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Abstract

Motivated by an application in wireless telecommunication networks, we consider a two-type
continuum-percolation problem involving a homogeneous Poisson point process of users and a
stationary and ergodic point process of base stations. Starting from a randomly chosen point of
the Poisson point process, we investigate distribution of the minimum number of hops that are
needed to reach some point of the second point process. In the supercritical regime of continuum
percolation, we use the close relationship between Euclidean and chemical distance to identify
the distributional limit of the rescaled minimum number of hops that are needed to connect a
typical Poisson point to a point of the second point process as its intensity tends to infinity. In
particular, we obtain an explicit expression for the asymptotic probability that a typical Poisson
point connects to a point of the second point process in a given number of hops.

1 Introduction and main results

We consider a model for a wireless telecommunication network where users are scattered at random
in the entire Euclidean plane. In order to meet the users’ communication demands, the operator
sustains a network of base stations. In classical cellular networks, the base stations subdivide the
plane into serving zones and all users inside a serving zone communicate directly with the associated
base station. Although such networks exhibit a simple hierarchical topology, installation and upkeep
are costly. Indeed, to guarantee good quality of service to all users, the operator either needs to install
(and maintain) a relatively dense network of base stations, or the base stations’ transmission powers
must be sufficiently high so that also distant users can be served.

Since the advent of LTE technology, operators have the possibility to reduce the number of required
base stations substantially by using relays. As of today, this means installing fixed relays at locations
that have been chosen in advance. For future generation networks it is desirable to extend this concept
through the intelligent use of ad hoc technology. To be more precise, we assume that each user has
a (comparatively small) transmission radius. A direct communication between users is possible if
they are within each others communication radii. Additionally, by forwarding messages via chains of
directly connected users, base stations can communicate with distant users, even if transmission radii
are comparatively small.

Despite these virtues, having users act as relays entails a major drawback when it comes to quality of
service for delay-sensitive applications. Indeed, the forwarding of messages via several hops induces
substantial delay in message transmission. Hence, in network planning, it is crucial to have detailed
knowledge of distributional properties of the minimum number of hops to a base station.

In the random-graphs community, the minimum number of hops that are needed to connect two ver-
tices of a graph is known as chemical distance. In supercritical Bernoulli percolation on the lattice,
chemical distance has been investigated in [1, 2]. Loosely speaking, for distant points in the infinite
connected component, the chemical distance is approximately proportional to the Euclidean distance,
where the proportionality factor is called time constant. The extension of this result to the setting of
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continuum percolation [15] will be the major tool for establishing the distributional limit of the rescaled
minimum number of hops needed to connect a user to a base station.

Next, we provide a precise definition of the wireless spatial telecommunication network under consid-
eration. It consists of two types of network components. The first component is formed by network
users. They are modeled by a homogeneous Poisson point process X in Rd, d ≥ 2 with some in-
tensity λ ∈ (0,∞). The base stations constitute the second component. We assume that they are
of the form Y = rY (1), where Y (1) is assumed to be a stationary and ergodic point process that is
independent of X and has a finite and positive intensity λ′. Here, r ≥ 0 is some scaling parameter
controlling the intensity of base stations. Since we only assume stationarity and ergodicity, our results
are valid under quite weak conditions on the spatial distribution of base stations. For instance, they
can be applied to homogeneous Poisson point processes as well as randomly shifted lattices. In other
words, our results do not depend on the question whether the base stations are scattered at random
in the Euclidean plane or are aligned according to a grid that is viewed from a random reference point.

The random network under consideration can be thought of as a model for a wireless telecommu-
nication network, where users can connect to base stations indirectly via at most k ≥ 1 hops
of Euclidean distance at most 1 to other network users. To be more precise, we say that x, y ∈
Rd are k-connectable if there exist (not necessarily distinct) Xi1 , Xi2 , . . . , Xik−1

∈ X such that
|Xij − Xij+1

| ≤ 1 for all j ∈ {0, . . . , k − 1}, where Xi0 = x and Xik = y. Here, | · | denotes
the standard Euclidean norm in Rd. We say that x, y are connectable if they are k-connectable for
some k ≥ 1. Figure 1 shows a realization of the network model, where the points of X and Y are
represented by dots and squares, respectively. Points of X that are 1-connectable to some point of
Y are shown in blue, while points of X that are 2-connectable but not 1-connectable to some point in
Y appear in green.

Figure 1: Realization of network model

In the following, we write Hr(x) for the smallest number k ≥ 1 such that x ∈ Rd is k-connectable to
some point of Y = rY (1). The main object of investigation in this paper is the quantity

Θ(k, r) = λ−1E#{Xi ∈ X ∩ [−1/2, 1/2]d : Hr(Xi) ≤ k},

i.e., the normalized expected number of points in X ∩ [−1/2, 1/2]d that are k-connectable to some
base station. In fact, we show that Θ(k, r) admits a more natural representation as limiting quantity
of the average number of points in X inside a large box that are k-connectable to a point of Y .

Proposition 1. Let k ≥ 1 and r > 0. Then, almost surely,

Θ(k, r) = lim
n→∞

λ−1n−d#{Xi ∈ X ∩ [−n/2, n/2]d : Hr(Xi) ≤ k}.
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Provided that k and r are of the same order, the asymptotic behavior of Θ(k, r) depends sensitively
on whether the intensity λ is below or above the critical intensity λc in continuum percolation. To be
more precise, λc is the infimum over all intensities λ > 0 for which the union ∪∞i=1B1/2(Xi) of balls
of radius 1/2 centered at points Xi almost surely has an unbounded connected component.

In the sub-critical regime, Θ(k, r) decays polynomially in r as r →∞.

Theorem 2. Let λ < λc and r > 0. Then,

sup
k≥1

Θ(k, r) ≤ λ−1r−dλ′E#C(o),

where C(o) denotes the set of all Xi ∈ X that are connectable to the origin.

Note that for λ < λc we have E#C(o) <∞, see e.g. [6, Theorem 12.35].

Next, consider the supercritical case, i.e., let λ > λc. By a central result in continuum percolation [10,
Theorem 2.1], the set ∪∞i=1B1/2(Xi) contains a unique unbounded connected component. In the
following, C∞ ⊂ X denotes the subset of all elements of X that are contained in this unbounded
connected component. We write θ for the probability that there exists Xi ∈ C∞, with |Xi| ≤ 1.

In order to describe the asymptotic behavior of Θ(k, r) for large k and r, it is important to understand
that the chemical distance between two points of C∞, i.e., the minimum number of hops needed
to establish a connection, grows linearly in the Euclidean distance of the two points. This can be
formalized in different ways.

First, fixing any point Xi ∈ C∞, there should exist an a.s. finite random variable ρi such that for
every Xj ∈ C∞ the chemical distance between Xi and Xj is at most ρi|Xi − Xj|. As observed
in [4, Lemma 5.2], when considering Bernoulli site percolation on the lattice, the corresponding result
can be derived by adapting the bond percolation argument established in Lemma 2.4 in the thesis of
Antal [1].

Additionally, when disregarding points in a small environment of Xi, the random variable ρi can be
replaced by a deterministic quantity µ ∈ (0,∞) that does not depend on i. To be more precise, we
put q(x) = Xj if Xj is the element of C∞ minimizing the distance to x ∈ Rd. Then, Dn denotes the
minimum integer k ≥ 1 such that q(o) and q(ne1) are k-connectable, where e1 = (1, 0, . . . , 0) is
the first standard unit vector in Rd. Using Kingman’s subadditive ergodic theorem, it is shown in [15]
that there exists a real number µ ∈ (0,∞) such that almost surely, limn→∞ n

−1Dn = µ; see
also [2] for the corresponding statement on the lattice.

With this background, we can now provide a heuristic explanation for the asymptotic behavior of
Θ(k, r) if the speed at which k and r tend to infinity is chosen so that their quotient tends to some
constant. To be more precise, by the Slivnyak-Mecke theorem [13, Corollary 3.2.3], we have

Θ(k, r) = P(r−1Hr(o) ≤ r−1k).

Hence, it suffices to understand the asymptotic distribution of r−1Hr = r−1Hr(o) as r → ∞.
First, points of X can only connect to points of Y that are contained in the unbounded connected
component of continuum percolation and the probability that a given point of Y is contained in the
unbounded connected component is given by θ. Hence, instead of rY (1) we consider the process
of relevant points rY (θ), where Y (θ) is obtained from Y (1) by independent thinning with survival
probability θ. Then, for a given point of X to be connectable to some point of Y , the former must
also belong to the unbounded connected component, which occurs with probability θ. Moreover, the
closest point of rY (θ) is at Euclidean distance rmin{|y| : y ∈ Y (θ)} and it can be reached in at
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most µrmin{|y| : y ∈ Y (θ)} hops. This heuristic is made precise in the following result, where we
use the convention 0 · ∞ = 0.

Theorem 3. Let λ > λc. Then, r−1Hr converges in distribution to the random variable

(1− Z) · ∞+ Zµmin{|y| : y ∈ Y (θ)},

where Z is a Bernoulli random variable that is independent of Y (θ) and which assumes the value 1
with probability θ.

In other words, the asymptotic distribution of r−1Hr is a mixture between a Dirac measure at∞ and
the contact distribution of the point process µY (θ). In particular, Theorem 3 can be used to compute
limr→∞ P(Hr ≤ cr).

Corollary 4. Let λ > λc and assume that limr→∞ r
−1k(r) = c for some c ∈ (0,∞). Then,

lim
r→∞

Θ(k, r) = θP
(
o ∈

⋃
Yj∈Y (θ)

Bc/µ(Yj)
)
.

If Y (1) is a homogeneous Poisson point process with intensity λ′ ∈ (0,∞), then Y (θ) is again a
homogeneous Poisson point process with intensity θλ′. In particular, we get the following result.

Corollary 5. Let Y (1) be a homogeneous Poisson point process with intensity λ′ ∈ (0,∞). Then,
under the assumptions of Corollary 4,

lim
r→∞

Θ(k, r) = θ(1− exp(θκdc
dµ−d)),

where κd denotes the volume of the unit ball in Rd.

The limiting distribution provided in Theorem 3 depends on λ implicitly via θ and µ. In order to develop
an intuition on the order of λ that is needed to achieve a given (high) connectivity probability, it is
useful to have some information on the behavior of θ and µ as a function of λ. First, concerning θ, it
is shown in [11, Corollary of Theorem 3] that θ = θ(λ) converges exponentially fast to 1 as λ tends
to infinity. Second, we show that asymptotically µ − 1 = µ(λ) − 1 tends to 0 as λ → ∞ and that
the convergence occurs at least at a polynomial speed.

Theorem 6. µ(λ)− 1 ∈ O(λ−1/d(log λ)1/d).

The present paper is organized as follows. In Section 2, we establish the ergodic representation
of Θ(k, r) announced in Proposition 1 and investigate the asymptotic behavior of Θ(k, r) in the
subcritical regime. That is, we prove Theorem 2. Section 3, is devoted to the proof of Theorem 3 which
describes the distributional limit of the rescaled minimum number of hops r−1Hr in the supercritical
regime. Finally, in Section 4, we prove Theorem 6, i.e., we show that the time constant µ tends to 1 as
the intensity tends to infinity. Additionally, we provide a lower bound for the speed of this convergence.

2 Proof of Proposition 1 and Theorem 2

The proof of Proposition 1 is based on the multidimensional ergodic theorem. To apply this result, it is
important to note that the homogeneous Poisson point process is mixing [13, Theorem 9.3.5], so that
the pair of independent stationary point processes (X, Y ) is again ergodic, see [8, Theorem 3.6].
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Proof. For z ∈ Rd let

Wz = #{Xi ∈ [−1/2, 1/2]d + z : Hr(Xi) ≤ k}

denote the number of points in X ∩ (z + [−1/2, 1/2]d) that are at most k hops away from some
point of Y . From the ergodic theorem for spatial processes (see, e.g. [8, Theorem 2.13]), we conclude
that the random variable

Ξm = m−d
∫

[−m/2,m/2]d
Wzdz

converges almost surely to

E
∫

[−1/2,1/2]d
Wzdz = E#{Xi ∈ [−1/2, 1/2]d : Hr(Xi) ≤ k}.

Moreover, for sufficiently large n ≥ 1 the expression

n−d#{Xi ∈ X ∩ [−n/2, n/2]d : Hr(Xi) ≤ k}

is bounded below and above by n−d(n − 1)dΞn−1, and n−d(n + 1)dΞn+1, respectively. Hence,
letting n→∞ completes the proof.

To prepare the proof of Theorem 2, we note that it is possible to express Θ(k, r) as the expected value
of the suitably weighted size of the cluster at a typical point of Y . To be more precise, for Yj ∈ Y , let
Ck(Yj) denote the set of all Xi ∈ X such that Xi is k-connectable to Yj . Additionally, put

κ(Xi) = #{Yj ∈ Y : Xi ∈ Ck(Yj)}.

Then, we show that Θ(k, r) = λ−1E
∑

Yj∈[−1/2,1/2]d

∑
Xi∈Ck(Yj) κ(Xi)

−1.

Lemma 7. Let k ≥ 1 and r > 0. Then,

Θ(k, r) = λ−1E
∑

Yj∈[−1/2,1/2]d

∑
Xi∈Ck(Yj)

κ(Xi)
−1.

Proof. The claimed identity is a consequence of the mass-transport principle [3]. Indeed, define a
function Φ : Zd × Zd → [0,∞) by mapping a pair of sites (z, z′) ∈ Zd × Zd to

Φ(z, z′) =
∑

Yj∈[−1/2,1/2]d+z

∑
Xi∈Ck(Yj)∩([−1/2,1/2]d+z′)

κ(Xi)
−1.

Then, clearly,
∑

z∈Zd Φ(o, z) =
∑

Yj∈[−1/2,1/2]d

∑
Xi∈Ck(Yj) κ(Xi)

−1. On the other hand,∑
z∈Zd

Φ(z, o) =
∑
Yj∈Y

∑
Xi∈Ck(Yj)∩[−1/2,1/2]d

κ(Xi)
−1

=
∑

Xi∈[−1/2,1/2]d

∑
Yj∈Y :Xi∈Ck(Yj)

κ(Xi)
−1

= #{Xi ∈ [−r/2, r/2]d : Xi is k-connectable to some point of Y }.

By stationarity, we obtain that

E
∑
z∈Zd

Φ(z, o) =
∑
z∈Zd

EΦ(z, o) =
∑
z∈Zd

EΦ(o,−z) = E
∑
z∈Zd

Φ(o, z),

which concludes the proof.
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Since κ(Xi) ≥ 1 for all Xi ∈ Ck(Yj), Lemma 7 gives rise to a simple upper bound for Θ(k, r).

Proposition 8. Let k ≥ 1 and r > 0. Then,

Θ(k, r) ≤ λ−1r−dλ′E#Ck(o).

We note two corollaries of Proposition 8. First, k must grow at least linearly in r for Θ(k, r) to have a
non-zero limit.

Corollary 9. If k = k(r) ∈ o(r), then limr→∞Θ(k, r) = 0.

Proof. Since Ck(o) is contained in Bk(o), we deduce that E#Ck(o) ≤ kdE#(X ∩ B1(o)). In
particular, applying the upper bound from Proposition 8 proves the claim.

Moreover, Proposition 8 is also useful for proving Theorem 2.

Proof of Theorem 2. Combining the trivial inequality #Ck(o) ≤ #C(o) with Proposition 8 yields the
desired bound.

3 Proof of Theorem 3

In this section, we prove Theorem 3. To this end, we fix λ > λc throughout the entire section. Using
the notation of Theorem 3, let W = (1− Z) · ∞+ Zµmin{|y| : y ∈ Y (θ)}. In order to show that
r−1Hr converges to W in distribution, we fix an arbitrary a ≥ 0. Then, we proceed in three steps,
namely

(i) limr→∞ P(Hr =∞) = 1− θ,

(ii) lim infr→∞ P(Hr ≤ ra) ≥ P(W ≤ a),

(iii) lim supr→∞ P(Hr ≤ ra) ≤ P(W ≤ a).

As a first auxiliary result, we note that asymptotically the events that points in Rd belong to the
unbounded connected component become independent.

Lemma 10. Let λ > λc and z1, . . . , zm be distinct points in Rd \ {o}. Furthermore, let Er denote
the event that #C(o) =∞ and #C(rzi) =∞ for some i ∈ {1, . . . ,m}. Then, limr→∞ P(Er) =
θ(1− (1− θ)m).

Proof. Choose δ > 0 such that the cubes [−δ, δ]d, z1 + [−δ, δ]d, . . . , zm + [−δ, δ]d are pair-
wise disjoint. Furthermore, let G(y, r) denote the event that the connected component of B1/2(y) ∪⋃
j≥1B1/2(Xj) at y ∈ Rd is not contained in y+[−rδ+1, rδ−1]d. Since the eventsG(o, r), G(rz1, r) . . . ,

G(rzm, r) are independent, we can conclude that

lim
r→∞

P(Er) = lim
r→∞

P(G(o, r))
(

1−
m∏
i=1

(
1− P(G(rzi, r))

))
= θ(1− (1− θ)m),

if we can show that the probability that the connected component ofB1/2(y)∪
⋃
j≥1B1/2(Xj) at y is

finite, but not contained in y+ [−rδ+ 1, rδ−1]d tends to 0 as r →∞. But this is a consequence of
the uniqueness of the unbounded connected component in continuum percolation, see [10, Theorem
2.1].
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Lemma 10 allows us to compute limr→∞ P(Hr =∞).

Proof of limr→∞ P(Hr =∞) = 1− θ. First, we note that lim supr→∞ P(Hr < ∞) ≤ θ. For the
reverse inequality, let n ≥ 1 be arbitrary. Uniqueness of the infinite connected component shows that
if #C(o) = ∞ and #C(ry) = ∞ for some y ∈ Y (1) ∩ [−n/2, n/2]d, then Hr < ∞. Hence, by
Fatou’s lemma and Lemma 10,

lim inf
r→∞

P(Hr <∞) ≥ E
(

lim inf
r→∞

P(#C(o) =∞ and sup
y∈Y (1)∩[−n/2,n/2]d

#C(ry) =∞|Y (1))
)

= θE(1− (1− θ)#(Y (1)∩[−n/2,n/2]d)).

Letting n→∞ completes the proof of the lower bound.

Lemma 11. Let ε ∈ (0, 1) be arbitrary. Then,

lim
r→∞

P(E(r, ε)) = 0,

where E(r, ε) denotes the event that there exists y ∈ Y (1) ∩ Ba(1−ε)/µ(o) such that #C(o) =
#C(ry) =∞, but o is not brac-connectable to ry.

Proof. The claim is an immediate consequence of [15, Theorem 2.2].

After these preliminary results, we now proceed with the proof of lim infr→∞ P(Hr ≤ ra) ≥
P(W ≤ a).

Proof of lim infr→∞ P(Hr ≤ ra) ≥ P(W ≤ a). Put E∗(r, ε) = {#C(o) = ∞} ∩ E∗∗(r, ε),
where E∗∗(r, ε) denotes the event that there exists y ∈ Y (1) ∩ Ba(1−ε)/µ,(o) with #C(ry) = ∞.
Then,

P(Hr ≤ ra) ≥ P(E∗(r, ε))− P(E(r, ε)).

By Lemma 11, the second probability in the above expression is negligible as r → ∞. Hence, by
Lemma 10,

lim inf
r→∞

P(Hr ≤ ra) ≥ θE
(

1− (1− θ)#(Y (1)∩Ba(1−ε)/µ(o))
)

= θP
(
Y (θ) ∩Ba(1−ε)/µ(o) 6= ∅

)
= θP

(
µmin{|y| : y ∈ Y (θ)} ≤ a(1− ε)

)
.

Letting ε→ 0 completes the proof.

In order to complete the proof of Theorem 3, it remains to show that lim supr→∞ P(Hr ≤ ra) ≤
P(W ≤ a). First, we derive an auxiliary result illustrating the close relationship between the Eu-
clidean distance and the chemical distance in the unbounded connected component of continuum
percolation [15] to show that, asymptotically, users are not k-connectable to base stations that are not
within distance of k/µ. To be more precise, we use the following corollary to the shape theorem [15,
Theorem 2.2].

Lemma 12. Let λ > λc and a > 0. Then, for every ε ∈ (0, 1),

lim
r→∞

P(F (r, ε)) = 0,

where F (r, ε) is the event that the origin is drae-connectable to some point in Rd \Bra(1+ε)/µ(o).
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Second, we note that, asymptotically, distinct points that are connectable must be contained in the
unbounded connected component of continuum percolation.

Lemma 13. Let λ > λc and z1, . . . , zm be distinct points in Rd \{o}. Furthermore, let Fr denote the
event that o is connectable to some rzi with min{#C(o),#C(rzi)} <∞. Then, limr→∞ P(Fr) =
0.

Proof. Let δ be the minimum of the pairwise distances between elements of {o, z1, . . . , zm}. By
stationarity, P(Fr) is bounded above by two times the probability that #C(o) < ∞, but the origin
is connectable to some point with distance at least rδ. By uniqueness of the unbounded connected
component in continuum percolation, the probability of the latter event tends to 0 as r →∞.

Now, we can complete the proof of Theorem 3.

Proof of lim supr→∞ P(Hr ≤ ra) ≤ P(W ≤ a). First, we see that P(Hr ≤ ra) is at most

P(F ′(r, ε)) + P(F (r, ε)),

where F ′(r, ε) denotes the event that o is connectable to some ry ∈ rY (1) ∩ Bra(1+ε)/µ(o). We
conclude from Lemma 12 that it suffices to investigate the first expression. Concerning P(F ′(r, ε)),
Lemma 13 shows that as r → ∞ this probability converges to the probability of the event that
#C(o) = ∞ and #C(ry) = ∞ for some y ∈ Y (1) ∩ Ba(1+ε)/µ(o). Hence, combining Lemma 10
with the dominated convergence theorem gives that

lim sup
r→∞

P(Hr ≤ ra) ≤ θP(Y (θ) ∩Ba(1+ε)/µ(o) 6= ∅).

Repeating the final steps used in the derivation of the lower bound completes the proof.

4 Proof of Theorem 6

Loosely speaking, in order to prove Corollary 6, we can proceed similarly as in [15, Lemma 3.4]
and modify the arguments used in the lattice setting [2]. The general construction presented in these
papers is useful for the proof of Corollary 6, but the identification of the behavior of µ = µ(λ) as
λ→∞ requires a more refined analysis.

It is convenient to introduce a specific family of site percolation processes. For this purpose, we
describe certain useful configurations in the unit cube. Let ε ∈ (0, 1/d) be arbitrary. First, we need to
ensure that any two points of X ∩ [−(1− ε)/2, (1− ε)/2]d can be connected via hops of distance
at most 1 to other points of X ∩ [−(1 − ε)/2, (1 − ε)/2]d. To be more precise, E1,ε denotes the
event consisting of all locally finite ϕ ⊂ Rd such that ϕ ∩ Qi 6= ∅ for all i ∈ {1, . . . , (2d)d}, where
Q1, . . . , Q(2d)d is a subdivision of [−(1− ε)/2, (1− ε)/2]d into congruent subcubes of side length
(1− ε)/(2d). In particular, if Qi ∩Qj 6= ∅, then |xi − xj| ≤ 1 for all xi ∈ Qi, xj ∈ Qj .

Second, we demand that X has a point close to the origin. This will allow us to pass through linear
arrangements of adjacent cubes without deviating too much from the line segment connecting the
centers of these cubes. More precisely, E2,ε denotes the event consisting of all locally finite ϕ ⊂ Rd

with ϕ ∩ [−ε/4, ε/4]d 6= ∅. Note that |x − y| ≤ 1 for all x ∈ [−ε/4, ε/4]d and y ∈ ((1 − ε)e1 +
[−ε/4, ε/4]d). Finally, for ε ∈ (0, 1) we say that z ∈ Zd is ε-good if X − (1− ε)z ∈ E1,ε ∩ E2,ε.

To begin with, we show that we can traverse quickly linear arrangements of good sites.
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Lemma 14. Let j ≥ 1 and ε ∈ (0, 1) be such that the site ie1 is ε-good for all i ∈ {0, . . . , j}.
Furthermore, let x, y ∈ X be such that x ∈ [−ε/4, ε/4]d and y ∈ (j(1 − ε)e1 + [−ε/4, ε/4]d).
Then, x and y are j-connectable.

Proof. Proceeding inductively, it suffices to consider the case j = 1. But for j = 1, the claim is
immediate. Indeed, as observed above, we have |x− y| ≤ 1.

Even for large values of the intensity λ, the probability that the site ie1 is ε-good for all i ∈ {0, . . . ,m}
decays exponentially fast in m. Therefore, we have to deal with the occasional occurrence of defects.
In the following, we say that a set of sites Λ ⊂ Zd is ∗-connected if it forms a connected set in the
graph whose vertices are given by Zd and where z, z′ ∈ Zd are connected by an edge if |z−z′|∞ ≤
1. We need a crude upper bound for the number of steps needed to traverse a set of cubes associated
with a ∗-connected set of ε-good sites.

Lemma 15. Let ε > 0 and Λ ⊂ Zd be a finite ∗-connected set of ε-good sites. Furthermore, let
x, x′ ∈ X be such that x ∈ (1− ε)(z + [−1/2, 1/2]d), x′ ∈ (1− ε)(z′ + [−1/2, 1/2]d) for some
z, z′ ∈ Λ. Then x and x′ are k-connectable for k = (3 + (2d)d)#Λ.

Proof. If z = z′, then the definition of ε-goodness implies that x and x′ are k′-connectable for
k′ = 2+(2d)d. Next, if z, z′ are such that |z−z′|∞ ≤ 1, then, again by the definition of ε-goodness,
there exist y, y′ ∈ X with y ∈ (1 − ε)(z + [−1/2, 1/2]d), y′ ∈ (1 − ε)(z′ + [−1/2, 1/2]d), and
|y − y′| ≤ 1. Hence, the proof of Lemma 15 is completed by an elementary induction argument on
the length of the path in Λ connecting z and z′.

The next step is to combine Lemmas 14 and 15 into an upper bound that is useful in situations where
the ∗-connected ε-bad components associated with the sites ie1, i ∈ {0, . . . ,m} only cover a small
proportion of these sites. More precisely, let Um be the union of the ∗-connected ε-bad components
associated with the sites ie1, i ∈ {0, . . . ,m}. If ie1 is ε-good, then we define its ∗-connected ε-bad
component to be empty. Note that Um is almost surely finite provided that λ is sufficiently large.

Let U (∞)
m denote the unbounded connected component of Zd \Um. Then, U ′m = Zd \U (∞)

m consists

of m′ ≥ 1 ∗-connected components U (1)
m , . . . , U

(m′)
m . Let ∂U (i)

m denote the outer boundary of U (i)
m ,

i.e., ∂U (i)
m consists of all z ∈ Zd\U (i)

m such that |z−z′|∞ = 1 for some z′ ∈ U (i)
m . Note that ∂U (i)

m is
∗-connected, since the outer boundary of any ∗-connected set is again ∗-connected, see [7, Lemma
2.23] (related results can be found in [5, 14]).

Next, we identify subsets of {o, e1, . . . ,me1} that form linear arrangements of ε-good sites. To
be more precise, we construct two finite increasing subsequences (ai)1≤i≤m′′ and (bi)1≤i≤m′′ of
{0, . . . ,m} inductively as follows. If {o, e1, . . . ,me1} ⊂ U ′m, then we put m′′ = 0. Otherwise,
choose a1 = min{i ≥ 0 : ie1 6∈ U ′m} as the first site that is not contained in U ′m. Furthermore,
let b1 = max{i ∈ {a1, . . . ,m} : ie1 6∈ U ′m} be the last site after a1 that is not contained U ′m. If
b1 = m, then put m′′ = 1 and terminate the construction. Otherwise, by definition, there is some
i1 ∈ {1, . . . ,m′} such that (b1 + 1)e1 ∈ U

(i1)
m . Define a′2 = max{i ≥ b1 : ie1 ∈ ∂U

(i1)
m }. If

a′2 > m, then put m′′ = 1 and terminate the construction. Otherwise, define a2 = a′2 and continue
inductively. See Figure 2 for an illustration of this construction.

We make two crucial observations. First, the sites je1 are ε-good for all j ∈ {ai, . . . , bi} and i ∈
{1, . . . ,m′′}. Second, if j < m′ then the sites bje1, aj+1e1 are contained in the ∗-connected set

∂U
(ij)
m . This allows us to make use of Lemma 15.
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U

(1)
m

U
(2)
m U

(3)
m

Figure 2: Construction of the sequences (ai)1≤i≤m′′ and (bi)1≤i≤m′′

To summarize, we have derived bounds on the number of hops for traversing linear arrangements of
ε-good cubes and for making detours around defects. These bounds are sufficient for our purposes
provided that neither o nor me1 are contained in U ′m. In that situation, we need the following auxiliary
result, where we write ⊕ for Minkowski addition.

Lemma 16. Let i ∈ {1, . . . ,m′} and x ∈ C∞ be such that x ∈ (1 − ε)(U
(i)
m ⊕ [−1/2, 1/2]d).

Then, there exists x′ ∈ (1 − ε)(∂U
(i)
m ⊕ [−1/2, 1/2]d) such that x and x′ are k-connectable for

k = c1#U
(i)
m , where c1 = c1(d) ≥ 1 is a constant depending only on the dimension d.

Proof. Loosely speaking, we proceed as follows. Since x is contained in C∞, it is k-connectable to
the boundary of (1−ε)(U (i)

m ⊕[−1/2, 1/2]d) for some k ≥ 1. Then, we make use of the observation

in [15, Lemma 3.4] that the minimum such k cannot be too large in comparison to #U
(i)
m . To be more

precise, let γ = 〈x = x1, . . . , xk〉 be some path in X consisting of hops of distance at most 1

such that x′ = xk is contained in (1 − ε)(∂U (i)
m ⊕ [−1/2, 1/2]d). We note that there is a constant

c′1 = c′1(d) ≥ 1 with the following property. There exists a finite subset S of Rd consisting of at most

c′1#U
(i)
m elements and such that for every y ∈ (1− ε)((U (i)

m ∪ ∂U (i)
m )⊕ [−1/2, 1/2]d) there exists

y′ ∈ S with |y − y′| ≤ 1/2. If there exist y1, . . . , yk ∈ S with |xj − yj| ≤ 1/2 for every j ∈
{1, . . . , k} and such that for every j ∈ {1, . . . , k} there exists at most one j′ ∈ {1, . . . , k} \ {j}
with yj = yj′ , then the claim follows from the observation that k ≤ 2#S ≤ 2c′1#U

(i)
m . Hence,

it remains to transform γ into a γ′ path with that property. This can be achieved by using Lawler’s
method of loop erasure [9].

To be more precise, let i1 ∈ {1, . . . , k} be the largest index such that |xi1−y1| ≤ 1/2. In particular,
|x1 − xi1| ≤ 1 and |xi1 − xi1+1| ≤ 1. Now the construction proceeds inductively by defining γ′ as
the path obtained by pasting the paths 〈x1, xi1 , xi1+1〉 and γ′′, where γ′′ is the loop erasure of the
path 〈xi1+1, . . . , xk〉.

Letmε(n) be the unique integer contained in the interval [ n
1−ε−

1
2
, n

1−ε+ 1
2
). Combining Lemmas 14–

16, we see that q(o) and q(ne1) can be connected using at most

k = mε(n) + (3 + (2d)d)
m′∑
i=1

#∂U
(i)
mε(n) + 2c1#U

′
mε(n) (1)

hops. In order to translate this observation into an upper bound for µ, it is important to have some
control on the size of the random variables

∑m′

i=1 #∂U
(i)
mε(n) and #U ′mε(n). In the following, we write

qλ,ε for the probability that a fixed site is ε-bad. In particular,

qλ,ε ≤ (2d)dexp(−λ(1− ε)d(2d)−d) + exp(−λ2−dεd). (2)

Lemma 17. If qλ,ε < 2−3d−1, then limm→∞ P(
∑m′

i=1 #∂U
(i)
m ≥ 23d+23dqλ,εm) = 0.
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Proof. Since any site in ∪m′i=1∂U
(i)
m is ∗-adjacent to an ε-bad ∗-connected component intersecting

{o, e1, . . . ,me1}, we have that
m′∑
i=1

#∂U (i)
m ≤ 3d#Um.

Furthermore, as shown in [5, Lemma 2.3], #Um is stochastically dominated by
∑m

i=0Ri, where
{Ri}0≤i≤m is a family of iid random variables such that Ri has the distribution of the size of the open
∗-connected component at the origin when considering Bernoulli site percolation with parameter qλ,ε.
The number of ∗-connected subsets of sites containing the origin and consisting of exactly k ≥ 1
sites is bounded above by 23dk, see [12, Lemma 9.3]. Therefore,

ER0 ≤
∞∑
k=0

k23dkqkλ,ε =
23dqλ,ε

(1− 23dqλ,ε)2
< 23d+2qλ,ε.

The claim now follows from the law of large numbers.

Lemma 18. If qλ,ε < 2−3d−1, then limm→∞ P(#U ′m ≥ 23d+433dd2qλ,εm) = 0.

Proof. By the isoperimetric inequality [5, Equation (2.1)], we have #U
(i)
m ≤ 3dd2

(
#∂U

(i)
m

)2
for

all i ∈ {1, . . . ,m′}. Note that the factor 3d is needed, since we consider outer boundaries with
respect to ∗-adjacency. Moreover, using the same notation as in the proof of Lemma 17, the sum∑m′

i=1

(
#∂U

(i)
m

)2
is stochastically dominated by 9d

∑m
i=0R

2
i , where

ER2
0 ≤

∞∑
k=0

k223dkqkλ,ε =
(23dqλ,ε + 1)23dqλ,ε

(1− 23dqλ,ε)3
< 23d+4qλ,ε.

As before, the law of large numbers now implies the claim.

In order to prove Theorem 6, we need to decrease ε accordingly in the size of λ. By the upper bound
on qλ,ε derived in (2), we conclude that if we choose

ε = ε(λ) = 2λ−1/d(log λ)1/d, (3)

then limλ→∞ ε
−1qλ,ε = 0.

Proof of Theorem 6. Choose ε as in (3) and put µ+ = 1+3ε. Then, it suffices to show that P(Dn ≥
nµ+) → 0 as n → ∞. Combining (1) with Lemmas 17 and 18, we see that it suffices to show
that mε(n) ≤ n(1 + 2ε). But since 1/(1 − ε) < 1 + 2ε, this is an immediate consequence of the
definition of mε(n).
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