negative entropy. The Lyapunov 
function also works in the cases of time discretization or space discretization. The 
intention to introduce a Lyapunov function forced us to describe quantities like 
energy rather explicitly. With regard to the simulation practice, material laws like 
effective masses are admitted to depend on the temperature. Both the variants, the 
case of Boltzmann statistics and the Fermi case, are treated as well as the case of a 
non-parabolic band structure. 

The paper is organized as follows~ Our basic notation is introduced in section 
2. Moreover, the electrostatic energy of the system is specified and its functional 
derivatives are evaluated. In section 3 the total energy is defined starting from the 
free energy or from an other suitable thermodynamic potential. Customary versions 
of the energy model are derived from the energy balance equation. In section 4 
the energy model is formulated in the variables <Pn/T, <Pp/T and 1/T, which we 
consider as the natural ones. In section 5 a Lyapunov function related to the 
entropy is constructed for the energy model. In section 6 the spatial discretization 
is described. The calculus is quite analogous. In section 7 the case of a general 
dispersion is studied. This case is a little bit different from the cases of parabolic 
band structure, because the state equations are more implicit. The convexity of 
the potential U ( n, p, s) is proved also in this case. In contrast to d2 U the quadratic 
form d2G of the conjugate potential G( <Pn, <PP, T) is the difference d'f G - d/;G of two 
positive semidefinite quadratic forms. 
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2. NOTATION. ELECTROSTATIC ENERGY 

The device occupies a bounded region n with the boundary an in the Euclidean 
space of two or three dimensions. Let q, kB and T* denote the elementary charge, the 
Boltzmann constant and a fixed reference temperature in Kelvin. Let V = q'lj; / kBT* 
denote the (dimension-less) potential of a hole in the electrostatic potential 'lj;. Then 
the Poisson equation in a semiconductor device with given completely ionized doping 
profile qd reads 

-\7(e\7V) = d + p - n, 

where e denotes the scaled dielectric permittivity. The boundary conditions are the 
Dirichlet condition V =VD on some part rD of the boundary, a boundary condition 
of the third kind, 

on some other part r G of the boundary and the homogeneous Neumann conditions 
everywhere else on the boundary. Although function spaces are not specified yet 
in this paper, we mention the space H 1(f2) of quadratic integrable functions which 
have quadratic integrable derivatives and the space HJ:= HJ(fi \ rD) of functions 
X E H 1(f2) which vanish on rD. The boundary value problem for the Poisson 
equation is written as an variational equation 

jevV-Vxdn+ fr/Vxdr= j(d+p-n)xdn+ fr/vaxdr 

(x E HJ) for a function V E VD+ HJ, where VD E H 1(f2) represents the Dirich-
let data on rD. We assume that the dielectric permittivity is independent of the 
temperature and that the heat capacities of the lattice and of the carrier densities 
n and p do not depend on the electric field. Thus the total energy U of the device 
model is a sum of its interior energy ui and of its electrostatic energy ue. 

Quantities like energy are functionals of the state represented by a set of independent 
state variables and of some parameters like d, VD or VG. In our discussions the 
parameters are assumed to be fixed and thus the dependence of the quantities on 
them is not indicated. The state can be described by several sets of state variables, 
e.g. by n, p and Tor by n, p and the entropy density s. Therefore we distinguish 
the functionals by an index, 

U = U(n,p,s) = U1(n,p,T) = Ut(n,p,T) + Ue(p-n). 

The index is omitted at the thermodynamic potentials. 

There are several possibilities to define a functional ue. We prefer the choice 

ue(p - n) = j V*(p - n)dn + ~ j e(\7Vr,-n)2df2 + ~ f {3~2-ndr, 
2 2 lrG 

where V = V* + Vr,-n and where Vp E HJ denotes the solution of 

(2.1) J evv;,. Vxdn + lG ,BVpxdI' = J pxdn (x E HJ). 
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Regarding this integral identity we have 

u•(p - n + dp) = u•(p- n) + J VdpdfJ. + J E(\ldp) 2dfJ. + 1/(<lp)2dr, 
i.e. 

(du· (p - n ), d p) = J v d pdfJ., 

(d2U•(p - n), dp1@ <lp2) = J €\JV.Pl . \JV.,,,dfJ. + iG f3V.P1 V.,,,dr. 

Sometimes the physically intuitive formal notation with densities is used in the 
paper, i.e. ue(p-n) = J ue(p-n)dn with the generalized density and its derivatives, 

( ) * 1 ( )2 1 2 ue p V p + 2€ \711,, + 2,8~ 8rG, 
(ue)'(p - n) V, 

(ue)"(p - n)8p18p2 c\71/6p1 • \71/6P2+,81/6p1 1/6P28rG. 
The differentiation of the density has a symbolic meaning only. 

An alternative choice of the elecfrostatic energy would be _ J 1 r 1 Ue(p - n) = c\l(V - 2Vp-n) · \7Vp_ndQ + lrG ,B(V - 2Vp-n)Vp-ndI'. 

The second order derivative of this functional coincides with that of ue, but its first 
order derivative contains an additional boundary term 

(dfJ•(p- n), dp) = j VdpdfJ. + iD VnE8~V.Pdr. 
Let 4?*(T) denote the Fermi level of the semiconductor device in the equilibrium 
state at the constant temperature T. The electro-chemical potentials of the electrons 
or holes are chosen as 4?d(l) + 4?n and 4?d(l) + 4?P, respectively, but the additive 
constant 4?d(l) will be included into the potential V. The state equations are 

Ec(T)) (4?n+V) Af ) (4?n+V) (2.2) n Nc(T) exp(-----r- exp T -. JV (T exp T , 
Ev(T) 4? + V 4? + V 

(2.3) p Nv(T) exp( T ) exp (- PT ) -. P(T) exp (- PT ). 

in the case B of Boltzmann statistics, 

(2.4) ·- N. (T) 'L' [4?n + v - Ec(T)] n .- c .r1/2 T , 

(2.5) ·- 11.r (T) 'L' [ 4?P + V - Ev(T)] P ·- J.Vv .r1/2 T · 

in the case F of Fermi statistics, and 

n ·- r.10 ac(w, T) dw 
.- lo 1 +exp [ ~n.+V;Ee(T)] 

·- f':io av(w, T) dw 
p .- lo 1 +exp [~p+V;E,;(T)] . 
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in the case G of general dispersion. The state densities Ne and Nv are not neces-
sarily proportional to T 312 , since the effec~ive masses, in the case of parabolic band 
structure, or the dispersions We .or Wv, in general, may depend on T. Of course, the 
band edges Ee, Ev and the other material functions may also explicitly depend on 
the spatial coordinates. Such a dependence is caused, e.g., by the doping profile 
or by a heterostructure. We will not indicate, however, such a dependence and use 
also the notation Ee(T) = E o T etc. The notation 

1 1 100 to. Fa.(x) = Fa(x) = dt r( a + 1) . r (a + 1) 0 exp ( t - x) + 1 

(a > -1) is used for the Fermi integrals such that F~+l = Fa holds. In the case of 
general dispersions the numerators of the integrands denote the surface areas 

ab(w, T) = 1 da(p) 
wb(p,T)=w 

(b = c, v) 

of the energy levels in the momentum space which are assumed to be finite. 

An upper index C = B, For G distinguishes the Boltzmann case, the Fermi case 
and the case of a general dispersion if a distinction is necessary. Some letters are 
used with several meanings, e.g., the letter n denotes the density of electrons and 
it is used as the lower index of state variables of the electrons. In section 6 the 
letter n is also used as lower index and as upper index for the components of grid 
vectors associated with the triangulation of the domain. We hope, however, that 
this multiple use does not cause any confusion. 

The potentials ~n and ~P here have the opposite sign as the quasi-Fermi levels 'Pn 
and 'PP in [14], [15]. Therefore the particle fluxes and the total heat flux are 

(2.6) 
(2.7) 
(2.8) 

in= -Dnn('V~n + Pn 'VT), 
Jp = Dpp(\l~P - Pp 'VT), 
jQ = -K,\lT + T Pnin + T Ppjp, 

respectively, with the total thermal conductivity 

K, = /'\,£ + nC>..n/T - DnP~T) + p().p/T - DpP:T). 

( cf. [14] or [15]). The heat flux is, of course, primarily an expression in terms of the 
thermodynamic forces, but it can be represented in the given form. 

3. FREE ENERGY, TOTAL ENERGY AND THE ENERGY BALANCE EQUATION 

We consider a system, which consists of electrons and holes and of a lattice with an 
unspecified density fL(T) of its free energy. In analogy to the ideal gas the density 
of the free energy of the system is given by 

JB(n,p, T) = ue(p- n) + fL(T) 
+ nT log [n/ N(T)] - nT + pT log [p/'P(T)] - pT. 

in the Boltzmann case. The third summand on the right-hand side and the fifth 
one contain, in particular, the interaction terms nEe and pEv. 
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In the Fermi case, one can start with the thermodynamic potential 

fl(T, µ) = -cT512:F3;2 (~), 
of a Fermi gas ( cf. [10],(56.6) ). The density of the gas and the density of its free 
energy are n = -8µfl(T,µ) and f(n, T) = nµ + fl(T,µ). Accordingly, the density 
of the free energy of our system is given by 

JF(n,p, T) = ue(p - n) + fL(T) 
+ nT .r;;;[n/ Nc(T)] - T Nc(T):F3;2 o .r;;;[n/ Nc(T)] + nEc(T) 
+pT.r;;;[p/Nv(T)] - TNv(T)Fa120F;;;[p/Nv(T)] - pEv(T). 

The free energy F(n,p, T) = J J(n,p, T)dfl as a functional of n, p and T is a 
thermodynamic potential. Regarding ( ue)'(p - n) = V etc, one straightforward 
checks the usual thermodynamic relations like 8nf = 4>n and apf = -4>p, meanwhile 
8T f = -s defines the entropy density, namely, 

sf (n,p, T) - - !£(T) - nlog [n/N(T)] + n + nT N'(T)/N(T) 
(3.1) -plog [p/P(T)] + p + pTP'(T)/P(T), 

sf(n,p, T) = -J£(T) nE~(T) + pE~(T) 
(3.2) - n.r:;;;(n/Nc o T) + (TNc o T)':Fa;2 o .r;;;(n/Nc o T) 

- p.r;;;(p/ Nv 0 T) + (T Nv 0 T)':F3/2 0 .r;;;(p/ Nv 0 T). 

The (generalized) density of the total energy of the system is the partial Legendre 
transform u( n, p, s) := f ( n, p, T) + T s, but more familiar is the density given as a 
function of n, p and T, 

JT 2N'(T) 2 P'(T) 
uf(n,p, T) := ue(p- n) + CL + nT N(T) + pT P(T), 

uf(n,p, T) = u•(p- n) + JT CL 
+ n[Ec(T) - T E~(T)] + T2 N~(T)Fa12 o .r:;;;[n/ Nc(T)] 
- p[Ev(T) - T E~(T)] + T2 N~(T):Fa;2 o .r;;;[p/ Nv(T)] 

with the notation JT CL := fL(T) - T Jl(T) for the interior energy of the lattice. 

Following Wachutka the flux of total energy reads 

iu = -K.'1T + (T Pn + 4>n)in + (T Pp - 4>p)jp 
and the balance of the total energy it, + \! · iu = 0 for a thermodynamic process in 
our system can be written as a heat equation 

aTu1(n,p, T) T - '1 · (K-'1T) = 1-l 
with the right-hand side 

1-l - -'1· [(TPn+4>n)in + (TPp-4>p)jp] 8nu1(n,p,T)n - 8pu1(n,p,T)p 
= -'1 · [(T Pn + 4>n)in + (T Pp - 4>p)jp] + 8nu1(n,p, T)(\l ·in+ R) 

+ 8pu1(n,p, T)('l · jP + R), 
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where R denotes the net recombination rate. 
The differential of the total energy for a fixed doping profile and fixed boundary 
values can also be written as 

du = dui(n,p,T) - Vdn + Vdp. 

Thus the balance of the total energy becomes 

Bt{u~[n(t),p(t),T(t)]} + V(p-ii) + V·ju = 0, 

where {ui[n(t),p(t), T(t)]} indicates that the density of the interior energy of the 
system during a thermodynamic process is considered as a function on space and 
time. Regarding the continuity equations for the densities n and p we get just the 
balance equation of the interior energy 

Bt{ui[n(t),p(t), T(t)]} + 
(3.3) v. [-~VT + (T Pn + ~n + V)jn + (T Pp - ~p - V)jp] 

- vv · Un - ip) 

with the conventional Joule heating term -V7.f; · jez on the right-hand side. This 
equation is in the spirit of [1] if the relations 

.PnT + ~n + V - T{Pn +log [n/N(T)]}, 
PpT - ~P - V T{PP +log [p/'P(T)]} 

are regarded. 

Remark 3 .1. If the functional fje is chosen as the electrostatic energy, then an ad-
ditional boundary term frD Vn€8v '\t';;-n appears in the energy balance equation. As 
far as we know such boundary terms are not used in energy balance equations yet. 
The lack of the mentioned boundary terms might be a serious lack of the usual 
energy balance equations. The functional ue is the correct one in connection with 
the energy balance equations used in simulation practice. 

4. NATURAL VARIABLES FOR THE ENERGY MODEL 

The fundamental thermodynamic identity 

(4.1) 

(which is easily checked by applying the formulas U1 = f -T aT f = f + T s' 8nf = ~ n 
and 8pf = -~p) offers the possibility to substitute the energy balance equation by 
the entropy balance equation. This possibility looks attractively, since the gradients 
of ~n, ~P and Tare a basis in the space of thermodynamic forces and since s is a 
density liken and p ( cf intensive and extensive state variables). There are deeper 
reasons to consider n, p and s together with ~n, ~P and T as 'natural coordinates' 
for the energy model. The coefficient matrix, which assigns the vector of the current 
densities with the components in, iP and is to the vector of the gradients of ~n' 
-~P and T, is symmetric positive semidefinite according to the Onsager symmetry. 
Moreover, the thermodynamic potential U(n,p, s) is a convex functional (cf below). 
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Proposition 4.1. If the state equations are regarded, the system of equations 

n + V' ·in - -R 
(4.2) p+V'·ip -R 

U + V' · iu = 0 

is equivalent to the system of equations 

( 4.3) 

where 

n + V'. in 
p + V'. ip 

-R 
-R 

7 

Proof. The differentials in (4.1) may be substituted by the time derivatives of the 
corresponding state variables in a thermodynamic process. Thus we get 

. 1 (. <I> • <I> ") s =Tu- nn + PP 

= ~[-V' • iu + <I>n(V' •in+ R) - <I>p(V' · ip + R)] 

= ; ( <I>n - <I>p) - V' · [~ (iu - <I>nin +<I> pip)] 

+ ~(V'<I>p · ip - V'<I>n ·in)+ V'(~) ·(ju - <I>.Jn + <I>pip). 
The last identity is written as the entropy balance equation 

. " . <I>n - <I>pR 1 ( ";r.. . ";r.. . "T . ) 
S + V • Js = T + T - V 'J.'n ·Jn + V 'J.'p • Jp - v · Js 

with the entropy flux 

D 

Remark 4 .1. Both the systems of evolution equations have to be supplemented by 
initial conditions and by boundary conditions. Initial data might be n 0 , p0 and T0 . 

These data allow to evaluate u0 or s0 • Concerning the boundary conditions we have 

V • ia = 0 on 8f2 \ rD (a E { n, p, u or s}) 

in mind, meanwhile n, p and Tare prescribed on rD by means of either ~n, ~P and 
Tor Xn, Xp and Y, such that <I>n - ~n E HJ etc. 

Remark 4.2. In the equivalent 'entropy model' ( 4.3) the Onsager symmetry is per-
fectly reflected. Moreover, the right-hand side of the entropy balance equation is 
the sum of the entropy production rates due to the recombination and due to the 
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fluxes. The entropy production rate of the fluxes can be written as the positive 
semidefinite quadratic form 

1 
T ( V<Pn -V<Pp VT) x 

( 
nDn 0 nDnPn ) ( V<Pn ) 

0 pDp pDpPp -V<Pp . 
nDnPn pDPPP ~ + nDnP~ + pDpPi · VT 

The entropy model provides an argument for choosing the opposite sign for the 
electro-chemical potential. This is a reason why we have not worried about the 
differing signs of our electro-chemical potentials and Wachutka's quasi-Fermi levels. 
The entropy model contains terms with products of the gradients of the sought 
functions. This seems to be a disadvantage of the entropy model compared with 
the energy model, at least from the point of view of partial differential equations. 
There is, however, the possibility to write also the energy model in a symmetric 
form. 

The state variables s and u can exchange their roles. The identity ds = (1/T)du -
( <Pn/T)dn +( <Pp/T)dp shows that the state variables -<Pn/T, <Pp/T and 1 /T are the 
conjugate variables of n, p and u. Choosing their gradients as a basis in the space 
of thermodynamic forces we get a symmetric version of the energy model. We have, 
indeed, 

( 4.4) 

with 

and 

The following theorem is of interest, since the identity u = <Pnn - <Ppp + T s holds 
for a thermodynamic process in our system. This identity makes the functionals 
U ( n, p, s) or S ( n, p, u) be candidates for Lyapunov functions of the entropy model 
( 4.3) or of the energy model ( 4.2) in natural coordinates with the current densities 
( 4.4). 
Theorem 4.1. The functional U = U ( n, p, s) is convex and the functional S = 
S(n,p,u) is concave. 

Proof. The proofs of both the assertions are similar with the difference that energy 
and entropy exchange their roles. We will prove that the 3 x 3 matrix U = ((Uab)), 

Uab = ( 8a8,,U(n, p, s ), aa © 8b) (a, b E {n, p, s} ), 
is positive semidefinite for any state ( n, p, s) and arbitrary variations an, 8p, fis, 
meanwhile the analogous matrix S is negative semide:finite. If no variation fia van-
ishes identically, the matrices are definite. The functionals U and S are given by 
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the densities u 1 = ue +u~ or s1 from the section 3, respectively, but in wrong coordi-
nates. We use the notation Wa for the partial derivative with respect to a E { n, p, T} 
of any function w = w(n,p, T) = w(x, t, n,p, T). We have 

dU = ((U")'(p - n), cSp- cSn) + f (u~ncSn + uf PcSp + ufTcST)dfl. =: j cSudD., 

8s = S1n8n + S1p8p + S1T8T. 

Because of T s1T = U1T the summand U1T8T in dU can be substituted by 

and the summand s1T8T in dS can be substituted by 

1 . . 
S1T8T = T[8u - u~n8n - u~P8p- V(8n - 8p)]. 

Substituting 8T in this way we get the well known identities 

dU = j ( <Pnc5n - <PpcSp + Tc5s )dD. =: Un + Up + U, 

and 

Considering dU and dS for fixed functions 8n, 8p, 8s, or 8u as functionals of n, p and 
s or u, given in the coordinates n, p and T we calculate d2U and d2S in the same 
way. As the coefficients of 8T are different from u1T or s1T, we need the assumption 
U1T > 0. 
For a moment we consider the particular case that the band edges and the effective 
masses do not depend on T. In this model case we have ufT = cL(T) + ~(n+p) > 0, 
meanwhile 0 < ufT is not so obvious, but it will be proved below in a lemma. In 
general, u1T > 0 is a reasonable condition on N and P or on Ne, Ee, Nv, and 
E11 , i.e. on the dependence of the band edges and of the effective masses from the 
temperature, since u1T is the heat capacity of the system. 

The calculations are straightforward excepted, maybe, the evaluation of an expres-
sion like (8n J ~8n, 8n), which arises in (8nSn, 8n). To explain the result 

- (8n j ~cSn, c5n) = j ~e(Y'Von)2 dD. +la ~,B(V.n)2 dr, 

we consider a differentiable map f : X 1--7 Y of a Banach space into a Banach space 
and a linear map Au : Y 1--7 Z of Y into a Banach space ( u might be a parameter 
from another Banach space). The differential df ( x) of f and the differential dg( x) 
of the composite mapping g =Au of for a fixed x are linear mappings from X into 
Y or Z, respectively, for which (dg(x), 8x) = (Au o df(x), 8x) = (Au, (df(x), 8x)) 
holds. In our case, V E Y and Au(V) = J 8; V dO.. 
We consider d2U(n, p, s; 8n, 8p, 8s) as a quadratic form on the real three-dimensional 
linear space which is spanned by 8n, 8p and 8s.This form is represented by the 3 x 3 
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matrix U, 

The matrix Uhas obviously the structure 

( 

XX + UU + ee xy - UV 

U = xy - UV yy + VV + 'f/'f/ 
-xz -yz 

-xz) -yz. 
zz 

with three different scalar products xy, e'f/ and UV. 

d2 S and S are calculated quite analogously. The matrix has the same structure with 
the opposite sign. 

The proof will be finished by the following lemma. D 

Lemma 4.1. The matrix U has nonnegative eigenvalues only. 

Proof. The matrix can be considered as a quadratic form on the real three-
dimensional linear space spanned by 8n, 8p, and 8s. Let us consider the restrictions 
of the quadratic form on each two dimensional subspace. 

At first we consider the subspace spanned. by 8n =/= 0 and 8s =/= 0. The matrix 
corresponding to this restriction is 

( ~:;uu+ee ~zxz). 

Their eigenvalues are positive, since 

o < xx + uu + ee + zz, 
1 

0 < 4(xx + uu + ee - zz)2 + (xz) 2 

1 = 4(xx + uu + ee + zz) 2 
- (xx + uu + ee)zz + (xz) 2

, 

(xz) 2 ~ (xx)(zz) < (xx + uu + ee)zz 
1 1 

= 4(xx + uu + ee + zz) 2 
- 4(xx + uu + ee - zz) 2

• 

The same argument holds for the subspace spanned by 8p =/= 0 and 8s =/= 0. 
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Finally we consider subspaces spanned by vectors satisfying 

a8n + Mp - 8s == 0 
for arbitrary fixed real a and b. The matrix corresponding to this restriction is 

_ ( XX + UU + ee - 2axz + a 2 
ZZ xy - UV - ayz - bxz + abzz ) 

xy - uv - ayz - bxz + abzz yy + vv + T/T/ - 2byz + b2zz 

==-( (x-az.,x-az)+uu+ee (x-az,y-bz)-uv ) 
(x - az, y - bz) - uv (y - bz, y - bz) + vv + T/T/ • 

11 

Similar arguments as in the first case hold again. D 

Remark 4.3. The assertions of the theorem also hold for 

U(n,p, s) := j ii.1(n, p, T)d!1 and S(n,p, ii.) := j s1(n,p, T)dn, 

u == u 1(n,p, T) == ue(p - n) + ui(n,p, T). Using the functions 8u, <I>n and <Pp from 
above we get 

d[J = j .lu + lD Vve8v V.p-6ndr, 

- l 1 dS ( n, p, u; 8n, 8p, 8u) == dS ( n, p, u; 8n, 8p, 8u) + T Vn €8v Vop-8ndI', 
f D 

but d2U == d2U and d2S(n,p,u) == d2S(n,p,u). 

In the Fermi case the partial derivative sfT of sf with respect to T is 

F 1 F CL 0 T E" (T) E" (T) 
s1T = T U1T == T - n c + P 11 

(nN~ o T) 2 1 + (TNc 0 T)":F3/2 0 :F0;(n/Nc 0 T) T----------
Nc(T)3 :F-1/2 o :F0;(n/Nc o T) 

,, _ 1 ) (pN~ o T) 2 1 + (T Nv 0 T) :F3/2 0 :F112(P/ Nv 0 T - T N. (T)3 :F. '1:"-1 ( /N T). 
v -1/20~1/2 p . v 0 

In the model case in which the band edges and the effective masses do not depend 
on T the inequalities sf> 0 and uf > 0 follow from the next lemma with a= 1/2 
and with the argument u = :F0~(n/enT312), since 

15 enT312 9 n2 1 
-4 T :F312 o F.1-/12( n/ enT3f2) - I i 

4 enT5 2 :F_112 o :F02( n/ enT312) 

9 112 5 :F112(u)2]. = -enT [-:F312(u) -
4 3 :F-112( u) 

The proof of the following lemma has been given by my colleague H. Stephan. 

Lemma 4.2. The inequality 
1 F.2 

( 1 + a + l ):Fa+l - :F~ > 0 

holds everywhere on the real line for any a > -1. 
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Proof. Since F~ > 0 everywhere on the real line, the inequality is equivalent to 
G(a + l)G(a - 1) - G(a) 2 > 0 

with the function 

1
00 tot 100 ta.+let-u J 

G(a) =(a+ 1) t dt = t dt = dpa.(t). 
0 e -u + 1 0 1 + e -u 

We observe Q(k)(a) = J(logt)kdpa.(t) for the kth derivative with respect to a. The 
Jensen inequality is applied with the convex function x 2 , i.e. 

[! Iogtdpa(t)j j dpa(t)] 2 < j (Iogt)2dpa(t)j j dpa(t), 

i.e. G(a)G"(a) > G'(a)2 • The function H(a) :=log [G(a)] satisfies 

H"(a) = G"~a)2 [G(a)G"(a) - G'(a)2
] > 0, 

i.e. 

1 [G(a - l)G(a + 1)] 
og G(a)2 > 0, 

i.e. the assertion. D 

We finish this section with a remark on Fermi integrals. The inequality of the lemma 
can be written in the form 

1 ;r:' :F.' :F.2 ;r:' :F.' :F.2 [ F ot+l ] I --1.ra.+1 a > a - .ra.+1 a = a -;r=-
a + .ra. 

The sign of the difference on the right-hand side of the inequality is also of interest 
(cf. [4]). 
Lemma 4.3. The inequalities 

Fa.(v) Fa.(u) 
F~(v) > F~(u) 

hold for any Fermi integral Fa, a > -1. 

with the measures 

(u < v) 

xa.yae:z:+y dxdy 
dµ(x,y) = (eu +ez)2(eu + eY)2(ev + e:z:)2(ev + eY)2 = dµ(y,x) 

and d).(x,y) = [(eu + ev)(eY + e:z:) + 2eu+v + 2e:z:+y]dµ(x,y) on R~. D 
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Since F~ ( u) > 0 for any a > -1 the concavity of the functions F-;1 o Fa+l is 
rigorously proved for any a > -1. 

5. A LYAPUNOV FUNCTION FOR THE ENERGY MODEL 

In this section a Lyapunov function is constructed for the energy model ( 4.2) in 
natural coordinates n, p, u and Xn = <I!n/T, Xp = if!p/T, and Y = 1/T. To this 
aim we need the conjugate potential H(Xn, Xp, Y) of the entropy S(n,p, u). A state 
variable liken will be denoted by ni, if we want to emphasize that it is considered 
as a function of the intensive state variables (Xn, Xp, Y). Sometimes it is more 
convenient to indicate the dependence of a state variable upon the electrostatic 

. potential separately. The indicator will be the lower index 2, i.e. 

where Vi(.) E H5 denotes the solution of the nonlinear Poisson equation 

(5.1) J E'V'W. VxcID + iG .BWxdr = J [p2(., W)- n2(., W)]xdn (x EH~). 

Remark 5.1. Let (HJ)' denote the dual space of HJ and let X and Y denote 
unspecified function spaces of either Xn or Xp and Y. The nonlinear operators 
P2(Xn, Xp, Y, .) : HJ t-+ (HJ)' defined by 

are strongly monotone operators. The nice properties also appear in the linearized 
equations. The coefficient of the additional term on the left-hand side in each 
equation is a nonnegative function. 

Remark 5. 2. Let Pi C X x X x Y x HJ denote the manifold of zeros of the map 
P2 : X x X x Y x H5 t-+ (HJ)'. The projection 1Ti : Pi t-+ X x X x Y is a chart 
map of the manifold and Hi = H2 o 1Ti

1
• 

· Because of the identities 
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the density of the conjugate potential H of Sis defined by 

ho = -nXn + pXp + uY - s = -nXn + pXp + f /T , 

hF = -Nc(l/Y):F312[ Xn + Y(V* +Vi - Ec(l/Y))] 
- Nv(l/Y):F3;2[-Xp - Y(V* +Vi - Ev(l/Y))] 
+ YfL(l/Y) +he; 

Note that he also differs in both the cases B and F like ni, Pi and also Vi do. 

We want to check the relations 

(8xnH, 8X,,.) = - j n8X,,.d!J, ... , (8y H, 8Y) = j u8Y d!J. 

We start with the identities 

(8aH, fo.) = j fo 8ah2[., V;(. )] d!J + j (8a V;, fo) 8v,h2[., V;(. )] d!J 

(a E {Xn,Xp, Y}). The function 

(8a Vi, oa) =: oa Vi(Xn, Xp, Y) 
in HJ is the solution of the linearized Poisson equation 

j [€V'W · V'x + W8v,(n2 - p2) xl d!J + fra ,BWx dr 

(5.2) - j fo 8a(P2 - n2) X d!J 

Let us consider (8w H2 (., W), oW). Since 

j 8W8w [nf (., W) + pf (., W)] d!J = j 8W Y [nf (., W) - pf (., W)] d!J 

and 

j 8W8w[NcFa12(YW + ... ) + N.Fa12(-YW - ... )] dn 

- j 8W Y [nf(., W) - pf (., W)] d!J, 

the identity 

(8wH2(., W),oW) - { Y ,BW8W dr lra 
j Y{€V'8W · V'W - 8W8w [n2(., W) - p2(., W)] W} d!J 
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holds. The key of the proof is to understand that the variations 8a Vi, which are 
solutions of (5.2) also satisfy 

because of H = H2o 7ri°1 lives on the manifold Pi. Then the relations follow easily 
from 

(8a.H, fo) = J fo { 8ah2[., V;(. )] + Y8a. [n2(., V;) - P2(., V;)] V;} dD.. 

Remark 5.3. We had to learn to deal with mappings into function spaces Z EB Zr 
living on the domain n as well as on a part of the boundary. The same situation 
occurs, of course, with the generalized energy density u. The same situation also 
occurs, if we start with the energy density ii, = ui + ii,e. We know from section 2 
and from the third remark in section 4 that 

In the case of the energy density ii, the corresponding electro-chemical potential ~n 
is a functional living partially on a part of the boundary. This construction looks 
rather formally, of course, and one might be inclined to stick to the state variable 
4>n. Doing so, however, the thermodynamic calculus is left. 

According to our definition of .4>n, 4>P and T the equilibrium state of our system is 

~n = ~P = 0, f' = 1, or Xn = Xp = 0, Y = 1. 

The electrostatic potential of the system in the equilibrium state is V = V* + i"i 
with the solution i"i of the nonlinear Poisson equation 

J EV'W. Vx dD. + lG /3Wx dr = J lP2(:, W) - n2(:, W)]xdD. 

j [Pa(., W) - ii2(., W)] x dD. 

(x E HJ). Note that V = v0 are different in the cases C = B or F. 

For boundary values of Xn, Xp and of Y on rD which are compatible with the 
equilibrium state we set 

S_(n,p, u) := j [n(Xn - Xn) - p(Xp - Xp) - u(Y - Y)) dD. 

+ H(Xn, Xp, Y) - H(Xn, Xp, Y). 

This functional is non.negative and convex. If a solution of the system ( 4.2) satisfies 
boundary values on rD which are compatible with the equilibrium state then the 
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d -dt {S_[n(t),p(t),u(t)]} 

= J {ii(t)[Xn(t) -Xn] - P(t)[Xp(t) - Xp] - U(t)[Y(t) - Y)]} dfl 

= J {jn . V[Xn(t) - Xn] - R[t][Xn(t) - Xn] - jp . V[Xp(t) - Xp] 

+ R[t][Xp(t) - Xp] - iu · V[Y(t) - Y]} dfl 

(
-[Xn(t) - Xn] ) (-[Xn(t) - Xn] ) 

= -! V Xp(t) - ~P • DV Xp(t) - ~P dfl 
Y(t) - Y Y(t) - Y 

-J R[t][Xn(t) - Xn -Xp(t) + Xp] dfl ~ 0 

is fulfilled. Here we used the properties V Xn ( t) = V [ Xn ( t) - Xn] and Xn ( t) - Xn E 
HJ etc. The total dissipation rate on the right-hand side is the sum D = Dt +Dr 
of the dissipation rate D f due to the flux and of that one due to the generation and 
recombination of car_riers. The density R[t][Xn(t) - Xn - Xp(t) + Xp] of Dr already 
appeared in the entropy balance equation. It denotes the entropy production rate 
due to the recombination and generation of electrons and holes. Therefore the 
term has to be nonnegative. This property is easily proved in the Boltzmann case 
for typical net recombination rates like R = Ro(np - NP). At least, if this net 
recombination rate is written in the form R = R(exp (Xn - Xp) - 1) it has the 
property in the Fermi case, too. 

The right-hand side of the estimate is the negative sum of the dissipation rates due 
to the fluxes and due to the recombination or generation of carriers. The estimate 
can also be written in the form 

(5.3) S_ [n(t), p(t), u( t)] ~ S_ [n(O), p(O), u(O)] -l D[n( r ), p( r ), u( r )] dr. 

The functional S_ can also be used in the case of time discretization. Let t0 = 0 < 
t1 < ... < tK be given. Let denote Tk = 1/(tk - tk-l) and r := rk(t - tk-1). We 
consider the system of equations 

rk(nk - nk-1) + V · i! - -Rk 
(5.4) rk(Pk - Pk-1) + V · j; - -Rk 

Tk(Uk - Uk-1) + \7 · i! - Q 

for 0 < k :::; K with given initial data n 0 , p0 and u0 and with the current densities 

(5.5) ( 
i! ) ( -(Xn)k ) 
~~ = Dk'V (~)k . 

The unknown new values (Xn)k , ... , uk are used as much as possible in the coefficients 
Dk and right-hand sides Rk of the equations, but we will be forced to use the already 



THERMODYNAMICS OF ENERGY MODELS 17 

known values (Xn)k-1 , ... , Uk-1 in much places. We interpolate the densities n, p 
and u linearly, i.e. ii( t) = n1c-1 + r( n1c - n1c-1) = n1c_1 + T ~kn etc on the interval 
Sk =]tk_1, tk]· From these state variables we obtain the other ones like Y by the state 
equations (if we need these values at all!). We get, in particular, S_[ii(t),p(t), u(t)]. 
This function satisfies 

d -
dt {S-[ii(t),p(t), u(t)]} 

=TT. j {flkn[Xn(t) - Xn] - b.kp[Xp(t) - XP] - llku[Y(t) - Y-)]} dfl 

::; Tk j {llkn[(Xn)k - Xn] - llkp[(Xp)k - XP] - llku[}k - Y-)]} dfl 

= J {]! . V'[(Xn)k - Xn] - Rk[(Xn)k - Xn] - j; . V'[(Xp)k - Xp] 
k - k - k k + R [(Xp)k - Xp] - Ju. V[Yic - Y]} dfl =: -D, - Dr ::; 0. 

The first estimate is proved by a convexity argument, namely 

and thus 

= -~ J{[ii(t) - n1c][Xn(t) - Xn] - [P(t) - p1c][Xp(t) - Xp] l-T 
- [u(t) - u1c][Y(t) - Y)]} dfl 

since the conjugate potential H of the concave potential S is also concave. 

The estimates for S_ [t] and their discrete analogue are of interest in so far as 
they show that the mathematical model reflects the stability of the equilibrium 
state in some way. Initial-boundary value problems for ( 4.2) with Dirichlet data 
(Xn, Xp, Y) =/= (Xn, Xp, Y) are more realistic. In this case, the functional 

S_(n,p,u) := j [n(Xn - Xn) - p(Xp -Xp) - u(Y - YJ] dfl 

+ H(Xn,Xp, Y) - H(Xn,Xp, Y) 
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satisfies the estimate 
d -dt { s_ [n( t),, p( t), u( t)]} 

= J {'li(t)[Xn(t) - Xn] - P(t)[Xp(t) - Xp] - U(t)[Y(t) - Y)]} dfl 

= J {jn · \l[Xn(t) - Xn] - R[t][Xn(t) - Xn] - jp · \l[Xp(t) - Xp] 

+ R[t][Xp(t) - Xp] ~ju· \7[Y(t) - Y]} df2 

(
-[Xn(t) - Xn] ) (-[Xn(t) - Xn] ) 

= - j \7 Xp(t) - ~P • D\7 Xp(t) - ~P dfl 
Y(t) - Y Y(t) - Y 

- J R[t][Xn(t)- Xn - Xp(t) + Xp] dfl 

(
-[Xn(t) - Xn] ) (-Xn ) 

= - J \7 Xp(t)-~p ·D\7 ~P dfl 
Y(t)- Y Y 

+ J R[t][Xn(t) -Xn -Xp(t) + Xp] dfl. 

The additional last term on the right-hand side is not definite in general, but linear 
in the gradients of Xn etc. Thus one can try to get an estimate for it by the 
dissipation rate. The chances that such an estimate hold are not so bad if the 
stationary problem with the boundary values (Xn, Xp, Y) on rD has an unique 
solution and if (Xn, XP, Y) is just this solution. 

Remark 5.4. The Scharfetter-Gummel procedure, which has been successfully ap-
plied in the drift-diffusion model, has an analogue for the system (5.4) coupled with 
(5.1): The whole system at time tk can iteratively be solved, solving (5.4) with the 
state equations n = n 2(Xn, Y, W0 ) etc with frozen electrostatic potential in a first 
part of one iteration step, but (5.1) with the new values of Xn, Xp, Yin a second 
part. 

6. SPATIAL DISCRETIZATION OF THE ENERGY MODEL DISCRETIZED IN TIME 

We apply a box method to discretize the system of equations (5.4), (5.5) spatially. 
We consider a triangulation s of the domain n with the grid points r1, ... , rN. Let 
Sn .(1 ~ n ~ N) denote the ordered set simplices sm E S which have one of their 
corners in rn. Let 'Rn denote the set of all neighbours rz, i.e. the finite line from rn 
to rz is the edge of a simplex of the triangulation. Let 

N 
Bn := {r E f2 : lr-rni =minJr-ri\} 

l=l 
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denote the box or Voronoj cell around rn. If the triangulation is sufficient regular ( cf 
Delaunay property) the boundary 8 Bn consist of plane parts A~ such that rz - r n = 
dnln~ with the exterior normal unit vector on A~ (rz E 'Rn)· For a density u on n 
we set un = f Bn. udn. Thus we get 

Tk(Uk - rr,:_1 ) = - [ '1 · j:dn = - L [ n~ · j: dA ~ L dnil:(nl). 
J Bn. 'Rn. JA~ 'Rn. 

for the last equation of the system (5.4). We need an expression for the current 
I!(nl) in the edge fromrn to rz during the k-th time step. 

The one-dimensional current equation corresponding to (5.5) reads 

aX~ + rY' In 
bX; + .sY' = IP 

rX~ + .sx; + cY' = Iu 
with constant right-hand sides. A rough approximation arises if the coefficients f 
are substituted by the average fk-l = HJ!-1 + fzk-l) of their values in the endpoints 
of the edge at the time tk-1· A more refined approximation arises if the coefficients 
are considered as affine functions f(x) = fn + f'x (0 < x, ..6.l) on the edge. The full 
program 

( ~i: ) = t b \ br2 ( be -;.;

2 

ac ~~2 =: ) dx · ( t ) , 
..6.Y Jo a c - as - -br -as ab Iu 

however, will be too expensive. A lot of compromises can be suggested. Above all, 
coefficients with lfn - fzl « f should be substituted by f. 
The coefficients of the spatially discretized thermodynamic forces 11Xn are state 
variables, which depend on the state variables in the endpoints of the edge. We 
have the possibility to choose the old values or the new unknown ones. A good 
choice will be characterized by the properties that the new values are taken as often 
as possible, but that the equations, which become nonlinear if unknown new values 
are regarded in the coefficients, have still a good behaviour. Summarizing all box 
balance equations we get a finite system of equations 

( ) ( ) ( 
-k) Nk - Nk-1 -(Xn)k -R 

Tk Pk - Pk-1 + f>k (Xp)k = -Rk 
Uk - Uk-1 Yk 0 

(0 < k ~ K) for the grid vectors Nk, ... , Yk with given initial data N0 , P0 and U0 . 

This system has to be completed by the discretized Poisson equation 

(6.1) PW=P-N 
at each time step k and by state equations for N, P and U. 

For grid vectors W = (Wn), Y with yn > 0 and Z let (W, Z), W * Z and W/Y 
denote, respectively, the scalar product L:n wn zn and the grid vectors with the 
components wnzn or wn/Yn. Note that densities and functions have to be dis-
cretized. Accordingly, the discretized objects are extensive grid vectors like N or 
intensive ones like T or n = N/IBI. The natural pairing is the scalar product of 
an intensive grid vector and an extensive one. For functions from the preceding 
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sections like p2 or ui let p := p2(Xp, Y, W) or ui(n,p, T) denote the grid vectors 
with the components p2(X;, yn, Wn) or ui(nn,pn, Tn) such that, e.g., 

N = jBj * n2[Xn, Y, Vi(Xn, Xp, Y)], 
where Vi denotes the solution of the discretized nonlinear Poisson equation 

PW= IBI * [p2(Xp, Y, W) - n2(Xn, Y, W)]. 
The discretized electrostatic energy is defined by 

U"(p - n) = (V*, p - N) + ~('1;,-n, PVp_n), 

where Vp_n denotes the solution W = p-1(P - N) of the Poisson equation (6.1), 
i.e. 

U"(p-n) = (V*,P- N) + ~(P-N,P-1 (P-N)), 
and 

1 ue(p - n) = V* * (p - n) + -(p - n) * p-1[IBI * (p - n)]. . 2 

Under these conventions the identities 

oT = [ou - V *(op- on) - 8nu~ *on - 8pui * op]/8Tu~, 
and 

i 2 8TU1 = 8Tu1 = aT(f -T8Tf) = -T8Tf = T8TS1 
hold. Thus we get 

(dS(n,p,u),onEBopEBou) - (1/T,oU)+ 
(8ns1 - (8nu~ - V)/T, oN) + (8ps1 - (8pu~ + V)/T, oP) 

- (-Xn,oN) + (Xp,oP) + (Y,oU). 
In the Boltzmann case, e.g., 

with 

Xn =log [Af(T)] - [V* + p-1(P - N)]/T, 

oT /T = [ou/T - on* an - op* ap]f 8Tu~B, 

an= T * N'(T)/N(T) - V/T and ap = T * P'(T)/'P(T) + V/T. 
Therefore we have 

( d{-log[n/N(T)], oN) + (V* + p-1(P - N), oN/T) 
- log(p/'P(T)], oP) - (V* + p-1(P - N), oP/T) + (1/T, oU) } , on EB op EB oT) 

= -(oN, on/n) + (P-1(oP - oN), on/T) + (oT /T, an* 8N) 
- (oP, op/p) - (P-1(8P - oN), op/T) + (oT/T, ap * 8P) - (oT/T, oU/T), 
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i.e. 

with the matrix 

The conjugate potential 

1-l(Xn, Xp, Y) := -(Xn, N) + (Xp, P) + (Y, U) - S(n,p, u) 

reads in the Boltzmann case, e.g., 

The discrete analogue 

S_(n,p,u) := (N,Xn -Xn) - (P,Xp -Xp)(U, y - Y) 
+ 1-l(Xn,Xp, Y) -1-l(Xn,Xp, Y) 

21 

is a Lyapunov function for the problem discretized in time and space. The argu-
ments are completely analogous, such that we do not repeat them here. The spatial 
discretization and the whole calculus can also be applied with continuous time. 

7. GENERAL DISPERSION 

The case C = G of general dispersions W&( x, p, T) (b = c, v) is a little bit more 
complicate. In this case, we will not write down the full program, but we only proof 
the convexity of the potential U(n, p, s ). We consider also the conjugate potential 
G( 4?n, 4?P, T), which is also convex. We are surprised that d2G is the difference of 
two semide:fi.nite forms, meanwhile d2U is a sum of semide:fi.nite forms as in the cases 
Band F. 

We assume that the Lebesgue measure of the surfaces wb(x, ., T) = w in the mo-
mentum space are finite, i.e. 

a&(w, T) = ab(x, w, T) := [ da(p) < oo. J w&(x,p,T)=w 

It will be convenient to introduce the chemical potentials Yb = 4?& + V = 4?b + V* + V:G 
(b = n,p) and to abbreviate Zn = ~(Yn - Ee -w), Zp = ~(Yp- Ev +w). The carrier 
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densities are 

with 

G(Y. T) - [''° a,,(w, T) dw 
p P' - 10 1 + exp [ ~ (Yp - E,, + w)] ' 

where v;,0 is the solution of the nonlinear Poisson equation 

j e\lW·Vxdn+ 1/Wxdr 

= j[p~(il!p,T,W)-n~(il!n,T,W)] xdn 

(x E HJ) in HJ. The expression 

with these Yn, Yp, V and with the quantities 

r'° 1 Dn(Yn, T) = -T lo ac(w, T) log [1 +exp T(Yn - Ee - w)]dw 

and 

t'° 1 np(Yn, T) = -T lo a,,(w, T) log [1 +exp T(Yp - E,, + w)]dw 

is the density of the free energy. 

We notice that the potential Vis fixed for fixed n and p. Thus the density of entropy 
s is is defined by 

aT J0 (n,p, T) = fi(T) + aTnn + (Jynnn. (8TYn)n,p + n(8TYn)n,p 
+ 8T0p3 + (Jy110p3 · ( 8T °Yp )n,p - p( 8T °Yp )n,p 
= Jl(T) + 8TDn(Yn, T) +8T0p(Yp, T) = -s0 (Yn, Yp, T). 
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The density u of the total energy is given by 
u(n,p, s) = f(n,p, T) -T8T f(n,p, T) = ue(p - n) + fL(T) - Tfl(T) 

The partial derivatives of the functional U( n, p, s) are calculated with the partial 
derivatives of 

uG(Yn, Yp, T) = ue [PG(Yn, T) - nG(Yn, T)] + uiG(Yn, Yp, T) 
by solving the linear system of differentials 

nGYndYn + n¥dT dn, 
p~ dYp + p¥dT dp, 

s~ndYn + s~dYp + s¥dT ds. 
The system is solvable if and only if its coefficient determinant 

1J . G [pG G G G ) G G G ..J. Q .. = nyn Yp 8T - PT 8 Yp - nTPYp 8 Yn I . 

It is convenient to introduce the measures 
e-8&Zb 

dµb(w) = [ 8 ]2 ab(w, T)dw 1 + e- &Zb 

( 8c = 1, but 8v = -1) and the notation 

Mikl = j(zn, + 8-rE&)kdµ&, M& = Mi0 l, JIA"' - M(1) 
.LVlb - b > 

Jl,f"" - JIA"(2) 
.LVlb - .LVlb > 
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In the model case in which neither ab( w) nor Eb depend on T, the determinant is 

1J = - ~3 {CL o T 1dµc(w)1 dµ.(w) 

+ [ 1 z;dµ.(w) 1 dµ,,(w)- ( 1 zpdµ.(w) )2
] 1 dµc(w) 

+ [1 z~dµc(w) 1 dµc(w) - ( 1 Zndµc(w) )2
] 1 dµ.(w) } < 0 

because of Jensen's inequality. 

Theorem 7 .1. The functional 

U = U(n,p, s) := U0 (p - n) + J u;0 (Yn, ¥;,, T) d!l, 

where Yb = ~b + V* + V,:G( ~n, ~P' T) (b = n, p) and T satisfy n 
p = pG(Yp, T) and s = sG(Yn, Yp, T), is convex if the conditions 

(b = c, v) 

are satisfied. 

Notice that the assumptions of the theorem are fulfilled in the model case. 

Proof. We have 

VdYn = (pysT - PTSYp)dn + sypnTdp - pynTds, 
VdYp = PTSYndn + (nysT - SynnT)dp - nypTds, 
VdT = -pysyndn - sy11nydp + nypyds. 

(here the upper index G has been omitted and nyn = ny etc) and 

i ~ i 
a ( ) _ Uyn ( ) Yp UT 
nun,p,s --V+ v PYST-PTSYp + vPTSYn-15PySyn, 

i ui i 
( ) Uy; y11 ( ) UT 8pu n,p, S = V + VnnTSy11 + V nyST - nTSYn - VnySy11 , 

i ui i a ( ) Uy; Yp UT 
8 U n,p,s = - VnnTpy - V nypT- Vnypy. 

The relations 8nu( n, p, s) = ~n = Yn - V etc. can be checked by straightforward 
calculations. We calculate the 3 x 3 matrix U = ((Uab)) starting from 

dU( n, p, s, .Sn, .Sp, .Ss) = j ( CJ.>n.5n - CJ.>p.Sp + T.ss) d!l 

= j ( -V .Sn + Yn.5n + V .Sp - Yp.Sp + T.ss) d!l. 
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The matrix has the same structure as in the proof of the Theorem 4.1 with the same 
electrical part, but with 

The proof is finished by Lemma 4.1. D 

Because the state variables ( ~n, ~P' T) are directly available, we consider the 
conjugate potential of the energy. A generalized density 90 of it is defined by 
90 = n~n - p~p + Ts - u. Because of the Poisson equation (2.1), this general-
ized density with boundary terms can be substituted by an actual density. We 
set 

gf (Y,., Y,,, T, W) := - fL(T) - 11,.(Y,., T) - 11p(Y,,, T) + ~ W[1i°(Y,,, T) - na(Y,., T)] 
and 

9G(~n, ~P> T) := 9f[~n + V* + v,,a, ~P + V* + V,,G, T, V,,G]. 

The state variable GG( ~n, ~P' T) = J 9G( ~n, ~P> T) dO. is, indeed, the conjugate 
potential of the total energy. The relations a~n. G = n etc are checked similarly as 
in section 4, e.g., 

(fh J gG d!1,.ST) = - J {.STfh(fL + 11,. + 11p) + .STV,:G(8yn!1,. + 8y,!1p)} d!1 

+~ J { .STV,:G(pG - nG) + v,:a[.STfh(pG - nG) + .STV,:G(&y,pG - 8ynnG)]} d!1 

= J sG.ST d!1 + ~ J {-(p - n).STV,:G 

+ v,_G[JTV,,G(8yppG - 8yn.nG) + 8TV,,G8T(PG - nG)] } dn 

Thus we have 

dGG ( <P,., <Pp, T; .S<P,., .S<Pp, .ST) = J { nG[<P,. + V* + V,:G, T].S<Pn 

- pG[~P + V* + v,,a, T]fi~P + sG[~n + V* + v,,a, ~P + V* + v,,a, T]fiT} dO.. 
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and 

d2 G = d~G + d2 G with i e 

Because of (5.2) the electrical part is 

d~ G = - [ 8n V:G + 8p V:G + 8T V:G, Jn V:G + 8p V:G + 8T V:G] 
with the scalar product 

[x,W] := j[e'Vx·'VW+~(Mc+M.)xW]dn + fr/xWdr. 

The symmetric matrix G which corresponds to the quadratic form generated by d2G 
on the three-dimensional linear space spanned by the arbitrary, but fixed functions 
8<Pn, 8<Pp, and 8T is the difference of two positive definite symmetric matrices Gi 
and Ge. As the functional G is the conjugate functional of the convex functional U, 
it is a convex functional, i.e. the quadratic form d?;G is dominated by the quadratic 
form d'fG. The question is, whether this dominance is a trivial consequence of 
well known a-priori estimates for solutions of elliptic boundary value problems or 
whether the dominance is an particular type of an a-priori estimate. 
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