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Abstract

We present a comparative numerical study for three functionals used for variational
mesh adaptation. One of them is a generalization of Winslow’s variable diffusion functional
while the others are based on equidistribution and alignment. These functionals are known
to have nice theoretical properties and work well for most mesh adaptation problems either
as a stand-alone variational method or combined within the moving mesh framework. Their
performance is investigated numerically in terms of equidistribution and alignment mesh
quality measures. Numerical results in 2D and 3D are presented.

1 Introduction

Variational mesh adaptation is an important type of mesh adaptation method and has received
considerable attention from scientists and engineers; e.g., see the books [15, 19, 23, 24] and
references therein. It also serves as the base of a number of commonly used adaptive moving
mesh methods (e.g., see [5, 12, 14, 22]). In the variational approach, an adaptive mesh is
generated as the image of a reference mesh under a coordinate transformation and such a
coordinate transformation is determined as a minimizer of a certain meshing functional. A number
of meshing functionals have been developed in the past (cf. the above mentioned books). For
example, Winslow [25] proposed an equipotential method based on variable diffusion. Brackbill
and Saltzman [3] developed a method by combining mesh concentration, smoothness, and
orthogonality. Dvinsky [6] used the energy of harmonic mappings as his meshing functional,
while Knupp [20] and Knupp and Robidoux [21] developed functionals based on the idea of
conditioning the Jacobian matrix of the coordinate transformation. More recently, Huang [7]
and Huang and Russell [15] proposed functionals based on the so-called equidistribution and
alignment conditions.

With variational mesh adaptation, the mesh concentration is typically controlled through a scalar
or a matrix-valued function, often referred to as the metric tensor or monitor function and defined
based on some error estimates and/or physical considerations. While most of the meshing
functionals have been developed with physical or geometric intuitions and have various levels
of success in the adaptive numerical solution of partial differential equations (PDEs) and other
applications, there is only a limited understanding on how the metric tensor affects the behavior
of the mesh. An attempt to alleviate this lack of understanding was made by Cao et al. [4] for a
generalization of Winslow’s variable diffusion functional. They showed that a significant change
in an eigenvalue of the metric tensor along the corresponding eigendirection (first increasing and
then decreasing, or vice versa) will result in adaptation of coordinate lines along this direction,
although this adaptation competes with far more complicated effects, including those from
changes in eigenvectors and other eigenvalues and the effects of the shapes of the physical
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and computational domains and the mesh point distribution on the boundaries. In [7, 15], two
functionals have been developed based directly on the equidistribution and alignment conditions.
These two conditions provide a complete characterization of the mesh elements through the
metric tensor [7]. Minimizing the functionals leads to meshes which tend to satisfy the conditions in
an integral sense. Nevertheless, this characterization is only qualitative, and how closely the mesh
satisfies the conditions depends on the boundary correspondence between the computational
and physical domains and the mesh point distribution on the boundaries. Thus, numerical studies,
especially comparative ones, are useful, and often necessary, in understanding how the mesh
adaptation for those meshing functionals is controlled precisely by the metric tensor. There
do exist a few comparative numerical studies for meshing functionals. For example, a gallery
of (adaptive and non-adaptive) meshes is given in [19] for a number of meshing functionals.
Some comparative meshes are given in [15] for the harmonic mapping functional [6] and the
subsequent functional based on equidistribution and alignment [7].

The main objective of this work is to present a comparative study for three of the most appealing
meshing functionals, a generalization of Winslow’s variable diffusion functional (cf. (6)) and two
functionals based on equidistribution and alignment (cf. (10) and (12)). They are selected because
(6) and (10) have been known to work well for many problems (e.g., see [1, 2, 7, 13, 14, 22])
while (12) is similar to (10) and has some very nice theoretical properties (cf. §3.2). Another
motivation is to present some three dimensional numerical results for those functionals. Critical
for our study is to perform the substantial computations using the improved implementation of the
variational methods introduced in [11]. In a sharp contrast to the situation in two dimensions, very
little work has been done with variational mesh adaptation and adaptive moving mesh methods
in three dimensions (e.g., see [15, 22]). It is particularly interesting to see how the functionals
perform in this case.

An outline of the paper is given as follows. We describe the basic ideas of the variational mesh
adaptation and its direct discretization (that is, first to discretize and then optimize) in §2. In §3
we introduce the three functionals to be studied for the numerical comparison, a generalization
of Winslow’s variable diffusion functional and two functionals based on equidistribution and align-
ment. Numerical results and example adaptive meshes are given in §4, followed by conclusions
in §5.

2 Variational mesh adaptation

In variational mesh adaptation, an adaptive mesh is generated as the image of a reference
mesh under a coordinate transformation. Denote the physical domain by Ω ⊂ Rd (d ≥ 1), and
assume that we are given a computational domain Ωc ⊂ Rd and a quasi-uniform mesh T̂hc
thereon. In many situations we can choose Ωc to be the unite square/cube or simply Ω. Denote
the coordinate transformation by x = x(ξ) : Ωc → Ω and its inverse by ξ = ξ(x) : Ω→ Ωc.
Such a coordinate transformation (more precisely, its inverse) is determined as a minimizer of a
meshing functional. Most of the existing meshing functionals can be cast in a general form as

I[ξ] =

∫
Ω

G(J, det(J),M,x) dx, (1)
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where G is a smooth function, J is the Jacobian matrix of ξ = ξ(x), det(J) denotes the
determinant of J, and M = M(x) is the metric tensor supplied by the user to control mesh
concentration. We assume that M = M(x) is a symmetric and uniformly positive definite d-by-d
matrix-valued function on Ω. Notice that (1) is formulated in terms of the inverse coordinate
transformation. One reason for this is that this form is less likely to produce singular meshes [6].
Another reason is that M is a function of x and thus finding the functional derivative of I[ξ] will
not directly involve the derivatives of M. This is convenient since in practice M is known only
at the vertices of a mesh and its derivatives are not cheap to find. The main disadvantage of
the formulation in this form is that ξ = ξ(x) (or its numerical approximation) does not give the
physical mesh directly. This is remedied either by interchanging the roles of the independent
and dependent variables in the Euler-Lagrange equation of I[ξ] (e.g., see [15]) or, in a recently
developed implementation (see below), computing the new physical mesh from a computational
one using linear interpolation.

A minimizer of (1) can be found numerically in the MMPDE (moving mesh PDE) framework. A
conventional implementation [15] is to find the functional derivative of (1) and then define the
MMPDE as the gradient flow equation of the functional. Having been transformed by interchanging
the roles of the dependent and independent variables, the MMPDE can be discretized on T̂hc
and a system of equations for the nodal velocities is obtained. Finally, the new mesh is obtained
by integrating the mesh equation over a time step.

A much simpler implementation was proposed recently by Huang and Kamenski [11]. Instead
of utilizing the MMPDE directly, the new implementation first discretizes the functional on the
current mesh Th and then, following the idea of the MMPDE, defines the mesh equation as the
gradient equation of the discretized functional (with respect to the computational coordinates
of the vertices). To be specific, denote by xi, ξ̂i, and ξi, i = 1, . . . , Nv the coordinates of the
vertices of the current physical mesh (Th), the reference mesh (T̂hc), and the computational mesh
(Thc), respectively. We assume that these meshes have the same numbers of the elements and
vertices and the same connectivity. For any element K ∈ Th (with vertices xKi , i = 0, . . . , d),
the corresponding element in Thc is denoted by Kc (with vertices ξKi , i = 0, . . . , d). The edge
matrices for K and Kc are defined as

EK = [xK1 − xK0 , . . . ,xKd − xK0 ], EKc = [ξK1 − ξK0 , . . . , ξKd − ξK0 ].

Let ωi be the element patch associated with vertex xi (i.e., the collection of the elements
containing xi as a vertex). Then, the equation for the nodal velocities reads as

dξi
dt

= Pi
τ

∑
K∈ωi
|K|vKiK , i = 1, . . . , Nv, tn < t ≤ tn+1,

ξi(tn) = ξ̂i, i = 1, . . . , Nv,
(2)

where |K| is the volume of K, vKiK is the local mesh velocity associated with vertex xi in K,
iK denotes the local index of xi in K, τ > 0 is a constant parameter used to adjust the time
scale of mesh movement, and P = (P1, . . . , PNv) is a positive function used to make the mesh
equation to have desired invariance properties. In our computation, we choose P such that the
equation is invariant under the scaling transformation M → cM for all non-zero constants c
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(cf. §3). The local velocities are given by(vK1 )T

...
(vKd )T

 = −E−1
K

∂G

∂J
− ∂G

∂ det(J)

det(EKc)

det(EK)
E−1
Kc
, vK0 = −

d∑
j=1

vKj , (3)

where the derivatives of G with respect to J and det(J) (see (7), (11), and (13) below) are
evaluated as

∂G

∂J
=
∂G

∂J

(
EKcE

−1
K ,

det(EKc)

det(EK)
,M(xK),xK

)
,

∂G

∂ det(J)
=

∂G

∂ det(J)

(
EKcE

−1
K ,

det(EKc)

det(EK)
,M(xK),xK

)
.

The above mesh equation should be modified properly for boundary vertices. For example, if ξi
is a fixed boundary vertex, we replace the corresponding equation by

∂ξi
∂t

= 0.

When ξi is allowed to move on a boundary curve/surface represented by

φ(ξ) = 0,

then the mesh velocity ∂ξi
∂t

needs to be modified such that its normal component along the curve
or surface is zero, i.e.,

∇φ(ξi) ·
∂ξi
∂t

= 0.

The mesh equation (2) can be integrated for a computational mesh (denoted for convenience
simply by Thc). This computational mesh and current physical mesh determine a correspondence

Th = Ψ(Thc),

and the new physical mesh can be computed using linear interpolation as

T̃h = Ψ(T̂hc),

where T̂hc is the reference mesh on Ωc.

Recall that the mesh concentration in variational mesh adaptation is controlled through the
metric tensor M = M(x). Such a metric tensor can be defined based on physical or geometric
considerations or some error estimates. For example, for the L2 norm of the error of piecewise
linear interpolation on simplicial meshes, the optimal metric tensor [9, 16] (also see [15, (5.192)])
reads as

M = det (αI + |H(u)|)−
1
d+4 [αI + |H(u)|] , (4)

where H(u) is the Hessian of function u, |H(u)| is the eigen-decomposition of H(u) with the
eigenvalues being replaced by their absolute values, and the regularization parameter α > 0 is
chosen such that∫

Ω

det(M)
1
2 dx ≡

∫
Ω

det (αI + |H(u)|)
2
d+4 dx = 2

∫
Ω

det (|H(u)|)
2
d+4 dx.
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In practical computation, u is typically unknown, and only the approximations to its values at the
vertices are available. For this reason (and even in situations where an analytical expression for u
is available), the Hessian in (4) is replaced by an approximation obtained by a Hessian recovery
technique from the nodal values of u or the approximations of the nodal values of u. A number of
such techniques are known to produce nonconvergent recovered Hessians from a linear finite
element approximation (e.g., see Kamenski [17]). Nevertheless, it is shown by Kamenski and
Huang [18] that a linear finite element solution of an elliptic BVP converges at a second order
rate as the mesh is refined if the recovered Hessian used to generate the adaptive mesh satisfies
a closeness assumption. Numerical experiment shows that this closeness assumption is satisfied
by the approximate Hessian obtained with commonly used Hessian recovery methods. We use a
Hessian recovery method based on a least squares fit: a quadratic polynomial is constructed
locally for each vertex via least squares fitting to neighboring nodal function values and an
approximate Hessian at the vertex is then obtained by differentiating the polynomial.

3 Meshing functionals

Here we introduce the three meshing functionals used in the numerical study. A generalization
of Winslow’s variable diffusion functional and the two functionals based on equidistribution and
alignment are selected because they are reasonably simple, have nice theoretical properties,
and are known to work well for many problems.

3.1 Winslow’s functional based on variable diffusion

The first functional is the variable diffusion proposed by Winslow [25]. It uses the system of elliptic
PDEs

−∇ · (w∇ξi) = 0, i = 1, . . . , d,

for generating adaptive meshes, where w = w(x) > 0 is the weight function. This system
mimics a (steady-state) diffusion process with a heterogeneous diffusion coefficient w(x). It is
the Euler-Lagrange equation of the functional

I[ξ] =
1

2

∫
Ω

d∑
i=1

w(x)|∇ξi|2 dx =
1

2

∫
Ω

w(x) tr(JJT ) dx, (5)

where tr(·) is the trace of a matrix. A generalization of this functional to allow a diffusion tensor
reads as

I[ξ] =
1

2

∫
Ω

tr(JM−1JT ) dx. (6)

This functional has been used by a number of researchers, e.g., see Huang and Russell [13, 14],
Li et al. [22], and Beckett et al. [2]. It is coercive and convex [15, Example 6.2.1]. Thus, under a
suitable boundary condition (such as the Dirichlet boundary condition with ∂Ωc being mapped
onto ∂Ω), the functional (6) has a unique minimizer.
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For this functional, we can find the derivatives of G with respect to J and det(J) needed in (3),
G = 1

2
tr(JM−1JT ),

∂G
∂J = M−1JT ,
∂G

∂ det(J)
= 0.

(7)

The interested reader is referred to [11] for the derivation.

The balance function in (2) is chosen as P = det(J)
1
d . With this choice, (2) is invariant under

the scaling transformation M→ cM .

3.2 Functionals based on equidistribution and alignment

The other functionals are based on the equidistribution and alignment conditions. These condi-
tions provide a full mathematical characterization of a non-uniform mesh. Indeed, any non-uniform
mesh can be viewed as a uniform one in the metric specified by a tensor. Moreover, a mesh
is uniform in the metric specified by the metric tensor M = M(x) if and only if it satisfies the
equidistribution and alignment conditions associated with M [10, 15]. In the continuous form,
they are

equidistribution: det(J)−1 det(M)
1
2 =

σ

|Ωc|
, ∀x ∈ Ω (8)

alignment:
1

d
tr(JM−1JT ) = det(JM−1JT )

1
d , ∀x ∈ Ω. (9)

These conditions require the mesh elements to have the same size (equidistribution) and be
equilateral (alignment) in the metric M. The alignment condition also implies that the elements
are aligned with M in the sense that the principal directions of the circumscribed ellipsoid of
each element coincide with the eigen-directions of M while the lengths of the principal axes of
the ellipsoid are reciprocally proportional to the square roots of the eigenvalues of M.

The first functional based on equidistribution and alignment, proposed in [7], is

I[ξ] = θ

∫
Ω

√
det(M)

(
tr(JM−1JT )

) dp
2 dx

+ (1− 2θ)d
dp
2

∫
Ω

√
det(M)

(
det(J)√
det(M)

)p

dx, (10)

where θ ∈ (0, 1) and p > 0 are dimensionless parameters. Loosely speaking, the first and
second terms correspond to the equidistribution and alignment conditions, respectively. The
terms are dimensionally homogeneous and the balance between them is controlled by the
dimensionless parameter θ. For 0 < θ ≤ 1

2
, dp ≥ 2, and p ≥ 1, the functional is coercive and

polyconvex and has a minimizer [15, Example 6.2.2]. Moreover, for θ = 1
2

and dp = 2 it reduces
to

I[ξ] =
1

2

∫
Ω

√
det(M) tr(JM−1JT ) dx,
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which is exactly the energy functional of a harmonic mapping from Ω to Ωc (cf. [6]).

For the functional (10), we have
G = θ

√
det(M)

(
tr(JM−1JT )

) dp
2 + (1− 2θ)d

dp
2

√
det(M)

(
det(J)√
det(M)

)p
,

∂G
∂J = dpθ

√
det(M)

(
tr(JM−1JT )

) dp
2
−1M−1JT ,

∂G
∂ det(J)

= p(1− 2θ)d
dp
2 det (M)

1−p
2 det (J)p−1.

(11)

In the computation, we use (p, θ) = (2, 1
3
). For this functional, the balance function in (2)

is chosen to be P = det(J)
p−1
2 (such that (2) is invariant under the scaling transformation

M→ cM).

The second functional based on equidistribution and alignment reads as

I[ξ] = θ1

∫
Ω

√
det(M)

(
tr(JM−1JT )

) dp
2 dx

+ θ2d
dp(d−2)
2(d−1)

∫
Ω

det(M)
1
2

(1− dp
d−1

) det(J)
dp
d−1

(
tr(J−TMJ−1)

) dp
2(d−1) dx

+ (θ3 − θ1 − θ2) d
dp
2

∫
Ω

√
det(M)

(
det(J)√
det(M)

)p

dx

+
θ4

σp+ν

∫
Ω

√
det(M)

(
det(J)√
det(M)

)−ν
dx, (12)

where σ =
∫

Ω

√
det(M) dx, and p > 1, ν > 0, and θi > 0 (i = 1, . . . , 4) are parameters.

The first three terms in (12) are dimensionally homogeneous in M and J while the last term has
the same dimension in M as the other terms. This functional was proposed in [15, (6.120)] to
avoid singularity of the coordinate transformation. Indeed, if θ3−θ1−θ2 > 0, then the functional
is coercive and polyconvex and has a minimizer satisfying det(J) > 0 in Ω [15, Example 6.2.3].

In the computation, we choose θ1 = θ2 = 1
3
, θ3 = 1, θ4 = 0.1, p = 2, ν = 1, and the

balancing function P = det(J)
p−1
2 . These choices are based on the functional (10) and the

desire to keep the fourth term relatively small.
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For this functional, we have

G = θ1

√
det(M)

(
tr(JM−1JT )

) dp
2

+θ2d
dp(d−2)
2(d−1) det(M)

1
2

(1− dp
d−1

) det(J)
dp
d−1

(
tr(J−TMJ−1)

) dp
2(d−1)

+(θ3 − θ1 − θ2)d
dp
2

(√
det(M)

)1−p
det(J)p

+ θ4
σp+ν

(√
det(M)

)1+ν

det(J)−ν ,

∂G
∂J = θ1dp

√
det(M)

(
tr(JM−1JT )

) dp
2
−1M−1JT

− θ2dp
d−1

d
dp(d−2)
2(d−1) det(M)

1
2

(1− dp
d−1

) det(J)
dp
d−1

(
tr(J−TMJ−1)

) dp
2(d−1)

−1J−1J−TMJ−1,

∂G
∂ det(J)

= θ2dp
d−1

d
dp(d−2)
2(d−1) det(M)

1
2

(1− dp
d−1

) det(J)
dp
d−1
−1
(
tr(J−TMJ−1)

) dp
2(d−1)

+(θ3 − θ1 − θ2)pd
dp
2

(√
det(M)

)1−p
det(J)p−1

− θ4ν
σp+ν

(√
det(M)

)1+ν

det(J)−ν−1.

(13)

4 Numerical experiments

In the following we consider a number of examples in two and three dimensions. For a given
function we consider M defined in (4) which is optimal for minimizing the L2 norm of the linear
interpolation error of this function and compare meshes obtained from using the functionals of
Winslow (6) (W), Huang (10) (H), and Huang and Russell (12) (HR).

To assess the quality of the generated meshes, we compare theL2 norm of the linear interpolation
error and the equidistribution and alignment mesh quality measures, which describe how far the
mesh is from being uniform in the metric defined by M. The element-wise quality measures are
based on (8) and (9) and defined as

Qeq,K =
det(JK)−1 det(MK)

1
2

σ/|Ωc|
, Qali,K =

tr(JKM−1
K JTK)

d det(JKM−1
K JTK)

1
d

, (14)

while for the overall mesh quality measures we take their root-mean-squared values,

Qeq =

√
1

N

∑
K∈Th

Q2
eq,K , Qali =

√
1

N

∑
K∈Th

Q2
ali,K . (15)

If the mesh is uniform with respect to M, then Qeq = Qali = 1; if the mesh is far from being
uniform with respect to M, then Qeq and Qali will become large. In other words, these quality
measures describe how well the volume (measured by Qeq) and the shape and orientation
(measured by Qali) of mesh elements correspond to the desired size and shape prescribed by
M (see [8] for more details on the mesh quality measures).
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4.1 Two dimensions

First, we consider two dimensional meshes constructed for the unit square Ω = (0, 1)× (0, 1)
and the test functions

Example 4.1.
u = tanh (−30 [y − 0.5− 0.25 sin(2πx)]) .

Example 4.2.
u = tanh(25y)− tanh(25(x− y − 0.5)).

Examples meshes, close-ups, as well as the mesh quality measures and the L2 interpolation
error are given in Figs. 1 and 2.

For these examples, all three functionals provide good size and shape adaptation. A closer look at
the mesh quality measures shows that, although all three functionals provide comparable meshes
which are reasonably close to the prescribed metric tensor, meshes constructed using H and HR
functionals have better correspondence to the prescribed metric tensor. In both two-dimensional
examples, H and HR functionals provide very similar grids which are closer to the prescribed
size and shape (that is, smaller values of Qeq and Qali). This is also reflected in the error of the
linear interpolation: HR functional (12) provides the smallest error, followed by H functional (10)
and then W functional (6). It seems that W functional is a bit too aggressive in moving nodes
towards the neighborhood of areas of interest, providing a higher density of the nodes along the
anisotropic features of the given function while coarsening out the mesh nearby, leading to a
steeper element size gradation. Interestingly, for both examples the convergence of the linear
interpolation error for W functional (Figs. 1f and 2f) slows down near N = 104 and returns to the
orderO(N−1) as the mesh is refined. It is unclear to us what causes this for W functional.

4.2 Three dimensions

In three dimensions, we consider the unit cube Ω = (0, 1)× (0, 1)× (0, 1) and the following
test functions.

Example 4.3.

u = tanh
(
30
[
(4x− 2.0)2 + (4y − 2.0)2 + (4z − 2.0)2 − 0.1875

])
+ tanh

(
30
[
(4x− 2.5)2 + (4y − 2.5)2 + (4z − 2.5)2 − 0.1875

])
+ tanh

(
30
[
(4x− 2.5)2 + (4y − 1.5)2 + (4z − 2.5)2 − 0.1875

])
+ tanh

(
30
[
(4x− 1.5)2 + (4y − 2.5)2 + (4z − 2.5)2 − 0.1875

])
+ tanh

(
30
[
(4x− 1.5)2 + (4y − 1.5)2 + (4z − 2.5)2 − 0.1875

])
+ tanh

(
30
[
(4x− 2.5)2 + (4y − 2.5)2 + (4z − 1.5)2 − 0.1875

])
+ tanh

(
30
[
(4x− 2.5)2 + (4y − 1.5)2 + (4z − 1.5)2 − 0.1875

])
+ tanh

(
30
[
(4x− 1.5)2 + (4y − 2.5)2 + (4z − 1.5)2 − 0.1875

])
+ tanh

(
30
[
(4x− 1.5)2 + (4y − 1.5)2 + (4z − 1.5)2 − 0.1875

])
.
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(a) Winslow’s (6)

(b) Huang’s (10)

(c) Huang and Russell’s (12)

103 104 105
1

1.5

2

2.5 Winslow
Huang

HR

(d) Qeq vs. N

103 104 105
1

1.5

2

2.5 Winslow
Huang

HR

(e) Qali vs. N

103 104 105

10−3

10−2 Winslow
Huang

HR

(f) L2 interpolation error vs. N

Figure 1: Example 4.1: example meshes (left), close-ups near the wave tip (middle) and in the
middle (right), mesh quality measures, and L2 interpolation error.
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(a) Winslow’s (6)

(b) using Huang’s (10)

(c) Huang and Russell’s (12)

103 104 105
1

1.5

2

2.5 Winslow
Huang

HR

(d) Qeq vs. N

103 104 105
1

1.5

2

2.5 Winslow
Huang

HR

(e) Qali vs. N

103 104 105

10−3

10−2
Winslow
Huang

HR

(f) L2 error vs. N

Figure 2: Example 4.2: example meshes (left), close-ups near the wave tip (middle) and in the
middle (right), mesh quality measures, and L2 interpolation error.
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Example 4.4.

u = tanh
(
− 30[z − 0.5− 0.25 sin(2πx) sin(πy)]

)
.

Example 4.5.

u = tanh

(
− 30

{
z − tanh

(
− 30 [y − 0.5− 0.25 sin(2πx)]

)})
.

Adaptive mesh examples (slice and clip cuts) and numerical results are given in Figs. 3 to 5.

As in two dimensions, all three functionals provide good size and shape adaptation, with Qeq and
Qali being reasonably small. The best mesh size control Qeq is given by HR functional (Figs. 3g,
4g, and 5g), although for the considered examples, HR has a slightly worse mesh alignment
quality Qali than the others (Figs. 3h, 4h, and 5h).

A closer look at the example meshes (slice cuts) reveals that, as in 2D, W functional —based on
variable diffusion— is noticeably more aggressive in moving nodes toward the steep features
or, alternatively, one can say that the functionals (10) and (12) based on equidistribution and
alignment distribute the nodes with the better correspondence with the given M. For coarse
meshes, all three functionals provide similar results (see convergence plots in Figs. 3i, 4i, 5i);
however, for fine meshes, sizing of mesh elements obtained by means of W functional is not
quite as good as for H and HR functionals, as indicated by a larger Qeq.

Altogether, the linear interpolation error (Figs. 3i, 4i, and 5i) suggests that HR functional provides
the best mesh, followed by H and W functionals. One may notice from Figs. 4i and 5i that the
convergence of the linear interpolation error for W functional slows down near N = 105 for
Examples 4.4 and 4.5, although, as in 2D, it seems to improve as the mesh is refined (Fig. 5i).
The reason for this behaviour is not clear to us. On the other hand, W functional has the simplest
form and seems to be more economic to compute than the other two. From tentative comparison,
mesh generation using W functional uses about one fifth to an half of the CPU time used with
H or HR functional. Qualitatively, this is not difficult to understand since W functional is convex
whereas the others are not (although they are polyconvex).

5 Conclusions

Among the three functionals in this study, Huang and Russell’s functional consistently provides
the best mesh for piecewise linear interpolation in both two and three dimensions. In all examples
it leads to the best equidistribution quality and the smallest interpolation error. Interestingly, while
it results in the best mesh alignment quality in two dimensions, the functional gives a slightly
worse mesh alignment than the other two functionals.

Meshes obtained by means of Winslow’s functional have the worst mesh equidistribution (element
sizing) quality and the largest interpolation error in four out of five examples, although in three
dimensions its mesh alignment is quite good and even better than that of the meshes obtained
using Huang and Russell’s functional. A possible explanation to this behavior could be the fact
that this functional does not have an explicit mechanism to control the equidistribution property.
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(a) Winslow’s (6) (b) Huang’s (10) (c) Huang and Russell’s (12)

(d) Winslow’s (6) (e) Huang’s (10) (f) Huang and Russell’s (12)

103 104 105 106
1

1.5

2

2.5 Winslow
Huang

HR

(g) Qeq vs. N

103 104 105 106
1

1.5

2

2.5 Winslow
Huang

HR

(h) Qali vs. N

103 104 105 106

10−1

Winslow
Huang

HR

(i) L2 error vs. N

Figure 3: Example 4.3.
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(a) Winslow’s (6) (b) Huang’s (10) (c) Huang and Russell’s (12)

(d) Winslow’s (6) (e) Huang’s (10) (f) Huang and Russell’s (12)

103 104 105 106
1

1.5

2

2.5 Winslow
Huang

HR

(g) Qeq vs. N

103 104 105 106
1

1.5

2

2.5 Winslow
Huang

HR

(h) Qali vs. N

103 104 105 106

10−2

10−1
Winslow
Huang

HR

(i) L2 error vs. N

Figure 4: Example 4.4.
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(a) Winslow’s (6) (b) Huang’s (10) (c) Huang and Russell’s (12)

(d) Winslow’s (6) (e) Huang’s (10) (f) Huang and Russell’s (12)

103 105 107
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1.5

2

2.5 Winslow
Huang

HR

(g) Qeq vs. N

103 105 107
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1.5
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2.5 Winslow
Huang
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(h) Qali vs. N

103 105 107

10−1.5

10−1

10−0.5 Winslow
Huang

HR

(i) L2 error vs. N

Figure 5: Example 4.5.
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The behavior of Huang’s functional is somewhere in between Winslow’s and Huang and Russell’s
functionals: both in mesh quality measures and interpolation error. It provides better mesh sizing
than Winslow’s functional but not quite as good as Huang and Russell’s. On the other hand, it
provides the best (or very close to the best) mesh alignment in all examples.

While being able to produce correct and good quality mesh concentration, Winslow’s functional
seems to have the tendency to move more points toward the area of interest and is slightly less
reliable than the other two functionals especially when the mesh is fine. On the other hand, it has
a very simple form and is more economic to compute than the others. It can be a good choice
for mesh adaptation at least for coarser meshes, for which all of the three functionals produce
comparable meshes.

Finally, it should be pointed out that the numerical experiment we conducted in this work is
limited and more work is needed to have an extensive and more complete understanding of
the behavior of the meshing functionals especially in three dimensions. Moreover, the newly
developed implementation of the variational methods in [11] has been crucial to the current study
to perform substantial computations in two and three dimensions. It is our hope that it can serve
as an efficient tool for use in future studies of mesh adaptation and movement.
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