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Forward 

One aim of the pt Workshop on Stochastic Numerics was to bring together for the 
first time leading experts on this field from the eastern countries with those from 
the west. The support by Deutscher Akademischer Austauschdienst and Deutsche 
Forschungsgemeinschaft allowed the participation of many colleagues between Torun 
and Novosibirsk. 
Another goal of this workshop was achieved by confronting specialists from stochastic 
analysis, stochastic numerics, statistics of stochastic processes and different fields of 
application with new results and trends in the other fields. Thus applied and inter-
disciplinary aspects played an important role. Modelling of challenging applications, 
stochastic numerical methods and statistical inference were understood in the frame-
work of their interrelations. Several young mathematicians took the opportunity to 
consult specialists to improve their profile. 

The response to the conference was so overwhelming that many participants expres-
sed their hope that it would be regarded as a kick-off meeting to a series of workshops 
which enable mathematicians working at universities and in industry to discuss their 
work, exchange ideas, or even join forces to approach some of the more difficult and 
pressing problems. Announced as the first workshop on stochastic numerics, the 
conference provided the ideal setting for identifying such problems and stimulating 
research activities. Subsequent workshops could possibly involve a section, where 
progress is discussed and solutions are presented. 

Areas that appear to be of particular interest are mathematical finance and quan-
tum physics. We therefore decided to choose problems encountered in these fields to 
apply our techniques and put the theory to the test. Many papers delivered at the 
conference dealt with particular stochastic differential equations. Whereas in phy-
sics, where relations are often governed by mechanistic laws, problems may well be 
described by such systems, in finance or quantum physics the dynamic processes are 
usually not fully understood until now and need to be identified. Hence, the objective 
is simply to adequately model observable phenomena and discover as much structure 
as possible. Some of the extended and revised abstracts e.g. by Breckling & Dal 
Dosso, Rebolledo and Chiarella list a few of the problems encountered which may be 
tackled using stochastic differential equations, stochastic numerics and statistics of 
processes. Those with an interest in the kind of problems are encouraged to contact 
the authors directly for a more detailed discussi~:m. Deutsche Bank Research for in-
stance may also be in a position to provide the data necessary for analysing specific 
problems in mathematical finance. 



These proceedings contain all abstracts submitted to the workshop including several 
extended and revised after the conference. We included also a list of addresses and 
e-mail addresses to provide a basis for further communication. 

The organisers of the conference would like to thank all those who contributed to 
this workshop and announce that attempts will be made to have a 2nd Workshop on 
Stochastic Numerics near Berlin from 5 until 10 September 1994. 

Berlin, September 1992 

U. Kuchler E. Platen M. Teuchert 
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FIRST \VORKSHOP ON STOCHASTIC NUMERICS 
BERLIN, SEPTEMBER 7-12, 1992 

Stochastic1 Dynamical Systems 
by 

Ludwig Arnold 
Institut fiir Dynamische Systeme 

Universitat, Postfach 
D-2800 Bremen 33 

1 Basic concepts and results 

1.1 Dynamical. systems 
The categories of metric, topological and smooth dynamical systems and their 
overlaps, time T = lK 

1.2 The concept of a random dynamical system 
Cocycles on T = ID; and consequences, skew-product flows, example: random 
differential equations 

1.3 Stochastic flows through stochastic differential equa-
tions 

Two-sided stochastic calculus, two-parameter filtration :J'!, forward and back-
ward integral, results of Kunita 

1.4 Stochastic dynamical systems through stochastic dif-
ferential equations 

White noise as a metric dynamical system, cocycle property, cocycles with in-
dependent increments 

1The term stochastic pertains to the white noise case, while the term random pertains to 
the general case 
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2 Smooth stochastic dynamical systems: The 
multiplicative ergodic theorem and conse-
quences 

2.1 Invariant measures for random dynamical systems 
Disintegration, Krylov-Bogolyubov method, Fokker-Planck equation L±p± = 0 
and pull-back limt-'foo <p(t,w)- 1p± = µ'(; 

2.2 The multiplicative ergodic theorem 
For linearized random dynamical systems on the tangent bundle 

2.3 Local smooth theory based on the multiplicative er-
godic theorem 

Invariant manifolds (in particular stochastic stability), normal forms (conflict 
between ergodic theory and stochastic analysis), stochastic bifurcation (physi-
cist's versus dynamical concept and interplay) 

3 A program for numerics and visualization 

3.1 Generation of stochastic flow 
Generate numerically the stochastic flow 'Ps,t(w) as a family of mappings for 
fixed w 

3.2 Pull-back 
Implement and visualize <p(t,w)- 1x fort-+ ±oo 

3.3 Invariant measures 
Solve the forward and backward Fokker-Planck equation L±p± = 0 numerically 
(via histogram?) and study the parameter dependence of solution, compute 
and visualize limt--+=foo <p(t,w)- 1p± =µ"!;and determine character ofµ"!; (Dirac, 
atomic, random limit cycle, fractal or smooth support) 

3.4 Invariant manifolds 
Compute and visualize center manifold at bifurcation point and use symbolic 
manipulation to compute the normal form on the center manifold, compute and 
visualize stable and unstable manifolds for hyperbolic µ"!; (in particular domain 
of attraction if .X < 0) 
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3.5 Bifurcation theory 
Compute and draw bifurcation diagram (i.e. new invariant measure bifurcating 
from reference measure at critical parameter value 

References 
[1] L. Arnold, H. Crauel, J.-P. Eckmann (eds.): Lyapunov exponents. Springer 

Lecture Notes in Mathematics 1486 (1991) (see the introductory survey by 
Arnold and Crauel) 

[2] L. Arnold, P. Boxler: Stochastic bifurcation: instructive examples in dimen-
sion one, in: M. Pinsky, V. Wihstutz (eds.); Stochastic flows. Birkhiiuser, 
Boston 1992 

[3) L. Arnold, H. Crauel: Iterated function systems and multplicative ergodic 
theory, in: M. Pinsky, V. Wihstutz (eds.); Stochastic flows. Birkhiiuser, 
Boston 1992 

[4] L. Arnold, Xu Kedai: Normal forms for random diffeomorphisms. Journal 
of Dynamics and Differential Equations (to appear, July 1992) 
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CERTAIN ASPECTS OF APPLICATION OF NUMERICAL 
METHODS FOR SOLVING.SDE SYSTEMS 

Sergei ARTEMEV 
Computing Centre, Sib. Div. Russian Academy of Sciences, 
pr. Akademika Lavrenteva, 6, Novosibirsk, 630090, Russia 

The method is said to be asymptotically unbiased with the stepsize h, if while air 
plying it with this stepsise to the scalar linear SDE 

y(t) =Yo - a 1t y(s)ds + O"w(t), (1) 

where a > O, O" i= 0 are real coefficients, the distribution of the numerical solution y,,. 
converges as n-+ oo to the normal distribution with zero mean and va.riance 0"2 /(2cc). 
The interval (.x, 0) is said to be the interval of asymptotic unbiasedness of the method, 
if the latter is asymptotically unbiased with a.ny stepsize h > O, for which -ah E (x, 0). 
It is easy to see, that the method for solving SDE systems in the sense of Ito of the 
form 

(2) 

is asymptotically unbiased with the interval of asymptotic unbiasedness (-oo, 0). 
The method is said to be asymptotically p-stable with stepsise h, if while applying 

it with this stepsise to the asymptotically irstable SDE [11, the equality 

lim < IYn.IP >= 0 
n.-+oo 

is satisfied. . 
Applying method (2) to asymptotically stable in the meansquare scalar SDE in the 

sense of Ito of the form 

y(t) =Yo - a 1t y(s)ds + O" 1t y(s)dw(s), (3) 

where a> O, u ;/= 0 are real coefficients, one ca.n obtain, that method (2) is asymptoti-
cally stable in the mea.nsquare with any stepsise h > 0. 

In practical application of numerical methods for simulation of the SDE systems 
solution, there a.rises a problem of automatic choosing the integration stepsise and 
accuracy of simulation of the values of solution at the grid nodes, corresponding to 
this stepsise. When constructing variable step algorithms for solving SDE systems, 
one ma.y generalise well-known variable step algorithms for ODE systems, based on 
the Runge-Kutta or Rosenbrock type methods. For instance, the well-known 6-stage 
Runge-Kutta. method of order 5 from the algorithm RKF45 [2] can be generalised for 
solving SDE systems in the sense of Ito in the following wa.y: 

- ~k 6656 k 28561 k - ~k :_k 
Yn+l - Yn + 135 1 + 12825 3 + 56430 4 50 5 + 55 6 + 
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(4) 

The difference Dn+l = Y~+l - Zn+h where 

• - ~k. 6656 k* 28561 k* - !_k. .?:_k. 
Yn+l - Yn + 135 1 + 12825 3 + 56430 ! 50 5 + 55 61 

- 25 k* 1408 k* 2197 k* - !k* 
Zn+i - Yn + 216 1 + 2565 3 + 4104 ! 5 51 

kj = hf(y~~l)), j = 1, ... , 6 

can be used as an estimate of the error of method (4). 
REFERENCES 

[1] Hasminski R.Z.Stability of Systems of Differential Equations under Random Per-
turbations of their Parameters, Nauka., Moscow, 1969. 
[2] Forsythe G.E., Malcolm M.A. and Moler C.B. Computer Methods for Mathematical 
Computations,Prentice-Hall, Englewood Cliffs, 1977. 
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APPROXIMATION FOR THE SOLUTIONS OF S.D.E. 
Vlad Bally 

We study the convergence of the flows Xn(t,x), n N, to the flow X(t,x), where X(t,x) solves 

the S.D.E. 
d X(t,x)=f(X(t,x))dt+g(X(t,x))dW(t), X(O,x)=x, 

and Xn(t,x) solves the integral equation obtained by replacing the Brownian motion W by a finite 

variation approximation process W n ,and the Ito integral is replaced by a Stieldjer's one. 

Two types of convergence are considered: convergence in law, on the space C(R+ Rn, Rn), and 

in LP for supt x Xn(t,x)- X(t,x) (the so called strong convergence ).Actually Wis allowed to be a ' . 

difussion process in ~e case of the weak convergence and a general martingale in the case of the LP 
convergence. 
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A STOCHASTIC PARTICLE METHOD 
FOR SOME 

ONE~DIMENSIONAL NONLINEAR P.D.E. 
Mireille BOSSY, Oenis 'rALAY 

IN RIA Sophia.-Antipolla 
Routo dee f,ucloles, F·06666 Valbonno. 

We conslJer the one·dlmenslonal nonllnaar P.O.E. In tho weak sense : 

au 1 a'J 8 J 7ff • 2q:ibi~U-o;[U.( b(.,y)U,(d11))], O<t<T 
Ut=o = Uo 

When the lnltlal condltlon ls a probablllty on m., th.e solution u, 111 the distribution 
of the random va.rlablo x, where (X,) Is a nonllnea.r etocha.atlc process In the sense of 
McKean, solution of 

{ 
dXt =- J b(X,, 1))U1(dy) dt + 11dw1 

· Ui(dy) ia Chi law of X* 

X11110-.. Xo (with law Uo). 

Our purpose Is to study a. etochutlc particle algorithm for the <:omp1itation ot the 
cumula.tlve dlatrlbutlon function or U,. Thl11 method la based upon-tho moving ot partl· 
clos a.ccordlng to the la.wot a. Me.rkov chaJn approximating (X,)1 and the a.pproxlmntlon 
of (.Eb(iu, X1), I S 'f) by means or emplrlcru dlstrlbutlona. 

For a boun<lc<l runctlon ,,, having bounded deriva.tlvea up to the .econd order, WO 
prove the convergence of the methodo when At ::; 0( (j~)i ), where N Is the number 
of partlclea and Al Is the tlme stop. ln this case the rs.ta ot convorgence 111 or ordor 
~ (log(N))~. . 
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The Analysis of Term Structures 

by 

Jens Breckling & Luca Dal Dosso 
Deutsche Bank Research 

Guiollettstrasse 48, 6000 Frankfurt 1, Germany 

Term structures of interest rates or zero coupon curves as they are also known 
are one of the most fundamental concepts in finance. They provide the basis for 
pricing interest rate dependent securities, give rise to bond market indices and can 
be used for hedging purposes. Further, knowledge of how interest rates develop would 
also be desirable for effective interest rate management. Analysing term structure 
dynamics can therefore be regarded as one of the most pressing problems in practice. 

The approach sketched below clearly differentiates between cross-sectional and 
time series aspects. Given a set of bond prices, the first objective is purely cross-
sectional, that is, to estimate the term structure of interest rates. It is demonstrated 
how a bond index system can be based on the concept of a term structure. One 
problem that needs to be addressed in this context is that of index replication. The 
second set of objectives relates to the time series aspect and involves an anlysis of 
the term structure dynamics for forecasting purposes. 

A non-parametric approach to term structure estimation 

The problem is that for a bond only single prices are observed, although they may 
consist of several cash flows. Usually, however, several bond prices are observed 
and they are related. Such relations, together with the observed data, then enable 
determination of the term structure. Hence, the task is to come up with a satisfac-
tory method of estimating zero coupon curves from non-zero coupon bonds or, more 
generally, with an appropriate deconvolution technique. 

Breckling & Dal Dosso (1992a) present a new approach to term structure estima-
tion that overcomes this problem and that has.a number of advantages over current 
practice: 

- it does not depend on any parametric model, and therefore allows for arbitrary 
shapes of zero coupon curves and is widely applicable; 

- constraints can easily be incorporated; 
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- only small sets of data are required; 
- it is extremely robust against outliers; and 

with respect to the common trade-off between accuracy and smoothness it is 
optimal. 

The technique involves the following optimisation problem 

min{ error(r) + "/ roughness(r)} 
r 

where r is a vector representing the term structure, error( r) is the error with which 
bond prices are described, roughness ( r) is a statistic that is inversely related to the 
roughness of the zero coupo~ curve and "/ is a smoothness factor that reflects the 
weight put on smoothness relative to accuracy. 

The proposed technique is closely related to kernel estimation with error(r) tak-
ing the role of bias, that penalises oversmoothing, and roughness ( r) that of variance, 
that penalises undersmoothing. In contrast to other techniques the trade-off between 
accuracy and smoothness has been made explicit, thereby shedding additional light 
on the process of term structure estimation. 

Proposal of a bond index system 

Market indires are an equally important concept in finance. They serve as bench-
marks for portfolio managers and give rise to the definition of derivative securities that 
can be used for hedging purposes or be of outright interest to investors. Generally, 
two categorie's of bond market ·indices can be distinguished: first, portfolio indices 
that consist of few selected bonds and second, synthetic indices that are based on a 
model representing the bond market. 

Breckling & Dal Dosso (1992b) propose an index system that belongs to the 
second category. Each market index is based on two concepts, that of a cash flow 
density describing the market and that of a term structure to evaluate that cash flow. 
The drawback of these indices is that they are not exactly reproducible, and that they 
are dependant on the underlying term structure model. However, the advantage of 
synthetic indices is that they give good market representation, and that they are 
simple and easy to understand. Furthermore, the concept can easily be adapted to 
other markets and is internally consistent. 

Price and performance indices are defined, and their properties described. A 
natural decomposition of the term structure translates into a decomposition of the 
performance index into effects that are associated with price changes, interest accrual 
and moving up or down the term structure. A decomposition of the cash flow density 
gives rise to the formulation of subindices. 
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The proposed index bears great similarity to that published by JP Morgan. 
However, being a synthetic index it does not suffer from the disadvantages typical 
of portfolio indices. In particular, the stability and robustness properties that are 
inherent in the term structure estimation procedure carry over to the index. 

Index replication 

Suppose a derivative instrument like the index described above is created and sold 
by a bank to one of its clients. In order to hedge the risk associated with this 
position, a portfolio of other tradable securities needs to be purchased, which exhibits 
a performance that matches that of the index as well as possible. Usually only few 
securities can be selected for the hedge portfolio, and the task is to find the best and 
most practical one. All algorithms available to perform this task are cumbersome 
and compute-intensive, thus urging for better alternatives. 

Term structure dynamics 

To manage an interest rate risk effectively, it would be desirable to have an idea of 
how the term structure changes over time. The approach suggested by Breckling & 
Dal Dosso (1992c) is based on an eigenvalue decomposition. 

Let rt E Rn, n E .N, be the discretised term structure at time t and let s > 0 
be the forecast horizon. Further, let Xt+s = rt+s -rt denote the change of the term 
structure between times t and t + s. The objective thus is to analyse the structure 
of the time series (xt) and to forecast Xt+s· 

Assume the random variable Xt+s has expectation E(Xt+s) = µt+s, for example 
µt+s = 0 if (x1) exhibits no trend or µt+s = rt - rt-s if the latest trend is expected 
to continue. As long as a distinction between different points in time is required, all 
time indices are dropped for ease of notation. 

Put W = E(X X'). That is, cov(X) = W - µ µ'. In order to detect a pattern in 
the term structure changes, a principal component decomposition of the matrix Wis 
carried out. Hence, 

'11 =PAP' 

where P = ( P1, ... , Pn) = (Pjl )jt is the matrix of eigenvectors of W and A = 
cliag(>11 , ... , An) is the diagonal matrix of corresponding eigenvalues. This enables 
us to write 

n 

x = p A l/2 u = L >.~ 12 Pl U1 
l=l 
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where U = (U1 , ... ,Un)' is a random variable with £(U1) 
cov( Uj, U1) = 0 if j f= l. vVriting 

v = £(U) =A -i/2 P' £(X) =A - 1 / 2 P' µ 

and setting Z = U - v, yields 

X - µ = P A 1l 2 z 

V/, var(Ui) 1 and 

Note that P and A are fairly stable over time with >.1 ~ 0 for ,\ ~ 4. The ap-
proach taken here thus serves to decrease the dimensionality of the problem. Instead 
of <lea.ling with (xt) it is sufficient to analyse the 3-dimensional time series (z1t, ... , Z3t)· 
Further'more, there is some evidence that z1 t and z2t are amenable to economic in-
terpretation. 

Hence, the task is to forecast (z1 ,t+s, ... ,z3 ,t+s) with a forecast error that is as 
small as possible. Finally, returning to the problem of predicting the term structure 
at time t + s, we get 

Here, Pt+s, ~t+s,l and f>t+s,l are estimates of the mean of Xt+s, of the eigenvalues 
of cov(Xt+s) and of the corresponding eigenvectors. The values of it+s,t can be 
determined by fitting a dynamic model that possibly involves economic information. 

References 

Breckling, J. and Dal Dasso L. (1992a): A non-parametric approach to term structure 
estimation, Deutsche Bank Research, Frankfurt. 

Breckling, J. and Dal Dasso L. (1992b ): Proposal of a bond index system, Deutsche 
Bank Research, Frankfurt. 

Breckling, J. and Dal Dasso L. (1992c): Constrained term structure estimation, 
Deutsche Bank Research, Frankfurt. 
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A STOCHASTIC SIMULATION FOR SOLVING SCALAR 
REACTION-DIFFUSION EQUATIONS 

Brigitte CHAUVIN 
Laboratoire de Probabilites, tour 56, Universite Paris 6, 

4, Place Jussieu, 75230 Paris, France. 

We want to show here how to use a stochastic branching 
process to simulate the solution u(t,x) of a nonlinear p.d.e. of the 
type 

( 1) au 
at = + f (U) I 

where f(u) is a function of the type f(u) = u(l-u). 

·A natural way is to use the McKean connection ([4]) : u(t,x) 
can be view as the distribution function of the rightmost particle in 
a branching brownian motion whose the reproduction law is directly 
related to function f. Hence simulating this process by branching 
random walks the empirical distribution of the rightmost particle 
gives an approximation of the solution of (1). 

Several other stochastic methods may be proposed to avoid 
the dependence upon the diffusion coefficient K wich occurs in a 
classical finite differences method. In Charin's model ( (3]), the 
diffusion part of equatio~ (1) is approached by a random walk and the 
reaction part by deterministic jumps. 

In the method introduced by Sherman and Peskin ([5]), both 
steps are stochastic particles perform gaussian steps and 
simultaneously die or split into two particles with probabilities 
depending upon the present state of all living particles. These 
particles are of course related to the nonlinear term f (u) ; more 
precisely if at step t, n particles ·are located at positions x., 

1 
i=l, ... ,n, then compute the quantity 

1 # . u. = -n {J, x. < x. } . 
1 J 1 
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With probabilityl - flt 1 I: lf'(u1.)I, nothing happens. n . 
J. 

~t nl I: If' (u.) I, something happens 
• J. 
J. 

With probability it concerns 

particle i at position xi with probability If' (ui) I I l:I f' (uk} I ; 
k 

This particle dies if f'(ui) s O. It is replaced by two particles if 
f'(u.) > o. 

J. 

Sherman and Peskin have shown that this method was efficient 
in a particular case where the explicit solution of equation (1) is 
known. For Alain Rouault and myself, it was a challenge to prove the 
convergence of this simulation model in the general case, with our 
probabilistic tools. 

The natural setting is to consider the approximation model 
as a spatial branching process with interaction~ Since the above 
probabilities depend only upon the empirical measure of positions, the 
interaction is of mea~-field type. 

The branching process is described as follows : n initial 
particles of mass 1/n generate branching brownian motions (brownian 
motion is prefered to a discrete process only for simplicity). Living 
particles define a measure valued process 

Nt 
µn = 1 l: o 

t n i=l Xi(t) 

where xi(t) are the positions and Nt is the number of particles alive 
at time t. The rate of death a and the offspring law (pk, kelN) of a 
particle depends on its position and on the present state of the 
process. It is assumed that µ~ converges in distribution to µ0 , a 
deterministic measure. 

The main theorem provides the convergence of µn to· µ 

solution of the equation 

where 

aµt 1 
at = 2 flµt + o(µt)µt 

7(x,µ) = a(x,µ) Cl: kpk(x,µ) - 1). 
k 

The convergence is proved by hilbertian techniques, embedding the 
·space of measures in a dual Sobolev space w_3 . The Sherman-Peskin case 
corresponds to the choice of o : 

0 ( X f µ) = f I ( µ ( ] -oo t X ] ) • 
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The fluctuation process 

Yn = Vii (µn _ µ ) 
t t t 

is shown to converge to a generalized Ornstein-Uhlenbeck procesE 
solution of the Langevin equatiort 

where i (µ) = '1 (µ) µ and Nt is a continuous gaussian process. For this> 
last ·result, differentiability assumptions on '1 are needed. 

REFERENCES 
[l] Chauvin· B. and Rouault A. A stochastic simulation for solving 
scalar reaction-diffusion equations. Adv. Appl. Prob. 22, 88-100 
(1990) 
[ 2] Chauvin B. Olivares-Rieumont P. and Rouault A. Fluctuations of 
spatial branching processes with mean-field interaction. Adv. Appl. 
Prob. (1991). 
(3) Charin A.J. Numerical methods for use in combustion modeling. 
Proc. Int. Conf. Num. Heth. in Science an Engineering~ !RIA, (1979). 
[ 4] McKean H.P. Application of brownian motion to the equation of 
Kolmogorov-Petrovski-Piscounov. Comm. Pure Appl. Hath. 28, 323-331 and 
29, 553-554, (1975). 
[5] Sherman A.S. and Peskin c.s. A Monte-Carlo method for scalar 
reaction-diffusion equations. SIAH J. Sci. Stat. Comp. 7, 1360-1372, 
(1986). 

14 



STOCHASTIC NUMERIC MEllIODS AND APPLICATIONS 
IN FINANCE AND ECONQMICS 

By 

Carl Chiarella, School of, Finance &EconomlC8, 
University of Technology, Sydney. 

In this brief talk I would like to survey certain areas in ftnance and 
economics where I see potential applications of stochastic numerics. 
These appllcatlons should give the ttavour of how stochastic numerics, 
combined with the widespread availability of very powerful, user 
friendly computer systems. can become of areat use to the economic 
theorist. 

I will start with an area where the economic theorist faces the problem 
of calculatina the "fair" value or certain ftn.anctal instruments, namely 
derivative securities, which are traded in the world's maJor nnanclal 
centres. I would then like to go on and survey two other areas where the 
need . or the economic theorist · 1s not so much the calculation of a speclftc 
number, but rather to understand the qualitative behaviour of models of 
economic behaviour which are inherently stochastic, dynamic and quite 
often highly nonllnear. In particular · r shall discuss some models of asset 
price dynamics which seek to fve a better understanding of the price 
generating process in finance. would then . like to dlsctlsa some models of 
exchanae rate . ~cs which are u.teful for analysis of policy issues In 
macroeconomics. It there ls . time I will briefly discuss possible 
application · or stochastic numerics . to optimal consumptlon·lnvestment 
decisions under uncertainty, and dynamic stochastic ~nomlc games. 
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FIRST WORKSHOP ON STOCHASTIC NUMERICS 

BERLIN 

SEPTEMBER 7-12, 1992 

Stochastic versus Deterministic 
Numerical ODE Integration 

P. Deufihard 
Konrad-Zuse-Zentrum Berlin 

Heilbronner Str. 10, 1000 Berlin 31, FRG 

Abstract. The talk aims at sampling certain concepts that, on one hand, are useful 
in the numerical integration of deterministic OD E's and, on the other hand, might be 
open for extension and consideration towards stochastic ODE's. At the same time, 
deterministic models (and their recent numerical integration) of stochastic processes 
are discussed. 

1. Order and Stepsize Control in Extrapolation Meth-
ods 

Extrapolation is a convenient means to construct discretization methods of vari-
able up to high order on the basis of rather elementary discretizations of low or-
der [7]. This technique starts from an asymptotic expansion of the discretizatio.n 
error and eliminates successively (and even recursively) the arising expansion 
coefficients. Examples in non-stiff integration are the explicit Euler discretiza-
tion (so-called h-expansion) and the explicit mid-point rule ( h2-expansion). 
By means of the "stochastic Taylor" expansions of Wagner and Platen (cf. [8]) 
an extension of extrapolation methods seems to be possible - with at least 
one additional (additive) term in the Aitken-Neville recursion. The simultane-
ous selection of order and stepsize can be done as in the deterministic case -
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minimization of work per unit step 

Upon applying Shannon's information theory (cf. [1]) also in the stochastic con-
text, questions like the maximum optimal order as a function of the required 
accuracy can be studied. The conjecture is that in numerical SDE integration 
only low orders pay off due to the additional work from the random number 
generators - to be verified or falsified! Beyond this aspect, Shannon's infor-
mation theoretic approach may have an additional attractivity in the context 
of SDE's: after all, it is used in [1) to characterize a statistical ensemble of 
problems - which is a rather natural view for SDE's. 

2. Semi-implicit Stiff Integrators and Newton-Type 
Uniqueness Theorems 

In numerical stiff ODE integration only few concepts carry over to more general 
problem classes (cf. [7]). Among them is the rather trivially looking idea of 
"subtracting the stiffness effect" on both sides in the form 

y' - Ay = f(y) - Ay 

and discretizing the left-hand differential ,operator as a whole - see e.g. [2] 
and references therein. This idea has been used by the author and his co-
workers to construct highly efficient stiff extrapolation integrators - see e.g. 
[2] for a survey. Only recently, the author interpreted this idea in the frame 
of a simplified Newton iteration in function space - which then immediately 
supplied associated uniqueness theorems [4]. 
In PDE's, the linear homogeneous term may characterize an unbounded oper-
ator. In SDE's, this term may describe a stochastic perturbation. It is crucial 
to observe that such extensions necessarily will involve approximation errors of 
a "rough" operator - which, in turn, means that only Newton-like methods in 
function space can be implemented. The associated uniqueness theorems will 
be direct extensions of those in [4]. A satisfactory feature of this theoretical 
approach is that here nonlinear ~ontractivity arises naturally just as a pole of 
some scalar function. 

3. Adaptive Scaling and Global Error Propagation 

In deterministic ODE models, the numerical integrators typically only control 
the local discretization error. The global accumulation of errors will depend on 
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stability properties of the dynamical system as well. In (3], p. 128 ff., a special 
adaptive scaling technique has been derived and discussed, which establishes an 
equidistribution of local errors in the sense 

Eglobal = m · Clocal 

with m the number of automatically chosen integration points (an a-posteriori 
information). The adaptive scaling involves a numerical estimation of local one-
sided Lipschitz constants (also: local Ljapunov exponents). Such characterizing 
quantities also play an important role in the theory of SDE's. An example is 
given, which surprisingly numerically models a total perturbation of one solution 
component, which, however, dies out in the progress of computation. Thus, in 
some cases, deterministic models already include some modelling of stochastic 
effects in the form of global error propagation properties, wherein discretization 
errors take the role of statistical perturbations. 

4. Adaptive Weighted Discrete Galerkin Methods for 
Macromolecular Processes 

Macromolecular processes may stand for a wider class of stochastic processes 
that play a role in applications such as polymer chemistry or smog reactions. 
One of the popular computational approaches uses the analytical derivation of 
statistical moment ODE's (countably many!) and the nume~ical integration of 
a finite number of these equations. However, in realistic applications the trun-
cation index of these systems cannot be found in a robust and reliable way -
after all, Stieltjes' theorem only states the equivalence of knowing the infinite 
number of all monomial moments (bounded!) and knowing th~ probability den-
sity function. An alternative is the rather recent approach based on adaptive 
discrete Galer kin methods - see [5]. In this approach, a discrete Hilbert space 
H (a sequence space) is constructed from an input of a probability distribution 
such as geometric or Poisson. An adaptation of free parameters is performed 
to yield a so-called "moving weight function" as a counterpart of moving nodes 
in a method of lines treatment for PDE's. Instead of statistical (monomial) 
moments other generalized moments are computed, which are expansion_ co-
efficients associated with the Hilbert space basis (special functions of discrete 
variables) and, by completeness of H, decrease asymptotically - which means 
that truncation is easier to control. This deterministic approach to modelling a 
stochastic process leads to tremendous computational speed-up factors (of 103 

up to 104 ) for realistic industrial polyreactions. It might be possible that such 
an approach may also be useful for rather general SDE's. 
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A MINIMUM-DISTANCE ESTIMATOR FOR DIFFUSION PROCESSES WITH ERGODIC 
PROPERTIES 

Hans M. Dietz 
If'.-1AS Berlin 

Yuri A. Kutoyants 
Universit§ du Maine 

Suppose one obser·ves one path of a stochastic process which solves 
a stochastic differential equation of the form 

dXt = a(8,Xt)dt + dWt, t ~ 0, 

with a given initial condition Xo, where e E. Rd is some para-
meter the true value eo of which is unknown. In order to estimate 
this parameter we propose the following estimator: 

" 8T = arg mine o) T (Xt - X(8)t)2 dt, 

where 

x ( e ) t = Xo + o \ t a(8,Xt )dt. 

Under the assumption that the observed process has an ergodic 
property it is shown that an estimator of the above type exists 
and is strongly consistent and moreover - in case d=l -
asymptotically normal. 
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Langevin i\Iethocls for Simulating Lattice Field Theory 

LT.Drummond, 
DAi\ITP 
Silver St. 

Cambridge, England CB3 9EVV 

September 23, 1992 

Abstract 

We review the application of Langevin algorithms to the simulation of lattice 
field theories. The problem of simulating lattice field theory can be thought of as 
the evaluation of certain (very high dimensional) integrals over the configuration 
space of the field theory system. In practice these integrals may only be evaluated 
by some statistical sampling method. A well known approach is that of Monte 
Carlo evaluation. An alternative method which is both effective and interesting in 
itself is the Langevin scheme first proposed by Parisi and Wu in the context of field 
theory. 'vVe show how to use higher order approximations to the relevant stochastic 
differential equations in implementing this scheme when it is applied to both linear 
and non-linear spin models. 

Field Theory on the Lattice 

The problem of continuum field theory for a quantum field ¢( x) as viewed by physicists 
is that of evaluating a FUNCTIONAL INTEGRAL of the following form: 

(¢(xi)·· -<f>(xN)) = ~ /[def>]e5[6l<,i>(x1) · · ·ef>(x,v), 

where x's denote points in space-time and S[¢] is the ACTION given by 

S.(¢>] = -! dDx { ~(\7x<f>(x))2 + ~m2<f>(x)2 + 214 >..¢(x)4}' 

and the PARTITION FUNCTION Z is 

Z = J[d<f>Je5[<1>]. 

(1) 

(2) 

(3) 

These functional integrals are idealised generalizations of the Wiener-Feynman-Kac in-
tegrals for quantum mechanits. Because they make use of the flat measure [ d¢] on 
¢-function space they require careful definition. Much of what physicists do is an at-
tempt by numerical simulation to realise this definition in practice. 

The practical approach frequently adopted is to approximate D-dimensional space 
time by (let us say) a D-dimensional hyper-cubical lattice with periodic boundary con-
ditions at the edges (1]. That is we allow x t.o take only values of the form x = 
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n 1 ae1 + · · · + noaeo where {el, .... eo} are the basic unit vectors of the hyper-cubical 
lattice and require that the field obey the condition <f>(x+Laem) = dJ(x),m = l, ... ,D. 
a being the size of the basic lattice link and L beinrr the number of links in each direction b 

on the lattice. The total number of sites on the lattice is then LD . In an actual large 
simulation L might be 32 and D might be 4 so the number of sites in the lattice is 106 • 

Even larger simulations are envisaged. 
On the lattice we will replace ¢( x) with a field variable <f>x defined at each site of 

the lattice. The measure [d¢] is replaced by flx d¢x where the product is over all lattice 
sites x . The continuous derivative \7 ¢( x) is replaced by a lattice version 

(4) 

and the derivative term in the action by (\7¢); = LmC'v.m¢x)2 . Finally the version of 
the action appropriate to the lattice formulation is 

5[0] = - L aD -(\7<1'>)2 + -m2¢2 + -,\64 ( 1 1 1 ) 
x 2 . x 2 x 24 . (5) 

The information in the theory is contained in the lattice correlation functions 

(o · · · ,;., ) = ]:_ j II d,.r, e5 [4>] ,.i. • • • ,.i. . x1 YXN z YX 'f'x1 'f'x,v 
x 

(6) 

)i°ow the partition function is 

Z = j II d¢xeS(¢>] . 
x 

(7) 

The limit back to the continuum is achieved by letting a -+ 0 and L -+ oo in such a 
way that La remains constant. In order to achieve a successful result it is also essential 
that certain more subtle properties of the correlation functions hold. It is not always 
obvious that the continuum limit is available. Hence the need for numerical simulation 
as well as deeper analytical investigations. 

Simulation Methods 

The field theory problem when formulated on the lattice is reduced to the evaluation of 
a family very high dimensional integrals. Some kind of sampling method is necessary 
for their numerical evaluation on a computer. A commonly used method is the MONTE 
CARLO method [1]. An other method which can have advanteges is the LANGEVIN 
METHOD. This is of particular interest to this meeting since it makes use of the theory of 
stochastic differential equations. The method was introduced to field theory calculations 
by Parisi and Wu [2]. See also the book edited by Damgaard and Hiiffel [3] . 

The Langevin method is based on the result the probability distribution P[¢] ex: eP(4>] 
can be obtained as the limit as r - oo of the distribution P[c;b, r] where 

a a ( a aS ) 
OTP[¢, r] = "'f 8¢x 8</>x - a<f>x P[c;b, r] · (8) 
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The stochastic diffcrentialequation which generates a distribution evolving a,ccorcling 
to the above partial differential equation is 

'. DS 
<f>x = -f)· . + Wr( T) 

<i>x 
(9) 

The white noise has the correlator (wx(r)wxi(;- 1 ) = lixx'li(r - r') However a practical 
simulation requires an approximate method of integrating the SDE. The lowest order 
algorithm is· 

D.rf>x = f)fJS D.r + ~T/x · 
</Jx 

(10) 

Here each T/x for each time step is an independent gaussian random variable with zero 
mean and unit variance. If we sample the system periodically after letting it equilibriate 
it will yield an effective distribution P[¢] that has a systematic error that is 0(6.r). 
This is the error in the sense of weak convergence. To control systematic errors a higher 
order algorithm is required. A Runge-Kutta type algorithm with an intermediate step 
¢i/l which does this has the form 

d>(i) = d>(old) + ~ fJS D.r + v;s:;T/(1) 
. x . x 2 d<Px x (11) 

\Ve then move to the final step position 

(12) 

Where the superfix indicates that the quantity has been evaluated at the intermediate 
point and 17i1l and ryx(2) are independent gaussian random variables at each step with 
zero mean and unit variance. The errors in the sense of weak convergence in the induced 
distribution P(¢] are now 0(6.r2 ) • Yet higher algorithms can be constructed (4, 5]. 

Spin Models 

It is of interest to consider other lattice models such as spin models since they involve 
a curved manifold for the field variables. A typical model is one in which each site x 
of the lattice has associated with it an element 1Vfx of the group SU(N) or 0( N). A 
standard action for this model is 

S[M] = g_ I: Tr(,·v!+emMx) + c.c. 
2 x,m 

(13) 

and the associated probability distribution is P(J!f] = exp S(M] Expectation values 
are calculated using the group (SU(N) or O(N)) invariant measure dMx at each site 
x . 

(J(Af]} = j IT dMxP[A·f]f[J:f] . 
x 

(14) 

All results for the linear ¢-field model can be generalized to these non-linear spin 
models. We require the concept of COVARIANT DERIVATIVE appropriat_e to the 

23 



group in question [·I]. Choose a basis of generators {A,z} for the group in the defining 
representation. The~: satisfy the Lie brncket relations 

(15) 

where the Cabe are the structure consta~ts of the Lie algebra. The covariant derivative · 
for the group in qnestion is D~ defined so that 

(16) 

The Fokker-Planck equation with the stationary solution P[M] e< exp S[M] is 

: 1 P[M,1] = 2::: D~ (D~ - u;) P[i\I, 1] , . (17) 
x,a 

where U'; = D~S[M] . The corresponding first order algorithm for the simulation 
updating procedure is 

(18) 

where E~ = U'; .3.1 + ~TJ~ , the { ry~} being idependent gaussian random variables as 
before. The second order algorithm uses an intermediate step AfJ l) constructed in th,; 
same wrt.y as .\!~old) above with a step c1l)a = ~AU';t::..r + v'Bt::..rry(l)ax . Then 

(19) 

where c12 la = Ac11la ~T + J Bflr ( ryi.1)a + 11i.2la) . Here uJ!la is evaluated at M(l)J; 
and A = 1 + 112 C and B = 1 - 112 C where C is the Casimir for the adjoint representation 
of the group i.e. CabcCabd =Coed . 

Numerical results for these cases can be found in ref [6] which also sets out the algo-
rithm for a modified Fokker-Planck equation with a diffusivity tensor. This modification 
referred to as Fourier acceleration, is of great use in investigating models near critical 
points of the parameters. 

Other Applications 

We have also considered applications to other problems. A brief list of topics is: 

Non-relativistic Quantum Mechanics. [7] 

Flow and Diffusion in Random Media [8, 9] 

Turbulent Diffusion. [10] 

Numerical Integration of Stochastic Differential Equations with state dependent 
noise. (11] 
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. A TEST OF TYPE I<OLMOGOROV-SMIRNOV 
FOR ERGODIC DIFFUSION PROCESSES 

J~ric 1"0UHNIB i 

Wo present t\ test of typo Kolmogorov-Smlrnov for ergodic dl!fuslon processes. It 
ls bM<Jd on n.n cstlmn.to oC lo.rgo dovln.tlons probn.bllltlcs tor tho euprcmum of tho llmlt 
proccee or tna Qmplrlcn.t proco1u1. Wo oxt<mcl tho roouHo to tho en.so whon isomo parn.m· 
chm• In tho drift n.ro ostlmo.tcd during tho samo obsorvn.tlon a.nd wo obtnJn a. teat of 
pnrrunotrlc d11Tuslon model. Wo glvo nn nsymptotlc speed tor tho rojcctlon ot tho model 
when the drltt ls mlss-epedfl.e<l (see (2] for proofs). We glve examples an<l we show 
the behaviour of the teat on numeL'icoJ aimula.tlons (see D.'C'ala.y [7]) tor the family of 
Ornatoln· Uhlenbcclc procoasos, Tho mn.lns roforoncco of thls po.per n.ro [l], [~}, (6). 

'rhls study wne motlvn.tcd by finnncinl npplico.tlons, mnJnly tho ldontl.flci\tlon and 
tostlng of Interest mto <1volutlon models : Vn.alchcck1 Cox-Ingorsoll·Ro11 (sco E.Four-
nl~, D.'fi\la.y [1], Eric fournle (3}). 'l1hcse Interest rate models behave n.pproxlmntely like 
Ornsteln-Uhlenbock procoescs and we hnve soen we cannot accept or reject this para-
metric modol ln n.n ncccptn.blo tlmo, unlcH tho obsorvntlon belongs to a very dl!fcrcnt 
model. nut cha.nges ln economy Mo fl'oqnont a.n<l loa.<l to chA.ngos In moclol which m1'y 
be considerable and thus impose an observa.tlon time too short to a.llow us to <lecl<le. 
Consequently, beca.11so wo kt\OW only roughly how r1tr tho lntorcst ro.ta model la from 
tho observation, It Wo\lld bo very lntorcstlng to tcet tho robustness of prlelng formHlt1r 
(Dlnck-Scholee, ... ) to tho vn.ria.tlons of undorlylng lntoroat ra.to mo<lol. 

koyword• 1 t:l'(]O<lic cliffu1ion1, empirical proccH1 1uprcmum of a Gau11ian prg~ 
cdaa, ewo·.,idecl tt.al1 JJarometrical e"Umatfon, goodne"" a/ flt te,,t, mi,,,,·,,pecifled dri/11 

aaymplotic "'Jcctlon apccd. 

References 

[l] R.N.fllIATTACHl\TtYA & S.RAMASUDRAMANTAN 1 Rocnrronce C\nd Ergodic-
ity of Diffusions , Journa.l ot M11ltlvA.rl11.to Analysis, vol. 121 No l, MM•ch 1082. 

[2] Fi.FOURNIFJ : Un tost cllJ type Kolmogorov-Smlrnov pour processus do dl!fuslon 
o.rgoditittca , Re.pp.Rech. no 1606 IN RIA, 1002. 

[3) E. FOURNIE : Sta.th1tlq1101 do• <lHfllslon• : a.ppllca.tloM a.11.ic matMma.tlqucs .Hmm· 
cl~roa, 't'hcao clo Mn.th. Appl!. Tnrln-Unlvorslt6 de Nico 1 en cours. 

[1] B.FOURNIE & D.TAf,AY: Appllcn.tlon do In. sta.tlstlque dos diffusions t.. un modhle 
cle ta.ux d 'lnt6rGt , to appuar In "~,l1mncu", 

(5] M.B.MARCUS & L.A.SHEPP : Sample behavior 0£ Oa.uealan proceeaei.t , Sixth 
Derkoley Symp01Jit1m on Ma.th. Stat, nnd Probn.blllty , Vol.II , 1072 , pp. 423·430. 

[6] fan W.McKl1AOU.1:!1: ~etlma.tlo1\ for Dl!fuelon Proceeaea un<lor Mlsapecl.tled Mod· 
els , J.Appl.Prob.21, p 611·620 (108'1). 

(7] O.TAfJAY : Simulation <incl N11merlcal Annly11!11 of Stochastic Dlfferentlnl Sya· 
toms 1 (Rapport <le Re:.:herch~ IND.TA 13 l:J ( UJOO)), "Eflu.liud Sl<x!haalic Anal11· 
sis", P.Kree & W.Wedlg (Eds.), a pa.raitre. 

qNlUA Valbonne, 2004, Route dos Luclolos, Sophia Antipolis, F-06~6.5 Vl'l-lbonne. 

26 



.A. Discretization of a Controlled Stochastic 
Differential Inclusion 

Hagen FRITSCH 
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Geusaer StrafJe., D-0-4200 Merseburg 

We consider the following controlled stochastic differential inclusion of Ito-type 

j j 

X(t) E X 0 + J F(s,X(s),U(s))ds + J B(s,X(s),U(s))dW(s), 
0 0 

t E [O, T], 
(1) 

in the complete probability space (!1, ~' P). W(t) is a. q-dimensional Wiener-process. Let 
F: n x [O, T] x Rn x Rm 1--r Comp( Rn) be a S:1-measurable, uniformly bounded and 
Lipschitz-continuous multifunction. B : i1 x [O, T] x Rn x Rm 1---jo Rn,q satisfies the 
well-known assumptions. 

Now the existence of a solution X(t) E L2(n x [O,T]) which is continuous with probabi-
lity 1 can be shown. The trajectories of the controlled differential inclusion depend on the 
controls U (.) continuously. 

We consider an objective functional of Bolza.-type: 

T 

](U) ~ E{lo(X(T)) + J li(t, X(t), U(t))dt} =Min! (2) 
0 

Lipschitz-continuity and boundedness of J(.) are required. Under corresponding assump-
tions it is possible to derive a. necessary optimality condition a.s a. maximum principle for 
the set-valued control problem (1 )+(2). Like the vector-valued problems the practical com-
putation of an optimal solution of (1 )+(2) is very difficult in the general case. For this 
reason finding so.:....called £-optimal solutions for the control problem has a great importance. 
Therefore we introduce a discretized controlled Ito-differential inclusion 

ti.+1 1.1:+1 
X1;+iEX1;+ J F(s,Xa(s),Ua(s))ds+ J B(s,Xa(s),Ua(s))dW(s) 

tk t.1: 
(3) 

X0 = X 0 , k = O, 1, ... , N - 1 

with 
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By a growing refinement of the decomposition of (0, T] we get a piecewise constant approxi-
mation of the solution of (1 ), that means the solution of (3) converges in the quadratic mean 
to that of (1 ). For the corresponding objective functional 

N-1 T.1-+1 

lt:.(Ut:.) = E{lo(XN) + L J l1(t, Xt, U,i;+1)dt} = A1in! 
k=O t;, 

(4) 

can be shown that now the optimal control of the problem (3)+( 4) is an f-optimal control 
of(1)+(2). 
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Random Generation of Stochastic Area Integrals 

J. G. Gaines and T. J. Lyons 
Dept of Mathe_matics and Statistics 
University of Edinburgh 
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Mayfield Road 
Edinburgh EH9 3JZ 
email: J.G.Gaines@uk.ac.ed T.J.Lyons@uk.ac.ed 
fax: 44-(0)31 650 6553 

We describe a method of random generation of the integrals 

A1,2(t, t + h) = 1t+h 1' dw1(r)dw2(s) -1t+h 1' dw2(r)dw1(s) 

together with the increments Aw1(t, t+h) and Aw2(t, t+h) of a two-dimensional 
Brownian path (w1(t), w2(t)). The motivation is the need for a numerical 
method for strong solution of_ general multi-dimensional stochastic differential 
equations with an order of convergence O(h), where h is the step size. It is 
known (see eg [4]) that one way to obtain this order is to simulate the so called 
area integrals A1,;(t, t + h). 

The joint density function ofa = A1,2(0, 1), b = Aw1(0, 1) and c = Aw2(0, 1) 
IS 

1 ( 00 x ((b2 + c2)x) 
f(a, b, c) = 271"2 Jo sinh(x) exp 2tanh(x) cos(ax)dx 

However it is possible to reduce the problem essentially to two dimensions by 
setting 

r2 = Aw1(0, 1)2 +Aw2(0,1)2 

The integral in the above expression can only be calculated numerically, so 
there is no 'quick and easy' method of generation available. The method cho-
sen is based on Marsaglia's 'rectangle-wedge-tail' method, generalised to higher 
dimensions. 

In one dimension Marsaglia's method involves dividing an area in R2 into 
equal rectangles and setting up tables with an entry for each rectangle. However, 
when we are dividing a region in R 3 into equal pieces, the number of table 
entries needed becomes prohibitive. We have therefore been forced to a slightly 
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more sophisticated analysis of the method to reduce storage requirements while 
retaining benefits of speed. The final implementation enables one to generate 
the vector (a, b, c) in about 4.6 times the time it takes to generate a vector of 3 
independent numbers from a normal distribution. 
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APPROXIMATIONS WRT. TIME AND CHANCE FOR ITO SOE' S WITH RA TES 

Matthias Gelbrich 

We consider an Ito sde of the form: 

x ( t) -
l 

x0 = J b(s,x(s))ds 
l 
0 

l 

+ J O' ( s, X ( s) ) dw ( S) , t E [ t 0 , T] , X 0 E 

l 
0 

where b E C([t ,T] 
0 

d d d q d 
)< [p ;rR ) 'O' EC([ t ,T] x [p ;L([R ;[R )) and 

' 0 
w is a q-dimensional standard Wiener process. 

d [p , 

Under the assumption that b is of linear growth and o is bounded 

approximate solutions are constructed which are based on the 

stochastic Euler method combined with the simultaneous 

approximation of the Wiener process. 

With additional smoothness assumptions this construction is carried 

out using Milshtein's method instead of Euler's method. 

These constructions use a coarse grid for the time discretization 

and a finer grid for the chance approximation. This has the 

advantage that time-consuming evaluations of the coefficients b and 

o are only necessary in the points of the coarse grid. 

For both methods the main theorem gives a recipe how to tune up the 

accuracy of time discretizations and of the approximation of the 

Wiener process such that both have the same "speed". The resulting 

convergence rates are given with respect to the LP norm (2ip<oo) of 

some C([ t 0 ,T] ;(Rd)-valued random variables having the laws of the 

exact solution and the approximate solutions, respectively. Thus, 

these rates apply to the LP Wasserstein metrics between the 

aforementioned laws. 
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AN APPLICATION OF STOCHASTIC 
NUMERICAL METHODS IN FINANCING 

Norbert HOFMANN 
Institute of Applied Analysis and Stochastics, Hausvogteiplatz 5-1, D - 0 - 1086 Berlin, 

Germany 

Our main interest are numerical investigations for an example in option pricing as the 
following (see [2]) which is related to the models discussed in [3], [4] and [5]. 
. vVe consider the process X = (X0 , X1, X 2 , X 3 )* = (B, S, O", ()*satisfying the Ito stochastic · 

differential equation: 

dBt r(t, Xt) Bt dt (1) 

dSt r(t, Xt) St dt + O'tSt dW/ 

dO't -q( O't - (t) dt + p O't dW/ 
1 

d(t -(O't - (t) dt 
O'. 

with p > 0, q > 0, a > 0, where W 1 , W2 are independent Brownian motions under a 
probability measure Q. The first equation describes the bond price B, where r is a Markovian 
instantaneous interest rate. The stock price S follows a generalized geometric Brownian 
motion since drift and volatility CJ' are not constant. Taking the drift to be r(t, Xt) means 
that the discounted stock price process S / B is a martingale under the measure Q which we 
use for pricing. 

The processes CJ' and ( should be interpreted as the instantaneous and the weighted average 
volatility of the stock, respectively. The equation for CJ' shows that the instantaneous volatility 
O't is disturbed by some external noise (with an intensity parameter p) and at the same time 
continuously pulled back towards the average volatility (t. The parameter q measures the 
strength of this restoring force or speed of adjustment. 

By taking the interest rate r(t,x) to be identically 0 we simplify the model (1). Now we 
carry out some simulations for the resulting three-dimensional model. 

The contingent claim to be considered will be that of an European call option, i.e., 

g(Xr) =(Sr - K)+ (2) 

with strike price K = 1.0. First of all, we simulate (see [2) and [6]) a trajectory of the 
three dimensional process X = (Xt)o<t<l = ((St, O't, (t))o<t<l·. Here we are interested in the 
simulated path itself. Thus these sim~l~ions require appr~iimations in the strong sense. We 
say that an approximate sample path yA of the solution X of an Ito stochastic differential 
equation converges with strong order I > 0 if there exist constants K and 80 < T not 
depending on the step size 6. such that for all 6. E (0, 80 ) we have the estimate 

E [IXr - YA(T)I] ~ K 6. 'Y 

where Tis a given time instant. 
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Furthermore we want to compute the values (Vi) of the hedging portfolio along the tra-
jectory of S, starting with the option price Vo. Vo (see (1)) is given by the expectation 

therefore (see [6]) we only need a weak approximation in order to compute V0 . We say that 
an approximation yt. converges with weak order f3 > 0 as the time step size .6. tends to 0 if 
there exist constants [{ > 0 and 80 < T for every function g : ~m+I -+ ~ from a given class 
Gp of test functions such that for all .6. E (0, 80 ) we have 

As class Gp of test functions it is convenient to use the class of smooth functions which 
together with all their derivatives have at most polynomial growth. 

Finally we compare t>he values (Vi) of the hedging portfolio with our pay - off function (2) 
and we see as expected that (Vi) approaches approximatively max(O, Sr - K) fort= T also 
in the considered example with past dependent and stochastic volatility. 
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RATE OF CONVERGENCE FOR SOME FUNCTIONALS OF BROWNIAN SEMIMARTINGA 

Jean Jacod 

(Lab. de Probabilites, Univ. Paris-6) 

We consider a d-dimensional "Brownian semimartingale" of the form dXt = 
a.._dW ... + btdt, where a and b are predictable, locally bounded, and a is 

~ I.. 

continuous, and w is a standard Brownian motion. For each n we have an 

increasing sequence T(n,i) of stopping times, and a sequence of positive 

~T(n,i)-measurable variables .::l(n,i) such that S(n,i) := T(n,i)+6(n,i) ~ 

T(n,i+l). We are interested in the limiting behaviour of the processes n Ut(g) 

= ~ '··s( ")<t[g(T(n,i),~~) - a~(g)J where g n li. n,1 - l l 
is a predictable function 

of (w,t,x) and ~~ = 6Cn,i)-l/Z[XS( .)-X_( .)] and a~(g) is a suitable 
l n,1 ·1 n,1 l 

centering term, and finally o is a normalizing sequence tending to 0 and n 
related to the S(n,i)'s in such a way that the "empirical measures" µ = 0 n n 

weakly converge in probability to some limiting (possibly 

random) measure µ. 

We show that, under rather weak assumptions, these processes converge in 

law in the finite-dimensional sense, and even in the "functional" sense when 

the limmiting measure µ has 

J d g(s,x)B(ds,dx): here, 
[ 0, t]xlR 

a.s. no atom, to a process of the form U(g\ = 
B is a martingale measure which may be 

constructed on an extension of the original space, and which conditionally on 

W is a Gaussian random measure. 

This type of· results is related to previous works of Rootzen or Kurtz and 

Protter about approximation of stochastic integrals, for which it gives rates 

of convergence for the time-discretized integrals under somewhat weaker 

, assumptions on the regularity of the integrands. The main motivation, however, 

is in statistics of diffusion processes: it provides a tool allowing to prove 

LAN or LAMN property for estimation of the diffusion. coefficient by discreti-

zation of time. 
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AN EDUCTION OF THE LANGEVIN EQUATION 

Adam JAKUBOWSKI 
Instytut Afotematyki, Uniwersytet Mikolaja Kopernika, 

ul. Chopina 12/18, PL-87-100 Toru.ri, Poland 

The simplest Langevin equation 

(1) 

describes. the movement of a free particle with coordinate X, submitted to "infinitely many 
uncorrelated small shocks" represented by "the increments at time t" of the Brownian motion 
B (see e.g. [3]) . 

. The coefficient a depends on "viscosity" and measures the resistance forces of the medium. 
The point is that this fa a macroscopic interpretation, while on the microscopic level the nature 
of interactions can be quite different (the ideal gas!). However the equation (1) is considered 
to be valid for both cases, with the same meaning of coefficients (see e.g. (4]). 

Consider the following system of "microscopic" stochastic differential equations: 

Xt - Xo = J~ Vs ds 
vt - Vo CUt - Cf~ V.s- dN.s, 

(2) 

where C = CM,m = 2m/(M + m), Nt = N/' = E~1 I(rk ~ t) is a Poisson point process 
on JR+ with intensity .X • l and Vi = Utm,>. = l:r <t Uk with Ui, U2 , ••• independent and ,._ 
distributed according to N(O, kT /m) (here k is the Boltzmann constant and Tis the absolute 
temperature). . 

It seems that the system (2) satisfies all assumptions physicists usually attribute to (1 ). 
On the other hand, if A -+ +oo and m -+ 0 in such a way that 2Am --+ b, 0 < b < +oo, 
then by (1] (or (5], (2]) the solutions of (2) converge in law to the solution of the system with 
the second equation in (2) replaced with 

M(vt - Vo)+ b 1t ~ ds = V2bkTBt, 

i.e., to the solution of the Langevin equation (1), with a = bf M and u = v'2bkT / M. 
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Correction Formulae for Maximum-Likelihood Estimator 
of Parameters of Stochastic Differential Equations. 

PIOTR KAZIMIERCZYK t 

ABSTRACT 

The use of the maximum likelihood estimator (MLE) is examined in the situation, where 
the data come from a "smooth" dynamical system approximated by an Ito equation. It 
is well known that in such cases correction terms may appear already in the equation. 
Independently of this fact, in most cases (in particular also when the correction term for 
the drift coefficient vanishes), additional correction of formulas for estimators of parameters 

of equation are necessary. The importance of the correction under consideration has been 

noticed and repetedly indicated in several publications, but in most papers devoted to the 
estimation of parameters of Ito differential models it was not taken into account. The form 
of the correction terms seems to be known merely for linear systems. 

In this paper a general approach, based upon a known result of Mc Shane's, is em-
ployed to prove an appropriate convergence theorem concerning two types of integrals 

appearing in the formulas of MLE and the explicit form of correction terms is derived for 

nonlinear systems provided that the parameters enter the drift term linearly. The necessity 
of using corrections is underlined by a simple example in which the neglection of correction 
terms leads to an infinite relative error of estimation. This theoretically established fact is 
also observed on the basis of numerical simulation. The second example, connected with a 

nonlinear stochastic oscillator illustrates the effectiveness of estimation in presence of cor-
rections in practically important case (it also enlights some of earlier numerical experiences 
described in the literature). 

t Institute of Fundamental Technological Research Polish Academy of Sciences, 
00-049 Warsaw, Poland, ul. SwiE1tokrzyska 21, ZTOC. 
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ON THE RATE OF CONVERGENCE OF THE CERTAIN DIFFUSION 
APPROXIMATIONS. 

K. KUBILIUS 

Institute of Mathematics and Informatics, Akademijo1 4, 2600 Vilniu, Lithuania 

(1) 

Let xn be a sequence of semimartingales and let 
f 

X 1 = X 0 + j a(s, X)ds + M1 , 

0 

t ~ o, 

where M is a local martingale. Suppose h is a Holder function on Skorokhod's space 
D[o,TJ(Rm). We are interested in estimation of the Levy- Prokhorov distance between 
distributions of h(Xn) and h( X). In some cases this allows us to examine the rate of 
convergence of semimartingales with reflection to the diffusion process with reflection. 

Let a(·,·) be such that for any t E [O, T] and x, y ED 

(2) la(t, x) - a(t, Y)I 'k1 sup Ix, - y,I, 
•<t 

(3) 

f 

j k, ds < oo. 
0 

THEOREM 1. Let Xn be special 1emimartingale1 with locally 1quare integrable 
martingale pa1·t1 Mn and let X be as in (1) with continuou Gau11ian local martingale 
part M. Suppose the function a 1ati1fie1 the condition• (2), (3), and 

f f 

( u(i)n u(i)n} _ J (i,j)nd 
1.Y.l. 1 1.Y.l. f - (j I 8 1 (~i)' ~j)), = j a~i,j) ds. 

0 0 

Then 1 for any 6 E (0, 1], and for any Holder function h of order {3, {3 E (0, 1], with 
no·rm llhll.a, there exi1ts a constant C = C(T, k, uT, llhll.a, {3) nch that 

f . 

"T ( h( X"), h(X)) ..; c{ ir*( X~, X0 ) + E112 [ ( :~~ IA7 - / •(&. X") d•I) A 1] 

T }.8 + E113 J Ila; - a1 11 dt + E114 I: l.6.Mf fH6 , 
0 t<T 
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where 7rT{-,-) is Levy - Prokhorov di1tance, '8T = max1(i(m supt<T O'~i,i), and llcr111 = 
~m I u,;)I 
L...Ji,j:l O't . 

COROLLARY. Let the a11umption1 of Theorem 1 be 1ati1fied. Moreover, let 

where 1'n l 0 for n-+ oo. Then there eri1t1 a con1tant C = C(T, k, qT' llhllp, fJ), nch 
that 

t 

"T (h(X"), h(X)) .;; c{ .-*(Xi\', X 0 ) + E'1' [ ( :~~ IAf - j a(•, X") d•I) Ai] 
0 

T fJ 

+ E'/3 j Ila; - a1 II dt + -y~I•} 
0 

The obtained general results we use for the sequence of normalized vector queuing 
· f vn -1/2 n h processes, i.e., or .1 t = n Q nt, w ere 

A(i)n, D(i)ni, ar.d B(i)n are point processes, 1 ~ i ( m, and x: is a diagonal matrix 
with diagonal elements x~i)n = l{Q~'~">O}' l{·} is an indicator of a set{·}. Denote by 

An, jjnl, and jjn the compensators of point processes An, Dni, and Bn and let 

t t 

A~= j >.(n- 1 Q~)ds, -n.1: J (i)( -lQn) d Dt = Pi. µ n • s, 
0 0 ., 

B~ = j µ(n- 1Q:)ds, 
0 

where .;x(i)(x) and µ.<i\x), 1 ~ i ~ m, are non-negative functions, P = (p;; )7 and 
P.1: · = (P.1:11···1 Pim)· 

Let 0 = {x E Rm: x(i) > 0, 1 ~ i ~ m} and 8;0 = {x E Rm: x<i) = O}, where 
Rm has norm lxl = max1c;;c;m lx(i)I· Let P be a. m x m symmetric and non-negative 
defined matrix. 

DEFINITION. For x E D the pair of the functions ( z, cp) is called a solution of the 
Skorokhod1s reflection problem (x; O; I - P) if 

1) z = x + (I-P)cp; 

38 



2) z(i)(t) ~ 0,. 1 ~ .i .~ m; ·. · 
3) cp(i) is nondecreasing function with <p(i)(O) = 0 and satisfying 

1 

(i) J (i) '{>. (t) = l{.i(1)ea;o}d'P (s), 1 ~ i ~ m, 
0 

. where I is a unit matrix. 
THEOREM 2. Let functions ,\(i)(x) and µ(i)(x), 1 ~ i ~ m, be twice differentiable, 

their first two derivative1 are bounded by con1tant L and 

A(O) + (P• - I)µ(O) = O, 

where p• i1 tran1po1ed matrix, llPll < 1. If supn EIYon I < oo then there, exists a 
constant C = C(T, mllPll, L) such that 

1rT(Yn, Y) ~ C{ 11"1/:.l(Y0n, Y0 ) + n- 1/ 8 }, 

where Y is the diff1uion proceu with oblique reftectio»from the boundary {x E Rm: x(i) = 
O}, 1 ' i ' m, which satisfies sfocha1tic differential eqaation 

dyt = bYj dt + ~dWf +(I - P*) dij1• 

Here (Y, <j) is the solution of the 1tochastic Skorokhod'1 problem (X; O; I - p•) and 
X is a solution of 1tochastic differential equation 

where W is a Wiener proceu and 
m 

b(i,j) = .-\;j(O) + LPl:il'ij(O) - µ;j(O), 
l:=l 

(i,j) {-(µ(i)(O)p;; + µU>(o)p;;), i =/:- j, 
c = ,\ (i)(o) + E~=1 P1:;µ<1>(0) + (1 - 2p;i)µ<;>(o), 1 ~ i ~ m. 
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First-passage time problem for simulated diffusion. 
Application in neural modeling. 

Vera LANSKA 
Department of Statistics, Institute for Clinical and Experimental Medicine, 

Videnska 800, 140 00 Prague, Czechoslovakia 

The original Stein's neuronal model has the following properties: The voltage difference 

between the membrane potential and the resting potential at the trigger zone of the neuron is described 

by one-dimensional stochastic process X = { X( t), t 2: O} given by stochastic differential equation, 

dX = - ixdt + adAf+( t) + idN-( t) ' X(O) = Xo, (1) 

where r > 0, a > 0, i < 0 are constants; Af+ = {Af+(t), t 2: 0}, N- = {N-(t), t 2: O} are two 

independent homogeneous Poisson processes with Af+(O) = N-(0) = 0 and intensities .\, resp w. 

Stein's model with reversal potentials can be given by the stochastic differential equation 

dX = - 4Xdt + a( VE - X)dAf+( t) + i(X - V1)dN-(t), X(O) = x0 , (2) 

with the same notation as in ( 1 ); V 1 < x0 is a constant representing the inhibitory reversal potential 

and VE > x 0 stands for another constant, the excitatory reversal potential. 

The hypothesis of frequency coding of information in the nervous system leads to the study of 

statistical properties of sequences of time intervals between spike generation. A neuron produces a spike 

when the membrane voltage ( l) or (2) exceeds for the first time a voltage threshold. It is usually 

assumed, in neuronal models, that the threshold depolarization is a constant S > x0 and that after 

each spiking the membrane potential is reset to the initial level X(O) = x0 • Thus the neuronal firing 

corresponds to the first passage time (FPT) for the associated stochastic process and the theoretical 

counterpart of the interspike interval is a random variable TS defined by the relationship, 

Ts= inf{t > O; X(t) > S, X(O) = x0}. (3) 

For the reason of easier mathematical tractability, the stochastic processes (1) and (2) are 

often substituted by a diffusion stochastic process. This diffusion approximation can be also well 

advocated by neurophysiological facts. The limiting diffusion for ( 1) is well known Ornstein-Uhlenbeck 

process given by 
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dX=(- tX +µ + v)dt + tTdW, (4) 

where µ, v and tT > 0 are constants related to a, i, .\ and w; W is a standard Wiener process. The 

diffusion approximation for generalized version of (2) has different diffusion coefficients [4] and here we 

consider only the case, which is studied in detail in [3], 

The FPT problem for the models ( 4) and (5) can. be solved analytically and extensive tables of the 

FPT distribution and its moments are available, [1], for the model (4). Nevertheless, there is a lack of 

analytical results when the parameters of these models are time dependent or when a time-dependent 

threshold is employed, and thus some other methods have to be applied. It holds also for other 

diffusion models than (5). 

To solve the FPT problem for the discontinuous models (1) and (2) is a complicated task and 

only approximations and numerical results are available [5]. Another method for this purpose is the 

simulation of the trajectories for ( 1) and (2) and using these trajectories the properties of FPT can be 

deduced. The simulation of the trajectories for (4) is a simple task, [2], and for (5) a reflecting 

boundary condition at v1 has to be imposed. However, the FPT is overestimated in both cases when 

based on crossings of the trajectories through the threshold S. This overestimation has the same origin 

as the overestimation of FPT which comes due to the sampling performed on the realization of the 

process. In the present contribution, the properties of the FPT as derived from the simulated 

trajectories are related to the simulation step for (4) and (5) and compared with analytical and 

tabulated results. 
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Darm&tadt, Germany 

The clusical method in ra.ndom number generation is the linear congruential method. A 
linea.r cangruential sequence (a:n)n~o of integers 0 S :i:n :S m - 1 i1 defined by 

(mod m) 

where m ia a. la.rge integer, and a, be Z. A sequence of linea.r congruential paeudorandom. 
numbers in [O,, l] is obta.ined by the normalization 1Jn. • a:, n ~ 0. Me.ny theoretical 
retulta on the linear congruential paeudoran<iom numbers a.re obtained. (An extensive list 
of references i1 given in [6]). 

Nonlinea.r congruential methods are designed and a.nalyzed· recently a.a &ltema.tivee to 
the linear congruential method. A general clua of nonlinea.r congruential generators is 
introduced in (1). The so called inversive congruential sequence . (:iin)n~o of elements of Zp, 
where p is a. prime number, ia obtained by 

(mod p) 

where ~' b, 3:0 e ZJJ, D • 0 and lD = ~-1 for a: e Z,, \ {O} (:i:-1 ia the inversive of ~ in 
the multiplica.tive group of the flnite field of order p). Inversive genera.tors with a power of 
two modulus or an odd prime power modulus are also considered. An excellent aurvey of 
inversive genera.tors ia given in [3]. · 

Theoretical analysis of the pseudor&n.dom number sequencea generated by the inversive 
method hu shown tha.t they behave more ra:idomly tha.n the linear congru~tial sequences 
eapecia.lly in the cue of a. prime modulus in the sense for example that the k-dimen1ional 
discr~pa.ncy is in accordance with the law of the iterated logarithm (see [4], [5]). 
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In 1983, A.Gerardi, F .Marchetti and A.M.Rosa [1] succeeded in approximating 
diffusions with boundary conditions by a space discretization of the associated 
generator. They proved the weak convergence of the approximating pure jump 
type Markov processes to the diffusion as the jump size vanishes. At the same 
time, Kinkladze [2] in a more traditional way gave an £ 2-approximation of a 
stochastic differential equation in a half-space with instantaneous normal reflec-
tion at the boundary; he used a time discretization but the rate of convergence 
in his scheme was slightly slower than in the usual Euler-Maruyama scheme 
for non reflected stochastic differential equations. Here we propose a simple 
improvement of his scheme which yields the same rate of convergence as the 
Euler-Maruyama scheme. The key point is to use the joint distribution of a 
Brownian motion with drift and its maximum process, which has been com-
puted by Shepp [4]. Extending a result by Seshadri [3], we get the following 
theorem: 

Theorem 1 Let a= (ai, ... , ad) and let c be a real number. Assume (Bt) is a 
d-dimensional Brownian motion and let 

St= sup(a.B,, +cs) . 
&::;t 

Let U = (Ui, . .. , Ud) be a centered Gaussian random vector with covariance 
matrix tl, and let V be an exponential random variable with parameter (2t)- 1 

independent of U. Put 

Y = 1/2(a.U +ct+ (lal 2V + (a.U + ct) 2) 112) • 

Then the vectors (Bt, St) and (U, Y) have same distribution. 

Now we turn to the simulation of the solution X of a stochastic differential 
equation with Lipschitz continuous coefficients b and a and normal reflection 
on the boundary of the half space Xm > 0. Assume (Wt, 0 ~ t ~ T) is a d-
dimensional Brownian process. For n 2'.: 1 let h - T /n. For p = 0, ... , n - 1 
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------·---·--------------------

and ph < s ~ (p + l)h we put 

Theorem 2 There exists C > O such that 

E(sup IXt - Xtl 2) ~Ch. 
t5,T 

k = 1, ... , m 
k = 1, ... , m -1 

From Theorem 1 it follows that each new step in the computation of the 
successive values of Xph requires the easy simulation of d new independent 
standard Gaussian variables and a new independent exponential variable. 

A.s. and D'-results may also be stated. If the coefficients b and a depend 
on t under a Holder condition, there is no new difficulty. As for the Milstein 
scheme, it is theoritically valid but there is no simple way to simulate the related 
joint distribution. 

We have dealt with a very particular boundary condition. There are however 
some other cases where the above method still works: normal reflection in an 
orthant, or oblique reflection on a hyperplane when the direction of reflection 
is constant. 
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The effect of noise on solutions of some ODEs 
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Silver Street, Cambridge CBJ 9EW, U.K. 

Model ODEs for physical systems should be able to accommodate the addi-
tion of a small amount of noise. If the ODEs have chaotic trajectories with sensitive 
dependence on initial conditions, it might be expected that the addition of noise 
would remove all practical predictability. vVe show that this is not true in a class of 
systems whose trajectories spend most of their time close to an invariant line with 
occasional excursions. The dynamics then reduces to a one-dimensional map. It is 
possible to find expressions for this map in the noiseless case by solving approxima-
tions to the ODEs valid close to and away from the invariant line [l] [2]. Here we 
show how to obtain the noise-affected map by solving an SDE in the region near 
the invariant line where low-level noise is important. The dynamics is simpler with 
added noise: we find a noisily periodic orbit for a wide range of parameter values, 
including those where the corresponding noiseless trajectories are chaotic. 

We consider systems of ODEs which reduce to 

:i: = µf(x) - y 2 , 

i; =yg(x) 
(1) 

near the line y = 0 where f-l « 1, f(x) > 0 and g(x) = x - a where CK= 0(1) with 
any remaining variables being 'slaved' to x. Starting from t = t0 with :i; = 0 for 
some :t0 < a, y decreases rapidly so that :i: evolves independently and 

Y = YoG(t, to) 

where 
J. t - t' dt' G(t,to) = e •o 9 ( ) g(t) = g(x(t)). 

Noise is introduced by replacing the ODE for yin (1) by the SDE 

dyt = Yt(:r(t) - o:) + c:d\V(t) t « 1 

which is a time-dependent Ornstein-Uhlenbeck process with solution (3] 

Yt = G(t, t0 ) (Yo+ c 1: G(s~ to) d\tV(s)) , 

(Yt) = G(t, to)Yo, 

(uZ)=(u1) 2 +c:2G2(t,to) [' r;2 ~ )els. lto ..:r c~,to 
Let x = CK a.t t =ta. Near t = t 0 we write 
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(2) 

(3) 

(4) 

. (5) 

(6) 

(7) 



-1 

and note that G(tc,, t0 ) = O(e,,f(a)) when x 0 - a= 0(1). 
For x - a > 0( VJi) therefore, 

(y1) ,..._, J µf(xo )e ,,/(~J G(t, ta), (8) 

(u;) - (Yt) 2 '.::: 1:2 J µ~a) G2 (t, ta) (9) 

If (y;) - (Y1) 2 ~ (y1 ) 2 we can treat the noise as a small perturbation to (Yt)· If 
however 

µI lni:J 2: 0(1) (10) 

then for x > a we have (yz) ~ (y1) 2 . The end of the slow phase (at x = x1 when y; = µf( x) so that i: = 0) is thus hastened by the noise, which controls the map 
Xo --+ X1 . This map is independent of x 0 (dependence on initial conditions is lost) 
as long as x 0 is such that (yl) ~ (y1) 2 for x > a. 

When ( 10) holds, \Ve find a noisily periodic orbit with mean amplitude and 
period determined by the noise level. The distribution of the amplitude about its 
mean is, however, 0(1-t) regardless of the noise level. This independence of c arises 
because the probability distribution of y for x - a > 0( fo) is determined by that 
of Xe. Xe, defined as the value of x > a for which IYtl > gtx), is independent of c 
because IYt I oc c for x > a. The probability distribution of Xe is carried forward by 
the flow of (1) and becomes the probability distribution of x 1 . If x1 is the mean 
value of :r1 then the standard deviation of :r 1 is given by: 

f( i1) 
O'x1 '.:::= µ g(x1). (11) 

The behaviour described in the first paragraph is found in ODEs describing 
systems such as the resonant interaction of three wave modes [l] and the shear 
instability of convection [2]. It should be noted that, even apart from questions of 
physics, trajectories obtained when attempting to solve ( 1) using single or double 
precision arithmetic will in fact resemble those of (3) with noise level determined 
by the computer roundoff error. 
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SECOND ORDER WEAK RUNGE-KUTTA APPROXIMATIONS 
FOR STRATONOVICH SDE'S 

Vigirdas MACKEVICIUS 
Department of Mathematics, VilniuJ UniverJity, Naugarduko 24, 2006 VilniuJ, Lithuania 

1viilshtein [2] has proposed a munerical integration method of Ito stochastic differential 
equation 

Xt = x +it f(Xs) ds +it g(Xs) dBs, t E [O, T], (1) 

by discrete time approximations Xt, t E h = { 0, h, 2h, ... , T}, based on values of Brownian 
motion B t, t E h, and having the second order accuracy in the following sense: 

IE<p(Xr) - E<p(Xr )I ::; Ch2 , 

for a sufficiently wide class of functions <p: R -+ R ( C does not depend on h ). Following 
Kloeden and Platen[l] we call such approximations the Jecond order weak approximationJ 
(in contrast to Jtrong approximationJ with the convergence of EIXr - Xrl). One can find 
a wide bibliography on the subject in [l]. 

Analogously to ordinary differential equations, it is worthwile to have weak approx-
imations with a reduced use of derivatives of coefficients. Such approximations are often 
called Runge-Kutta type, though the terminology seems to be far from being standardized. 
Here we define "Runge-Kutta type approximations" as a class of approximations having 
the following structure: 

m m 

A.(x,h,b) =x+ LqiFih+ LriGib, 
i=O i=O 

where 

Fo= f(x), Go = g(x + aooFoh), 

F1 = f ( x + & 1 o Fo h + ,B 1 o Gob) , G1 = g( x + ( a10Fo + a11F1) h + f310Gob), 

and 
m m 

:Lqi = I:ri = i. 
i=D i=O 

Such approximations we shall call (m + 1)-stage Runge-Kutta (RK) approximations. 
A little bit less general approximations (with &ii= O'.ij, Sii = f3ij, aii = 0) were considered 
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by Riimelin[4] who established their convergence in quadratic mean sense to the solution 
of 

Xt = X +it (f + Agg')(Xs) ds +it g(Xs) dBs 

with A = L:;:1 ri I:~:~ ,Bij (thus in.eluding both Ito and Stratonovich equations). 
In general, there do not exist second order weak RK approximations for Ito equa-

tions (a derivative-free approximation proposed by Platen[3],[1] is not of the considered . 
form). On the other hand, RK type approximations appear to be suitable for Stratonovich 
equations. Here is an example of 5-stage second order weak RK approximation for (1) 
understood in Stratonovich sense : 

. ( 1 1) ( 1 1) Fo = f(x), Go= g(x+3F0 h), F1 = f x - 4 Foh + 3Gob , G1 = g x - 4Foh + 3Gob , 

F2 = J (x -3Foh +~(Go+ Gi)b), Gz = g (x -3Foh +~(Go+ G1)b), 

F3 = f (x + (Fo - F1)h +~(Go+ 3G2)b), G3 = g (x +(Fa - F1)h +~(Go+ 3G2)b), 

G4 =g (x +(~Go - ~G2 +~G3)b), r 

Leaving a detailed discussion for the talk, we shall only note the following: 
1. The coefficients f3iJ and ri in the example are taken from a 5-stage 4th order RK 

method for ordinary DE. This is not a coincidence. For any such coefficients one can find 
the remaining one~ to obtain the 2nd order weak RK approximation. Unfortunately, this 
is not true for "classical" 4-stage RK methods (well investigated in the deterministic case) 
unless the drift f = 0. On the other hand, in one-dimensional case there do exist 4-stage 
2nd order weak RK approximations, but the author did not succeed to find a "nice" one. 

2. For computational convenience it would be nice to have the coinciding &ij = 
CY.ij, fiij = /3ij, qi = ri. Unfortunately, as in the example, it is possible only to some extent. 

3. No serious problems arise in the case of time-dependent coefficients. 
REFERENCES 

(1] Kloeden P.E., Platen E. Numerical Solution of Stochastic Differential Equations, 
Springer-Verlag, Berlin Heidelberg, 1992 (Applications of Mathematics 23). 

(2] Milshtein G.N. A method of second-order accuracy integration of stochastic differential 
equations, Theor. Prob. Appl., 1978, v. 23, p. 396-:-401. 

(3] Platen E. Zur zeitdiskreten Approximation von Itoprozessen, Diss. B., !Math, Akad. 
der Wiss. der DDR, Berlin, 1984. 

[4] Riimelin 'vV. Numerical treatment of stochastic differential equations, SIAM J. Numer. 
An~l., 1982, v. 19, p. 604-613. 

48 
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Stochastic Volterra integro-differential (SVIDEs) are considered, of the form, 

(1) y'(t) = f(t.y(t)) + r K(t. S, y(s)) ds +I' P(t. s. y(s))dW(s). 
0 0 

y(O) =Yo , te I= [O,T], 

and.also SVIDEs of the form, 

(2) y'(t) = W(t) + f(t.y(t)) + r K(t.s,y(s)) ds , 
0 

y(O) =Yo • tel= [0,T], 

where W(t), tel is the standard Wiener process. Equations of the form (1) ,(2) have important 
applications in Population Biology and in Physics (Kannan [ 4 ], Makroglou [8] , [9]) and the 
references therein). 

In this presentation is given a description of the application of collocation methods for 
the numerical solution of (1), (2) (see Makroglou [8],[9]) as extended from their application to 
deterministic VIDEs ( see for example Bruiiner [2] , Makroglou [7]) combined with simulation 
techniques developed for the numerical solution of stochastic differential equations (Rao , 
Borwankar and Ramkrishna [10], Liske and Platen [6], see also Kloeden and Platen [5], Gard 
[3] ) . An outline of the application of the same methods to SVIDEs of second order will also 
be given extending the work of Aguilar and Brunner [1] . 
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Gnans is a program and language for the numerical study of deterministic 
and stochastic dynamical systems. It is aimed to be a high-level problem 
solving tool, allowing the user to concentrate on the (mathematical) prob-
lem, instead on programming details. 

Central for Gnans is the concept of the system declaration: a declaration of a 
dynamical system in a special, equation oriented language. The description 
consists of declarations of states, parameters etc, together with equations 
describing the dynamics of the system. As an example, in Figure 1 the code 
for the van. der Pol-Duffing oscillator is shown. Arbitrary C++-code may also 
be contained in the system description, allowing, among other things, the 
modeling of systems which are not naturally described by smooth evolution 
equations. A translator sorts the equations and translates the system to 
C++ code, which is subsequently compiled and dynamically linked into the 
executing program .. The system equations can now be solved numerically 
with the speed of a compiled program. Several numerical integrators, also 
for stochastic (Ho-) differential equations, are provided. 

In this way, the program can be considered "an initial value problem (IVP) 
engine". Using a simple script language, this IVP-engine can be pro-
grammed. In this way, problems involving loops over parameters and/or 
initi~ conditions may be solved. 

Gnans has an intuitive graphical user interface, making it possible con-
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CONTINUOUS TIME SYSTEM vdpol_duffing; 

STATE x = O; 
STATE y = l; 
PARAMETER alpha = -1; 
PARAMETER beta = l; 
PARAMETER gamma = O; 
PARAMETER delta = -1; 
WIENER PROCESS xil 1; 
WIENER PROCESS xi2 ~ 997; 
WIENER PROCESS xi3 = 171713; 
PARAMETER 
PARAMETER 
PARAMETER 
TIME t; 

AT TIME t: 
d(x) y; 

sigmal l; 
sigma2 O; 
sigma3 O; 

d(y) (alpha*x + beta*y + gamma*cube(x) + delta*sqr(x)*y)*d(t) 
+ sigmal*x*d(xil) 
+ sigma2*y*d(xi2) 
+ sigma3*d(xi3); 

Figure 1: Complete Gnans code for the van der Pol-Duffing system. 

trol the program and to change all relevant parameters using an intuitive 
point-and-click interface. Interactive plotting program can be run as child 
processes, with the possibility to define commands to be sent by the press 
of a button to the interactive plotting program. 

Gnans is designed to run in an environment consisting of networked Unix 
workstations using the X Window System. It has presently been ported to 
the following platforms: Sun3,.Sun4 (M.I.T. X11R5 and OpenWindows 3), 
Silicon Graphics Iris, and IBM RS6000. Version 1.0 requires an ANSI C 
compiler, later versions will require a C++ compiler. 

Gnans is copyright © Bengt Martensson and Institute for Dynamical Sys-
tems, but available free of charge by anonymous ftp from ftp.mathematik.uni-
Bremen.de (134.102.232.101). Everyone is invited to use, redistribute, and 
improve the system. Future users are strongly encouraged to get in touch 
with the author. 
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In this paper a method for Maximum Likelihood estimation of parameters in sde's, 
based on observations in discrete time, is presented. The class of sde's considered is 
written in the form: 

(1) 

where :l!t is the state vector, u 1 is a vector of exogenous variables representing controlled 
inputs or observable disturbances. 9 is a vector of the (unknown) parameters of the model 
and Wt is a standard Wiener process. The observations are given as 

(2) 

where Yt is the dimensional observation vector at time t, et is the measurement error, 
assumed to be normally distributed white noise with zero mean and unit covariance. 

The Maximum Likelihood estimate is found a5 the parameters which maximizes the 
joint probability density of all the obser~ations given the parameters, i.e. 

eml = argmaxp(yN, YN-1• YN-2• .. · 19) 
8 . 

(3) 

In order to evaluate the Likelihood function for discrete time data it is necessary to 
calculate the one step prediction error 

€t1t-l = Yt - E[YtlYt-1• Yt-2• · · ·, 9] (4) 

If further the prediction errors are assumed to be Gaussian with zero mean and covariance, 
Rtlt-l• these are the only quantities needed for determination of the Likelihood function. 
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€tit- l and Rtlt-1 may be calculated by using a kalman filter in the linear case and 
approximate filters in the general case. 

An example is given where the method is used to identify the thermal characteristics 
of a building. In this example the dynamics is described by a system of linear stochas-
tic differential equations, hence an exact explicit solution exist, which is utilized in the 
calculations. 

1 Introduction 

A number of authors have been dealing with the numerical solutions of sde's in general, and 
specifically numerical approximations of the solution of the Ito type stochastic differential 
equation, 

(5) 

where Zt is the state vector, tit is a vector of exogenous variables representing controlled 
inputs or observable disturbances. () is a vector of the (unknown) parameters of the model 
and Wt is a standard Wiener process, see (Gard, 1988) and (Kloeden, Platen, & Schurz, 
1991). When the step further is taken, to estimate the parameters in models of the kind of 
Eq. 1 based on discrete observations, the literature is more spare. Graebe (1990) has done 
some work in this area, but mainly on the simpler model without the Zt dependency in the 
last term of Eq. 1. The equation for the discrete observations is given by: ~ 

{6) 

where Yt is the dimensional observation vector at time t, et is the measurement error, asswned 
to be normally distributed white noise with zero mean and unit covariance. 

For the purpose of parameter estimation, it may be advantageous to consider the linearized 
version of the above model, Eq. 1 (without the Zt dependency in u) and Eq. 2 about some 
reference signal ( z*, u*). This yields 

A(8, t)ztdt + B(8, t)utdt + E(8, t)dwt 
C(8,t)zt + D(8,t)ut + F(8,t)et 

where the matrices are calculated by A(8,t) = 881:lu=u·, B(8,t) = ~1i:lu=U° etc. 
Z=z• Z=z· 

(7) 
(8) 

Other models may lead directly to a formulation as Eq. 3 and Eq. 4, without linearizing. 
This is the case, if the underlying model is basically linear or close to linear. In these cases 
an exact solution exist, and it may be advantageous computationally and numerically to use 
this fact even if the model is only close to linear. 

In the following sections methods for Maximum Likelihood estimation of parameters in sde 's, 
based on observations in discrete time, is developed. First the requirements for estimation is 
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discussed, then an exact and approximative solutions are presented. Some of the numerical 
and computational details are also considered. Finally an application is given, where the 
exact solution has been used for estimation of the heat dynamics of a building, based on 
measurements. 

2 The Ma.ximum Likelihood Method 

In the following it is assumed, that a finite set of observations are obtained at equally spaced 
time intervals, with unit sampling time. Hence the time index t E {0, 1, 2, · · ·, N}, where N 
is the number of observations. In order to derive the likelihood function, the following set of 
observations is introduced, 

Yt = [Yt1Yt-11···1Y11Yo) (9) 

i.e. yt is a matrix containing all the observations up to and including time t. Finally, let (J 
denote a vector of all the unknown parameters. 

· The likelihood function is the joint probability density of all the observations assuming that 
the parameters are known, i.e. 

p(yNj(}) 
P(YNIYN-l, B)p(yN-1 jO) 

N (II P(YtlYt-i I e))P(Yol8) 
t=l 

(10) 

where successive applications of the rule p( a , b) = p( a I b) p( b) is used to express the likelihood 
function as a product of conditional densities. Furthermore, it is convenient to introduce the 
one-step prediction error (or innovation), 

The prediction errors are now assumed to be Gaussian with zero mean and covariance, 

If the criterion to minimize is specified as the negative log likelihood, it is given by 

L(O,yN) = -logC(fJ,yN) 
N 

~ L ( €~1t-1 R~z-1 €tlt-1 +log det Rtlt-1 + ny log 27r) 
t=l 
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(12) 

(13) 

(14) 



where ny is the dimension of y. The simple expression for {, is derived from the fact the the 
normal distribution is characterized solely by the mean and covariance. 

The Maximum Likelihood estimator has some attractive characteristics, which motivates the 
choice of it. Under mild conditions the maximum likelihood estimates are asymptotically 
normally distributed (Ljung, 1987), with parameters 

(15) 

where MF= E(82L(O,yN)/802 ) is the Fisher information matrix. When minimizing the 
criterion Eq. 14 using a quasi-Newton method, an iteratively updated Hessian matrix evalu-
ated at the minimizing parameter value is returned. This matrix may be used as an estimate 
of MF· The inverse of Fishers information matrix is used as an estimate of the covariance 
of the parameters. The variances serves as a basis for calculating t-test statistics for testing 
the hypothesis that the parameter is equal to zero. The correlation between the estimates is 
readily found based on the variance matrix. 

3 The Predictor 

Under the assumptions stated in the previous section it is necessary to calculate the prediction 
error, €tit-l• and the covariance of the prediction error, Rt1t-l• in order to calculate the 
likelihood function. This is under the assumption of Gaussian innovations. 

The evaluation of €tlt-l involves the calculation of Ytlt-l = E(YtlYt-l, 0), where the caret, 
denotes the expectation operation, 

flt11-1 = l: g(e,ut,O,t)p(elut- 1 )de (16) 

Rtit-1 J-: g(e, Ut, o, t)g(e, Ut, o, t)'p(elvt- 1 )~ + F(o, t)F(o, t)' (17) 

The exact calculation of these numbers requires the entire conditional density of the state 
vector, conditioned on earlier observations p( ztlYt-l) for all t. This density is not in the 
general case available, it is therefore necessary to employ approximations. One such possible 
approximation is known as a statistically linearized filter. While this technique typically 
assume the density of z to be Gaussian, it is not based on a direct linearization of the system 
dynamics. In principle it therefore does not require m and· E to be linearizable, allowing 
saturations and the like. This filter however have great computational requirements. 

For the class of linear models of Eq. 7 and Eq. 8 there exist an exact solution. The 
kalman filter provides the exact solution in this case. The following equations are obtained 
for updating the state estimate: 

Ztjt = ~tlt-1 + Kt€t (18) 
ptit Ptlt-1 - KtRtlt-1K~ (19) 

Kt Ptlt-1 C' Rtjt1_1 (20) 
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The formulas for the prediction of the state and observation are given by, 
a • 
8r ZrJt 

:rprlt 

Yt+llt 
Rt+iit 

A~rit + Bu.,. , t:s;r<t+1 

AP rlt + p rltA' +EE'' tSr<t+l 

C~t+tlt + Dut+1 
CPt+iltC' +FF' 

(21) 

(22) 
(23) 
(24) 

The initial conditions are ~llo = µ0 and P 11o = Vo. The time dependencies of the matrices 
have been suppressed for clarity in the kalman filter equations. This implementation of the 
kalman filter thus involves the solution of a set of ordinary differential equations for each 
s~mpling instant. If on the other hand the matrices A and B are time invariant it is possible 
to calculate an explicit solution for Eq. 21 and Eq. 22, 

= P~tlt +I'ut 
PPtltP' + R1 

where the matrices P, I' and R 1 are calculated as, 

(25) 
(26) 

(27) 

and T is the sampling time. This implementation of the kalman filter thus involves the 
calculation of the exponential of a matrix. This calculation may be done once for a given set 
of parameters if the matrices A and B are time invariant. H the time dependence is slow 
compared to the dominating eigenvalues of the system, this implementation may be used for 
time varying systems, by evafoating Eq. 27 for each sampling instant, assuming constant A 
an:d B within a sampling time. This solution requires less computations and is more robust. 

4 Numerical Stability 

All practitioners, have realized that one thing is the the~retical development of an algorithm, 
but another thing is the implementation of the algorithm on a computer. The problems 
arises due to the finite arithmetic in the computer, which introduces a rounding error for 
every calculation with .real numbers. In certain cases these rounding errors will accumulate 
so the solution could be misleading. 

For the algorithms outlined in the p_revious sections, specific care for the numerics should 
be faced on the kalman filter, the calculation of the exponential of a matrix and on the 
optimization routine. 

4.1 A stable kalman filter 

It is well known that th€'. kalman filter in some situations is numerical unstable. The problems 
arise when some of the variances, because of rounding errors, become non-positive definite. 
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Therefore careful handling of the equations for the variances Eq. 19, 20, 24 and 26 is needed 
in order to stabilize the kahnan filter. Since all variances should be symmetric and positive 
definite, it is desirable to use their Cholesky factorization. The LD L'-factorization have been 
chosen, also called square root free Cholesky decomposition, where L is unit lower matrix 
and D is diagonal. This method have accuracies comparable with the usual method (with 
no factorization) using twice the numerical precision. 

An equation for updating a factorized matrix is 

(28) 

where A is known from other considerations to be positive definite, and D 9 is a diagonal 
matrix. Thus it is necessary to compute a unit lower triangular matrix L and a diagonal 
matrix .iJ with d; > 0 such that 

A.= tbt' (29) 

Algorithms to solve this problem is found in (Bierman, 1977) and (Madsen & Melgaard, 
1991). It is obvious that Eq. 24 and Eq. 26 easy are brought into this form. Eq. 19 can be 
rewritten as 

ptit 

ptit 

t.iJ t' 
t.iJt' 

= Ptlt-1 - KtRtlt-1K~ * 
Ptlt-1 - Ptlt-1 C' R~L1 CP~lt-1 * 
LDL' - LDL'C'[LrDrL~t 1 C[LDL']' 

L[D - GD;1G']L' where G = DL'C' L'-1 
r (30) 

The expression [D - GD;:- 1 G'] in Eq. 30 is in the form Eq. 28, and can thus be solved for 
the factors LiJi./, and we have i =LL and iJ = iJ. 

This implementation of the kalmanfilter is able to handle the multiple-input, multiple-output 
case with a high grade of accuracy and stability, see e.g. (Bierman, 1977). 

4.2 Calculation of exp(A) 

An approach for calculating the exponential of a matrix, which in general is very robust 
against ill conditioned matrices, is the so-called Pade approximation to exp(A), which is 
defined by 

(31) 

where 
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Cj = 
{2q - j)!q! 

(2q)!j!(q - j)! 

In general, the Pade approximation is very useful, and it is suggested in Moler & Loan (1978) 
as the most adequate in most cases. 

However, the roundoff difficulties and the computing costs increases as the spread of eigenval-
ues or llAll increases. These difficulties can be reduced by combining the above method with 
the method of scaling and squaring. This method utilize the following fundamental property 
of the exponential function 

(32) 

The idea is to choose m as a power of two for which eAf m can be reliably and efficiently 
computed by the Pade approximation, and afterwards to finally compute the exponential of 
A by repeated squaring. Usually mis chosen as the smallest power of two for which llAll2/m 
is less than one. According to Moler & Loan {1978) the resulting algorithm is one of the 
most efficient. 

4.3 The optimization algorithm 

A crucial point in any statistical analysis based on the maximum likelihood method is con-
cerned with the actual maximization of the likelihood function. In our case an explicit method. 
is not available, and the maximization h~s to be performed using a numerical method of it-
erative character. 

The problem may be formulated as to find the minimizing point of a nonlinear function, i.e. 
argmin/(z), where f: n" ~ n. 

Among optimization methods, Newton-Raphson's method has shown to be exceptionally 
effective. A minimum off is found where g = 8 f / 8z = 0. The method is based on a Taylor 
expansion of g to fust order 

Putting g(zn + h) = 0 and neglecting o(h) the algorithm takes the form 

hn = -H(zn)-1g(zn) 
Zn+l Zn+ hn 

(33) 

(34) 
(35) 

where the Hessian H = 8 2 f /8z 2 in the regular case is positive definite. It can be shown that 
the iterations converge towards the minimizing point z,., where g(z,.) = 0: Since we are not 
able to provide the optimization procedure with the fust and second partial derivatives of 
f ( x), these will have to be approximated by the algorithm. Finite-difference approximation 
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is used for the first derivative g, and a secant approximation Bn is used for the Hessian. 
The secant approximation is more effective and robust than a finite-difference Hessian in the 
optimization. This class of secant methods are called quasi-Newton, and the most suc_cessful 
seems to be the BFGS method for iterative Hessian approximation combined with soft line 
search, (Dennis & Schnabel, 1983). 

The gradient is found by a forward difference approximation, switching to a central difference 
when nearing the optimum. The central difference approximation is more accurate, but also 
more computer intense. 

Since the Hessian is positive definite it is represented by its LDL' factorization, and the 
iterative updating of the Hessian is performed on the factors, hence increasing the numerical 
stability of the algorithm. 

5 An example: Thern1al dynamics of a building 

The application considered in this paper is related to the Corrunission of the European Com-
munities' (CEC) research project called PASSYS. The aim of this project is to establish 
a common basis within the European Community for determining the energy dynamics of 
building components, especially components related to passive solar energy. Passive solar 
design has been recognized as an important potential for energy conservation. Many new 
components and systems have been developed in the late 1970s and 1980s. However, very 
little is known about their actual thermal and solar dynamic characteristics. A further un-
certainty is the unknown performance when the components are applied to buildings and 
exposed to variations in climate. 

Within the PASSYS project, a test procedure for building components, using short-term 
performance data from a test cell, is developed and defined. The south wall and, for some 
test cells, the roof are removable. The test cell is calibrated using a highly insulated opaque 
south wall. Different south wall components could then be inserted in place of the calibration 
wall. 

The test cell has a test room of 13.8 m 2 ground surface and 38 m3 air volume with an adjoining 
service room to the north, accommodating measuring and air-conditioning equipment. The 
U-value of the envelope is less than 0.1 W/m2K. The south wall, which is the actual passive 
solar system, is fixed in an insulated frame. Any kind of wall can be incorporated in this 
frame. A further descriptjon of the test cell is found in Wouters & Vandaele {1990). 

The thermal characteristic of buildings is frequently approximated by a simple network with 
resistors and capacitances - see, for instance Madsen & Holst (1992). In this section, such a 
lumped parameter model for the dynamics of the test cell is presented. 

The dominating heat capacity of the test cell is located in the outer wall. For such buildings, 
the model with two time constants shown in Figure 1 is frequently found adequate. The 
states of the model are given by the temperature, Ti, of the indoor air and possibly inner 
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Figure 1: A model with two time constants of the test building and the equivalent electrical 
network. 

T,, t C; 

part of the walls with heat capacity C;, and by the temperature, Tm 1 of the heat accumulating 
medium, with the heat capacity Cm. H; is the transmittance of heat transfer between the 
room air and the walls, while Hm is the heat transmittance between the inner part of the 
walls and the external surface of the walls. The input to the system is the heat supply, Qh, 
and the outdoor surface temperature, T,,. By considering the outdoor surface temperature 
instead of the outdoor air temperature, the effect of solar radiation is taken into account. 

In state space form the model is written, 

[ -H;/C; 
Hi/Cm 

[ Hm~Cm ( 36) 

An additive noise term is introduced to describe deviations between the model and the true 
system. Hence, the model of the heat dynamics is given by the (matrix) stochastic differential 
equation 

dT = ATdt + BUdt + dw(t) (37) 

where w(t) is assumed to be a wiener process with incremental covariance matrix 

[ 
0'2 

~ = ~,i (38) 

The measured air temperature is naturally encumbered with some measurement errors, and 
hence the measurement equation is written 

Ttr(t). = (l o).J :~ ] + e(t) (39) 
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where e(t) is the measurement error, assumed to be normally distributed with zero mean and 
. 2 variance u2 • 

The following parameter values have been estimated in an earlier experiment on a test cell: 
H; = 55.29 w /K ' Hm = 13.86 w /K , C; = 325.0 Wh/K, Cm = 387.8 Wh/K, <7i i = 
0.00167 K 2 , ui m = 0.00978 K2 , and u~. = 0.00019 K2 . Corresponding to these parameters, 
the time const~ts of the system are r 1 = 3.03 hours ~d r 2 = 54.28 hours. 

This example describes some of the results from several simulations and estimations of the 
PASSYS test cell. The main purpose is to validate the estimation procedure. By consid-
ering several simulated sequences this investigation considers both the mean values and the 
variances of the estimated parameters. 

The input and output signals in the model are: 

Te is measured surface temperature, from a Danish test cell. 

Qh the heat supply, is a PRBS (pseµdo-random binary sequence) of order n = 6 and Tprba 

= 8 hours, switching between 0 Wand 300 W. 

Ttr room temperature, simulated with the specified model. 

In this example we have chosen the sampling time T•ampl = 20 minutes, and we have measure-
ments from 21 days, which equals 1512 observations per simulation series. We have simulated 
10, in principal, equal series, but with different starting point for the noise sequences. A con-
traction of the estimation results from the 10 series is presented in Table 1. The estimates 

Table 1: Results from estimation of 10 series. z.imul is the simulated parameters, x is the 
mean of the estimated parameters, s,,, is the empirical standard deviation of the estimated 
parameters and s is the mean of the estimated standard deviation. 

II Parameter II II II 
H; 55.290 W /K 56.315 W /K 1.9609 W /K 1.9765 W /K 

Hm 13.860 W /K 13.565 W /K 0.53025 W /K 0.52408 W /K 

C; 325.00 Wh/K 322.31 Wh/K 3.7832 Wh/K 3.2851 Wh/K 

Cm 387.78 Wh/K 375.51 Wh/K 10.816 Wh/K 13.896 Wh/K 

0"1,i 0.040866 K 0.040947 K 0.014283 K 0.014293 K 

0"1,m 0.098894 K 0.103083 K 0.050865 K 0.063209 K 

0"2 0.013784 K 0.013733 K 0.006605 K 0.005718 K 

are Maximum Likelihood obtained from an implementation of the exact explicit method de-
scribed in the previous sections. It is seen that not only are the estimated paramet~rs close 
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to the the simulated, but also the uncertainty on the estimates (the standard deviation) are 
close to the empirical standard deviation. This imply, that this method provides reliable 
confidence regions for the parameters, and it is possible to make test statistics for model 
reduction etc. -

6 Conclusion 

Stochastic differential equations are very useful for modelling physical systems, where the a 
priori knowledge about the system is widely used in the model specification. In the paper it 
has been shown, which steps to take for the estimation of parameters in stochastic differential 
equations based on discrete measurements. It has also been rendered, that careful handling 
of the numerical implementation, of the algorithms, is very important for stable computation. 

A practical example from a CEC research project has demonstrated the use and strength of 
the method presented, for the estimation and validation of parameters in a model of stochastic 
differential equations. 
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ON MARTINAGALE APPROACH 

TO STOCHASTIC APPROXIMATION ALGORITHM 

A.V.MELNIKOV 

Steklov Mathematical Intsitute, 

Vavilova str. 42, 117966. Russia 

Stochastic approximation algorithsms as the quite natural 

generalization the well-known Newtons method were originated by 

classical papers of Robbins - Monro and Kiefer - Wolfdwitz. The 

model of stochastic approximation algorithm under our 

consideration in the talk is the following (on some stochastic 

basis) 

(1) 

Here R is a lipshitz type reg~ression function wit~ the unique 

root e*, M is a local square integrable martingale a is a local 

increasing predictable process and '1 is ·a positive predictable 

process which satisfy to the following type conditions 

CX) CX) 

f '1 da = oo and f '1 2 da < oo. s s s s 
0 

The main goal of the talk is to describe the approach to the 

algorithm (1) and its asymptotic behaviour (a.s. -convergence, 

mean-square convergence, asymtotic normality) as t ~ oo which 

based on the some comprehansive asymptotic results for local 

martigales. 

The model (1) contains many particular cases (discrete-time 

models, diffusion models, etc). Which studied early separatly. In 
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particular we give full investigation on the model (1) with 

Gaussian errors M. 

[ 1] Melnikov A. V. Rodki.!1a A. E. , Valkeila E. On a general 

class of stochastic approximation algorithm, in New Trends in 

Probab. and Statistics, Ed. shiryaev et all, Moscow, TVP, 1992. 
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THE SOLVll'G OF THE BCUNDARY VALUE PROBLEM FOR PARABOLIC EQUATION 
BY THE NUvERICAL INTEGRATION OF STOCASTIC EQUATIONS 

G.N.MILSHTEIN 
Urals University, Lenin St., 51, 620083 Ekaterinburg, Russia 

Let G be a bounded domain in R11,, Q=G-x:lT0 T) be a cylinder in 
nt1 - ' R. I r-=-Q\Q. Let us consider the first boundary value problem 

for the equation of parabolic type 
au.. ~ vi: ~. 'a'l.u, n- () ~ ~ u.. 
-. +- !: Q J(t x) . . .+L 1' {t1 x) ~ + C.(t,-x) u + 3 (t>x }=O Ll I ::: <f(t,xJ. at 2.. [~=~ ' d:t."Clx.d ~:1 ox" ) r 

The probabi I istic representation of the solution of the problem 

is connected with the stochastic differential system 
clX = ~Cs,X)cLs ·t-<r(s,X)d.w(s). 

For example, if C-=0,~=0, we have 

where 't' is the 

dary r 

u.. ct? :x. l ·= E 'f' (-r;, X t x. li..) ) 
entran~e time of the p;ocess (s,Xt}sl)in the boun-

' 

In one of the suggesting algorithms of the weak approximation 

of \'t',Xt,x~1;)) of the report the general step. is the fol lowing. Let 

l tk ,x;) E Q be an approximate point .at k-th step. Let j°K be an 

uniformly distributed unit vector on the surface of the open sphere 

t.t. E R..11.. with the center in the origin, 'tic be a some nunber. Then 

(t ,XK ) is generated via the formulae 
k+1 •i z. . 2. 

t -::: t + 'Ik x = x + 'll< .g + 1,k(J > t ':: t x : 'X 
k+1 k 11.,, , k+1 k 11.. l< k J k ' 0 , 0 

Let U. (t,:ri"i) be an open e 11 ipso id which is obtained out of the 

sphere l1 by virtue the linear operator 't.ult;:x.J and the shift 
2. 

X+ ~ ~lt;x) .For (t,x)E Q and sutficiently smal I 'L we have the 
cylinder n(t,'.X1'1.)=U.lt;x;1)x[t,t-1-1.. )E Q It is clear that the 

- rt. 
point ( th1 ,Xk+-1) belongs to the boundary of the upper base of the 

cylinder ft\t;x,1.) . 
Let r,,2. be an intersection of the 'l'Z. - neighbourhood of the 

boundary r with the cylinder Q . Now we state the way of gene-

rating of a sequence 1k which defines an algorithm. !:_et 'l.. be a some 

sufficiently smal I mrnber. We put 'l..k:-7.. if n(t1<,X1e,1) belongs to. 

Q. If \1 (t1<,Xk' 1 'l) does not belong to Q and the point 

( tk, XI<) does not be I ong to r'ti then we find 't.k < 1 such that 

U.\\,Xk,1.k) is tangent to the boundary of the domain G- . Moreover, 

it is assumed that 1.k is so small that alwaysXkEl.{(tk,Xk;z).Then we 
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simulate the point (tkH,Xk,.1 ) by virtue of the formulae in which 
~. does not depend on ~ ... ~ . Such a random wa I k is ended at the 

I< I ' 1 k-1 
random step a? as (tde,X2R)e- r"( ... At last we find the point CL X) 
on r which is the nearest to (t x , .. It is stated that CE x) is deJ .)? > 

the weak approximation of (1:: 1 Xt,-xb;}) with the error 0(1?·), i.e. 

E 'PCf,X)-u..(t,xJ =- 1= [l.flCt,XJ-y:>lt:,Xt-x(t;JJ}-=-0(1.?·J 
J 

At the same ti me the average value E ~ -: 0 l 1/lz). 
One can also construct asimilar algorithm with the some order 

of convergence in which n is replaced by the right par a I I e I ep i ped 
and at each step the random walk is rea I i zed on the vertices of the 
upper base. Let us note that higher order approximations, in 
which every point (tk xk ) is simulated in the given neighbourhood 

- +-1 J t-1 
of(tk 1Xk), can be derived. Similar results can be received for 
equations of elliptic type too. 

The material of the report is directly con11ected with weak 
approximation of solutions of stochastic differential equations 1-6 . 
Uni ike these works in the present report attention has attracted to 
the boundedness of the simulated increments of the solutions. Such 
an approach is necessary both for the solution of boundary value 
problems and in a number of other cases. 
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Variance Reduction for Simulated Diffusions 

Nigel J. Newton 
Department of ESE, University of Essex, Wivenhoe Park, Colchester, C04 3SQ, UK 

Abstract 

The talk will concern variance reduction techniques for the Monte-Carlo inte-
gration of functionals of the solutions of Ito stochastic differential equations ( sdes ). 
The Monte Carlo method for sdes offers a means of calculating solutions to certain 
types of parabolic partial differential equation and so has applications in various 
fields including stochastic control, particle physics and econometrics; it involves 
the representation of the required integrals as means of random variables, and the 
simulation of many outcomes of these random variables. The variables concerned 
are defined on infinite dimensional Wiener spaces, and cannot therefore be simu-
lated directly-they must at some stage be approximated by variables defined on 
high, but finite dimensional spaces. The approach taken is to construct variance 
reduced random variables on the infinite dimensional spaces which can subsequently 
be approximated by any of a number of known finite difference methods. 

The methods of control variates and importance sampling are developed. In 
both cases a perfect variate (ie. one which is unbiasssed and has zero variance) 
is first constructed by means of Haussmann's integral representation theorem for 
functionals of Ito processes. These involve terms which cannot be calculated exactly 
but which can be approximated to yield unbiassed estimators of the desired integrals 
with reduced variances. A number of methods of approximating these terms will be 
described and numerical results will be presented for one of the methods. 
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Stochastic Numerical Treatment of Nonlinear Diffusions 

OGAWA Shigeyoshi 

Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto 606, Japan1 

\Ve are concerned with the problems arising in the simulation of nonlinear diffusion 
processes, namely the diffusion processes whose transition mechanisms depend on their 
own temporal pdf, u(t, x)dx = P{Xt E (x, x + dx)}: 

dXt(w) = a(t, Xti H(Xt; u(t)))dt + b(t, XtiH(Xt; u(t)))dWt(w), (0:::; t:::; T) 

(1) Xo(w) = ~(w), 

H(x; u(t)) = j H(x - y)u(t, y)dy 

where a(t,x,y), b(t,x,y) and H(x) aresomereal,smoothfunctionsand Wt(w) (0:::; 
t) is the Brownian motion defined on a probability space (0, F, P). 

The mechanism being nonlinear the general scheme for the numerical approximation 
of the process should be carried through such discretization formula like: 

where h = T/N, tk = k · h, ~kW= W(tk+i) - W(tk) and Mu(t) is an estimator 
for the pdf u(t, x) of the X:ks, constructed from a certain number of samples, say 
{Xtt(wt 1:::; i:::; No}. 

The formula (2) shows that in the nonlinear case we have to deal with two kinds of 
errors, 

(e,1) the error caused by the discretization, 

( e, 2) the error associated to the density estimator. 

One of the principal characteristics of such nonlinear problem is that the error of type 
( e, 1) can not be independent of the error of the type ( e,2). So much researches have 
been done on the analysis of each of these errors by many authors (see the references 
given· in Kloeden-Platen (1] and in Silverman (3]), especially in the context of the 
simulation of linear diffusions but very little (as far as the author knows) for the 
nonlinear problems. In the recent article ([2]) we studied the efficiency of the Euler 
scheme applied to our nonlinear problem in the following way: 

1e-mail: ogawa@jpnyitp.bitnet, Fax: (81) 75 702 4404 
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(3) 

Y/(w) 

~(w), 

Ykh(w) + a(tk, Yt, H(Ykh : Mu(tk))) · h 

+b(tk, Ykh, H(Ykh: Mu(tk))) ·ti.kW 

It is shown there that, if the accuracy of the estimator Mu(t, x) is such that, 

E' j lu(t, x) - Mu(t, x)j 2Pdx < C(l/N0 ) 2P,.,, 

then , for VE > p it holds the following estimate, 

where a is the order of Holder continuity in t of the coefficients a(t, x, y), b(t, x, y). 

In this talk, we are going to discuss about the amelioration of this result and show 
some relevant results. 
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The talk gives a survey on results obtained partly together with Peter E. Kloeden 
and others during the preparation of the monograph Kloeden/Pl. [l] and the book Kloe-
den/Pl. /Schurz [2]. These results are mainly related to papers by Milstein, Talay, Tubaro 
and Newton. 

The stochastic Stratonovich Taylor formula derived in Kloeden/Pl. [3) turnes out to be 
the appropriate expansion of Ito diffusions for the construction of higher strong order ap-
proximations of integer strong order. For the evaluation of the involved multiple stochastic 
integrals one can use various relations between multiple Ito and Stratonovich integrals, 
see Kloeden/Pl. (4], and may approximate the appearing basic multiple Stratonovich 
integrals as described in Kloedenj-Pl./Wright [5]. 

For stiff stochastic differential equations it is crucial to develop a concept of numerical 
stability which leads to the construction of higher strong order implicit schemes, see 
Kloeden/Pl. [6). 

As an application it was shown in Kloeden/Pl./Schurz [7] that higher strong order ex-
plicit and implicit schemes allow to derive efficient and stable filters for noisy observations 
of hidden Markov chains. 

Another application of strong schemes provides a method for testing discretized para-
metric estimators for diffusion process, see Kloeden/Pl./Schurz/S¢rensen [8]. For the 
study of nonlinear stochastic dynamical systems strong higher order methods are applied 
in Kloeden/Pl./Schurz [9]. 

Higher order weak Taylor schemes are described in Mikulevicius/Pl. [10) covering also 
the case of Ito process with jump component. The weak order of the Euler scheme is 
investigated in Mikulevicius/Pl. [11] under Holder continuity of the drift and diffusion 
coefficients. 

Some investigations on extrapolation methods for the weak approximation of Ito diffu-
sions are summarized in Kloeden/Pl./Hofmann [12]. As an application of strong and weak 
methods solving SDEs we studied in Hofmann/PL/Schweizer (13] the pricing of options 
under incompleteness and stochastic volatility. 
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Let Lk, k EN be operators acting on functions u e C0 ((0, 1) x R") by the formula. 

d d 
L"u(t,~)-= 2: afj(t,z)ttr 1a:1(t,.r) + Lbf(t,x)u:1(t,.:r) 

i.j•l i•l 

+ j [u(t, z + y) - u(t, z) - t u.,(t, z)y1l1r1.;;1] 7r1r(t, ~. dy) 
••l 

Here ak(t, x) is a symmetric: non-negative definite d x d-matrix, b"(t, x) e JRd a.nd 
7rk(t, x, ·)is a measure on R"\{O} such that J !111 2 /\ h·k(t, :c, dy) < oo. 

Let D = D([O, 1], R0) be the Skorokhod space, Xi = Xt(w) =Wt be a canonical 
process in D, 

v: = O'{Xr, s ~ r ~ u}, D = V D~, D'::: {D:-+-, u e [s, l}}. 
ue[o,IJ 

A function o: [O, l} x D --+ N is a. step strategy if there exists a subdivision 0 • 
to <ti < ... < tn = 1, n e N of the in.terval (0, l] a.nd a family {,8,, i = 0, 1, ... In} 
of measu1·able functions .81:1Rd ..... N such that a,(w) =- ,8i(Xi1(w)) if t, 't < ti+l· ..A 
denotes the set of all step strategies. 

t:'nder appropriate conditions for any s E [0, 1], x E R4, k E N there ie a unique 
solution P!.:~ of the (s, x, L~) - martingale problem and (X,, D', P!,.:) is strongly 
Markovian. Let P~,.i' .s e [a, 1], z E Jlld, Q e A be a unique probability measure 
on (D, 'D) such tha.t for any u E Ccf°(.llt") the process 

t 

u(Xt) - j L~"u(Xr)dr 
' 
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is a (D', PZ,.z)-martingale and P~,.z(Xr • x, 0 ~ r ~ .:1) ;;;; 1. 
Let /: N x (O, 1] x IR" -+ JR1 be a bounded Inf!Rsurable function and 

l 

v(.s,x) - sup E~.~ jf"<r(t,Xt)dt. 
o-e..4 • 

\Ve shall discuss the ca&es when the cost function v is a classical, viscositYer semi-
convex solution to the problem 

~ + s~p(Lku + /k) = O in (0, 1) x Rd, u(l, ·) • 0. 

The talk will be based on the results presented in [ 1]-[6], 
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ON THE STOCHASTIC SIMULATION OF QUANTUM SYSTEMS 

ROLANDO REBOLLEDO 

ABSTRACT 

In this conference we will consider two types of problems in connection with Quan-
tum Models. First, we will show how to use Quantum Stochastic Differential Equa-
tions to give a precise formulation of some Master Equations. Secondly, we will 
discuss the simulation of such equations by means of classical stochastic differential 
equations and processes. In particular, a model of the Laser electromagnetic field 
will be considered. 

Quantum Stochastic Analysis provides theorems on existence and uniqueness of 
solutions for a wide class of Stochastics Differential Equations. This was done by 
Hudson and Parthasarathy [5], later extended by Fagnola [3], among other authors 
(see also Parthasarathy [6]). Following Accardi [7], a Markovian cocycle is a fam-
ily (V(t))t~o of contractive operators with a time shift covariance and localisation 
properties. Unitary Markovian cocycles in the Boson-Fock space with strongly con-
tinuous reduced semigroup can be obtained solving a quantum stochastic differential 
equation of the form 

(1) dV(t) = L V(t)LjdA{, V(O) =I, 
i,j 

where A{ are the basic integrators of Hudson-Parthasarathy quantum stochastic cal-
culus, and operators L; play the role of the infinitesimal generator: in [5] they are 
assumed to be bounded; in [3] this hypothesis is weakened. A state of a quantum 
system is represented in that framework by a positive trace class operator p with unit 
trace; its evolution is given by the expression 

(2) Pt = V ( -t) p V ( t), ( t 2:: 0). 

To simulate.equations (1), (2), consists in the construction of a classical probability 
approach to them. This leads to the construction of a special class of classical diffusion 
processes. 

Indeed, assume we choose our basic spaces in such a form that operators Pt could 
be associated to a probability density x r-+ p(x, t) on JRd. To state the evolution, 
(1) is replaced by a differential equation satisfied by p(x, t). One main point in the 
simulation is to approach such a differential equation by a Fokker-Planck equation 
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and p(x, t) by a solution of it in the sense of distributions. In general, the stated 
Fokker-Planck equation will have no unique weak solution .. 

The problem is then the following. Given a weak solution p(x, t) to a Fokker-Planck 
equation, does there exist a diffusion process (Xt)t>o such that the distribution of 
the random variable Xt hasp(·, t) as a probability d~nsity with respect to Lebesgue 
measure in JRd? 

This problem was stated by Nelson ((8], (9])in different terms. In those papers, 
Nelson followed the ideas of Guerra and Morato to introduce the dynamics [4). This 
works as follows. Assume.the kinematics of a particle's motion is given by a stochastic 
differential equation of diffusion type. Introduce an action functional of the diffusion 
process as the integral of a suitable Lagrangian operator. Use the Calculus of Vari-
ations to derive Hamilton-Jacobi optimal control equation. If the control field is 
chosen as the drift of the diffusion (the velocity field), then one gets Schrodinger 
equation from Hamilton-Jacobi's formalism. 

The mathematical problem in the above approach is that the assumed diffusion 
could not exists! Many authors have been giving different sufficient conditions to 
construct such a kind of processes ((2], (13], [1]). In (11], Rebolledo has introduced 
a new class of diffusions which can be constructed under a single assumption on the 
density p(·, t). This assumption is that of finite entropy. The key is the use of an 
approximation procedure which relies on previous results in (10]. The constructive 
method so developed is also applied in Quantum Optics in (12]. 
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Lc:t X (w) be an H - valued random element defined on (O, S, P) and let A be a 
pX - measurable linear operator from t.he Hilbert space H into the Hilbert space 
H 1 • Then the random element AX(w) is said to be an approximation of X (..v) 
(in H 1 with respect to the approximation operator A). In order to characterize 
the quality of approximation in H , we introduce a pAX - measurable linear 
operator B : H 1 --+ H called back projector. The back projector maps the 
approximation AX(w) in an associated H - valued random element BAX(w). 
The approximation error is then given by l(X(w ), BAX(w ), where l denotes 
a (non-negative measurable) loss functional defined on the product space H x H. 
In order to obtain a non-random measure for the approximation AX (w) of X ( w), 
we choose the mean of l(X(w),BAX(w)). r(BA) = El(X(w),BAX(w) is said 
to be the approximation risk with respect to the operator A, the loss function 
l and the back projector B (See [1 ]). 
This talk is concerned with some problems at the approximation of Gaussian 
random elements with values in separable Hilbert space. Some of the results 
are also true for non-Gaussian random elements and in more general furiction 
spaces. Furthermore, we discuss 
- finite element approximations ([2]) 
- wavelet-approximations and 
- kernel approximations. 
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Abstract 
In the field of random dynamical systems a lot of work has been done to build up a bifur-
cation theory. Roughly speaking, stochastic bifurcation means the change of qualitative 
behaviors of the dynamical system. Those behaviors are characterized here by so called 
invariant measures. In this work we show some numerical results for those measures. We 
first explain these objects shortly as follows (for details and the general concept of random 
dynamical systems see e.g. Arnold [1] or Arnold and Crauel [2]). 
Take the canonical Wiener probability space (D.,:F,P) and the shift { '!9t} tER on n, 
'!9t(w(·)) := w(· + t) - w(t) for w(·) E n. Define the u-field .r: := u{w(u) - w(v) I 
s ~ u, v ~ t}, s, t E JR. We have :F = :F~'::,. Let a stochastic differential equation 
on a smooth manifold X (e.g. JRd) be given. Under some appropriate conditions there 
exists a stochastic flow, say 'Ps,t, s, t E JR. (see Kunita [6]). Particularly, <p8 ,t(w)x is the 
solution of the stochastic differential equation at time t starting from x at time s. Now 
define cp(t- s,'!9 8 w) := 'Ps,t(w), then <p(t,w): X-+ Xis a random dynamical system over 
(n,:F,P,'!9t) (for the proof see e.g. Arnold [1]) . 

. Denote by Pr(X) the space of all probability measures over X. First we restrict cp( t, w) 
to positive times (t E JR.+),,i.e. {cp(t,w)}t>o is a random dynami~al system over (D., :Ft', 
PJ.;r:oo ,{ '!9t} t>o)· We say a measure p E P-;.(X) is a stationary measure for the one-point 

0 -
motion <po,t ( w )x if for all t ~ 0 L P{cpo,t(w)x EA} dp(x) = p(A), A E B(X), 
i.e. p is an invariant initial distribution for the transition probability P(t,x,A) = 
P{cpo,t(w)x E A} and thus a stationary solution of the corresponding Fokker-Planck 
equation. 
Let us return to the case t E JR. For a given random dynamical system we can define 
a so-called skew product flow 8t: Xx n-+ Xx n, by (x,w) 1-+ (cp(t,w)x,'!9t(w)). A 
measureµ E Pr(X x D.) is called invariant for cp(t,w) if it has marginal P on D. and is 
invariant under 8t for all t. Now we can define in general the disintegration of a given 
invariant measureµ on (X x n, B 0 :F) as a measurable map µ. : n -+ Pr(X), w 1-+ µw 
which satisfies 

µ(Bx C) =la µw(B) dP(w), for all BE B(X) and CE :F. 
The disintegration is unique P-a.s. and exists if e.g. Xis a Polish space. We know that a 
measure fl is invariant for the random dynamical system <p if and only if cp( t. ~-·) ~Lw = µ'9tw 

P-a.s. for all t E IR (see Arnold and Crauel [2]). 
In particular, the measure p x Pon (Xx n,B 0 :Ft'} is invariant for {8iJ,.:::v and p can 
be considered as a disintegration cf p x P on (D., Ft')· 
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In bifurcation theory we study parameterized families of random dynamical systems. We 
say a stochastic bifurcation occurs if new invariant measures appear when these param-
eters pass certain critical values. These bifurcations can be characterized by Lyapunov 
exponents. Sometimes these bifurcations can be described by the occurrence of new sta-

, tionary measures p. This method is often used by physicists and engineers. We will see in 
the following that for the construction of p only the information in F0 is needed whereas 
/lw needs information from F~00 • Consequently, we can expect to get more insight from 
/lw then from pin the dynamics of a given family of random dynamical systems. 
The main idea of our numerical procedure for p and µw is explained in the following. 
Firstly, by the ergodic theorem p can be estimated by the occupation measure 

lim~ ftf(r.p(t,w)x)ds= f f(y)dp(y) 
t-+oo t Jo Jx for p - a.a. x, f E L 1(p). (1) 

Secondly, following Baxendale [3] we define a random process with values in Pr(X) by 
{p_t := 'P-t,oPh;:::o (where 'P-t,op(A) := p(r.p=}.0 (A)), VA E B(X)). Then {P-th;:::o is a 
Pr(X)-valued martingal relative to the filtration P!_t in the sense that for all bounded 
and continuous functions f: X-+ JR, E(f x f d(P-t-s) I P!..t) = fx f d(P-t), P - a.s. 
Using some characteristics of the flow and of {p_t} one derives that 

lim 'P-t oP = µw P - a.s. 
t--+oo ' 

and (2) 

where the convergence is in the weak topology on Pr(X). Now the n;umerical realization 
is easily done by solving the forward equation to construct p from (1) and by solving the 
backward equation to construct µw from (2). These equations are solved numerically by 
using the schemes which are described in th~ book of Kloeden and Platen [5]. 
As an example we consider the following noisy Duffing - van der Pol equation 

(3) 
where 6, 6 and 6 are independent one-dimensional white noise processes and I = o = -1. 
For 0"1 = 0"2 = 0"3 ..:.... 0, one derives the deterministic equation which is well studied in 
their local and global bifurcation behavior (see Holmes and Rand [4]). Recently, a great 
number of efforts are made to study the stochastic bifurcations of (3), mainly on the level 
of p. Here we present some numerical results of stochastic bifurcation of (3), on the p 
level and especially on the µw level. Due to the lack of space we only show two particular 
cases. The systematical presentation of our numerical results will appear later. 

In Figure 1 and Figure 2 the left-hand sides show the stable solution p of the Fokker-Planck 
equations, and the right-hand sides show the support of the corresponding invariant mea-
sures µw for different values of a and /3. Here we only explain shortly one particular case. 
So, let us look at Figure 1. Here we take 0"1 = 0"3 = 0, 0"2 = 110 , i.e. only /3 is perturbed 
by noise. Let a < 0 be fixed. We see that if f3 < 0 the Fokker-Planck equation of (3) 
has the solution p = 80 and disintegration µw = 80 . That is clear, because the noise does 
not effect the deterministic fixed point at zero. If f3 > 0 the p becomes a measure whose 
density looks like a crater and µw becomes a new invariant measure, whose support is a 
closed circle. In this case we say that (3) undergoes a stochastic Hopf bifurcation. 
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Figure 1. Noisy /3 : Solutions of the Fokker-Planck equation (left) 
and supports of µw in the parameter plane ( a,/3) (right) 

Figure 2. Noisy a,/3: Solutions of the Fokker-Planck equation (left) 
and supports of µw in the parameter plane ( a,/3) (right) 
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Comprehensive studies on stochastic filtering theory has been made by sev-
\ 

eral authors in the 60'ies and 70'ies. See Woriham (1], Zakai (2), Kallianpur 
and Striebel (3] and the outstanding treatise of Kallianpur (4) and many oth-
ers, just to name only few of them. Special interest arises in the nonlinear 
Markov chain filtering problem having only discrete time observations. Here 
we are going to construct approximate filters similar to Newton (5). What 
is happening with the approximate filters stated below if the time step size 
used converges to zero in discrete time situations? Does it reflect the exact 
filter? Can one obtain an order of the approximate filter analogous to the 
numerical solutions of stochastic differential equations described by Kloeden 
& Platen (6) ? What are the assumptions we have to make in order to get ap-
proximations for the exact Markov chain filter? These and similar questions 
are answered here. 

The problem can be described shortly by the following: Let t E (0, T]. 
Assume it is given an unobservable continuous time Markov chain e = 
{et, t E (O,T]} with finite state space S = {s1, ... ,sd} on the proba-
bility space (Q, A, JP). This Markov chain is not directly observable, but 
we do have observations W = {Wt : 0 :::; t :::; T} satisfying the equation 
Wt = J~ h(f,)ds +Wt (m-dimensional) where Wt is a Wiener process 
under IP and h : S ~ IRm is assumed to be a quadratic integrable function. 
Now we are interested in filtering as much information on the Markov chain 
as we can get under given filtration :Ft = a{Wa : 0 :::; s :::; t}. Such informa-
tion objects are called filters and can be described by llt(g) = JE(g(et)l:Ft) = 
L.%=1 g( sk)Xt I L.%=1 x; ( t E [O, T], Sk E S) for any bounded function 
g : S ~ JR. The d-dimensional process Xt = { Xl, ... , Xt} occuring above 
satisfies the Zakai equation Xt = p(O) + J~ AXs ds + J~ H Xs dW8 where p(O) 
is the vector of initialprobabilities, A is the intensity matrix of the Markov 
chain and H denotes the diagonal matrix with h(si) in its diagonal. The 
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corresponding approximate filters IT1(g) for a given time step size 6 > 0 are 
obtained by the use of the approximation Y,,8·k instead of Xt in Ilt(g). Using 
the strong approximation techniques developed by Milstein and Newton (5) 
and recently extended by Kloeden ~Platen [6] one gets the following answer 
on the aqove questions proved in [7] : 

Theorem: (Convergence of approximate Markov chain filters) 
An approximate Markov chain filter IT1(g) with time step size 6 converges 
on the time interval [O, T] with the strong order 'Y > 0 to the optimal least 
squares filter Ilt(9) for a given bounded function g if the discrete time ap-
proximation Y/ used in IT1(g) converges on [O, T] to the solution Xt of the 
Zakai equation with the same order. 

Several numerical examples show higher order approximations are most effi-
cient for highly accurate, approximate Markov chain filtering. In some cases 
one needs implicit approximations. 
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ARBITRARY ORDER APPROXIMATIONS FOR 
LINEAR SYSTEMS OF SDE's 

Igor SHKURKO 
Computing Centre Sib. Div. Russian Academy of Sciences, 
pr. Akademika Lavrenteva, 6, Novosibirsk, 630090, Russia 

Though the expansion in Taylor series in general form of the solution of SDE was obtained 
by Platen[l], it is impossible for general SDE to construct numerical methods of order grater 
then 2 in mea.nsquare sense due to the necessity to compute random values of the form 
J WidWj, if i =f; j with high order. Therefor the investigation of possibility of constructing 
schemes having arbitrary order of consistency, as it is in the ordinary differential equations 
theory, as always attach one's interest. But this problem can be resolved at least for special 
classes of SDE. 

For linear systems of the form 

X(t) = X(to) +Alt X(s)ds + (]' lt dW(t), 

in [2] the schems of the following form were suggested 

t E[to, J1 

~ (]' . t z A' 1"' . Xn+l = Rq(Ah)Xn + t;o' T · 0 r'dW "(r), 

where Rq(Ah) - is approximation of matrix exponent of order q, polynomial or rational, and 
having the order of consistency in mea.nsqure 

E(IX(tn+1) - X(tn)l2 I X(tn) = Xn) = 0 {hmin(2q+2,2l+3>), while h-+ 0. 

Here the normal dependent random vectors 6'') = J0"' r' dWt,. ( r) has covariance matrix E( 6:) · 
e~)) =I· h'+i+l/(i + j + 1) and can be simulated as 

e:> = Vh · diag(l, h, ... , hz) · L · (n, 

where elements of low triangular matrix L are computed via the following rules 

t,,1 = 1 / i, for all i, liJ = o, if i < j, 

.. _ v2j - 1 . 'rr·-i i _ k 
l,,, - • • + k I 

i lc=l i 

and (n are normal random vectors with zero mathematical expectations and unique covari-
ance matrix. 

For linear systems in Stra.tonovich sense of ihe form 

t m t 
X(t) = X(to) +A )tr X(s)ds + Ea-(j) Jt,, X(r)dw;(r), 

to j=l to 
t E (to, T] 
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under the assumptions aC•) • aU) = 0 for any i, j = 1, ... , m one can construct schemes of the 
following form 

where 
q-1 m 

~q(t1, to) = Rq(A(t1 - to))+ L ~! ~ a(j) Akei~) 
h:O J=l 

q-2 m 

+ L :,A LO"(j)Ahci~) + ... 
k=O ' j=l 

1 m m +"' ~Aq-2 "'(J'U) Akei~-1) + Aq-1 "'(J'(J)~~) Lk' L .re, L o,' 
h=O ' j=l j=l ) 1t1 1'7"} f'rtt.-1 dj = to to ···}to (rq-to)11dw;(rq)drq-1 · · ·dr1. 

This schemes may have an arbitrary order of concistency if O"(i) · u(j) = 0 that let us eliminate 
the terms with random quantities J W1dW;, and there remain only easily simulated normal 
random quantities &;> with zero mathematical expectations and mutual covariances 

rm•n( 'r.Pl -1 ,!').P2 -1) 

X }to (µ-to)1c1 +h3 dµdcpn-1"·dcp1drp1 - 1 .. ·dr1• 

Some concret schemes of different order and numerical results a.re presented in [3]. 
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ON APPROXIMATION OF SOLUTIONS OF SDE'S 
WITH REFLECTING BOUNDARY CONDITIONS 

Leszek SLOMINSKI1 

Institut fiir Angewandte Mathematik der Universitiit Bonn, 
WegelerstrajJe 6, 5300 Bonn 1 

We consider a cl-dimensional stochastic differential equation on a domain 
n with reflecting boundary condition 

(1) 

where Z is a semimartingale, X is a reflecting process on n = nu an and 
/{ m is. a bounded variation process with variation increasing only, when 
Xt E an. We assume as in [1] and [2] that n is a general domain satisfying 
the conditions (A) and (B). Let f be Lipschitz continuous and bounded and 
let j6.YI + Lj6.ZI < r0 , where L, r0 > 0 and r0 is some constant depending 
on a region D, only ( for example if D is convex then r 0 = oo). Then using 
discrete approximations of the solution of the SDE (1 ), which are constructed 
with the natural analogy to Euler's formula, we can show existence and 
uniqueness of strong solution.of the SDE (1) (see [2, Theorem 5] ). 

We investigate the rate of convergence for such approximations in the 
case D = [O, oo) x Rd-t, Z = W, where Wis a standard Wiener process. 
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Exponential Families of Stochastic Processes 

Uwe KOCHLER 

lnstitut fur Stochastic, Fachbereich Mathematik, Humboldt-Universitii.t 
zu Berlin, Unter den Linden 6, Berlin, Germany 

Michael S0RENSEN 

Department of Theoretical Statistics, Institute of Mathematics, 
Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark. 

Many important statistical stochastic process models are exponential families in 
the sense that the likelihood function corresponding to observing the process in the 
time interval [O, t] has an exponential representation of the form (2). The exponential 
structure of the likelihood function implies several probabilistic and statistical properties 
of the model. Several scientists have contributed to the theory of exponential families 
of stochastic processes. In the lecture a review is given of some of the authors' own 
work as published in Ktichler & S¢rensen [2-6]. In these papers references can be 
found to work by other authors on the subject. 

Let (S1, F, {Ft}, P) be a filtered statistical space, where the class of probabilty 
measures P = {Pe:() E 0}, 0 ~ Rk is indexed by a k-dimensional parameter, and 
where the filtration {Ft : t ;::: O} is right-continuous. The events in Ft are those which 
can be observed in the experiment with index t in a certain family of experiments. This 
could, for instance, be observation of a stochastic process in the time interval [O, t]. By 
the definition F 1. = F[t] also discrete time stochastic processes are covered ([t] denotes 
the integer part of t). Let PJ denote the restriction of Pe to the a-field Ft· The class 
P is called an exponential family with respect to the filtration {Ft} if there exists a 
measure fl such that 

and 

pt < < Jlt t > 0 () E 0 e ' - ' 

dPt . 
-1 ~ = exp bt(B)* Bt - <l>t(B)), t;::: 0, () E 0. 
cµ 

(1) 

(2) 

Here * denotes transposition of the k-dimensional column vector/· The k-dimensional 
stochastic process B is adapted to the filtration {Ft}, and <I> and I are non-random 
functions of t and the parameter a. If the filtration is generated by observation of a 
stochastic process, we speak of an exponential family of stochastic processes, and (2) 
is the likelihood function corresponding to observation of the process in [b, t]. 
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Next, we list some examples of stochastic process models which for observation 
in [O, t] are exponential families. A first example is the family of solutions to the 
stochastic differential equations 

where the functions a, b and c are known. Another example is the class of counting 
processes with intensity 

(4) 

where H is a predictable process. Concrete examples are the Poisson processes 
(H1 = 1), the pure births processes (Ht = Xt_), and the logistic birth processes 
Ult = X 1-(I\ - X 1_ )). An example that combines the first two types of models is the 
family of the diffusions with jumps given by 

dX1 = [ a(t, Xt) + ~ l'(il(O)b(il(t, X,)] dt+g(t,X1_, ll.Zr) dz: +c(t, X1-)dW1, (5) 

where z0 belongs to a class of compound Poisson processes whose jump distributions 
form a classical exponential family of distributions. Some concrete examples are given 
in S0rensen [7]. Further examples are the class of Markov processes with a state space 
of a fixed finite dimension and subfamilies thereof (continuous time as well as discrete 
time), discrete time Markov processes with transition densities of the form 

fu(ylx) = exp(~ ')'(il(O)m(il(y, x) - <1>(8)) (6) 

(Heyde & Feigin [1]), the Galton-Watson branching p:ocesses and the Gaussian autore-
gressive processes of fixed order ni. 

In the lecture it is proved that most exponential families of stochastic processes are 
curved exponential families. Results about existence and uniqueness, consistency and 
asymptotic normality of the maximum likelihood estimator is shown for two important 
types of exponential families of processes: 1) those with a time-continuous likelihood 
function (for instance diffusions), 2) those which can be obtained by a stochastic time 
transformation of a family of Levy processes. An exponential family of the last-
mentioned type has a likelihood function of the form 

clPJ . [ * (B SJ k cf pt = exp B At - "' ) t , B E 8 ~ R , 
0 

(7) 

where the process S is I-dimensional and /\'. is a cumulant transform. Finally, the 
full exponential family gen~rated by the curved exponential family on :Ft is considered 
briefly. This family, which plays a role in several modern statistical techniques, is 
called the envelope family on :F1• Stochastic process interpretations of the envelope 
families will be discussed. 
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CONVERGENCE AND STABILITY OF IMPLICIT 
RUNGE-KUTTA METHODS FOR SYSTEMS WITH 

MULTIPLICATIVE NOISE 

DIEGO BRICIO HERNANDEZ1 and RENATO SPIGLER 

CIMAT, Apdo.402 DMMMSA, Universita di Padova 
36000 Guanajuato, Gto. (Mexico) Via Belzoni 7, 35131 Padova {Italy) 

(JULY 7, 1992) 

Abstract. 

A class of implicit Runge-Kutta schemes for stochastic differential equations 
affected by multiplicative Gaussian white noise is shown to be optimal with 
respect to global order of convergence in quadratic mean. A test equation 
is proposed in order to investigate the stability of discretization methods for 
systems of this kind. Here stability is intended in a truly probabilistic sense, as 
opposed to the recently introduced extension of A-stability to the stochastic 
context, given for systems with additive noise. Stability regions for the optimal 
class are also given. 

1980 AMS Subject Classification: 65L20 (primary), 60H10, 34F05, 65L07, 
93E15 

Keywords and phrases: Numerical stability, Runge-Kutta methods, im-
plicit methods, stochastic differential equations, stochastic stability. 
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Analysis of a stochastic particle method 
for a non-linear P.D.E. 

Pierre DERN ARD, Denis TA LAY and Luciano TUBA RO 

Jn a recent paper [1], RG. Puckett proposed a stochastic particle method 
for the non linear P.D.E. in [O, T] x Ill : 

m=Au=.6u+f(u) { 
au 

u(O, ·) = uo(·) 

where 1 - uo is the cmnulativc function, supposed to be continuous, of a 
probability distribution, and / is & function satisfying properties ensuring, 
in particular, tha.t the solution u(t, ~) takes values in [O, 1]. 

His justification of the method and his analysis of the error were based 
on a.· splitting of the operator A ; a. rough prescnta.tion of the algorithm 
is lhc following : after ha.ving located N particles on the real axis in an 
appropriate way a.t time 0 and given them weights .:;,, at each time step, first 
one numerically solves the O.D.E. 

lJv Ft= f(v) 

wjth the approximation of u at the previous step as initial condition, on a time 
interva,J of length At (this operation changes the weights of the particles), 
second or1c &pproximat.cly solves 

8v -=6v f)t 

by randomly moving the particles during tt. thnc interva.1 equal to 6t. 
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The upper bound o! the random error on u(T, x) in J}(O x IR) is shown 
to be of order ;}f" provided ~t = *' 

In the last fection of the paper,NPuckett presents numcdcal t'esults which 
obviously show that this estimation is very pessimistic. 

We propose a. completely differe.nt into.t·prctation of the metho<l, a.nd a 
completely different analysis of the error. This permits us to extend the 
algorithm to more general situations : 

{ 
8u 1fi =Lu+ /(u) 

u(O, ·) = ~'o(-) 
where L is a strongly elliptic second order operator wjth smooth coefficients, 
and also to get much better rcauHs on the rate of convergence. 
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STATISTICAL INFERENCES ABOUT SEMIMARTINGALES 

A_F_TARASKIN 
Aviation Institute 0£ Samara,Moskovskoye Shaussee,34, 
443086 Samara, Russia 

Let (0 ,] ,P8 ), 8E8cR1 , be a family of probability spaces with 

filtration F=(]t)t2'.:o- Let X={Xt)t2'.:0 be the semimartingale with 

. respect to· (F ,P9 ) and T8 = (B8 ,cf ,v8 ) is its triplet_ We suppose 

that there is 8 E8 such that the measure P is locally absolutely 
0 

continuous with respect to the measure .Pe for all 8E8 and 
0 

e 
L(8)={Lt(8))~0 is respective local density_ Then C =C for every 

8E8. Let random measures e 
~ {dt,dx) and random functions 

Y(8)={Y(t,x;8),t2'.:0,XER1 J have the same sense as in [2] and 

function y (8 )={r·t (8) )~0 is defined by 

e e e 
Bt- Bt0 - x· I(lxl~l)· (Y(8_}-l)*vt0 = y(8)oCt, 

We consider aaymtotical statistical inf erencea about 

semimartingales which are founded on maximum likelihood method_ 

In particular, we consider estimation problems of the unknown 

para.meter e under the observations of the process {X , ~~t} as s 
t ____,. oo. 

We suppose that the functions y(8) and Y(8) are twice 

continuous differentiable with respect to the parameter 8 and 

ay (8 )/ae=Yce>, 

oY(e )/o8=Y(e), 

2 2 •• a y(8)/De = y(e) 

a2 Y(8)/i182 = Y(e) 

In addition, we suppose that its possible a change of 

differentiation and an integration in necessary cases_ 

Theorem. Let eee be a true value of the parameter and the 
following conditions are satisfied with some nonnegative 
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increasing function '1-\ ( 'f\ ~ 00 as t ~ 00 ) : 

A. -2 
q."> ·sup 

t ~t 

r . .. J (Y(s,x;e )/Y(s,x;e) )~ 

Rl 

B. there exists some increasing function K(x;8) with 

bounded variation such that 

for each x which is a continuity point for K and for x=+oo 

(R =R U{ +oo}). 
+ + 

Then it exist the maximum likelihood estimator e 
t for 

parameter e which is consistent and random variable 

K(+oo;B)·pt· (tit- B) has infinitely divisible limit 

with the characteristic function 

'l'(A )=exp[ I ( eiAx_l-iAx)" x~ 2dK(~;e) )-

distribution 

In particular, if the function K from the condition B is 
2 such that K(x;B)=O for JC:O and K(x;B)=6 (B)>O for x>O, then the 

random variable 6 ( e ) · p · ( e - e ) are . t t 

the parameters (0,1). 

asymptotically normal with 

The results of this talk are generalizations of author-a 

one [1] which concern statistics of Markovian processes. 
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APPROXIMATION SCHEMES FOR STOCHASTIC FUNCTIONAL 
EQUATIONS OF RETARDED TYPE 

C. TUDOR 

Faculty of Mathematics1 University of Bucharest 

Str. Academiei 141 70109 Bucharest1 Romania 

M. TUDOR 

Computing Center1 University of Bucharest 

Str. Academiei 141 70109 Bucharest1 Romania 

We consider strong approximations of' discrete type for· linear 

stochastic functional equations o:f the form 

( 1) { 
dx(t.)= [L(xt.) + f(t)Jdt. + g(t)dw(t), 0 :$ t :$ T 

x(O) = T'/, x(s) = cp<.s), s E J: = (-r,01 

and of the Lie-Trotter type for nonlinear stochastic functional 

equations of the form 

(2) { 

dx( t.·> =FC t., x( t-r), x( t) )dt + G<: t., x( t-r) .. x( t))dw( t), O:Sl:5T 

X( s) = I ( s) , s E J, 

Rd is def·ined by 

L¢ ·~=O Aicp<.-ri) + f ACs)¢(s)ds, 
J 

0 = r 0 < r 1 < ••• <rv = r,CAi)!Si~v dxd-matrices, 

A e L2 CJ,Rd@Rd),xt(s) • xCt+s),s e J, 
FCt, x, y), G<:t, x,. y) : CO., TJxR2 d Rd are continuous 

and satisfy the Lipschitz condition in x,.y.,uni:formly int, 

<w<:t))teCO,TJ is a real bro-..mian motion, 

CT!,¢) Cresp. {l(t)}teCO,TJ) is a random variable with 

d 2 d values in the Hilbert space 2 :• R x L (J,.R )(resp. a cont.i-
d nuous R -valued process)( initial conditions ). 

We shall assume that n,¢1,I are independent of w. 

By using the equivalence between (1) and a stochastic evolution 
equation CSEE :for short) in the Hilbert, spac& Z we introduce an 
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abstract. discrete approximation scheme CDAS for short) for the 

SEE, which approximates the solution of the SEE by a sequence of 

systems of discrete stochastic difference equations of succesively 

higher dimension.Standard. schemes, as the Averaging/Finite diffe-

rence scheme and the Spline/Variational scheme, are covered by the 

general DAS. 
For equat.ion ( 2) we introduce some approximation schemes suggested 
by the Lie-Trotter formula( the splitting up met.hod ). 

The method consist.s in a separation of· the dift·usion and the drif't 

terms and obtaining in this way two simpler equations, one of them 

is deterministic ( depending on a random parameter ) and the other 
one is stochastic ( without drift ). 

This method has been used by A. Rascanu l21 for standard Ito equa-

tions and by A. Bensoussan,R. Glowinski and A. Rascanu C11 for pa-

rabolic st.ochastic equations. 
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A note on Poisson process generation 
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1 Introduction 

Let 11" be the standard Poisson process. Suppose that M is· a counting process with a 
compensator A defined with respect to the filtration F. Put 

Ut(A, I)= As - s, u;(A,I) =sup lus(A,I)I and Pt(6.A) = L(6.As)2 , 
. s~t s~t 

where Is= sand 6.As =As -limufs Au. Denote by 111l"r- Mrll the variational distance of 
integer valued random variables 1l"T and MT by PT(11", M) the Prohorov distance between 
the laws of the processes 11" and M in the Skorohod space d[o,T]. For a nonegati ve random 
variable X put v(X) = infl>o{P(X ~ €) ~ €}. Below Tis a fixed time. 

Theorem 1 (Brown (1982), Kabanov(1983)) For any T > 0 we have 

111l"T - MTll ~ EIAT -Tl+ EpT(A). (1) 

It is possible to generalize the bound in Theorem 1 to finite dimensional distributions and 
also to the varlational distance Vr(7r, M) between the laws of the processes M and 7r in 
the Skorohod space d[o,T]· Using the Hellinger process (see [1]) 

ht( A, I)= r (JdA/d(A +I)- JdI/d(A + I)) 2 + 2:(1- ~As)2 
Jo s<t 

•supported by a grant from Alexander von Humboldt Stiftung. Permanent address: Computing Centre, 
University of Helsinki, Teollisuuskatu 23, SF-00510 Helsinki, finland 
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it is even possible to give upper and lower bounds for Vr(M, 11"). However, when the process 
M jumps only at predictable times, these bounds are useless to obtain any information 
about the quality of an approximation. If we use the Prohorov distance instead of the 
variational distance we have the following 

Theorem 2 (Nikunen and Valkeila (1991)) For .any T > 0 we have 

py(1r, M) ~ v(uT(A,I)) + E (1.4.r -Tl+ ~Ar+ ipr(A)) · (2) 

One cannot give a lower bound in terms of the compensators for PT( 11", M). 
We shall give an upper bound for PT( 11", M) in the special case when Mis a renewal counting 
process. We discuss the accurancy of Poisson process generation. 
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EFFICIENT EMPIRICAL ESTIMATORS FOR MARKOV 
STEP PROCESSES 

· Wolfgang Wefelmeyer, University of Cologne 

The distribution of a Markov step process is determined by the 
transition distribution and the mean holding time, which may 
depend on the state. We suppose that both are unknown, intro-
duce a class of functionals which determines the transition 
distribution and the mean holding time, and construct estimators 
for the functionals. Assuming that the process is positive Harris 
recurrent and aperiodic, and that the mean holding time is boun-
ded and bounded away from zero, we show that the estimators are 
efficient, as the observation time tends to infinity, in the sense 
of a convolution theorem. This generalizes a recent result for 
Markov chains (Greenwood and Wefelmeyer, 1992) which, in turn, 
generalizes the efficiency result for empirical estimators in the 
case of independent, identically distributed observations (Levit, 
1974). 
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Sirnultaneous Normal Form and Center :tvlanifold Reduction with 
NIAPLE 

Xu Keclai 
Institut flir Dynamische Systeme 

Universitiit Bremen 
2800 Bremen, Germany 

To study the random dynamical systems, analogously to the deterministic one, we need 
the stochastic version of normal form theory. For the random dynamical systems perturbed by 
small noise the stochastic normal form is studied by many physicists and engineers (e.g. Coullet 
et al. [4], Sri Namachchivaya and Lin [5], Nicolis and Nicolis (6)). In this case a stochastic normal 
form is only a small perturbation of the deterministic one. The unified approach is recently 
presented by Arnold and Xu Kedai [1], [2] and [3], using completely different methods which 
are based on the multiplicative ergodic theorem. 

The main ideas of stochastic normal form can be explained by considering the following 
example: The noise van der Pol-Duffing oscillator 

Y + iJ - (a+ 0"~(01w))y + y3 + y2 y = 0, (1) 

where ~( Btw) is a zero mean stationary stochastic process and O" is a strength parameter. By 
defining x = ( t ) =: ( ~~ ) and diagonalizing one can rewrite (1) as 

x 

Take now a random near identity transformation x(t,w) = H(01w,xc(t,w);xs(t,w),a,O") 
( ::/~'.:~) + h(Otw,xc(t,w),x8 (t,w),a,O"), where his nonlinear part, we obtain 

( !: ) 

The aim of normal form theory is: Try to find out such a transformation H, so that the 
nonlinear part g in above equation is as "simple" as possible, preferably linear. 

One of main theorems in [3] tells us that there does exist a transformation x = 
H(w,Xc,Xs,a,O") = ( Xc++hhc((w,xc,x.,a,o-))) such that the equation 

Xs s w,Xc 1 x.,,a,a 

(2) 

is in stochastic normal form. A procedure, with which one can calculate the normal form and 
center manifold simultaneously, is also given. But the computation efforts of this procedure is 
enormous so that it is impossible to work with it manually. To overcome this problem we have 
developed a algorithm which is well suited for symbolic computation and tested_ by computer 
algebra program MAPLE. 
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The idea of this algorithm is: For the above equation, by simple computation we have 

( ~: ) ~ f (o,w, ( ~: ) + h, <>, ") + ( ~' ) + (D«,,h) ( x,-~0g, ) - ~~·. 
\Ve now develop J,g and h into Taylor form in XcXsO:er. By comparing the coefficients of XcXsaer 
in both sides we obtain then step by step all homological equations, which have to be solved to 
obtain the coefficients h~~nk and g~~nk of x~xr;ianerk . For example, for Xe, X 8 up to third order 
and a, er up to second order the normal form on the center manifold is 

Xe= gc = (~er+ g~002er2 +a+ g~Ollo:er-o:Z)xc 
+(-l+g:oo1er + g~oo2er2 + 3o: + g~o110:er-l 8(x2)x~, 

and the approximate stochastic center manifold is 

}.1Aw) = { ( ~~;001er + h!oo2er2-/20: + h!Ollaer + 2/2o:2)xc 

+ ( J2+h~oo1er+h~oo2er2_ 7J2o: + h~o11aa-47y120:2) x~ ) : Xe E IR, (a, er) E IR 2} 

It is worth to point out how the normal form can be used to study the stochastic bifurca-
tion. The Lyapunov exponent of above equation corresponding to the trivial invariant measure 
80 can be read-off to be >. = a - o: 2 - cer 2 , where c := J000 e8 B( s )ds > 0 and B( t) := E~( w )~( Btw) 
is the correlation function of the mean-square continuous process ~( Btw ). We have proved (see 
Xu Kedai [7]) that in this case the noise van der Pol-Duffing oscillator undergoes stochastic 
pithfork bifurcation. That is, for small lo:! and a, if o: :::; ac := l-~ = ca2 + O(a4 ), it 
has only one invariant measure 80 ; if a > ac, it has another two invariant measures more. Note 
that in deterministic case, i.e. er = 0, the bifurcation point O:c = 0. 
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