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Abstract: We study the convenience of a nonlocal dispersal strategy
in a reaction-diffusion system with a fractional Laplacian operator. We
show that there are circumstances - namely, a precise condition on the
distribution of the resource - under which a nonlocal dispersal behavior
is favored.

In particular, we consider the linearization of a biological system that
models the interaction of two biological species, one with local and one
with nonlocal dispersal, that are competing for the same resource. We
give a simple, concrete example of resources for which the equilibrium
with only the local population becomes linearly unstable. In a sense,
this example shows that nonlocal strategies can become successful even
in an environment in which purely local strategies are dominant at the
beginning, provided that the resource is sufficiently sparse.

Indeed, the example considered presents a high variance of the distribu-
tion of the dispersal, thus suggesting that the shortage of resources and
their unbalanced supply may be some of the basic ingredients that favor
nonlocal strategies.

“When the sun comes up, you better be running.”

The Fable of the Lion and the Gazelle,

popular quotation by Undetermined Author,
http://quoteinvestigator.com/2011/08/05/1ion-gazelle/

1 Introduction

The goal of this paper is to study the possible convenience of a nonlocal dif-
fusion strategy for a biological population in presence of a highly oscillating
distribution of resource.

The study of dispersal strategies and the comparison between local and
nonlocal diffusive behaviors have recently attracted a great attention and several
researches have been developed both in terms of experiments and from the
purely mathematical point of view (see for instance [25, 17, 15, 22] and references
therein). Remarkably, the phenomenon of possibly nonlocal hunting strategies
has attracted also the attention of the mass-media, and related news can be
found in popular newspapers and magazines (see e.g. [1]).

In this framework, even the distinction between local and nonlocal strategies
is somehow a delicate issue and it is still not exactly clear in all situations what
factors favor one behavior with respect to the other. Of course, in general, as
we know even from experience in our everyday life, it may be very difficult to
deduce from “overall principles” the optimal strategy to follow in each complex
situation. Therefore, it should not be surprising that the question of detecting
the optimal strategy in a logistic mathematical model cannot have just a simple



answer that is valid in every situation, and, concretely, very different dispersal
strategies have been directly observed in nature.

Detecting, analyzing and understanding the differences between diffusive
strategies is therefore a difficult, but important, task in biology. One of the
possible distinctions among the different strategies lies in rigorously defining
the concept of “locality” (when a predator, roughly speaking, diffuses randomly
in the neighborhood looking for an available prey) versus “nonlocality” (the
short periods of hunting activity are followed by rather long journeys of the
predator in the search for food). As expected, hunting strategies of predators
are definitely influenced by the distribution of the resources. When the resources
are “easily” available, it is conceivable that predators do not need to elaborate a
nonlocal hunting strategy and indeed it can be more convenient not to drift too
much to take advantage of the rather abundant resource in their neighborhood.
Conversely, when the prey is sparse, it may be worth for predators to interchange
the local hunting activity with suitable nonlocal travels in different possible
regions.

Of course, the more sophisticated the species involved in the hunt, the easier
the latter phenomenon is expected to occur: namely, an intelligent species of
preys will run away from the danger, thus making the distribution of resources
for the predator sparse, and therefore making a nonlocal hunting strategy pos-
sibly more favorable. However, in the model considered in this paper the re-
source o is independent of the distribution of the populations, so this effect is
not taken into consideration by the setting discussed here.

It is also evident that the distinction between local or nonlocal strategy is
a mathematical abstraction based on the consideration of different space/time
scales: 1i.e., the ambient space that the population has at its disposal is not
infinitely large in the real cases, and species cannot really perform discontinuous,
nonlocal jumps. Nevertheless, a good mathematical model in which different
scales are taken into account may furnish a justification for the diffusive strategy
in a “large enough” environment in which the time scales of travel and hunting
activities can be somehow distinguished in practice.

We will try to give a rigorous mathematical framework to these naives consi-
derations by showing the possible advantages of the long-jump dispersal strate-
gies (i.e. the ones based on nonlocal diffusion) in regimes where the distribution
of resources may be considerably different at different points of the ambient
space. Not too surprisingly having in mind the concrete applications, we will
use for this scope the mathematical framework of linearized systems and scaling
properties of the eigenvalues, which take into account the stability property of
equilibrium configurations.

Our mathematical framework can be discussed as follows. Reaction-diffusion
systems provide an effective continuous model for the biological problem of
competition between different species. The typical example of local reaction-
diffusion equation is

u=Au+ (0 —u)u in (0,7) x Q (1.1)



with either Dirichlet or Neumann boundary condition (and other boundary
conditions may be also taken into account to model different situations). In
this model, the environment is represented by the open bounded set 2 C R™,
with n > 2, and a heterogeneous resource o :  — [0, 400) is given (stationary
in time). The growth of the population density u depends on a dispersal dif-
ferential operator and on the reproductive rate of the population itself, which
is proportional to the temporary availability of the resource (o — u). Dirichlet
boundary conditions model a lethal environment for the population u outside
the domain .

A reaction-diffusion system involves at least two species, with distribution «
and v, whose behavior is ruled by a reaction-diffusion equation like (1.1). The
two competing species differ for some special features: indeed, (1.1) has to be
modified in order to describe the foraging and reproductive habits of the species
and further data concerning the environment. In [15] one can find a compre-
hensive survey of the problem; many different features have been studied and
compared in [14, 5, 6] (different dispersal rates and genetic mutations), in [19]
(time-periodic sources) and in [7, 8, 10] (addition of a chemotactic component
depending on the gradient of the resource).

We are interested in the comparison of the dispersal strategies: in particular,
we focus on the competition between a population with “standard” diffusion and
a second population with nonlocal dispersal. Therefore, our model is

{ut: Au+ (0 — (u+v))u
v =—(=A)*v + (0 — (u+v))v.

At a discrete level, the “standard” assumption is that the motion of the po-
pulation is governed by a random walk and this obviously leads to a Laplacian
operator in the continuous model. Analogously, since our interest is focused on
a second population with nonlocal dispersal, we adopt the fractional Laplacian
operator as dispersal operator for the second distribution. The choice of such
nonlocal diffusion operator is motivated by the fact that the fractional Laplacian
has good stability properties in terms of the associated stochastic processes (it
is the “continuous version” of the discrete motion governed by Lévy flights,
see e.g. [24] for a simple motivation and [3] for more advanced material), it
possesses natural scaling features and it seems also to appear in real experiments
(see e.g. [25, 17]). The present literature on the subject of nonlocal dispersal
mostly considers convolution operators (see [14, 20, 21, 9, 11]). Of course, it is a
delicate business to decide, in concrete situations, which models better describe
the dispersion of a real biological population, and many nonlocal terms have
been taken into account in order to comprise long-range effects. In general, we
believe that fractional equations may be an important tool to further understand
the complex problems arising in the mathematical modelization of biological
species and we hope that the framework given in this paper can lead to a further
development of the subject.

In Section 2 we provide details and further explanations about the model
considered here and some basic facts about the fractional Laplacian operator.



We study the stability of a stationary solution (@,0) of the aforementioned
system, by means of a formal linearization at (@,0), that we explain in Sub-
section 2.3. The complete understanding of the global dynamics of a general
system of diffusive and competing populations is beyond the scope of this pa-
per and it seems, at first glance, very challenging from a mathematical point of
view, since a variety of possible situations may occur. Nevertheless, let us stress
that even the analysis of the stability of a stationary solution is interesting and
meaningful from an evolutionary point of view. In fact, a small perturbation
around (@, 0) mirrors the occurrence of a genetic mutation in the first popula-
tion, involving the dispersal strategy. At (@, 0) the first population benefits from
an equilibrium state, while the second one does not even exist. Then a small
portion of the first population (with density @) undergoes a genetic mutation,
which starts a second population (with very small density v) which competes
for the resource with the former. Of course, the genetic mutation of this theo-
retical experiment involves only the hunting/dispersal strategy, passing from a
local to a nonlocal one. In this context, the expected outcome of the analysis of
the stationary solution is, in most of the cases experienced in practice, stabil-
ity, that is, the second population does not find the right conditions to evolve
and it gets rapidly extinguished. On the contrary, (even partial) instability of
these type of equilibria is rather surprising and interesting, since in this case
the new dispersal strategy is convenient enough to allow a short term survival
of the second species and to provide a situation of coexistence of two different
populations.

The core of this paper is Section 3, where we show how the stability of (&, 0)
(namely, the sign of the eigenvalues associated with the linearized system) de-
pends on the distribution of the resource o. In particular, we will show that if
a certain relationship between the variation of o and the fractional Poincaré-
Sobolev constant in (2 is fulfilled (see Definition 3.1), then the linearized system
has a positive eigenvalue and (4, 0) is unstable. It is transparent from Defini-
tion 3.1 that the distributions leading to instability of (@,0) (and suggesting
convenience of a nonlocal dispersal strategy) are those with a “huge variation”.
The last part of Section 3 is devoted to show that such a distribution ¢ may
occur. Summarizing, the result that states that the local dispersive strategy
may become unstable in presence of a new population endowed with nonlocal
diffusive strategies can be formally stated as follows:

Theorem 1.1. Let Q C R”™ be an open subset of R™ with Lipschitz boundary
and let s € (0,1). There exist bounded functions o : Q — [0,400) and 4 :
Q2 — [0, +00) such that (u,v) := (@,0) is a linearly unstable equilibrium for the
system

up = Au  +(o— (u+v))u in Q
v = —(=A)*v +(c — (u+v))v in Q (1.2)
u =v=0 on 08).



More precisely, the functions @ is a solution of

{ Ad(z) + (o(z) — a(z))a(z) =0 in Q,

u=0 on 0L, (1-3)

and the linearization of system in (1.2) at (4,0) has a negative and a positive
eigenvalue.

We remark that Theorem 1.1 states that @ is a linearly stable solution of
the autonomous, scalar Fisher-KPP equation in (1.3), but (4,0) is a linearly
unstable equilibrium for the system in (1.2). More explicitly, the positive eigen-
value of the linearized system takes into account the fact that if the density
of the first population undergoes a small variation without the appearance of
the second species, then the system has the tendency to return to the original
position. Conversely, the negative eigenvalue shows that if a second population
appears, then the system does not go back to the original situation, and the
second species has indeed chances to survive and colonize the environment.

Roughly speaking, the condition (in Definition 3.1) which allows the instabi-
lity of the system records the fact that the first population, with local diffusion,
cannot saturate the given resource and leaves enough “leftovers” for the second
species to survive.

In this sense, a natural question is to determine whether a population ex-
hausts the resource. For this, as a second result, we provide an example of a
purely nonlocal phenomenon in population modeling. We show that, fixed any
arbitrarily small ¢ > 0 and given any resource o € C*(Bjy, [0, +00)), there exists
a resource 0. € C*(By, [0,4+00)) that is e-close to o in the norm of C*(By),
a radius R., > 1 and a function u. which vanishes outside Br_ , which is s-
harmonic in By, which equals to 0. in By and which therefore satisfies

(—A)°u, = (0. —uz)ue in By.

That is, up to an arbitrarily small error, a nonlocal population can locally adapt
to any given resource (provided that the density of the population is artificially
and appropriately regulated in a suitable region). The formal statement of this
result goes as follows.

Theorem 1.2. Let k € N and o € C*(By, [0,+00)). Fiz e > 0. Then there
exists 0. € C*(By) with

llo—ocllers,) < e (1.4)
and there exist R. , > 1 and u. € C*(By) N C*(R™) such that
ue(r) = oc(x) for any x € By (1.5)
(=A)Yu:(x) =0 for any x € By (1.6)
uc(r) =0 for any x € R"\ Bp,_, . (1.7)
In particular
(=A)’uc(x) = (0:(2) — uc(x)) uc(x) for any x € By . (1.8)



It is worth to notice that Theorem 1.2 heavily relies on the nonlocal feature
of the equation and it does not have any local counterpart (this will be clearly
explained in Section 4.

The rest of this paper is organized as follows. In Section 2 we recall the basic
notation about the population dynamics model that we study. The linearized
dynamics of the system is then analyzed in Section 3, where we will also give
two examples that establish Theorem 1.1. Finally, in Section 4 we will prove
Theorem 1.2 and show that it is a new phenomenon, which only arises in nonlocal
dispersion models.

2 Biological models and mathematical tools

2.1 Population dynamics

Let us denote by w,v : [0,T) x @ — [0, +00) the densities of two species living
together in the same domain §2 and competing for a common resource o : 2 — R.
Here and in the rest of the paper we consider as a domain an open, bounded set
Q C R™ with Lipschitz boundary 9Q2. The resource ¢ belongs to the space of
measurable, essentially bounded functions L>(Q2). We study the linear stability
of a stationary point of the reaction-diffusion system with Dirichlet boundary
conditions

ut: Au+ (o —(u+v))u in [0,T) x Q
=—(-APv +(c—(utv))v in [0,7) x (2.1)
u(t7 )=wo(t,)=0 on 90, Vt € [0,T).

For this, we perform a formal linearization around a stationary point (%, 0) of
(2.1) and then we focus only on the corresponding linearized system, that is

—Au = (0 —2a)u — w in Q
(=A)*v = (o —a)v in
u=v=0 on 0f).
Before focusing on the aforementioned linearized system, let us recall some

useful definitions and facts about the pseudodifferential operator (—A)® that is
involved in (2.1).

2.2 The nonlocal dispersive strategy and the fractional
Laplacian

Consider an open set @ C R™ and s € (0,1), the Gagliardo seminorm of a
measurable function u is defined as

Ju(z) — u(y)? :
e o= ([, oy dea)

The fractional Sobolev space that we denote here H§() is the linear set con-
taining all the measurable functions u : R™ — R such that:



° ||’u,||L2(Q) < +00,
o [u]ps@mn) < 400, and
e u(x) =0 for a.e. x € R™\ Q.

The Gagliardo seminorm is naturally related to the fractional Laplacian, since

T(n/2+s) )> lim/ u(z) — u(y) p

o) = (i ) 1 L Tt

e—0

where I' is the Euler’s function. For an introduction to the fractional Laplacian
and the fractional Sobolev spaces see for instance [12]. In our framework, the
scalar version of (2.1), that is

vy =—(—A)’v+ (¢ —v)v,

is known as Fisher-KPP equation with fractional diffusion and for the many
established results one can see, for instance, [4] and [23].
In this section we summarize the results needed in this paper only.

Theorem 2.1 (Fractional Poincaré-Sobolev embedding theorem). Fiz s € (0, 1)
and an open bounded set @ C R™ with Lipschitz boundary. There exists a positive
constant Cy = Cy(s, ) such that

qu (S HS(Q) s ||¢||L2(Q) Cn [d)}Hs(Rn) . (2.2)
This means that H3(SY) is continuously embedded in L?(2).

Proof. We give the proof, which is of classical flavor, for the facility of the reader.
We argue by contradiction, supposing that there exists a sequence ¢y € H§ ()
such that ||¢r| z2() = k[or] s mn). We define

Ok

Yy =
lokllz20)

Then vy, € Hi(2) and

w}k ) = Unly )‘ )é — [¢k]Hs(Rn) 1
d d - s ny = T X . .
(/71 /” |:r— |n 25 Y [’l/fk]H (R™) ” k” o) < A (2 3)

k() — ()] N
(/Q o o — gt d”y) Sk

Also, ||| z2(q) = 1. Therefore, by compactness (see e.g. Theorem 7.1 in [12],
used here with p = ¢ = 2), we obtain that, up to a subsequence, ¥ converges
to some 1 in L?(Q) and a.e. in Q. Defining 1 (z) := 0 for any z € R™ \ Q, we
have that ¥, =1 = 0 a.e. in R™ \ , and consequently v, converges to v a.e.
in R™.

Therefore



Thus, by taking the limit in (2.3) and using Fatou’s Lemma,

(@) —y(y)? // ¥k () — ¥r(y)?
<
/n/n |x_y|n+25 dzdy < Eﬂlfgof T dx dy

< lim inf ﬁ =0

Accordingly ¢ must be constant in R™ and therefore identically equal to zero
(up to sets of null measure). This implies that

1= khlf 1Ykl L2 ) = hlfoo lYr — ¥l L2() = 0.

This is a contradiction and it proves the desired result. O

In the following, we will always assume Cjy(s,) to be the sharp constant
such that (2.2) holds, namely

[Prsn) of [P (mr)

Cl(s,Q) = = ATRT)
P o= Mol se@ 8l
¢Z0 ¢#0

(2.4)

Remark 2.2. If r > 0 and ¢ € H{(B1), one can consider the rescaled func-
tion ¢,.(z) := r~"2¢(x/r). Then ¢, vanishes a.c. outside B,. Moreover,

lfrll2ny = |l L2y and [¢p] s rrny = 77 %[} = (rr). Accordingly,
Cy(s,By) =1r°Cy(s,B1) .

2.3 Linearization of the system

Let  C R™ and o € L®(f2) be as in Section 2. Our purpose is a qualitative
study of an equilibrium state of the following system

{ up = Au +(c—(u+v))u (2.5)

vy =—(—=A)*v+ (0 — (u+v))v

More precisely, we look for an equilibrium state of the form (#,0) with 4 €
HY(Q) and @ > 0.

Definition 2.3. Given a bounded function o : @ — [0 + o0), we say that o
satisfies a reverse Poincaré-Sobolev condition if

sup o(x)u(z)*dr — [ |Vul*dz > 0. (2.6)
Q

ueH} () JQ

In order to make computations easier, we give a sufficient condition that
ensures (2.6).



Lemma 2.4. Let A\ () be the first eigenvalue of the Laplacian in Q with Dirich-
let boundary condition and let ¢1 € HE(Q) be the corresponding eigenfunction.

If
Q) / b1(x)2 da < / o(2)é1 (2)? dz, 2.7)
Q Q
then the reverse Poincaré-Sobolev condition in (2.6) is satisfied.

Proof. By construction

{ —A¢1 = )\1(Q)¢)1 on
¢1=0 in 99,

and so, by (2.7),

/Q Vo (2)|> dz = M\ (Q) /Q ¢1(x)* dr < /Qa(ac)(bl(x)z dx

which proves (2.6). O

Remark 2.5. It is worth noticing that condition (2.7) is satisfied, for a fixed
domain €2, for any resource o that is sufficiently large in an open subset of €.
Hence, fixed §2, there are many examples of smooth resources satisfying (2.7)
and therefore (2.6).

Remark 2.6. We also observe that the converse of Lemma 2.4 does not hold
true, i.e. the reverse Poincaré-Sobolev condition in (2.6) does not necessarily
imply (2.7): as an example, one may consider Q = (0, 7), o(z) = =210 ) (2)
and u(z) = |z|?/3, with ¢ > 0 suitably small. Then u € H{(Q) and (2.6) holds
true, since

¢ . 4 [T .
[ o ae— [ (vuar =200 [Cosan 3 [Toar
Q Q 0 9 Jo

_ 25*29/1057/3 Al 5 0.

On the other hand, in this case ¢1(z) =sinz, A\1(Q) =1, and

/\1(Q)/Q¢1(x)2 dm—[)a(z)gbl(xf dz

iy £
= / sin? z dw — 5729/10/ sin? z dz
0 0

£—29/10

2

zg— (E—SinECOSE).

Thus, since, by a Taylor expansion,

sinecose = (e + O(%))(1 + O(e?)) = e + O(&?)



it follows that
5*29/10(5 —sinecose) = O(e1/10)

and so
Al(Q)/ngl(x)Z da — /Qo*(x)gbl(a:)de - g — 0119 > 0,

which shows that ¢1 does not satisfy (2.7).

The reverse Poincaré-Sobolev condition in (2.6) is a useful tool to obtain
non-trivial solution of the local stationary equation, as stated in the following
result.

Theorem 2.7. Consider a bounded function o : Q — [0,+00) satisfying the
reverse Poincaré-Sobolev condition in (2.6). Then there exists a non-trivial,
non-negative function @ € HE () (i.e. > 0 and i % 0) satisfying

—Au(z) = (o(z) — a(z))a(x) on (2.8)
=0 in OQ. '
Proof. Consider the following energy

2 2 3
E(u) ::/ Vul® oL 4 ul®
Q 2

2 3
defined on H}(Q). Notice that the Euler-Lagrange equation for E gives
—Au = (o — |u|)u.

We show that the energy E is coercive in H}(f2), that is

E(u) — 400 as [|lul| g1 ) — +o0. (2.9)
For this, we use the Young inequality with exponents 3/2 and 3 to see that, for
any a, b > 0,

2 3

1
b< Zaz + 203,
a 3a +3

In particular, taking a := 272/34? and b := 27/3||o|| = (q), We obtain that

2 2 3 3
u u | o ll700 (o2)
< o —_ < — _
o5 < llol| Loe () 5 <3 6
hence
LA Ui
9 3 =z —Co,

for some ¢y > 0 independent of u. Accordingly,

2
E(u)}/mdx—cdm,
Q 2

10



that establishes (2.9).
As a consequence of (2.9), we have that E has a global minimum u € Hg (),
satisfying
—At = (o — [u))u.
Since @ is a minimum, then 4 := |u| is a minimum too, because E(u) = E(|ul).
Thus we can consider a non-negative function @ > 0 satisfying

—At = (0 —1)

[~}

We conclude the proof by showing that condition (2.6) guarantees that
E(@) < 0 and then @ # 0. By (2.6), there exists a function u € H{ () with

/Qa(ac)u(ac)2 dr — /Q |Vul?dz > 0.

By density, we can suppose that u € C5°(Q2). For every ¢ > 0 we can rewrite
the energy F evaluated at su as

Vu|? w2 ol
Blewy—e ([ M2, w0, w0
(eu) =€ </Q 5 02 +€3 ,

hence E(u) < E(eu) < 0 provided ¢ is small enough. O

The result in Theorem 2.7 and several variations of it are rather of classical
flavor: with slightly different assumptions on o (take, for instance, ¢ > 0 in
) and a branching condition matching (2.6) for the existence of non-trivial
solutions, it can be found in [2] and in [3].

Remark 2.8. As a byproduct of the proof of Theorem 2.7, we have that the
solution found is an energy minimizer. That is, if @ is the solution obtained in
Theorem 2.7, then E(t+¢cu) > E(a), for any u € H}(Q). Accordingly, the map

e E(e) = E(i+eu)
attains its minimum at ¢ = 0 and therefore

0<&"(0) = / |Vu|? — ou? + 2au? da. (2.10)
Q

Also, it is useful to recall that the population @ cannot beat the resource o,
as stated in the following result:

Lemma 2.9. Consider a bounded function o : Q — [0,400) and a non-negative
solution @ € H () of (2.8). Then u(z) < ||o||=(q), for any x € Q.

Proof. Let © := |[o]| o (q). We test equation (2.8) against v := max{a — ©, 0}
and we see that

/Q|Vv2:/Qva-vv:/Q(a—a)fw:/{@@}(a—a)a(a—@).

11



Now observe that, in {& > ©}, we have 0 — 4@ < © — & < 0, which shows that

/ Vo2 < 0.
Q

Accordingly, v vanishes identically and so 4 < ©. O

Corollary 2.10. Consider a bounded function o : Q — [0,400) and a non-
negative solution @ € Hg(Y) of (2.8). Then @ is continuous inside ).

Proof. By Lemma 2.9, we know that @ is bounded. Thus, ¢ := (0 — @)@ is
bounded, too. This means that @ € H}(Q) is a solution of —Aw = g € L>(Q),
hence the desired claim follows from Theorem 8.22 of [16]. O

From now on, we focus on the stability of the system around the stationary
point (i, 0), where the distribution of resources o satisfies (2.6) and @ € H}(12)
is a non-trivial, non-negative solution of (2.8).

The linearization of the system (2.5) at (@,0) gives, as a result, the linear
operator

Ligo)(u.v) = ( T e > ( v )

().

(2.11)

for any (u,v) € H}(Q) x H5(Q). The associated quadratic form, with respect
to the duality in H}(Q) x H§ (), is

Qa0 (u,v) = f[u]%p(Rn)f[U]EIS(RW)+/Q(Uf2ﬂ)u2,ﬂuv+(afﬂ)v2 dz, (2.12)

for any (u,v) € H{ () x H§(Q). From the triangular form of L o), the relevant
information is concentrated on the signs of the principal eigenvalues of the pseu-
dodifferential operators on the diagonal of (2.11). In this spirit, we first point
out that the direction (&,0) is always linearly stable. This is pretty obvious if
we think at the biological model, since (@, 0) is the stationary configuration of
just one population, and slightly and proportionally modifying the density of
this population without letting any new population come into the environment
should not drive the system too far from the previous equilibrium. The formal
statement goes as follows:

Lemma 2.11. If the reverse Poincaré-Sobolev condition in (2.6) is satisfied,
then

Q(a,0)(1,0) < 0.

Proof. By testing (2.8) against @, we obtain that
[ﬂ]%{l(Rn) - /Q(O’ — ﬂ)Qﬂz d:z

12



As a consequence,

Qa,0)(@,0) = —[a] 1 ey + / (0 —2a)a* do = —/ @’ dz.
Q Q
The latter term is strictly negative, thanks to Theorem 2.7 and so we obtain

the desired result. O

We point out that Lemma 2.11 is a particular case of a more general stability
result. Namely, the the stationary configuration (4, 0), which corresponds to the
local population colonizing the whole of the environment, is also linearly stable
with respect to all the perturbations in which only the the density of the local
species varies (i.e. the possible source of instability in this setting may only
come from the advent of a nonlocal population). The formal result goes as
follows:

Lemma 2.12. If the reverse Poincaré-Sobolev condition in (2.6) is satisfied,
then

Q(a,0)(u,0) <0
for any u € HL(Q).

Proof. From (2.12),

Q(a0)(u,0) = —/ |Vu|? dz + / (o0 — 20)u? dz,
Q Q
hence the claim follows from (2.10). O

In view of Lemma 2.11, we obtain that a good way to detect the possible
linear instability of the point (@,0) is to rely upon the perturbations of the
form (0, v), i.e. in the possible advent of a new population with different diffusive
strategy. The purpose of the next section is therefore to understand when it is
possible to obtain that

Q(ﬂ,O) (O,’U*) > Oa
for a suitable choice of v, € H§().

3 Linear instability

Our aim in this section is to enlighten the connection between the distribution
of resources ¢ and the possible instability of the system, which would suggest
some convenience in a nonlocal dispersal strategy of the second species v. For
this, we introduce the following notation:

Definition 3.1. Let o : Q@ — [0,+00) satisfy the reverse Poincaré-Sobolev
condition of Definition 2.3. Let @ > 0 be a non-trivial solution of the non-
linear equation (2.8), provided by Theorem 2.7. We say that the pair (o,a) is
mismatched in € if there exists ¢ € Q and r > 0 with B,.(xg) C £ and

1

xeliar:fzo) (a(x) — ﬁ(x)) > 705(5,3&%)) . (3.1)

13



In this formula, the constant Cj(s, By(zo)) is the sharp fractional Poincaré-
Sobolev constant with respect to the ball B, (x) provided by Theorem 2.1.

Roughly speaking, condition (3.1) says that the solution @ is not capable to
exhaust the whole of the resource o in the whole of the domain: that is, at least,
in the region B,(xg), the population does not manage to take advantage of all
the resource at its disposal and there is at least a quantity Cy(s, Q)7 1r72% as a
leftover.

In Subsection 3.2 we will see an example of mismatching (o, ) and it will
be clear in that case that the mismatch condition depends basically on o only.

In our setting, condition (3.1) is sufficient to ensure linear instability, as

given by the following result.

Proposition 3.2. If the mismatch condition in (3.1) is satisfied, then there
exists v, € H () such that Qg,0y(0,v,) > 0.

Proof. By (2.4) and (3.1), we know that there exists zyp €  and r > 0 such
that

B, (z0) C Q (3.2)
and
1 (813 ()
inf O'I*’ax > - = lnf _—— .
st (ofe) - (@) CF s, Brlwo)) — oerts(B20) 9135,

As a consequence, there exists v, € H§ (B, (o)) such that v, #Z 0 and

2
Vx| 1s (Rn
inf (o(z) —a(z)) > [}T{&. (3.3)
z€Byr(x0) ||U*HL2(BV,‘(I0))
Now notice that ||vi|[z2(B,(z0)) = llVxllL2(2) and v, vanishes a.e. outside €,

thanks to (3.2). This gives that v, € H§(2). Moreover, by (2.12) and (3.3),

Quaoy (0,0) = — [0 212 ey + / (0 — a2 da

B (z0)

9 [U*}%rs(w) 2
> =odpe @y T om vedr =0,
||U*||L2(BT($0)) B (z0)

which gives the desired result. O

Remark 3.3. Proposition 3.2 proves the linear instability of the point (%, 0)
with respect to perturbation of the type (0, v,). Heuristically, this can be under-
stood as follows: by formally plugging (u,v) = (@,0) + (0, v,) 4 o(e) into (1.2)
we obtain

ve = —(—A)v+ (6 — (u+v))v=—e(—A)v, +e(o — U — vy )vs + 0(€).

14



Thus, since v; = €0yv, + 0(e), we formally obtain
Ove = —(—A)’vi + (0 — @Wvy + 0(1).

Hence
atHU*H%Q(]Rn) = 2/ V.00, dx = Q(ﬁ,O)(O7 U*) + 0(1)7
]Rn

which is positive by Proposition 3.2.

Therefore, at least at a formal level, Proposition 3.2 states that the size of
the new population (measured in the L2-norm) has chances to increase (at least
for short times).

These type of linearization arguments in the neighborhood of equilibria that
correspond to only one biological species are widely used in mathematical biol-
ogy, see for instance [18] and the references therein.

The rest of this section is devoted to show that the assumptions of Proposi-
tion 3.2 hold for some o : Q@ — R.

3.1 Rescaling arguments

We propose here a rather simple rescaling argument which gives the existence
of a domain ) and a distribution of resources o) satisfying the assumptions
in Proposition 3.2. The main drawback of this argument is the fact that the
domain ) changes with the parameter. On the other side, it is immediately
evident that the resource oy leads to instability at (@y,0) when it starts being
sparse and far from being homogeneous.

We consider here a smooth function o : Q@ — [0, +00) satisfying the reverse
Poincaré-Sobolev condition in (2.6) (recall Remark 2.5) and the corresponding
stationary solution 4 given by Theorem 2.7. We see that, in this case, the
population @ does not exhaust the resource ¢ in the whole of 2. More precisely,
we have:

Lemma 3.4. Let o : ) — [0,+00) be a smooth function satisfying the reverse
Poincaré-Sobolev condition in (2.6) and let 4 be the corresponding stationary
solution given by Theorem 2.7.

Then there exist xg € Q, r > 0 and c¢o > 0 such that B.(xg) C Q and

o(x) —u(z) = co
for any x € B,(zo).
Proof. By testing (2.8) against @, we obtain that

0< /Q |Via(z)|* do = /Q(U(ac) —a(z))a?(z) d.

This implies that there exists z¢ € ) such that o(z¢) —a(zg). The desired result
follows from the continuity of @ given by Corollary 2.10. O
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In the notation of Lemma 3.4, by possibly translating the domain, we can
assume that o = 0, and so

o—1u2>=cy>0in B,. (3.4)
Then we consider the family of rescaled domains
Q)= {A"7y: y e Q}
and rescaled functions
ox(z) == Ao(VAz), Ve,

with A > 1. Then
ix(z) == a(VAz), Ve

is a positive stationary solution for the equation (2.8) with resource oy, since
(Adiy + (ox — @)y (z) = (N2Aa+ N (o — a@)a) (VAz) =0, YaeQy.

Proposition 3.5. There exists A > 1 such that, for every A > A, the pair
(ox,@y) is mismatched in the corresponding domain Qy, according to Defini-
tion 3.1.

Proof. We take ry := A\"27r. By (3.4),
inf (oa(z) —ax(z)) = inf S A (o(VAz) — ax(VAz))

e i< (3.5)
= inf A (o(y) —ar(y)) > coX.

lyl<r

On the other hand, by Remark 2.2,
Cy(s, By,) = r5Cy(s, B1) = A\™21°Cy(s, By).

By comparing this with (3.5), we conclude that

AS 1
inf — > coA = )
ook (oa(z) —ar(x)) = coX > r2°C2(s,By)  CZ(s, B, (x0))
provided that
A> (cor?® C’f(s,Bl))_m ) O

From Propositions 3.5 and 3.2, we obtain that there exists v,y € Hg(2x)
such that Qg 0)(0,v4,x) > 0, as long as A is large enough, hence (uy,0) is
linearly unstable.

This is a first example that shows the validity of Theorem 1.1 (a different
one will be constructed in the remaining part of this paper). It is worth to
point out that the condition that A is large translates into the fact that the
domain €2 is small and the resource o) is very unevenly distributed. In some
sense, the nonlocal diffusion may allow the population to take advantage of the
small region in which the resource is abundant, while a less diffusive population
may starve in the portion of the environment with limited resource.
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3.2 Branching arguments

In this subsection we focus on a particular family of distributions, indeed we
assume B, (z¢) C Q and

0 (T) = TXB, (z0)(T) = { g ;C ; g;gﬁ;

We show that there exist 7,7 > 0 such that the assumptions of Proposition
3.2 hold. First of all we have to deal with with Definition 2.3, which located a
branching point for solutions of (2.8). For this, for any 7 € R, 2o € R", r > 0,
such that B, (z¢) C €, we introduce the quantity

e(t,zo,7) :=  sup T/ u? — [ |Vul?. (3.6)
w€H () By.(w0) Q
H“HL2(9):1

We observe that if 7 < 0 then obviously e(r,zo,7) < 0. Thus we use the
following notation.

Definition 3.6. We denote
T(xg,7) :=sup{r € R : e(r,z0,7) <0} .

Now we discuss some basic properties of the quantities that we have just

defined.

Lemma 3.7. The quantity introduced in Definition 3.6 is finite, namely
I($07 T) € [07 +OO) .

Proof. Let ¢ € Cg°(B,) with [|¢[|z2(p,y = 1, and let u(z) = ¢(z — xo).
Then [lullz2(q) = llullL2(B, (z0)) = I9ll22(B,) = 1, and

e(T,xO,r)>T/ u2—/ \Vu\2=7'—/ |Vo|? >0
B (z0) Q B,

provided that 7> [, [V¢[*. O

Lemma 3.8. For any 7 < 7o we have that
6(7—27 Zo, T) - 6(7'1, Zo, T) € [07 T2 — Tl]'

Proof. Fix ¢ > 0. For any i € {1,2}, there exists u;.) € Hy(Q), with
llugieyll2 () = 1 such that

e(Ti, zo,7) < €+Ti/ “%z €) _/ |V“(i7€)|2'
B (x0) ’ Q

17



Therefore

6(7'2,$0,T) - 6(7—171:07T) 2 7-2/ u%l,e) _/ |VU(1’E)‘2 - e(Tlvaar)
Br(x()) Q
>on [ b= [ VugP - enmn
Br(x()) Q
2 *5:
and
ran) = elmanr) > [ b= [ Vugaf = elman)
B, (x0) Q
z (n —72)/ Ul — €
BT(CCO)

> —(r2— Tl)/ U%Q,s) —¢€
Q
= —(r—1)—c
The desired result now follows by taking ¢ as small as we wish. O
Corollary 3.9. If 7 | (xo,7), then e(t,z0,7) — 0.
Proof. Suppose not, i.e. there exists a sequence
7; = (2o, T) (3.7
with 7; — 7(z0,7) as j — 400, such that
le(7j, o, 7)| = a, (3.8)
for some a > 0. We claim that
e(tj,z0,7) > a. (3.9)

We prove it by contradiction: if not, by (3.8), we would have that e(7;, zg,r) <
—a. Thus, we set

a

To 1= T(20,7) + 3

We notice that 7, > 7(zo,r), therefore, by Definition 3.6, we have that
e(7q, z0,7) > 0.

In addition, we have that 7, > 7; if j is large enough, thus we make use of
Lemma 3.8 and we obtain that, for large j,

0+ a < e(rq,x0,7) —e(T),T0,7) < Ty — T5.
Taking the limit in j, we conclude that

a
a < 7o = 1(20,7) = 3.
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This is a contradiction and (3.9) is established.
Also, by Definition 3.6, we know that there exists a sequence 7; < 7(xo,7)
with 7; — 7(zo,r), such that e(7;, zo,) < 0. Accordingly, by (3.9),

e(7j, 2o, 7) — €(7j,20,7) 2 a. (3.10)
Notice that 7; > 7(zo,r) > 7; and

tiiinoo T; — 75 = 7(x0,7) — T(x0,7) = 0.

Thus, by Lemma 3.8

lim e(r;,xo,7) —e(Ti,x9,7) < lim 7, —7; = 0.
+OO(J’ 0’) (]7 07)\tﬂ+001 J

This is in contradiction with (3.10) and so the desired result is proved. O

Before stating and proving the main theorem of this subsection, we investi-
gate the behavior of 7(zg,r) under scaling.

Proposition 3.10. Fiz s’ € (0,1). There exists a constant 7, := 7,.(s', Q) such
that )
T(z0,7) =172 1.(5', Q)

for every xo € Q and r > 0 such that B,(xg) C Q.

foen®
BT(JTO)

for some constant ¢(s’,€2) > 0. Once (3.11) is proved, one can finish the proof of
the desired result by arguing as follows. One sets 7.(s’,Q) := 1/¢(s', Q). Then,
for every 7 < r=2 1.(s/,Q) (i.e. for every 7 < 1/(c(s’,Q)r*)), one has that

1
Vusz/ u2>/Vu277// u220,
/sz [Vl B, (z0) Q [Vl (s, )% [ (20)

where the latter inequality is a consequence of the claim (3.11). This gives that
e(t,z0,7) = 0 for any 7 < r=2 1,(s',Q), and so, by Definition 3.6, we have
that 7(xzg,7) > r=2° 7.(s',§2), thus proving the desired result.

Due to these observations, it only remains to prove (3.11). To this scope, we
obst}alrve that, given p > 2, by the Holder inequality with exponents £ and pf 5
we have

Proof. We claim that

N

c(s', Q) 1 | VulZsq), (3.11)

p—2
[ < uli.
B(z0)

Therefore, the claim in (3.11) is established if we show that there exists p > 2
such that

(p—2)n

r ullfee) < O, Qp) ™ [Vullfeq), (3.12)
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for some C(s’,Q,p) > 0. So, now it only remains to prove (3.12). To this goal,
we deal separately! with the cases n =2 and n > 3.
We start with n > 3. In this case, we denote by p := % > 2 the Sobolev

conjugate exponent of 2. Notice that @ = 2 and the Sobolev inequality
(see e.g. formula (7.26) in [16]) bounds [|ul7,q) with C(Q)[[Vu72q,. for
some C(92) > 0. Hence, if we denote by Dy > 0 the diameter of €2, we have that

(»

—2)n ’ _ 94
r e |l o) = P llullis @) < Cor® D5 [[VullZs ),

and estimate (3.12) follows in this case.
For the case n = 2, we observe that

-2
lim pP=z_ 1> 4,
p——+00 P

so we can choose an even integer p = p(s’) € (2, +o0) large enough such that

p—2

> s (3.13)
P

Also, the critical Sobolev embedding (see e.g. formula (7.38) in [16]) yields that

/Qexp <u(x)>2 dz < ¢ |9, (3.14)

1| Vull 2 (o)
for suitable ¢1, ca > 0. Then, since
T4k p/2

et f— —_— A
1 = 1’
P k! (p/2)!

we deduce from (3.14) that

[ (i) a<con

for some C'(£2,p) > 0. Therefore
HUH%P(Q) < C'(2,p) ||VU||2L2(Q)7

for some C'(€2,p) > 0. As a consequence, if Dy > 0 is the diameter of 2,

(p—2)n o 2=2) v
ror ||u||%p(m = 257 ) 2 ||UH2LP(Q)
(r—2)

2 —s’ ’
<@, DT ) Va2,

This completes the proof of (3.12) when n = 2. O

IThe case n > 3 is simpler because the Sobolev conjugated exponent 2* = 2n/(n — 2) is
not critical. Indeed, in this case the parameter s’ does not play much role.
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Theorem 3.11. Let v, 7 > 0. Consider the family of distributions o, =
. . . . ~ 1 .
TXB,(zo) and a corresponding family of stationary solutions i, € Hy(S2), that is

~Aiir = (07 — i )ilr
If 7 | 7(xo,7), then i, — 0 uniformly.
Proof. First of all, we notice that
i, <7, (3.15)
thanks to Lemma 2.9. Now we fix ¢ € (0,1) and we claim that
liirllzoce < (3.16)

provided that 7 is close enough to 7(zg, ). To establish this, we test the equation
against u, itself, and we obtain that

/ Vi, |* = /(O—T T [ :T/ a2 —/ai,
Q Q B, (x0) Q

which in turn gives

a0y = / W=7 / a2 - / Vit < e(r,20,7),
Q B, (zo0) Q

thanks to (3.6). This and Corollary 3.9 imply (3.16).
Now we set g(x) := (67 — U, )%,. Notice that —Au, = g in  and, by (3.15)
and Lemma 3.7,

|g| < (U‘r +ﬂ'r) Ur < 27 Ur < 2(I($07T) + ]-) iy < Co s,

for some Cy > 0 independent of 7, as long as 7 is sufficiently close to 7(xg, ).
In particular, by (3.15) and (3.16),

sy < C )" <o )" <ot 3.17
||g||L”+5(Q) s Co Ur R Ur s Lig ) (3.17)
Q Q

for some C; > 0. Moreover, using the Hoélder inequality with exponents 3
and 3/2,

2
- - 1 3\ °? 1
lirlie = [ @ <i0ff ([ @) =00 Jarlom,
therefore, recalling (3.16) and (3.17),
~ 1 _3 _3
lirll 22 () + 9]l ntsy < Q] + Cre™s < Coeis,

for some Cy > 0. We combine this information with Theorem 8.15 of [16] (used
here with f := 0 and ¢ := 2(n + 3) > n), thus we obtain that

~ ~ _3
|| 2o (@) < O (lrllz2@) + llgllzse)) < C Coewia,

for some C' > 0, as long as 7 is sufficiently close to 7(zg, r), which is the desired
claim. O
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Corollary 3.12. Fiz s’ € (s,1). Let r, 7 > 0. Assume that

1
C2(s, By) 7 (s, ) | 79
r<( (s 1;T (s )> , (3.18)

where Cy(s, B1) is the Poincaré-Sobolev constant in (2.4) and 7.(s',Q) is given
by Proposition 3.10.

Consider the family of distributions o; = TXpB, (z,)- Then there exists T >
T(x0,7) such that both the reverse Poincaré-Sobolev condition in (2.6) and the
mismatch condition in (3.1) are satisfied.

Proof. By taking 7 large enough, one can easily fulfill (2.7). This and Lemma 2.4
guarantee the reverse Poincaré-Sobolev condition in (2.6).

In particular, by Theorem 2.7, we can consider the solution %, corresponding
to the resource o.

Now we fix

= <0 T(S/Q)> (3.19)

79 p2(s'—s)

Thanks to Theorem 3.11, we can choose 7 sufficiently close to 7(zg,r) such that
l|tir] oo () < r~2%¢. Therefore, for every x € B,.(x¢), we have that

o (x) — U (z) > or(x) — 1 % > 1(20,7) — 1~ %€,

From this and Proposition 3.10, we have that, for every = € B,.(xo),
o () — Gy (2) = r 2 1 (s, Q) — r ¢
So, recalling (3.19),

7'_2S/7'*(s’ Q)
inf () —u, > 017
:cEmé%r(mo) (U (l‘) u (93))

Thus, from Remark 2.2 and (3.18), we obtain

1 B 1 B 7,,725' 7,2(5'75)
C3 (s, Br(20)) N r2:C3 (s, B1) N C3 (s, B1)
r=2 C3(s, B1) (s, Q)
20112(8,31)

—2s’ ' Q

This establishes the mismatch condition in (3.1). O

From Proposition 3.2 and Corollary 3.12, it follows that we have constructed
another example for which the equilibrium (4,,0) is linearly unstable, confirm-
ing again Theorem 1.1. Once again, this example corresponds to a resource
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that is unevenly spread in the environment, and the nonlocal diffusion may
compensate such unbalanced distribution of resource.

As a final observation, we would like to stress that most of the techniques
discussed in this paper are of quite general nature and can be efficiently exploited
in similar problems with different species and different dispersive properties.

4 A purely nonlocal phenomenon

Goal of this section is to prove Theorem 1.2 and to clarify that it is a purely
nonlocal feature, with no classical analogue.

Proof of Theorem 1.2. By Theorem 1.1 in [13], we know that we can approx-
imate o by a s-harmonic function in Bj: namely, we have that there ex-
ist R, > 1 and u. € C*(By) N C*(R") satisfying (1.6), (1.7) and

llo —ucller s,y <e (4.1)

Now we define
O 1= Up. (4.2)
In this framework, formula (1.4) follows from (4.1) and (4.2). Moreover, by (1.6)

and (4.2),
(02(2) — ue(@)) uc(2) = 0 = (—A) ue (a),

for any € By, which proves (1.8). O

Of course, formula (1.5) states that the population locally fits with any given
resource, up to an arbitrarily small error estimated by (1.4).

We stress that Theorem 1.2 is only due to the nonlocal feature of the equation
and it does not have any local counterpart, as pointed out by the next result.

Proposition 4.1. Let M > 0. Let o € C?(By) with

o(x) > M for any x € By

) >
and o(r) <1 for anyx € B\ By)p-

Then, there exists My > 0 and e > 0 such that, for any M > My, if 0. € C?(B)
satisfies

llo —oellc2(n,) <e (4.3)
and u. € C?(By) satisfies
—Aues(z) = (0e(x) — uc(x)) ue(z) for any x € By, (4.4)
then
[lue — 0'5||C'2(Bl) >e (4.5)

In particular, the local counterpart of Theorem 1.2 is false.
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Proof. Suppose by contradiction that for every € > 0 there exist 0. and u.
satisfying not only (4.3) and (4.4), but also

[Jue — C76||C2(Bl) <e.
From (4.3) and (4.5), we know that
iz — oll (o) < e — lloasny < 22, (46)
As a consequence,
uellzoe By < 2+ llollc2s,) < Cos

for some C, > 0, possibly depending on the fixed resource o. This, (4.5)
and (4.4) give that, in By,

|Aue| < |oe — ue| Jue] < Coe.

Thus, the weak Harnack inequality (see e.g. Theorem 8.18 in [16]) gives that

el s, < C1 (ot we + Coe), (4.7)

i
Bi/s

for some constant Cy > 0. Now, by (4.6) and (4.3), we see that u.(z) > M —2¢
in By,16 and therefore

ltell a0y > / wo(x) dx > Cy (M — 2¢), (4.8)

B /16

for some constant Cy > 0. Similarly, from (4.6) and (4.3), we have that u. <
1+ 2¢in By \ By/19 and therefore

inf u. <1+2e<2. (4.9)

Bis
By inserting (4.8) and (4.9) into (4.7) we obtain that
M—2<C5(2+C,e),
for some C35 > 0. Thus, we take M > My := 3C3. This fixes ¢ and gives that
C3<M—2C3<2e+C03(24+Cyre)—2C3 = (24 C3C,)e.

By taking ¢ small, we obtain a contradiction and we complete the proof of
Proposition 4.1. O
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