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AbstractIn a �rst part we consider evolutionary systems given as generalized gradientsystems and discuss various variational principles that can be used to constructsolutions for a given system or to derive the limit dynamics for multiscaleproblems. These multiscale limits are formulated in the theory of evolutionaryGamma-convergence. On the one hand we consider the a family of viscousgradient system with quadratic dissipation potentials and a wiggly energylandscape that converge to a rate-independent system. On the other hand weshow how the concept of Balanced-Viscosity solution arise as in the vanishing-viscosity limit.As applications we discuss, �rst, the evolution of laminate microstructures in�nite-strain elastoplasticity and, second, a two-phase model for shape-memorymaterials, where H-measures are used to construct the mutual recovery se-quences needed in the existence theory.1 IntroductionThis work shows how methods from abstract evolutionary systems ba be employed for thestudy of material models which allow for small or �nite-strain elastic deformation y andare characterized by further internal or dissipative variables z which may describe damage,plastic deformations, magnetization, polarization, or phase transformations. The commonfeature of all models considered is their description in terms of an energy functional E anda dissipation potential R. Hence the evolution of the state q = (y, z) can be described bya generalized force balance, namely
0 ∈ ∂q̇R(q(t), q̇(t)) + DqE(t, q(t)). (1)Here ∂q̇R(q, q̇) denotes the convex subdi�erential of the dissipation potential R, wherefor each state q the function R(q, ·) is nonnegative, convex, and lower semicontinuous andsatis�es R(q, 0) = 0. Thus, the possibly set-valued subdi�erential ∂q̇R(q, q̇) contains thedissipative forces generated by the rate q̇ if the system is in the state q. These forces haveto be balanced by the potential restoring forces −DqE(t, q).The formulation of material models in terms of the functionals E and R instead ofgeneral PDEs shows additional physical structure that can be exploited mathematically.In particular, one can employ the rich theory of the calculus of variations, even for evolu-tionary systems. As a �rst case, we see that a very useful time discretization of (1) canbe obtained by the time-incremental minimization problem

qk+1 ∈ Arg min
q

(
E(tk+1, q) + (tk+1−tk)R

(
qk+θ,

1
tk+1−tk

(q−qk)
))

. (2)In the context of abstract evolutionary systems this scheme relates to De Giorgi'stheory of minimizing movements, and one way of obtaining solutions is via De Giorgi's
(R,R∗)-principle, also called the energy-dissipation principle (EDP), which is given bythe simple variational characterization via

E(T, q(T )) +

∫ T

0

R(q, q̇)+R∗(q,−DE(t, q))dt ≤ E(0, q(0)) +

∫ T

0

∂tE(t, q)dt.1



This principle and its equivalence to (1) will be discussed in Section 2.1.The EDP is also extremely useful for studying multiscale problems given in termsof generalized gradient systems (X, Eε,Rε), where ε ∈ [0, 1] is a small parameter. Themajor question is under what conditions the solutions qε : [0, T ] → X for (X, Eε,Rε)converge to a solution q0 : [0, T ] → X for (X, E0,R0) in the limit ε → 0. If this holds andadditionally the energies converge, i.e. Eε(t, qε(t)) → E0(t, q0(t)) we call this evolutionary
Γ-convergence. In general, the Γ-convergences Eε

Γ→ E0 and Rε
Γ→ R0 are not enough.We discuss some of the results from [Mie14] and give applications to models with wigglyenergies, where for ε > 0 the dissipation potentials Rε(q, v) = 1

2
〈v, Gε(q)v〉 are quadraticand satisfy Rε → 0, but the limiting dissipation potential R0 is 1-homogeneous, suchthat (X, E0,R0) is a rate-independent system (RIS), such as linearized elastoplasticity,see Section 4.2.Moreover, the vanishing-viscosity limit ε→0 of generalized gradient systems (X, E ,Rε),where the �small-viscosity dissipation potential� has the formRε(q, v) = Ψ(q, v)+ ε

2
〈v, Gv〉,can also be studied e�ciently using a reparametrized version of the EDP, see Section 4.3.This leads to the notion of balanced-viscosity solutions (also called BV solutions) for RIS

(X, E , Ψ, G), where G indicates the additional viscosity structure which determines thejump behavior.For purely rate-independent models it is advantageous to replace the in�nitesimaldissipation metric Ψ by the dissipation distance D(q0, q1) between two states z0 and z1.This leads to the notion of energetic rate-independent systems (ERIS). In particular, thetime-incremental minimization (2) does not depend on the time step and can be replacedby
qk+1 ∈ Arg min

q∈X

(
E(tk+1, q) +D(qk, q)

)
. (3)It was observed in [MTL02] that all accumulation points of the piecewise interpolantsof the solutions of (3) are so-called energetic solutions, see (5) for the purely energeticde�nition of this solution concept.A corresponding notion of evolutionary Γ-convergence for ERIS (X, Eε,Rε) was de-veloped in [MRS08], see also [MiR15] for more details. Using this approach and the gen-eral existence theory for �nite-strain elastoplasticity from [MaM09, Mie10] it was shownin [MiS13] that linearized elastoplasticity can be derived as the evolutionary Γ-limit of�nite-strain elastoplasticity, if the yields stress is tending to 0, see Section 3.2.In Section 5 we discuss two rate-independent material models that describe the evo-lution of microstructures. The �rst one is a mathematical version of the model proposedin [KoH11], where laminates are considered as dissipative internal variables and equippedwith a physically motivated dissipation distance, see Section 5.1 and [HHM12]. In Section5.2 the two-phase model introduced in [MTL02] is reconsidered using a new constructionfor mutual recovery sequences, which allows us to generalize the original existence proofconsiderably.
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2 Variational formulations for evolutionA main point of looking in di�erent variational principles lies in the fact that thesesprinciples lead to di�erent mathematical formulations. For instance, when looking toglobal existence results for material models allowing for �nite strains and the associatedgeometric nonlinearities, it is highly desirable to use minimization principles on the energysuch that the rich theory of direct methods from the calculus of variations are applicable,such as weak lower semicontinuity, existence of minimizers, Γ-convergence, and relaxationtechniques.2.1 Generalized gradient systems and the energy-dissipation prin-cipleWe now convert the formal ideas from the introduction into rigorous mathematical state-ments. We call a triple (X, E ,R) a generalized gradient system (gGS), if X is a Banachspace, E : [0, T ]×X → R∞ := R∪{∞} is an energy functional, andR : X×X → [0,∞] isa dissipation potential, which means that for all q ∈ X the functionalR(q, ·) : X → R∞ islower semicontinuous, nonnegative, convex, and satis�es R(q, 0) = 0. We speak of a clas-sical gradient system, or simply a gradient system, if R(q, ·) is quadratic, i.e. there existsa (viscosity) operator G(q) = G(q)∗ ≥ 0 such that R(q, v) = 1
2
〈G(q)v, v〉. However, plas-ticity requires non-quadratic dissipation potentials, e.g. of the form R(π̇) = σyield‖π̇‖L1 +

1
2
µvisc‖π̇‖2

L2. In particular, the rate-independent case requires R(q, λv) = λR(q, v) for all
λ > 0, which is incompatible with a quadratic form.The following proposition from convex analysis shows that there are several completelyequivalent formulations of the generalized force balance (1). The equivalences of the points(ii) to (iv) are also called the Fenchel equivalences, cf. [Fen49]. The essential tools is theFenchel-Legendre transform Ψ∗ : X∗ → R∞ of a convex function Ψ : X → R∞ de�nedvia

Ψ∗(ξ) := sup{ 〈ξ, v〉 −Ψ(v) | v ∈ X }.Note that in a re�exive Banach space we have (Ψ∗)∗ = Ψ.Proposition 2.1 (Equivalent formulations) Let X be a re�exive Banach space and
Ψ : X → R∞ be proper, convex, and lower semicontinuous. Then, for every ξ ∈ X∗ andevery v ∈ X the following �ve statements are equivalent:(i) v ∈ Arg min

w∈X

(
Ψ(w)− 〈ξ, w〉

)
; (ii) ξ ∈ ∂Ψ(v);(iii) Ψ(v) + Ψ∗(ξ) = 〈ξ, v〉;(iv) v ∈ ∂Ψ∗(ξ); (v) ξ ∈ Arg min

η∈X∗

(
Ψ∗(η)− 〈η, v〉

)
.Note that the de�nition of Ψ∗ immediately implies the Young-Fenchel inequality Ψ(w) +

Ψ∗(η) ≥ 〈η, w〉 for all w and η. Thus, (iii) expresses an optimality as well.De�ning the dual dissipation potentialR∗ via R∗(q, ·) := (R(q, ·))∗ we can apply theseequivalences to reformulate (1) in the following ways:3



(I) Helmholtz-Rayleigh principle [Hel69, Ray71](HRP) q̇ ∈ Arg min
(
R(q, v)− 〈DE(t, q), v〉

);(II) Force balance in X∗ Rayleigh-Biot equation [Ray71, Bio55](FB) 0 ∈ ∂q̇R(q, q̇) + DE(t, q) ∈ X∗;(III) Power balance in R De Giorgi's (R,R∗) formulation [DMT80](PB) R(q, q̇) +R∗(q,−DE(t, q)) = −〈DE(t, q), q̇〉;(IV) Rate equation in X Onsager equation [Ons31](RE) q̇ ∈ ∂ξR∗(q,−DE(t, q)) ∈ X;(V) Maximum dissipation principle cf. e.g. [HaF08](MDP) DE(t, q) ∈ Arg max
(
〈ξ, q̇〉 − R∗(q, ξ)

).Note that we have changed the sign in (V) to justify the name of (MDP). The reason forthis will become apparent in the rate-independent setting where R∗ only takes the twovalues 0 and ∞, see (4) and [HaF08].Before returning to the general situation, we highlight the three di�erent cases (II)�(IV) for the classical viscous dissipation, i.e. R(u, v) = 1
2
〈Gv, v〉 and R∗(u, ξ) = 1

2
〈ξ, Kξ〉with K = G−1. Then, we have(FB) Gu̇ = −DE(u) (RE) u̇ = −KDE(u) = −∇GE(u)(PB) 1

2
〈Gu̇, u̇〉+

1

2
〈DE(u), KDE(u)〉 = −〈DE(u), u̇〉,where (RE) can be seen as a �gradient evolution�, as ∇G is the gradient operator.The above forms can already be understood as variational formulations, since theevolution is expressed by extremizing a functional or by variations or derivatives of thetwo functionals E and R. However, for mathematical purposes it is desirable to havevariational formulations for the whole solution trajectories q : [0, T ] → X. One suchprinciple can be derived on the basis of the power balance (PB) by integration in time andusing the chain rule and �nally employing the Young-Fenchel inequality Ψ(w) + Ψ∗(η) ≥

〈η, w〉, cf. [DMT80] or the survey [Mie14].Theorem 2.2 (De Giorgi's energy-dissipation principle) Under suitable technicalconditions on (X, E ,R) a function q : [0, T ] → X satis�es (I)�(V) from above for almostall t ∈ [0, T ] if and only if the Energy-Dissipation Principle (EDP) holds:(EDP) 



E(T, q(T )) +

∫ T

0

R(q, q̇) +R∗(q,−DE(t, q))dt

≤ E(0, q(0)) +

∫ T

0

∂tE(t, q(t))dt.Then, the EDP is equivalent to the energy-dissipation balance (EDB), where �≤� in(EDP) is replaced by �=�. 4



It is obvious how to obtain (EDB) (and hence (EDP) from (I)�(V). For this one simplyintegrates the power balance (III) in time and uses a abstract chain rule
E(t, q(t)) = E(r, q(r)) +

∫ t

r

〈DE(s, q(s)), q̇(s)〉+ ∂sE(s, q(s))ds.Starting from (EDP) and using the chain rule one easily obtains the power balance (III)as an estimate, namely ∫ T

0
R + R∗ dt ≤

∫ T

0
−〈DE , q̇〉 dt. However, the Young-Fenchelinequality gives R + R∗ ≥ −〈DE , q̇〉 for almost all t ∈ [0, T ], so that the power balance(III) has to hold.The importance of the EDP is that a discrete counterpart can be derived based on theincremental minimization problem (2) and De Giorgi's variational interpolants q̃τ . In aclassical Banach-space setting on can use the piecewise constant right and left-continuousinterpolants qτ and qτ as well as the piecewise a�ne interpolant q̂τ (all satisfying qτ (tk) =

qk) and obtains the discrete version of EDP in the form
E(tk, q̂τ (tk))+

∫ tk

tl

R(qτ , ˙̂q)+R∗(qτ ,−DE(t, q̃τ ))dt ≤ E(tl, q̂τ (tl)) +

∫ tk

tl

∂tE(t, qτ )dt.Under suitable assumptions it is possible to take the time-step limit τ → 0 and arrive atthe notion of weak energy-dissipation solutions, de�ned by the condition that
E(t, q(t))+

∫ t

r

R(q, q̇)+R∗(q,−DE(s, q))ds ≤ E(r, q(r)) +

∫ t

r

∂sE(s, q)dsholds for all t ∈ [0, T ], s = 0, and almost all s ∈ [0, T ]. An existence proof for weak energy-dissipation solutions for a model of �nite-strain viscoplasticity using the multiplicativedecomposition is given in [MRS15]. There it is not possible to derive the missing chain-rule estimate to return back to the di�erential inclusions (I)�(V).Another very useful variational principle is only valid for classical gradient systems,where it is possible to de�ne a dissipation distance D. If the energy functionals E(t, ·)are geodesically λ-convex, then one reformulate the evolutionary problem via a so-calledevolutionary variational inequality (EVI), see [AGS05, Mie14]. For an application of thistheory of geodesically λ-convex gradient systems in one-dimensional viscoelasticity werefer to [MO�14]. This one-dimensional existence theory, where q = y, relies on time-incremental minimization problems
yk+1 = Arg min

( 1

2(tk+1−tk)
D(w, yk)2 + E(w)

)and establishes strong convergence of the solution even in the case of nonconvex E .An approximative variational characterization of whole trajectories can be obtainedby the weighted energy-dissipation functional (WED functional), which is de�ned via
Wε(q) =

∫ T

0

e−t/ε
(
R(q(t), q̇(t)) +

1

ε
E(t, q(t))

)
dt, q(0) = q0.5



and which was introduced in [MiO08]. Under su�cient smoothness of E and R we seethat the Euler-Lagrange equation takes the form
Dq̇R(q, q̇) + DqE(t, q) = ε

( d

dt

(
Dq̇R(q, q̇)

)
− DqR(q, q̇)

)
, Dq̇R(q(T ); q̇(T )) = 0.Thus, we obtain an �elliptic regularization� of the original evolutionary problem. Theadvantage is that showing the existence of minimizers q̂ε : [0, T ] → X for Wε is usuallymuch easier than establishing the existence of solutions for the gGS. Yet, the majorproblem then is to pass to the limit ε → 0 to �nd a limit q of the approximations q̂ε. Forthe rate-independent case R(q, v) = Ψ(v) this was done in [MiO08] obtaining energeticsolutions q. For classical gradient system R(q, v) = 1

2
〈Gv, v〉 with G independent of q theconvergence q̂ε → q was established in [MiS11].The general aim of introducing the WED functional in [MiO08] was the possibility ofusing relaxation techniques that are invented originally only for stationary problems alsoin the context of evolutionary problems. First results on such relaxations are presentedin [MiO08, Sec. 4.4+5], mainly in the context of RIS. For a proper relaxation of a viscousPDE we refer to [CoO08, Sec. 4], where the case

X = L2(Ω), E(q) =

∫

Ω

F (∇q(x))− f(t, )q dx, R(q̇) =
1

2

∫

Ω

q̇2 dxwas considered, with Ω ⊂ R2 and F (A) = 0 for A ∈ K := {±(1, 0),±(0, 1)} and ∞ else.It is proved that quasiminimizers q̃ε of Wε converge to solutions of the relaxed evolutionde�ned via the di�erential inclusion
q̇ =

1

2
div σ +

1

2
f, where σ(t, x) ∈ ∂χS(∇u(t, x)),where S = conv K = { (A1, A2) ∈ R2 | |A1|+|A2| ≤ 1 } and χS is indicator function ofconvex analysis, i.e. χS(A) = 0 for A ∈ S and ∞ otherwise.2.2 Rate-independent systems and energetic solutionsThe case of purely rate-independent dissipation is distinct from the general dissipationpotentials. It is characterized by the condition on R(q, λv) = λR(q, v) for all λ > 0.In that case we call (X, E ,R) a rate-independent system (RIS). Then, the force-velocityrelation v 7→ ∂vR(q, v) is meant in the sense of subdi�erentials of convex functions, whichis set-valued:

∂Ψ(v) = { η ∈ X∗ | ∀w ∈ X : Ψ(w) ≥ Ψ(v) + 〈η, w−v〉 }.For rate-independent cases we have
∂vR(q, λv) = ∂vR(q, v) = { η ∈ K(q) | R(q, v) = 〈η, v〉 },where K(q) := ∂vR(q, 0) is called the elastic domain. Moreover, for the dual dissipationpotential we �nd the simple form

R∗(q, ξ) = χK(q)(ξ) =

{
0 for ξ ∈ K(q),
∞ for ξ 6∈ K(q),6
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Figure 1: Primal and dual dissipation potential for RIS.see Figure 1.In principle the �ve formulations I to V of the previous subsection are still valid for RIS.However, one can use the special structure of ∂vR and R∗ to simplify the presentation.For instance, the maximum-dissipation principle reduces to the simpler formrate-independent MDP: DqE(t, q) = Arg max
ξ∈K(q)

〈ξ, q̇〉. (4)Second the energy-dissipation principle in the rate-independent case takes a simpler formas R∗ is either 0 or ∞. A di�erentiable function q : [0, T ] → X solves I to V if and onlyif (S)loc −DqE(t, q) ∈ K(q) := ∂vR(q, 0),(E) E(T ; q(T )) +

∫ T

0

R(q, q̇)dt = E(0, q(0)) +

∫ T

0

∂tE(t, q)dt.We call the �rst condition a local stability condition, since the system stays in a state q(t)in which the driving force ξ(t) = DqE(t, q(t)) is not big enough to overcome the possibledissipative forces η ∈ K(q).The major problem for RIS is that the solutions will in general develop jumps, i.e.the three values q(t−0) := lims↗t q(s), q(t), and q(t+0) := lims↘t q(s) may be di�erent.In such a discontinuous situation the di�erential formulations are not really useful. Ofcourse, if there is enough convexity in the system the solution will not develop jumps andthe above formulations are optimal.In general cases, the notion of energetic solutions can be used to characterize solutionswith jump in a variational way. Instead of the in�nitesimal dissipation potentialR, whichin mathematical terms plays the role of a in�nitesimal Finsler metric, is not suitablebut can be replaced by a dissipation distance D : X × X → [0,∞] which is assumedto satisfy the triangle inequality D(q1, q3) ≤ D(q1, q2) + D(q2, q3), but the symmetry
D(q1, q2) = D(q2, q1) is not needed. The triple (X, E ,D) is called an energetic rate-independent systems (ERIS), and a function q : [0, T ] → X is called an energetic solutionif for all t ∈ [0, T ] the global stability (S) and the energy balance (E) hold:(S) E(t, q(t)) ≤ E(t, q̃) +D(q(t), q̃) for all q̃ ∈ X;(E) E(T, q(T )) + DissD(q; [0, T ]) = E(0, q(0)) +

∫ T

0

∂sE(s, q)ds,
(5)where the total dissipation along a possibly discontinuous solutions is de�ned via

DissD(q; [r, s]) := {
N∑

j=1

D(q(tj−1), q(tj)) |N ∈ N, r ≤ t0 < t1 < · · · < tN ≤ s }. (6)7



For energetic solutions, possible jumps can be given a natural physical interpretation.First, the energy balance (E) implies the exact energy conservation E(t, q(t + 0)) =
E(t, q(t − 0))−D(q(t − 0), q(t + 0)). Second, (S) implies that a jump immediately oc-curs if it is possible, which is called the principle of realizability in [MTL02].The notion of energetic solutions was �rst introduced in [MTL02], and under suitabletechnical assumptions it was shown that all limits of the piecewise constant interpolantsof the solutions of the time-incremental minimization problems

qk+1 ∈ Arg min
eq∈X

(
D(qk, q̃) + E(tk+1, q̃)

) (7)converge to energetic solutions. We refer to [Mie11b, MiR15] for a detailed account ofthis theory.Note that in the incremental problems (7) one is doing a global minimization, whichis re�ected in the global stability condition (S). This leads to a jump behavior whichis sometimes unrealistic, since potential barriers are not seen. To de�ne a notion ofsolutions that do not show the problem of too early jump, one can treat RIS as limitsof rate-dependent systems, i.e. systems with a small viscosity proportional to ε and thenconsider the vanishing-viscosity limit ε → 0. The corresponding notion of solutions iscalled Balanced-Viscosity solutions, which will be discussed in Section 4.3.The two major stimuli in the development of the theory of energetic solutions for RISwere the theory of crack evolution in brittle materials, see [DFT05] for linearized elasticityand [DaL10] for �nite-strain elasticity, and the theory of �nite-strain elastoplasticity, see[MaM09, Mie10]. In the former case the name irreversible quasistatic evolution is usedfor what is called energetic solutions here. In both cases, there is not a useful underlyinglinear structure in a function space X, and the full strength of the abstract de�nition ofenergetic solutions is needed.3 Evolutionary Γ-convergenceFollowing the notions in the survey article [Mie14] we consider families of gGS
(X, Eε,Rε)ε∈]0,1[ and ask the questions whether the solutions qε for these system havea limit q for ε → 0 and whether the limit q is again a solution to a gGS (X, E0,R0). Ide-ally, one might hope that it is su�cient that Eε and Rε convergence in a suitable topologyto E0 and R0, respectively. We will show that such results exist, but we will also discusssituations where we start with quadratic Rε and end up with a limiting dissipation R0that is rate independent.We �rst give the general de�nition of pE-convergence, which is a short name of evo-lutionary Γ-convergence with wellprepared initial conditions. Hence, the letter�E� standsfor both, `E'volutionary convergence and `E'nergy convergence. while the letter �p� standsfor well`P'reparedness of the initial conditions, in contrast to E-convergence, where thelatter is not needed.De�nition 3.1 (pE-convergence of (X, Eε,Rε)) We say that the generalized gradient8



systems (X, Eε,Rε) pE-converge to (X, E0,R0), and write (X, Eε,Rε)
pE→ (X, E0,R0), if

qε : [0, T ] → Xis sol. of (X, Eε,Rε),
qε(0) → q0, and

Eε(0, qε(0)) → E0(0, q
0)<∞





=⇒





∃ q sol. of (X, E0,R0) with q(0)=q0and a subsequence εk → 0 :
∀ t ∈ ]0, T ]: qεk

(t) → q(t) and
Eεk

(qεk
(t)) → E0(q(t)).

(8)Similarly, we de�ne the pE-convergence for ERIS (Q, Eε,Dε)
pE→ (Q, E0,D0), if �solution�is understood in the sense of energetic solutions.In the following subsection we discuss some abstract results for pE-convergence.3.1 pE-convergence for generalized gradient systemsThe �rst general approach to the evolutionary Γ-convergence for classical gradient sys-tems, where the variational structure was exploited systematically, goes back to [SaS04],see also [Ser11, Mie14]. This approach is based on the energy-dissipation principle forthe gGS (X, Eε,Rε) presented in Theorem 2.2, which transforms the evolutionary system

0 ∈ ∂q̇Rε(qε, q̇ε) + DqEε(t, qε) into the upper energy-dissipation estimate
Eε(t, qε(T )) + Jε(qε(·)) ≤ Eε(0, qε(0)) +

∫ T

0

∂sEε(s, qε(s))ds,where Jε(q) :=

∫ T

0

Rε(q(t), q̇(t)) +R∗ε(q(t),−DqEε(t, q(t)))dtHaving a variational principle for the whole trajectory, one can now use variational tech-niques to pass to the limit ε → 0. First we observe that the �rst term on the right-handconverges to the desired limit by the assumption of the wellpreparedness of the initial con-ditions. For the second term on the right-hand side we may assume that it is lower orderand can be handled by compactness. In fact, often one has Eε(t, q) = Uε(q) − 〈`ε(t), q〉,then ∂tE(t, q) = −〈 ˙̀ε(t), q〉 is linear in q and strong convergence of ˙̀
ε(t) → ˙̀(t) is X∗ issu�cient.Hence, it remains to estimate the two terms on the left-hand side. Here we can takeadvantage that we only need an estimate from above, i.e. the liminf estimates

E0(T, q(T )) ≤ lim inf
ε→0

Eε(T, qε(T )) and J0(q(·)) ≤ lim inf
ε→0

Jε(qε(·))are su�cient. For this, one has to derive suitable a priori estimates on the solutions qεsuch that one is able to extract a subsequence qεk
which converges in a su�ciently strongtopology to establish the desired liminf estimates.The famous Sandier-Serfaty approach [SaS04, Ser11] relies on the two liminf estimates

∫ T

0
R0(q0(t), q̇0(t))dt ≤ lim infε→0

∫ T

0
Rε(qε(t), q̇ε(t))dt and

R∗0(q0,−DqE0(t, q0)) ≤ lim inf
ε→0

R∗ε(qε,−DqEε(t, qε)).However, the energy-dissipation principle (EDP) is even more �exible, since we do notneed these two separate lower bounds. In passing to the liminf for the total dissipa-tion ∫ T

0
Rε+R∗ε dt we may even give up the special dual form R + R∗ of the integrand.9



This idea, which was applied successfully in [AM∗12, Mie12, MPR14, LM∗15], can besummarized as follows.De�ning the functional Jε : W1,1([0, T ]; X) → [0,∞] via
Jε(u) :=

∫ T

0

Rε(u, u̇) +R∗ε(u,−DEε(u))dt,we have to �nd a su�ciently good lower bound for the Γ-liminf, namely(i) uε(·) ∗
⇀ u(·) in L∞([0, T ]; X) =⇒

∫ T

0

M0(u(t), u̇(t))dt ≤ lim inf
ε→0

Jε(uε),where the integrand M0 does not need to be of the form R0 + R∗0. Hence, �nding thebest (i.e. largest) M0 is nothing else than �nding the (static) Γ-limit of the functionals
Jε. It su�ces to �nd (X, E0,R0) and M0 such that(ii) Eε

Γ
⇀ E0;(iii)M0(u, v) ≥ −〈DE0(u), v〉;(iv) the chain rule holds for(X, E0,R0);(v) M0(u, v) = −〈DE0(u), v〉 =⇒ R0(u, v)+R∗0(u,−DE0(u)) = −〈DE0(u), v〉.As before, we can start from the EDP Eε(uε(T ))+Jε(uε) = Eε(uε(0)). Using the wellpre-paredness of the initial datum, (i), and (ii) we pass to the limit and obtain the EDP

E0(u(T )) +

∫ T

0

M0(u(t), u̇(t))dt ≤ E0(u(0)).Now using the (iii) and the chain rule (iv) we �nd
E0(u(0))

(iv)
= E0(u(T ))−

∫ T

0

〈DE(u(t)), u̇(t)〉dt(iii)
≤ E0(u(T )) +

∫ T

0

M0(u(t), u̇(t))dt ≤ E0(u(0)).Thus, we conclude that we must have equality in (iii) for almost all t ∈ [0, T ], such thatwe can use (v) to conclude that u is a solution for (X, E0,R0). Hence, the pE-convergence
(X, Eε,Rε)

pE→ (X, E0,R0) is established.Section 4.1 summarizes the results of [Mie12, MiT12], which show that the abovestrategy can even be applied to justify the passage from small viscous dissipation (i.e.
Rε(u, ·) is quadratic) to a limit problem with large rate-independent dissipation (i.e.
R0(u, ·) is positively homogeneous of degree 1, see Section 2.2).In fact, under a slight and natural strengthening of the conditions (i) to (v), it ispossible to construct R0 directly from M0. Indeed, assume that M0(u, ·) is additionallyeven, convex, R-valued, and lower semicontinuous, then RM de�ned via

RM(u, v) := M0(u, v)−M0(u, 0)10



is a dissipation potential. Moreover, using property (iii) we �nd the estimate
R∗M(u,−DE0(u)) = sup

v∈X

(
〈−DE0(u), v〉 −M0(u, v) +M0(u, 0)

)
≤M0(u, 0).Thus, we �nd the desired EDP E0(u(T )) +

∫ T

0
RM + R∗M dt ≤ E0(u(0)). We emphasizethat the choice R0 = RM in (iv) and (v) is admissible, but not unique. In particular, itmay be possible to �nd simpler R0 as is the case in the application discussed in Section4.1.3.2 pE-convergence for rate-independent systemsA quite general theory of evolutionary Γ-convergence for ERIS (X, Eε,Dε) was alreadydeveloped in [MRS08], see also [MiR15] for more details and applications. For simplicity,here we restrict to the case that the energies have the form

Eε(t, q) = Fε(q)− 〈`ε(t), q〉, (9a)where X is a re�exive Banach space. We allow for the case that F is not convex and thatthe dissipation distances Dε are not translation invariant. A typical set of assumptionsreads as follows:
∃ c, C > 0 ∀ ε ∈ [0, 1], q ∈ X : Fε(q) ≥ c‖q‖2 − C; (9b)
∀ ε ∈ [0, 1] : Fε : X → R∞ is weakly lower semicontinuous; (9c)
∃C > 0 ∀ ε ∈ [0, 1] : ‖`ε‖C1([0,T ]) ≤ C; (9d)
∀ t ∈ [0, T ] : ˙̀

ε(t) → ˙̀
0(t) in X∗ as ε → 0; (9e)

∀ ε ∈ [0, 1] ∀ qj ∈ X :

{
Dε(q1, q3) ≤ Dε(q1, q2) +Dε(q2, q3),

Dε(q1, q2) = 0 =⇒ q1 = q2.
(9f)In general, these conditions together with Γ convergence of the energies and the dissipationare not strong enough to show pE-convergence. Even for existence for a �xed ε we needadditional conditions, e.g. weak continuity of Dε is su�cient.Our �rst result on pE-convergence for ERIS assumes that the dissipation distances Dεweakly continuously converge to D0, viz.

Dε
C
⇀ D0, which means that qε ⇀ q0, q̂ε ⇀ q̂0 =⇒ Dε(qε, q̂ε) → D0(q0, q̂0).Theorem 3.2 (pE-convergence for ERIS) Assume that the ERIS (X, Eε,Dε) satisfy(9), Eε

Γ
⇀ E0, and Dε

C
⇀ D0 in X; then (X, Eε,Dε)

pE
⇀ (X, E0,D0).We refer to [MRS08] for the �rst proof and to [Mie14, Thm. 5.4] for a shorter proof. Infact, it is rather straightforward to establish the EDP, i.e. (E) in (5) where �=� is replacedby �≤�. The major di�culty lies in showing that the global stability condition (S) holdsfor the limit ε = 0. This stability then implies a �chain-rule estimate�, which show that(E) holds even with equality �=�.The major tool for passing to the limit in the stability condition is the existence ofso-called mutual recovery sequences. (A very similar condition is already very useful in11



showing existence of energetic solutions.) Given a family (qε)ε∈[0,1] with qε ⇀ q0 and atest state q̂0, we say that the family (q̂ε)ε∈]0,1[ is a mutual recovery sequences at time t, if
lim sup

ε→0

(
Eε(t, q̂ε)−Eε(t, qε)+Dε(qε, q̂ε)

)
≤ E0(t, q̂)−E0(t, q0)+D0(q0, q̂0). (10)Clearly, if all qε satisfy the stability condition at time t, then all term in the limsup arenonnegative; hence we conclude that the right-hand side is nonnegative, which is thestability of q0 if the test state q̂0 can be chosen arbitrary. Under the conditions of theabove Theorem 3.2 we see that the existence of mutual recovery sequence easily holds,since it su�ces to choose recovery sequences for the energy Fε and use the weak continuityof Dε and 〈`ε(t), ·〉.In the case that X is a Hilbert space H , the energies are quadratic, and the dissipationdistances are translationally invariant, viz.

Fε(q) =
1

2
〈Aεq, q〉 ≥ c‖q‖2

H and Dε(q1, q2) = Ψε(q2−q1), (11)one can construct mutual recovery sequences in the form q̂ε = qε + wε with wε → q̂0 − q0and exploit the better convergence q̂ε − qε = wε → q̂0 − q0 (strong convergence in H !) inthe following terms:
Fε(q̂ε)− Fε(qε) =

1

2
〈Aεwε, q̂ε+qε〉 and Dε(qε, q̂ε) = Ψε(wε). (12)Using this, the following result was derived in [LiM11] and [MiR15, Ch. 3.5.4]. Here theMosco convergence Eε

M→ E0 means Eε(t, ·) Γ→ E0(t, ·) and Eε(t, ·) Γ
⇀ E0(t, ·) for all t ∈ [0, T ].Theorem 3.3 (pE-convergence for quadratic ERIS) Let (H , Eε, Ψε)ε∈[0,1] satisfy (9)and (11). If Eε

M→ E0, Ψε
C→ Ψ0, and Ψε

Γ
⇀ Ψ0, then (H , Eε, Ψε)

pE
⇀ (H , E0, Ψ0).In contrast to Theorem 3.2 we need the continuous convergence Ψε

C→ Ψ0 here only inthe strong topology of H . Applications of this theory occur in linearized elastoplasticityin the context of homogenization in [MiT07, GiM11, Han11] and in the derivation ofelastoplastic plate models.A highly non-trivial application of pE-convergence is treated in [MiS13], where theERIS (X, Eε,Dε) for ε > 0 describe models for �nite-strain elastoplasticity for which ex-istence of energetic solutions was established in [MaM09, Mie10]. In [MiS13], the energy,the dissipation distance, and the loadings are scaled by ε > 0 in such a way that thesystem converges to linearized elastoplasticity in the sense of pE-convergence. The majorassumption is that the yield stress (contained in Dε) scales in the same way as the dis-placement. Thus, linearized elastoplasticity is a justi�able model only under the conditionthat the yield stress is so small that even small strains can generate plastic e�ects.4 Justi�cation of rate-independent modelsIn this section we discuss two distinct cases in which RIS arise as limits of rate-dependentsystems. The typical situation we are interested in is a system with slow loading, where12



we always assume that the loading time t ∈ [0, T ] is our relevant time scale. In fact, inmechanics this time scale is often called process time, since it may be signi�cantly largerthan the intrinsic time scales inside the material.In Section 4.1 we consider purely viscous systems, i.e. with a quadratic dissipationpotential Rε(q, v) = εα

2
〈G(q)v, v〉, where the small parameter ε indicates that the relax-ation times due to viscous e�ects are much smaller, namely of order O(εα). However, toprevent the system to relax into a global minimum for each macroscopic time we con-sider an energy that has microscopic wiggles that keeps the system outside macroscopicminimizers.In Section 4.3 we consider gGS with a dissipation potential consisting of a �xed rate-independent and a small rate-dependent part, e.g. Rε(q, v) = Rri(q, v) + ε

2
〈G(q)v, v〉. For

ε > 0 the solutions qε will be absolutely continuous with respect to t ∈ [0, T ] and the taskis to characterize the jumps that develop in the vanishing-viscosity limit ε → 0.We also refer to [LOR07] for a derivation of macroscopic rate-independent behavior inthe case of crack propagation.4.1 Wiggly energies give rise to rate-independent frictionThis section deals with the question how macroscopic RIS can arise from purely viscoussystems in the limit of vanishing viscosity ε → 0. We refer to [PuT02, MiT12, Mie12]for the full details. We stay in the framework of evolutionary Γ-convergence of gGS
(X, Eε,Rε). In particular, we will start with the cases Rε(q, v) = εα

2
〈Gv, v〉, where obvi-ously Rε → 0, and end up with a limit system (X, E0,R0), where R0 is rate-independent.The �rst example will show very clearly that R0 is determined not by Rε, but by micro-scopic variations in the energies Eε, hence one uses the name wiggly energies.In [Mie12] the following slight generalization of the wiggly-energy model of [Jam96] wasstudied. The latter was analyzed already in [PuT02, PuT05], but the gradient structurewas �rst exploited in [Mie12]. As viscous gradient system (X, Eε,Rε) it takes the form

X = R, Eε(t, q) = F(q) + εW (q, 1
ε
q)− `(t)q, Rε(v) =

εα

2
v2.Here F ∈ C2(R) denotes the macroscopic part of the energy, W ∈ C2(R × S1) denotesthe wiggly part, and ` ∈ C1([0, T ]) is the given time-dependent loading. Here S1 =

R/Z indicated that W is nontrivially periodic with period 1 in the second variable. Inparticular, writing W = W (q, p), we assume
ρ+(q) := max{DpW (q, p) | p∈S1 } > 0 and (13a)
ρ−(q) := min{DpW (q, p) | p∈S1 } < 0. (13b)De�ning E0(t, q) = F(q) − `(t)q, we see that the energies Eε uniformly converge to themacroscopic limit E0 via |Eε(t, q) − E0(t, q)| ≤ Cε, i.e. the wiggles are not seen on theenergetic level. However, for the restoring force DqEε(t, q) we see a strong deviation from

DqE0(t, q). In particular, the functions q 7→ DqEε(t, q) has many zeros (local equilibria of
Eε).The ODE 0 = Dq̇Rε(q̇) + DqEε(t, q) generated by (R, Eε,Rε) reads

0 = εαq̇ + F ′(q) + DpW (q, 1
ε
q)− εDqW (q, 1

ε
q)− `(t). (14)13



The aim of evolutionary Γ-convergence is to show that the solutions qε of the viscousgradient system (R, Eε,Rε) converge to a solutions of the RIS (R, E0,R0), where themacroscopic energy E0 is given above and the rate-independent dissipation potential R0is de�ned via
R0(z, v) :=

{
ρ+(z)v for v ≥ 0,
ρ−(z)v for v ≤ 0.

(15)Hence the solutions q of the limiting RIS (R, E0,R0) are given by the di�erential inclusion
0 ∈ ∂q̇R0(q, q̇) + DqE0(t, q). (16)We emphasize that the de�nition of R0 does only involve characteristics of the wigglymicroscopic energy landscape of Eε, namely the p-derivate of the wiggle function W (q, p).The main convergence result states that the solutions qε of (14) converge to solutionsof the RIS (R, E0,R0).Theorem 4.1 ([PuT02, Mie12]) Let F , W, `, Eε, and Rε be as described above, α >

0, and assume that the mutual-convexity condition
inf{ E ′′(q) | q ∈ R } > sup{ |DqDpW (q, p)| | q ∈ R, p ∈ S1 } (17)holds. Then (R, Eε,Rε)

E→ (R, E0,R0).The proof in [Mie12] relies on three major pillars, namely (a) suitable a priori esti-mates, (b) a liminf-estimate for the energy-dissipation principle, and (c) uniqueness of thelimiting systems. For (a) and (c) the standard energy estimates and the mutual-convexitycondition (17) are used. The major di�culty lies in the limit passage (b) for the energy-dissipation principle as described in Section 3.1. For this we de�ne the total dissipationfunctional
Jε(q) =

∫ T

0

Mε(t, qε(t), q̇ε(t))dt with Mε(t, q, v) = Rε(q, v)+R∗ε(q,−DqEε(t, q)).Inserting the speci�c forms of Rε, R∗ε, and Eε we �nd
Mε(t, q, v) =

εα

2
v2 +

1

2εα

∣∣F ′(q)− `(t) + DpW (q, q/ε) + εDqW (q, q/ε)
∣∣2.Homogenization arguments from [Bra02, Sect. 3] yield the liminf estimate

lim inf
ε→0

Jε(qε) ≥ J0(q) :=

∫ T

0

M0(t, q, q̇)dt with M0(t, q, v) = P(v,F ′(q)−`(t)),

P(q, ξ) := |v|K(q, ξ) + χ[ρ−(q),ρ+(q)](ξ), and K(q, ξ) =

∫

S1

|ξ+DpW (q, p)|dp.It is easy to check the conditions (ii)�(v) in Section 3.1 for E0 and R0 given above. Firstnote that (ii) and (iv) are trivial. Next observe K(q, ξ) ≥ |ξ|, which implies (iii). Forthe crucial condition (v) we use that M0(t, q, v) = −vDqE0(t, q) means ξ = DqE0(t, q) ∈
[ρ−(q), ρ+(q)] and |v|K(q, ξ) = −vξ. However, K(q, ξ) = |ξ| holds if and only if ξ 6∈
]ρ−(q), ρ+(q)[. Thus, the equivalence to 0 ∈ ∂vR0(q, v) + ξ (or any other of the �veequivalent formulations in Proposition 2.1) follows easily.14



4.2 1D elastoplasticity as limit of a chain of bistable springsA second evolutionary Γ-limit with wiggly energies is established in [MiT12]. The systemmodels a chain of N bistable springs with small viscous damping. Denoting by ej thestrain in the jth spring, the system reads
νėj = −F ′biq(ej) + µN

j + G(t, j/N) + σ(t) for j = 1, ..., N ;

CN((ej)) := 1
N

∑N
j=1 ej = `(t),

} (18)where the biquadratic double-well potential Fbiq(e) := k
2
min{(e+a)2, (e−a)2} generatesthe bistability. The coe�cients µN

j are biases that act as quenched disorder (time-independent) and are chosen randomly, namely independently and identically distributedaccording to a probability density f ∈L1([−µ∗, µ∗]) with average 0.The system is driven by the volume loading G ∈ C1([0, T ]× [0, 1]) and the constraint
CN corresponding to a Dirichlet loading ` ∈ C1([0, T ]) prescribing the total length of thechain, where σ is the Lagrange parameter for this constraint.Using e = (e1, ..., eN ) as a state vector, the system has the energy functional EN andthe viscous dissipation potential RN :

EN(t, e) =
1

N

N∑

j=1

(
Fbiq(ej)− µN

j ej + G(t, j/N)ej

) and RN(e, ė) =
ν

2N

N∑

j=1

ė2
j .The total system can now be written abstractly as a viscous gradient �ow via

0 = DėRN (e, ė) + DeEN(t, e) + σ(t)DCN (e) with CN (e) = `(t).Our small parameter is now ε = 1/N , which is the ratio between the length of the springsand the total length. Clearly, the energy EN is wiggly in the sense that there are manylocal minimizers for a given constraint CN (e) = `, namely up to 2N .The limit of particle number N →∞ and viscosity ν → 0 can be studied by embeddingthe system into a spatially continuous setting on the physical domain Ω = ]0, 1[. Thepotential Fbiq has two wells and hence two phases for each spring, which we characterizeby the phase indicators zj = sign(ej) ∈ {−1, 0, 1}. With the indicator functions
ϕN

j (x) :=

{
1 for x ∈

(
(j−1)/N, j/N

)
,

0 otherwise. (19)we de�ne elastic and plastic strains via (eN(t), pN(t)) := PN(eN (t)), where
PN :

{
RN → L2(Ω)× L2(Ω),

e = (ej)j=1,...,N 7→
(∑N

j=1 eN
j ϕN

j , a
∑N

j=1 zN
j ϕN

j

) (20)The de�nition of (eN , pN) is such that we obtain a linear stress-strain relation
F ′biq(eN(t, x)) = k

(
eN(t, x)− pN(t, x)

)
,since the nonlinearity is moved into the de�nition of p via zj = sign(ej).15



The limiting gGS (H , E0,R0) describes linearized elastoplasticity with hardening andis de�ned via
H = L2(Ω)× L2(Ω), R0(ṗ) =

∫

Ω

ka
∣∣ṗ(x)

∣∣dx,

E0(e, p) =

∫

Ω

k

2

(
e(x)−p(x))2 + Hf(p(x)

)
+ G(t, x)e(x)dx,where the hardening potential Hf is a convex function that is uniquely determined by thedistribution function f for the random biases µN

j . Indeed, de�ning Lf such that L′′f = fone obtains Hf as Legendre transform of Lf , see [MiT12].Together with the constraint C0(e) : =
∫
Ω

e(x)dx=`(t), we obtain the RIS (H , E0,R0, C0)with a 1-homogeneous dissipation potentialR0 given in terms of the �yield stress ka�. Theassociated di�erential inclusion
0 = DeE(e, p) + σ(t)DC(e) = k(e−p) + σ, C(e) = `(t),

0 ∈ ∂R(ṗ) + DpE(e, p) = kaSign(ṗ) + k(p−e) + ∂Hf (p).
(21)describes one-dimensional elastoplasticity with Dirichlet loading u(t, 0) = 0 and u(t, 1) =

`(t), if the displacement is de�ned by u(t, x) =
∫ x

0
e(t, y)dy.The following convergence result shows that the rate-independent evolution (21) isindeed the evolutionary Γ-limit of the �nite-dimensional viscous systems (18).Theorem 4.2 ([MiT12, Thm. 5.2]) Assume νN = 1/Nα for a �xed α > 1. Considerthe solutions eN : [0, T ] → RN of the gradient system (RN , EN ,RN), where the biases

µN
j are chosen randomly (and independently and identically distributed) according to thedistribution f . Then, with probability 1 with respect to the random biases µN

j we have
(RN , EN ,RN)

pE
⇀ (H , E0,R0) in the sense of the embedding PN : If the initial conditions

eN(0) satisfy eN
j (0) < 0 for all j,

PN (eN(0)) ⇀ (e0, p0) in H , and EN(0, eN(0)) → E(0, e0, p0);then, for all t ∈ [0, T ] we have
PN(eN (t)) ⇀ (e(t), p(t)) in H and EN(t, eN(t)) → E(t, e(t), p(t)),where (e, p) is the unique solution of (21).We again emphasize that the limiting dissipation potential R0 is not related to theoriginal quadratic potentials RN . In the de�nition of R0 the constants k and a appear,which are part of the de�nition of the double-well potential Fbiq.4.3 Balanced-viscosity solutions as vanishing-viscosity limitsAssuming rate independence for an evolutionary system is always an approximation: theloading time-scale is taken to be much slower than all the internal relaxation processes.Moreover, in most material models there are two kinds of variables, i.e. we write the statevariable q as a couple q = (y, z), where y denotes the elastic or fast variables, usually16



containing the elastic deformation φ : Ω → Rd or the small displacement u : Ω → Rd.The variable z are taken to be internal variables which are slower and may be modeled byrate-independent friction such as plastic yields or activated phase transformation. Hence,a typical quasistatic material model (where we still neglect inertial terms) will have theform of a coupled system
0 = εαG1(y, z)ẏ + DyE(t, y, z), 0 ∈ ∂Ψ(y, z, ż) + εG2(y, z)ż + DzE(t, y, z),where we again assume that the loading rate is scaled to be of order one, such that the vis-cous relaxation times for the variable y are O(εα) while the variable z has rate-independentterms (instantaneous relaxation is possible) as well as additional viscous relaxation on thetime scale O(ε). Clearly, we have a generalized gradient system (X, E ,Rε) with

X = Y ×Z and Rε(y, z, ẏ, ż) = Ψ(y, z, ż) +
εα

2
〈G1(y, z)ẏ, ẏ〉Y +

ε

2
〈G2(y, z)ż, ż〉Z.Again, we can ask the question of evolutionary Γ-convergence of (X, E ,Rε) towards a limitsystem (X, E , Ψ, Ξ), in the sense that solutions qε of the former converge to the solutions

q0 of the latter system. Here the additional structure �Ξ� indicates that the simple RIS
(X, E , Ψ) needs to be enhanced by some information characterizing the jumps.To obtain a rate-independent limit, one is again interested in the case ε → 0, which iscalled the vanishing-viscosity limit. Formally, it is expected that the limits q0 = (y0, z0)of solutions qε = (yε, zε) will satisfy the di�erent inclusion

0 = DyE(t, q0(t)) and 0 ∈ ∂żΨ(q0(t), ż0(t)) + DzE(t, q0(t)) (22)for almost all t ∈ [0, T ]. However, in general the limits q0 : [0, T ] → X will developjumps with q0(t−0) 6= q0(t+0) and (22) will not be enough to characterize these jumps.Moreover, the jumps arising in the vanishing-viscosity limit will depend on the di�erentviscosity choices εαG1(q) and εG2(q).Indeed, in [MRS14b] the dependence of the exponent α > 0 was investigated in asituation where q = (y, z) ∈ Rn × Rm and where E(t, ·, z) is strictly convex. It turns outthat the jump behavior is quite di�erent for the three cases α ∈ ]0, 1[, α = 1, and α > 1.For α > 1 the component y can relax into the unique minimizer of E(t, ·, z(t)) much fasterthan any changes in z. Hence, it is possible to reduce the situation by eliminating thevariable y by de�ning y = Y (t, z) = Arg miney∈Y E(t, ỹ, z) and Ê(t, z) = E(t, Y (t, z), z).For α ≤ 1 the situation is much more di�cult and new jump phenomena occur, whichare not yet understood, see [MRS14b] for some �rst results.In light of the above discussion for α > 1 we restrict ourself to the case X = Z andconsider gGS (Z, E ,Rε) with the simplest �vanishing-viscosity dissipation potential�
Rε(v) = Ψ(v) +

ε

2
〈Gv, v〉, (23)where Ψ is positively homogeneous of degree 1 and G = G∗ > 0. The important obser-vation is that G generates a Hilbert-space norm ‖v‖V :=

(
〈Gv, v〉

)1/2, which is de�nesthe Hilbert space V . Throughout, we assume that Z is continuously embedded into V ,17



which is certainly the case for the model system studied in [Mie11b, MiZ14]:(MS) 



Z = L1(Ω), V = L2(Ω), Rε(v) =

∫

Ω

|v|+ ε

2
|v|2 dx,and E(t, z) =

∫

Ω

κ

2
|∇z|2 + W (z)− `(t)zdx for z ∈ H1

0(Ω),where Ω ⊂ Rd is a smooth bounded domain, W is the double-well potential W (z) =
(z2 − 1)2/4, and ` is a smooth loading. The evolutionary equation is

0 ∈ Sign(ż) + εż − κ∆z + W ′(z)− `(t) for (t, x) ∈ [0, T ]× Ω,

z(t, x) = 0 for (t, x) ∈ [0, T ]× ∂Ω,
(24)which is extensively studied in [MiZ14] by direct PDE methods.For passing to the limit ε → 0 and still controlling the jump behavior it is useful toreparametrize the solutions t 7→ (t, zε(t)) ∈ [0, T ] × Z in the extended state space andstudy the convergence there. This idea was introduced in for RIS in [EfM06] and turnedinto an energetic framework in the series of papers [MRS09, MRS12, MRS14a, MRS14b].For the reparametrization we let t = t(s) and z(t) = z(s), where s ∈ [0, S] is now anarclength-like parameter. We write z′(s) = d

ds
z(s) and note ż(t(s))t′(s) = z′(s).De�nition 4.3 (Parametrized solutions) Let the RIS (Z, E , Ψ, G) and V be given asabove. Then, a pair (t, z) : [0, S] → [0, T ] × Z is called a G-parametrized solution, if

(t, z) ∈ W1,1(0, T ; R× V ) and there exists λ : [0, S] → [0,∞[ such that
t(0) = 0, t(S) = T, t′(s) ≥ 0, λ(s) ≥ 0, λ(s)t′(s) = 0,

0 ∈ ∂Ψ(z′(s)) + λ(s)Gz′(s) + DzE(t(s), z(s)),

} a.e. on [0, S]. (25)The de�nition clearly displays the rate independence of the notion of G-parametrizedsolutions, since z′ only occurs in the rate-independent term ∂Ψ or together with λ whichcan be scaled freely.For a variational approach we transform the EDP, cf. Theorem 2.2, by time rescalingand obtain for (t, z) the following identity:
E(t(S), z(S)) +

∫ S

s=0

Pε

(
t′(s), z′(s),−DzE(t(s), z(s))

)
ds

= E(mft(0), z(0)) +

∫ S

0

∂tE(t(s), z(s))t′(s)ds, (26)where Pε(τ, V, ξ) = τRε(
1
τ
V ) + τR∗ε(ξ). (27)Using the special form of Rε we obtain a quite explicit form for Pε, namely

Pε(τ, V, ξ) = Ψ(V ) +
ε

2τ
〈GV, V 〉+

τ

2ε
MV (ξ)2 with MV (ξ) := inf

η∈∂Ψ(0)
‖ξ−η‖V ∗ .It is now easy to see that the Γ-limit of Pε : [0,∞[ × Z × V ∗ → [0,∞] for ε → 0 takesthe form

P0(τ, V, ξ) :=

{
Ψ(V ) + Ψ∗(ξ) for τ > 0,

Ψ(V ) + ‖V ‖V MV (ξ) for τ = 0.18



Clearly, P0(τ, V, ξ) ≥ −〈ξ, V 〉 for all (τ, V, ξ). Moreover, equality holds if and only if
0 ∈ ∂Ψ(V )+ ξ in the case τ > 0 and 0 ∈ ∂Ψ(V )+λGV + ξ in the case τ = 0 see [MRS12,Sec. 3.2]. Thus, all parametrized solutions satisfy the limiting EDP

E(t(S), z(S)) +

∫ S

s=0

P0

(
t′(s), z′(s),−DzE(t(s), z(s))

)
ds (28)

= E(t(0), z(0)) +

∫ S

0

∂tE(t(s), z(s))t′(s)ds, (29)and vice versa, su�ciently smooth solutions of the EDP are parametrized solutions. Theadvantage of (29) is that we do not need to assume z ∈ W1,1([0, T ]; V ). All solutions (t, z)with t ∈ W1,1([0, T ]) and z ∈ BV([0, T ]; Z)∩C0([0, T ]; V ) of (29) are called parametrizedbalanced-viscosity solutions of (Z, E , Ψ, G). Here the term �balanced viscosity� relates tothe subtle balance of rate-independent and viscous dissipations along jumps, that is seenin P0 for τ = 0 in the term Ψ(V ) + ‖V ‖V MV (ξ).The advantage of reformulating subdi�erential equations like (24) and (25) in terms ofthe reparametrized EDP (27) is that we can control the limit ε → 0 easily. In particular,if the de�ne the solutions of (Z, E , Ψ, G) to be parametrized balanced-viscosity solution,then we have evolutionary Γ-convergence of (Z, E ,Rε) (withRε from (23)) to (Z, E , Ψ, G).However, the introduction of the parametrization may appear ad hoc and disturbing.So one can de�ne the notion of Balanced-Viscosity solutions as follows: z : [0, T ] → Zis called a BV solutions for (Z, E , Ψ, G) if there exists a parametrized balanced-viscositysolutions (t, z) : [0, S] → [0, T ] × Z such that for all t ∈ [0, T ] there exists an s ∈ [0, S]with t = t(s) and z(t) = z(s). This simply means that the image of (t, z) in [0, T ] ×Xcontains the graph of z : [0, T ] → Z.One major achievement in [MRS12, MRS14a] is a proper intrinsic de�nition of BV so-lutions without referring to parametrizations. For this one de�nes a new (time-dependent)dissipation distance ∆(t, ·, ·) that measures the minimal dissipation according to P0 alongall curves connecting to states z0 and z1:
∆(t, z1, z2) := inf

{ ∫ 1

0

P0

(
0, ẏ(r),−DzE(t, y(r))

)
dr

∣∣∣
y ∈ C1([0, 1]; V ), y(0) = z1, y(1) = z2

}
. (30)Note that ∆ is de�ned with time t as a frozen parameter, i.e. t′(r) = τ = 0. Clearly,we have the triangle inequality ∆(t, z0, z2) ≤ ∆(t, z0, z1) + ∆(t, z1, z2) and the lower esti-mate ∆(t, z1, z2) ≥ Ψ(z2−z1). For the de�nition of BV solutions we use a supplementeddissipation functional Dissp,E de�ned on functions z ∈ BV([0, T ]; X). Here J(z) ⊂ [0, T ]is the jump set of z, i.e. all the times t where the three values z(t−0), z(t), and z(t+0)are not equal. The new dissipation functional DissM,E(z; [t1, t2]) is bigger than the purelyrate-independent functional DissΨ de�ned in (6), because it properly accounts for theadditional dissipation through the viscous terms during jumps:

Dissp,E(z; [t1, t2]) := DissΨ(z; [t1, t2]) + ∆̂(t1, z(t1), z(t+1 ))+∆̂(t2, z(t−2 ), z(t2))

+
∑

t∈J(z)

(
∆̂(t, z(t−), z(t))+∆̂(t, z(t), z(t+))

)
,where ∆̂(t, z0, z1) := ∆(t, z0, z1)−Ψ(z1−z0) ≥ 0.19



De�nition 4.4 (Balanced-Viscosity solutions) A function z ∈ BV([0, T ]; Z) is calleda Balanced-Viscosity solution, in short BV solution, for (Z, E , Ψ, G), if
∀ t ∈ [0, T ] \ J(z) : z(t) ∈ Sloc(t) := { z ∈ Z | 0 ∈ ∂Ψ(0) + DzE(t, z) } and (31a)
∀ t ∈ [0, T ] : E(t, z(t))+ DissM,E(z; [0, t]) = E(0, z(0))+

∫ t

0

∂tE(t, z(t))dt. (31b)It is interesting to see that the de�nition of BV solutions again consists of a static stabilitycondition and an energy balance as in the case of energetic solutions, see (5). However,no the stability is local instead of global and it is only valid at continuity points of thesolution. To compensate for this the dissipation is enhanced at jumps deriving from theadditional dissipation through balanced viscosity.We now use the advantage that BV solutions are de�ned as functions from the timeinterval [0, T ] into the state space Z like the viscous approximations. Thus, the naturalquestion is how the solutions zε converge to BV solutions. This question was �rst answeredin [MRS12] for the �nite-dimensional setting and in [MRS14a, Thm. 3.9] for a generalin�nite-dimensional setting.Theorem 4.5 (Vanishing-viscosity limit gives BV solutions) Under suitable tech-nical conditions on (Z, E , Ψ, G) and the initial condition z0 ∈ Z, the solutions zε : [0, T ] →
Z of (X, E ,Rε) with zε(0) = z0 and Rε from (23) exist and there exist a subsequence
εk → 0 and a BV solution z : [0, T ] → Z for (Z, E , Ψ, G) such that

∀ t ∈ [0, T ] : zεk
(t) ⇀ z(t) in Z and E(t, zεk

(t)) → E(t, z(t)) for k →∞.Moreover, any pointwise limit z of a subsequence of (zε)ε>0 is a BV solution.Our �nal result concerns the vanishing-viscosity limit jointly with time discretizations,which provides an easy way of numerically calculating BV solutions. We discretize thetime interval by partitions Π = (t0, t1, ...., tNΠ
) with �neness φ(Π) = max{ tk−tk−1 | k =

1, ..., NΠ }. The incremental minimization problem for the viscous problem reads
zε

k ∈ Arg minz∈ZE(tk, z) + Ψ(z−zε
k−1) +

ε

2(tk−tk−1)

∥∥z−zε
k−1

∥∥2

V
, zε

0 = z0.We denote by zΠ,ε : [0, T ] → Z the piecewise constant interpolant. The following resultwas �rst proved in [EfM06, MRS12] for the �nite-dimensional setting. For a quite generalin�nite-dimensional version we refer to [MRS14a, Thm. 3.10].Theorem 4.6 (Convergence of viscous time discretizations) Assume suitable tech-nical conditions on (Z, E , Ψ, G) and z0 ∈ Z (see [Mie11b, MRS14a]) and consider asequences (Πn)n∈N and (εn)n∈N such that
εn → 0 and φ(Πn)/εn → 0. (32)Then, there exists a subsequence nl →∞ and a BV solution z for (Z, E , Ψ, G) such thatthe piecewise constant interpolants zΠn,εn satisfy

∀ t ∈ [0, T ] : zΠnl
,εnl (t) ⇀ z(t) in Z and E(t, zΠnl

,εnl (t)) → E(t, z(t)) for l →∞.Moreover, any such pointwise limit of a subsequence of (zΠn,εn)n∈N is a BV solution.20



5 Rate-independent evolution of microstructuresThe theory of RIS provides an ideal framework for studying microstructures in the senseof the calculus of variations, namely those given by laminates or more general Youngmeasures. The starting point of most of these works was the seminal paper [OrR99]on microstructures in �nite-strain plasticity. In the sequel a lot of work was done forthe relaxation of a single elastoplastic time step, see [CHM02, CDK13b, CDK13a]. Wealso refer to [HeK14, Hei15, Hei14] for the characterization and numerical calculation ofquasiconvex hulls.In contrast, the evolution of microstructures in plasticity is mathematically much lessdeveloped, see e.g. [Mie04, CoT05]. However, the same theory was soon transferred toeasier dissipative material models such as damage (cf. e.g. [FrG06, GaL09, Mie11a]) andphase transformations in elastomers (cf. e.g. [DeD02]) or shape-memory materials (cf. e.g.[BC∗04, BaH09, KoH11, CLR15]).In the following we discuss two applications of the evolutionary theory, both based onenergetic solutions for RIS, see Section 2.2. The �rst application is treated in [HHM12]and deals with the evolution of microstructure in the form of laminates, where laminatesare explicitly takes as an allowed microstructure with an appropriate dissipation distanceas proposed in [KoH11]. The second application reconsiders the evolutionary model from[MTL02], where the microstructure is captured by a macroscopic phase fraction z(t, x) ∈
[0, 1].5.1 Laminate evolution in �nite-strain plasticityWe summarize the results in [HHM12], which analyze a rate-independent model for �nite-strain elastoplasticity with microstructure. The state of the system is described by thedeformation φ : Ω → Rd and by a Young measure Λ : Ω → L ⊂ Prob(K), where
K := Rd×d × SL(Rd)), and SL(Rd) = {P ∈ Rd×d | det P = 1 } is the special lineargroup containing the plastic strains, whereas Rd×d will contain micro�uctuations of thedeformation gradient.The main idea is to specify a physically relevant subset L of admissible Young mea-sures, like laminates of a �xed order as in [OrR99], to de�ne a suitable dissipation distancebetween these measures, and to prevent formation of di�erent microstructures by a suit-able regularization. Following [KoH11] the simplest set of admissible probability measuresare laminates of �rst order:

L := {αδ((1−α)b⊗n,Q) + (1−α)δ(−αb⊗n,R) | α ∈ [0, 1], b, n ∈ Rd, R, Q ∈ SL(Rd) }.Of course, more complicated lamination trees on the sense of [OrR99] would be possible.The point is now to de�ne a dissipation distance Dlam : L × L → [0,∞] between suchlaminates, which properly accounts for changes in the microstructure. In particular, onewants to model the fact that it is very di�cult to rotate the normal vector n in suchmicrostructures. When keeping n �xed, then the deformation �uctuation b ∈ Rd maychange without dissipation, while changes of the volume fraction α dissipate according tothe distance DSL(Q0, Q1) or DSL(R0, R1).The ERIS is now constructed via the state space Q = Y × Z with Y = W1,p(Ω; Rd)21



and Z = {Λ ∈ YM(Ω; K) | Λ(x) ∈ L a.e. } and the energy functional
E(t, φ, Λ) =

∫

Ω

∫

L

(
W (∇φ(Id+A)P−1) + H(P )

)
Λ(dA, dP )dx

+ σG(Λ)− 〈`(t), φ〉 with G(Λ) :=

∫

Ω

∫

Ω

dW(Λ(x), Λ(y))p

|x−y|d+θp
dxdy,where dW de�nes a 1-Wasserstein like norm on L, namely

dW(Λ0, Λ1) := sup{
∫

K

g(A, P )Λ1(dA, dP )−
∫

K

g(B, Q)Λ0(dB, dQ) | LipK(g) ≤ 1 }.Thus, G(Λ) serves as a spatial regularization for the laminate �eld Λ : Ω → L whichprevents the formation of further more complicated microstructures.The dissipation distance D : Z ×Z → [0,∞] is de�ned as
D(Λ0, Λ1) =

∫

Ω

Dlam(Λ0(x), Λ1(x))dxUnder suitable assumptions on the polyconvex energy density W and the hardeningenergy H it is shown in [HHM12, Thm. 2.4] that the ERIS Q, E ,D) has for each stableinitial condition (φ0, Λ0) an energetic solution describing the laminate evolution. Indeed,using the regularizing term G one has a compactness for the laminate �elds, which allowsto establish suitable lower semicontinuity results for E and D as well as mutual recoverysequences in the sense of (10).5.2 A two-phase shape-memory model for small strainsFinally we present some new results for the two-phase model for introduced in [MTL02].In fact, this model was the origin for the development of energetic solutions.The two elastic phases are described by linearized elasticity with the same elastictensor C, but have di�erent transformation strains Aj . On the microscopic level one mayuse the stored energy density
Ŵ (e) = min{1

2
(e−A1):C(e−A1) + c1,

1

2
(e−A2):C(e−A2) + c2},where e = e(u) := 1

2
(∇u+∇u>) is the in�nitesimal strain tensor. The relaxation of Ŵwith given volume fraction z ∈ [0, 1] for phase 2 was derived in [Koh91]:

W (e, z) = (1−z)
(

1
2
(e−A1):C(e−A1) + c1

)
+ z

(
1
2
(e−A2):C(e−A2) + c2

)
− ρz(1−z),where the relaxation coe�cient ρ > 0 can be calculated explicitly.The ERIS studied in [MTL02] is given by Q = H1

D(Ω; Rd)× L1(Ω; [0, 1]),
E(t, u, z) =

∫

Ω

W (e(u), z)− `(t) · udx, and D(z0, z1) = δ‖z1−z0‖L1 (33)for some smooth loading and some dissipation coe�cient δ > 0. A �rst existence result forenergetic solutions was obtained in [MTL02, Thm. 5.1] under the unnatural assumption22



that the energy E(t, ·) is convex. A corresponding numerical algorithm using space-timediscretization and incremental minimizations (cf. (7)) were developed in [CaP01]. Us-ing the abstract theory for ERIS in [Mie11b, MiR15], the existence theory was recentlyimproved, see [HeM15], by a new construction of mutual recovery sequences, see (10).Theorem 5.1 ([HeM15]) The ERIS (33) with ` ∈ W1,1([0, T ]; H1
D(Ω)∗) has, for eachstable initial state q0 = (u0, z0), an energetic solution (u, z) : [0, T ] → Q.The proof relies in reducing the system to a problem in z alone. For this note thatthe equation DuE(t, u, z) = 0 is a linear elliptic PDE for u with a right-hand side that islinear in z and `. Hence, the unique solution u = U(z, `) ∈ H1

D(Ω; Rd) can be insertedinto E to obtain the reduced ERIS (Z, I,D) with
Z := L1(Ω; [0, 1]) and I(t, θ) = E(t, U(z, `(t)), z) =

1

2

〈
Lz+γ(t), z

〉
+ α(t).Here L is a pseudo-di�erential operator of order 0, and the symbol, which can be calculatedexplicitly, is non-negative by the explicit formula for ρ from [Koh91]. The symbol attainsthe value 0 along the optimal laminates and ρ is the largest number such that the symbolremains non-negative.Because of the constraint z ∈ [0, 1] the quadratic trick indicated in (12) cannot beused for showing the closedness of the set of stable states. Indeed, from the incrementalminimization problem (7) we obtain piecewise constant interpolants zτ : [0, T ] → Z thatare globally stable, i.e. (S) in (5) holds at t = kτ for k ∈ N0. For a subsequence τk → 0we have zτn(t) ⇀ z(t) and we have to show that z(t) is stable as well.Since stability is a static concept we can �x t and drop it for notational convenience.To establish stability of z we start from the stability of zn in the form

I(t, ẑn) +D(zn, ẑn)− I(t, zn) ≥ 0 for all ẑn ∈ Z.To pass to the limit we can only use zn ⇀ z, but may choose a suitable mutual recoverysequence ẑn ⇀ ẑ for a given test state ẑ. In [HeM15] the following choice was introduced:
ẑn(x) = ẑ(x) + g(x) (zn(x)−z(x)), where g(x) =





bz(x)
z(x)

for ẑ(x) < z,

1 for ẑ(x) = z,
1−bz(x)
1−z(x)

for ẑ(x) > z.Clearly we have ẑn ∈ Z, ẑn ⇀ ẑ and sign(ẑn−zn) = sign(ẑ−z). Decomposing Ω into Ω+and Ω− such that ẑ ≥ z and ẑ < z, respectively, we obtain
1
r
D(zn, ẑn) = ‖zn−ẑn‖L1 =

∫
Ω+

ẑn−zn dx +
∫
Ω−

zn−ẑn dx

=
∫
Ω+

bz−z
1−z

(1−zn)dx +
∫
Ω−

z−bz
z

zn dx →
∫
Ω+

ẑ−zdx +
∫
Ω−

z−ẑdx = 1
r
D(z, ẑ).To control the energy di�erences I(t, ẑn) − I(t, zn) we exploit the quadratic form ofthe energy. In fact, the sequence vn := zn−z ⇀ 0 generates an H-measure µ ≥ 0 whichexactly characterizes the limit of the quadratic energy, namely

lim
n→∞

I(t, zn) = I(t, z) +

∫

Ω

∫

ω∈Sd−1

ΣL(ω)µ(x, dω)dx,23



where ΣL(ω) ≥ 0 is the symbol of L. The construction of ẑn gives v̂n := ẑn− ẑ = gvn ⇀ 0,such that v̂n generates the H-measure g2µ. Thus, we obtain
lim

n→∞

(
I(t, ẑn)− I(t, zn)

)

= I(t, ẑ)− I(t, z) +

∫

Ω

∫

ω∈Sd−1

(g(x)2−1)ΣL(ω)µ(x, dω)dx.Now, using g2 ≤ 1 we conclude the desired limsup estimate
0 ≤ lim sup

n→∞

(
I(t, ẑn) +D(zn, ẑn)− I(t, zn)

)
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