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Abstract

Nonlinear polaritons in microcavity waveguides are demonstrated to exhibit multi-stable
behaviour and rich dynamics, including filamentation and soliton formation. We find that
the multi-stability originates from co-existense of different transverse modes of the po-
laritonic waveguide. Modulational stability and conditions for multi-mode polariton solitons
are studied. Soliton propagation in tilted, relative to the pump momentum, waveguides is
demonstrated and a critical tilt angle for the soliton propagation is found.

Strong exciton-photon coupling in semiconductor microcavities leads to formation of half-light
half-matter quasiparticles (polaritons) [1]. Owing to their excitonic component polaritons exhibit
very strong and fast nonlinear optical response and weaker diffraction. These properties make
microcavity polaritons an attractive platform for developing prototypes of opto-eletronic devices
for processing of information. Effects and devices such as low threshold optical bistability [2],
optical switches [3], optical transistors [4], diodes [5] and Mach-Zehnder interferometer [6] have
been demonstrated with microcavity polaritons. Recently, dark [7, 8] and bright microcavity po-
lariton solitons [9, 10, 11] have been reported theoretically and experimentally. Solitons in planar
microcavities operating in non-polaritonic regimes have been previously studied in the context
of optical information buffering and memory devices [12, 13]. Polaritonic regimes of operation
can be useful in optimizing these devices for lower power consumption and more compact di-
mensions. Large-aperture planar devices, can not be used to predictably bend trajectory of a
polaritonic pulse or to make polaritonic couplers, X and Y junctions and interferometers. Lat-
eral waveguide confinement can effectively boost polariton-polariton interaction and reduce the
number of polaritons required for nonlinear processes, allowing observation of quantum effects
such as squeezing, phase transitions, polaritonic blockade and others [14]. Previous studies of
2D microcavity polariton solitons have shown that the diffraction in a transverse to the soliton ve-
locity direction is balanced only in a very narrow range of parameters [15] and microcavity mirror
patterning has been suggested for guided solitons [9]. An alternative, well studied for soliton ap-
plications geometry, is total internal-reflection based semiconductor waveguides with quantum
wells embedded inside the substrate (see, e.g., [16]). Transition into the strong coupling regime
in these structures has been reported only recently [17]. Despite being more difficult to fabricate,
microcavity waveguides have an advantage of providing significant group velocity reduction and
employing well established resonant or nonresonant pumping schemes for loss compensation.

Considering ongoing experimental research into microcavity polariton waveguides it becomes
important to extend the theoretical understanding of the nonlinear effects, such as bistability,
parametric generation and solitons using experimentally realistic geometries and conditions. In
this Letter, we use an established dimensionless mean-field model for photonic and excitonic
components of microcavity polaritons, see, e.g. [7, 9, 10], whereby an effective transverse con-
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finement potential is introduced:

∂tE − i
(
∂2
x + ∂2

y

)
E + [γc − iδc − i∆− iU(y)]E =

iΩR(y)Ψ + Epe
iκx , (1)

∂tΨ+ (γe − iδe − i∆)Ψ + i |Ψ|2 Ψ = iΩR(y)E . (2)

Here, E and Ψ are the averages of the photon and exciton creation or annihilation operators, the
normalization is such that (ωR/g)|E|2 and (ωR/g)|Ψ|2 are the photon and exciton numbers
per unit area, g is the strength of exciton-exciton interaction [10], ωR is the Rabi frequency in
a planar homogeneous cavity, time is measured in the units of T = 1/ωR. The waveguide
geometry is schematically shown in Fig. 1(a). The unit length, L =

√
ℏ/(2mcωR) [7, 9], is

determined by the effective cavity photon mass mc. The waveguide confinement in the cavity
plane (along y-axis) is described by an effective potential U(y) in the photonic component and
a spatially confined normalized Rabi frequency ΩR(y):

U(y) = Ubg

[
1− e−(2y/w)8

]
, ΩR(y) = e−(2y/w)8 , (3)

where w is the dimensionless waveguide width.

We assume that the CW pump with normalized amplitude Ep is linearly polarized along y-axis,
so that it mainly couples to quasi-TE waveguide modes, thus justifying the use of a scalar model.
The pump is inclined along x-axis, so that κ is the momentum component along the waveguide,
the corresponding angle θ is such that sin θ = κλp/(2πL), λp is the pump wavelength. The
parameters δc, δe and ∆ are dimensionless detunings of the cavity resonant frequency, excitonic
resonance, and pump frequency from a reference frequency ℏω0 = 1.55eV (λ0 = 800nm),
respectively. Cavity and exciton damping constants are set equal: γc = γe = γ.

Particular values for the parameters ωR, L and Ubg are chosen to fit the free polariton dispersion
in a realistic waveguide geometry, inferred from finite-element Maxwell solver (Comsol). As an
example, we consider a 3µm-wide waveguide with a 400nm-thick cavity (ϵc = 9) and distributed
Bragg reflector (DBR) mirrors, each containing 25 periods of alternating low- and high-index
layers (ϵl = 9, ϵh = 12.25) of thickness Ll = λ0/(4

√
ϵl) and Lh = λ0/(4

√
ϵh), respectively.

The empty cavity resonance for the fundamental mode is found to be at ℏωc ≈ 1.551eV. The
quantum well is modelled by a 15nm-thick layer with linear permittivity:

ϵqw = ϵc +
Hω2

e

ω2 − ω2
e − i2Γeωe

, (4)

where ℏωe = 1.5505eV, with ωe - the exciton resonance transition frequency, H = 0.015 is
the normalised oscillator strength and ℏΓe is the exciton linewidth due to dephasing, assumed
to be of the order of 0.1meV [10].

Photon-exciton coupling causes Rabi splitting of each of the modes into lower- and upper-
polaritonic branches. Numerically computed energy dispersions for the first three lower polariton
modes (0L, 1L and 2L) and for the upper branch (OU ) fundamental mode polaritons are
shown in Fig. 1(b). For the chosen H the Rabi splitting in the fundamental mode is found to be
2ℏωR ≈ 11meV at κ = 0, which is comparable to the one in planar cavities [10]. This gives the
scaling of time T ≈ 0.12ps, and dimensionless cavity and exciton detunings: δc = −0.191 and
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Figure 1: Microcavity polaritonic waveguide: a) scheme of the geometry and excitation; b) Dis-
persion of free polaritons in the 3µm-wide waveguide: dashed lines correspond to data obtained
from Comsol, solid lines - from model in Eqs. (1, 2). Insets show profiles of the dominant electric
field component (Ey) of the first three quasi-TE modes.

δe = −0.1, respectively. The free polariton dispersion within our model in Eqs.(̃1,2) fits well the
above computed dispersion by fixing L = 0.53µm and Ubg = −1 (solid curves in Fig. 1(b)).

Similar to a planar cavity, the lower polariton effective mass changes its sign for transverse
momenta κ/L ≳ 1.2µm−1. Hence, we expect to observe excitation of bright solitons with
large enough transverse (in-plane) momenta [10]. We choose κ/L = 2.69µm−1 beyond the
inflection points in all branches, yielding a pump incidence angle, θ ≈ 20◦ at λp = 800nm
(∆ = 0).

For a spatially homogeneous monochromatic pump, the stationary modes of Eqs. (1,2) are
found using the ansatz {E,Ψ} = {A (y) eiκx, B (y) eiκx}. The resulting equations for A and
B are solved numerically. In the zero pump and zero loss limit of Eqs. (1,2), Ep = γ = 0 we
find that the nonlinear waveguide modes are continuously parameterized by the detuning ∆, see
dashed curves in Fig. 2(a), and their number is increasing with ∆. For Ep = const ̸= 0, each
mode with even symmetry (OL, 2L, 4L, . . . ) exhibits a nonlinear resonance, see solid curves
in Fig. 2(a). For pump frequencies above one or several branches of polaritonic dispersion,
microcavity waveguides can show either bistable or, respectively, multi-stable response. This is
in contrast to planar homogeneous cavities, which are only bistable.

The waveguide modes, however, can be modulationally unstable, similar to the homogeneous
solution in a planar cavity. To analyze this we add small perturbations to the modal profiles:
E = [A(y) + ϵf (y)e

iqx−iδt+λt + ϵ∗b(y)e
−iqx+iδt+λt]eiκx, Ψ = [B(y) + pf (y)e

iqx−iδt+λt +
p∗b(y)e

−iqx+iδt+λt]eiκx with q, δ, λ all real. The resulting eigenvalue problem:

(δ + iλ)x⃗ =


−Lf 0 −ΩR 0
0 L∗

b 0 ΩR

−ΩR 0 −P B2

0 ΩR −(B∗)2 P∗

 x⃗ , (5)

Lf,b = ∂2
y − (κ± q)2 + δc +∆+ U + iγc,

P = δe +∆− 2|B|2 + iγe , x⃗ = [ϵf , ϵb, pf , pb]
T ,

is solved numerically.

In Figs. 2(b) and (c) stable, unstable (with λ(q = 0) > 0) and modulationally unstable (λ > 0
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Figure 2: Stationary nonlinear modes (Ψ-norm N =
∫
|Ψ|2dy): (a) as function of the detuning

∆, Ep = 0.005, γ = 0.01. Dashed curves indicate families of nonlinear mode solutions 0L-4L
in the limit Ep = γ = 0; (b) and (c) as functions of the pump amplitude Ep, ∆ = −0.2 and
∆ = −0.1, γ = 0.01 in (b), ∆ = 0, γ = 0.01 and γ = 0.04 in (c). Solid black, dashed
red/grey and solid red/grey curves correspond to stable, unstable and modulationally unstable
branches, respectively. Shaded areas in (b) and (c) indicate domains of existence of soliton
solutions.

only for some q ̸= 0) branches are plotted as functions of the pump amplitude Ep with solid
black, dashed red/grey and solid red/grey curves, respectively, for different values of ∆ and γ.
For a pump frequency just above the lowest (0L) linear mode branch, ∆ = −0.2 cf. Fig. 2(a),
the stationary waveguide mode is bistable within a certain range of Ep, see Fig. 2(b), where the
lowest norm solution is stable, while the highest norm one is modulationally unstable. Similar
behaviour is observed in planar cavities, where the co-existence of stable low-amplitude and
modulationally unstable high-amplitude stationary modes is accompained by the presence of
bright solitons [9, 10].

We numerically found localized soliton solutions of Eqs. (1,2) of the form {E,Ψ} = {As(x −
vt, y), Bs(x − vt, y)}eiκx, discretizing spatial coordinates and using Newton-Raphson itera-
tions. Here the soliton velocity,v, is computed simultaneously with the soliton field profiles, As

and Bs. For ∆ = −0.2 solitons exist within almost the entire domain of bistability of stationary
modes, as shown by the shaded region in Fig. 2(b).

Increasing the pump frequency, the lowest norm stationary mode develops instabilities for Ep

close to the turning point. The instability domain gradually expands with increasing pump fre-
quency. For ∆ = −0.1, the mode is unstable within a large part of the entire bistability domain,
see Fig. 2(b). In Fig. 3(a) the small perturbation gain λ is plotted as function of the perturbation
wave vector, q, for the mode at Ep = 0.045 [see marker (i) in Fig. 2(b)]. We found that the
mode is modulationally unstable with respect to several perturbations, each having a different
transverse profile, see insets in Fig. 3(a). The observed instabilities can be attributed to the co-
existence of multiple transverse modes in the waveguide potential. By contrast, the modulation
instability of stationary modes from the highest norm branch is due to the perturbation with a
similar transverse shape as the mode itself (Fig. 3(b)). To verify the above linear stability analysis
we solved Eqs.(̃1,2) in the time domain perturbing solutions (i) and (ii). The evolved perturbed
solutions exhibit filamentation and localised soliton-like features (Fig. 3(a,b):right panels).

For ∆ = −0.1 soliton solutions exist within a wide range of Ep (see corresponding shaded area
of the bistability domain in Fig. 2(b)). However, having the homogeneous stationary mode from
the lowest norm branch as their background, solitons share their stability properties with this
mode. As a result, there is only a narrow window of Ep, where stable solitons can be excited.
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Figure 3: Perturbation growth rate of modulationally unstable modes for ∆ = −0.1, Ep =
0.045, γ = 0.01: lower branch (a) and upper branch (b), corresponding solutions are indicated
as (i) and (ii) in Fig. 2(b). Insets show profiles (scaled) of unstable perturbations correspond-
ing to local maxima of growth rate. Mode profiles are shown with dashed curves in insets. Right
panels: modulation instability time evolution - filamentation (a) and localisation (b).

As the pump frequency crosses the even higher-order polaritonic branch (2L), additional branches
of stationary mode solutions emerge, see Figs. 2(a) and (c). The instabilities of the lowest norm
branch persist, affecting the existence and stability of solitons. For ∆ = 0 and γ = 0.01 we
could not find any stable soliton solutions, and all stationary modes are unstable within almost
the entire domain of multi-stability, see Fig. 2(c). Increasing the damping γ, one can stabilize
the lowest branch of stationary modes, cf. plots for γ = 0.01 and γ = 0.04 in Fig. 2(c). For this
higher value of γ we found stable soliton solutions (see shaded area in Fig. 2(c)).

To investigate dynamical formation of solitons within the range of bistability of stationary modes,
we initialize the system with the stable mode from the lowest branch. The soliton is triggered by
the writing pulse [10], which has duration of 2ps, intensity FWHM of 3µm (Gaussian beam) and
the same momentum as the pump. An example of a soliton is shown in Fig. 4 for ∆ = 0 and
γ = 0.04. The soliton is sitting on the lowest branch of stationary modes and extends to the
highest branch in its core. The soliton pulse is squeezed along the waveguide and its temporal
width of Tp = 0.727ps is nearly a half of that in a planar microcavity (∼ 1.25ps [10]).

We found that solitons can be excited in waveguides tilted with respect to the pump momentum.
Numerically exact soliton solutions, found with Newton-Raphson interations, as functions of the
waveguide tilt angle α are plotted in Fig. 5. For fixed parameters of the pump, solitons persist
within a finite interval of α, and the tilt can be as high as ∼ 10◦. Further detailed studies of
soliton properties and dynamics in polaritonic waveguides will be reported elsewhere.

In summary, we investigated nonlinear polariton dynamics in microcavity waveguides within
the modified mean-field model. Parameters of the introduced effective potentials are chosen
to fit the free polaritons dispersion in a realistic waveguide geometry. We found that station-
ary excitations in polaritonic waveguides exhibit multi-stable behaviour upon variation of pump
parameters. This is directly related to the existence of different transverse waveguide modes.
Modulation instability of stationary modes and soliton formation in straight and tilted waveguides
is discussed. Our results lay the foundations for further investigation of basic building blocks of
future polaritonic integrated circuits, such as X− and Y−splitters, couplers, routers, based on
soliton logic.
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