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ABSTRACT. We establish Pohozaev identities and integration by parts type for-
mulas for anisotropic integro-differential operators of order 2s, with s € (0,1).

These identities involve local boundary terms, in which the quantity u/d*|aq
plays the role that du/0v plays in the second order case. Here, u is any solution
to Lu = f(z,u) in Q, with u =0 in R™\ Q, and d is the distance to 0f.

1. INTRODUCTION AND RESULTS

Integro-differential equations arise naturally in the study of stochastic processes
with jumps, and more precisely of Lévy processes. In the context of Lévy processes,
these equations play the same role that second order PDEs play in the theory of
Brownian motions. This is because infinitesimal generators of Lévy processes are
integro-differential operators.

A very special class of Lévy processes is the one corresponding to stable processes.
These are the processes that satisfy certain scaling properties, and in particular they
satisfy that the sum of two i.i.d. stable processes is also stable. The infinitesimal
generator of any symmetric stable Lévy process is of the form

Lu(z) = /Sn1 /_ OO(2u(ac) —u(x +0r) —u(z — Qr))% du(0), (1.1)

where p is any finite measure on the unit sphere, called the spectral measure, and
s € (0,1); see [?,7,7].

When this measure is absolutely continuous with respect to the classical measure
on the sphere, then it can be written as

Lu(z) = /n (2u(m) —u(x +y) —ulr — y))a(y—”ybdy, (1.2)

ol
where a € L'(S™7!) is nonnegative and symmetric.

As said before, integro-differential equations appear naturally when studying Lévy
processes. For example, the solution u(z) to the Dirichlet problem in a domain {2
gives the expected cost of a random motion starting at point x € €2, the running
cost being the right hand side of the equation. When this right hand side is f =1
in , then the solution u(x) is the expected first time at which the particle exits the
domain.

Linear and nonlinear equations involving this type of operators have been widely
studied, from the point of view of both Probability and Analysis; see [?7, ?, 7, 7 7,
7,7, 7, 7] for example.

1



Here we study integro-differential problems of the form

Lu = f(z,u) in{
u =0 in R™\Q,

where  C R" is a bounded domain, and L is given by either (??) or (77?).

In this paper, we establish Pohozaev-type identities for solutions to (?77).

Pohozaev-type identities have been widely used in the theory of PDEs. In ellip-
tic equations these identities are used to prove sharp nonexistence results, partial
regularity of solutions, concentration phenomena, unique continuation properties, or
rigidity results [?, 7, ?, 7, ?, ?]. Moreover, they are also frequently used in hyperbolic
equations, control theory, harmonic maps, and geometry [?, 7, 7.7 7 7 7?].

For integro-differential equations, the first identity of this type was established in
[?], where the Pohozaev identity for the fractional Laplacian was proved. Here, we
extend the method introduced in [?] to establish Pohozaev-type identities for more
general operators of the form (??) and (?7).

We recall that, for second order equations, Pohozaev-type identities usually follow
from the divergence theorem or from the integration by parts formula. However, for
integro-differential equations these tools are not available, and thus the approach to
these identities must be completely different.

(1.3)

1.1. Assumptions. In order to ensure the regularity of solutions to (?7), one has
to impose some ellipticity assumptions on the spectral measure. When L is of the
form (??) we will assume that

0< A< / a(o)do, 0<a(f)<A<oc forall e S (1.4)
Sn—1

while when L is of the form (?77) we will assume

0 <A< inf / lv-o|*du(o), / du < A < 0. (1.5)
vesn—1 Sn—1 Sn—1
Moreover, in our results we will assume that either
L is of the form (??)-(??), and Q is C*'; (1.6)
or
L is of the form (??)-(??), and  is convexr and C**. (1.7)

The convexity of the domain 2 in (??) is needed in order to ensure certain interior
regularity of solutions to (77?), as explained later on in this Introduction.

1.2. Main results. The following is our main result.

Theorem 1.1. Let s € (0,1), and assume that L and Q) satisfy either (?7) or (77).
Let f be any locally Lipschitz function, u be any bounded solution to (??), and
d(x) = dist(x, R™ \ Q).
Then,
u/d*|lg € C7(Q), Vu| < Cd*t in Q,



and the following identity holds

25 — ; 2
/(z -Vu)Lu dr = — / wLude — <= A(v) (3) (- v)do. (1.8)
Q 2 Q 2 Joq ds
Moreover, for all e € R™, we have
2
/ douLudz = = A(v) (£> (v-e)do. (1.9)
Q 2 Joo ds
Here, v is the unit outward normal to 02 at x,
A) = / v 02 a(0)do, (1.10)
Snfl
and ¢, 1s a constant that depends only on s.
In fact, the constant ¢, is given by
7 (1 + 5)?

 sin(ws)(1 4+ 2s)
This can be checked for example by using the identity with a = 1 and taking into
account the constant in the Pohozaev identity for the fractional Laplacian [?].

As said before, the first identity of this type (with a local boundary term) was
established by the first two authors in [?] in the case of the isotropic fractional
Laplacian. More recently, N. Abatangelo [?] has obtained very related identities
involving “large solutions” for the fractional Laplacian (—A)?®, i.e., solutions that
blow up at the boundary of the domain.

As a consequence of Theorem 7?7 we have the following.

Corollary 1.2. Let s € (0,1), and assume that L and §) satisfy either (??) or (?7).
Let f be a locally Lipschitz function, and u be any bounded solution of

Lu = f(u) inQ
{ u =0 in R\, (1.11)

Then, the following identity holds

/Q{%F(“) — (n—2s)u f(U)}dm = ¢, /m A(v) (%)2 (- v)do,

where F(t) = f(f f, v is the unit outward normal to O at x, and A is given by (?77).

Note that the quantity u/d®|sq plays the role that the normal derivative plays
in second order PDEs. This fact is also observed in the Serrin’s problem for the
fractional Laplacian [?, 7, ?].

The quantity A(v) appear frequently in probability, and it is called the charac-
teristic exponent of the Lévy process. From the analytical point of view, this means
that the function A(€) is the Fourier symbol of the operator (77?).

As said before, problems of the form (?7) have a clear probabilistic interpretation,
in which f(z,u) can be viewed as a running cost. Informally speaking, u(z) is the
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expected cost for a particle that moves randomly, following a Lévy process starting
at z € (). However, we do not know any probabilistic interpretation of our identities.

An immediate consequence of Corollary 77 is the nonexistence of positive solutions
to (?7)-(?7?) in star-shaped domains for the critical nonlinearity f(u) = u?, with

p = 22 as explained next.

For supercritical powers p > Zf—gj, the nonexistence of bounded solutions was

already known, since it follows from the results in [?]. For the critical nonlinearity

flu) = u%gz, the nonexistence of bounded positive solutions follows directly from
Corollary ?? (see [?]), and hence the nonexistence of all positive solutions follows
combining this with the following result, which we also prove here.

Proposition 1.3. Let Q be any bounded domain, and f(x,u) be such that
[z w) < Co (1+ Jul ). (1.12)

Let L be any operator of the form (77)-(??7), and u be any weak solution of (?77).
Then

|ul| Loy < C, (1.13)
for some C' > 0 depending only on n, s, Cy, ellipticity constants, and ||u|

Hs (R”) .

On the other hand, another consequence of Corollary ?? and Proposition ?7? is
the following unique continuation principle. Recall that a nonlinearity f(u) is said

to be subcritical if ,
n—2s
tf(t 1.14
<52 (114)

for all ¢t # 0.

Corollary 1.4. Let s € (0,1), and assume that L and  satisfy (?7).
Let f be any locally Lipschitz function, and u be any weak solution of (?77). As-
sume in addition that f(u) is subcritical, in the sense that (?7) holds.
Then, u is bounded in Q, u/d* is Holder continuous up to the boundary, and the
following unique continuation principle holds:
u
ds loa
Here, u/d® on 052 has to be understood as a limit (as in Theorem ?7).

=0 on 0N — u=0 1 .

Finally, as in [?], another consequence of Theorem ?? is the following integration
by parts formula.

Corollary 1.5. Let s € (0,1), and assume that L and §) satisfy either (??) or (77).
Let w and v be two functions satisfying the hypotheses of Theorem 77 — with
possibly different nonlinearities f(x,u) and g(x,v).
Then, the following identity holds fori=1,...,n

/ Lu v,, do = — / Uz, Lodr +c¢, | A(v) v;do.
Q Q 20 ds d*



Here, v is the unit outward normal to 052 at x, and A is given by (?7).

To establish Theorem ?? we have to extend the method in [?] for the fractional
Laplacian to more general operators (??7). In the case L = (—A)® an important
ingredient of the proof in [?] was the precise behavior of (—A)*/2u(z) for  near O5).

Here, we consider the operator L'? and we study the singular behavior of the
function L'/?u near 0€). This requires very fine regularity estimates for u, u/d*, and
L'?u(z) near the boundary. Some of these estimates were already established in [?]
and [?], while some other estimates are developed in the present paper.

1.3. Some ingredients of the proof. As said above, the proof of Theorem ?7?
follows the same strategy as the one in [?]. However, the extension from (—A)*
to more general nonlocal operators (?7) requires new ideas and presents some in-
teresting mathematical questions, as explained in more detail at the end of this
Introduction.

An important ingredient in our results is the regularity up to the boundary of the
quotient u/d®, recently established in [?]. This is given by the following.

Theorem 1.6 ([?]). Let Q be any bounded and C*' domain. Let L be any operator
of the form (?77)-(??), and u € H*(R™) be the solution of Lu = g in 2, u =0 in
R™\ Q, with g € L*(Q).

Then, u/d® is Hélder continuous up to the boundary 02, and

[u/&Nlcv@y < Cllgllze@ — forall v <s.
The constant C' depends only on ), s, v, and the ellipticity constants.

Recall that for more general integro-differential operators of order 2s, solutions
u may not be comparable to d® near the boundary of €2. For example, it is showed
in [?] that fully nonlinear equations with respect to the class £, (or even to £, and
L) fail to have this property; see Section 2 in [?] for more details.

We will also need the following result, established recently in [?], and which deals
with the interior regularity of solutions.

Theorem 1.7 ([?]). Let L and  satisfy either (??) or (??7). Let w € H*(R™) be
the solution of Lu = g in Q, w = 0 in R™ \ Q. Assume that g € L>(Q2) and that
Vg| < Cd~*1 in Q.

Then, u is CL.1*7¢(Q) for all € > 0, with the estimate

loc
[u]05+ﬁ({dist(z,aﬂ)>p}) < Cpiﬂ fO’/’ all pE (0, 1)7
forall 5 €[0,1+s).

Moreover, we showed in [?] that there exists a nonconver C*° domain and an
operator (??)-(??) for which the solution of (??) with f = 1 is not Cp2(Q). In
particular, and somewhat surprisingly, the statement of Theorem ?? becomes false
when both conditions (??) and (??) are dropped. This is the essential reason for

which we assume (?7) or (??) in the present paper.
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Remark 1.8. The ellipticity assumption in (?7?) looks at first glance different from the
one in [?, ?] (which is the one in (??)). However, for spectral functions a € L>(S" 1)
these two ellipticity assumptions are equivalent, and hence we can apply the results
of [?] and [?].

In our setting, Theorem 77?7 will follow from Proposition 77 below.

Proposition 1.9. Let L and Q) satisfy either (?7) or (?7). Let u € H*(R") be
the solution of Lu = g in Q, u = 0 in R\ Q. Assume that g € L*(2), and that
|Vg| < Cd==1 in Q.

Then, u/d® is Holder continuous up to the boundary, |Vu| < Cd*=' in Q, and the
following identity holds

2s—n Cs U\ 2
/Q(a: -Vu)Lu dr = 5 /QuLu dr — B A(v) <$> (x-v)do.

o0
Here, v is the unit outward normal to 022 at x, and A is given by (?7).

The hypotheses of this Proposition will be satisfied for any solution to the semi-
linear elliptic equation (?7). Still, we expect solutions to other related equations,
like u; + Lu = f(z,u), to satisfy the same hypotheses; see [?].

The paper is organized as follows. In Section ??7 we show that it suffices to
prove Proposition 77 for C* spectral measures. In Section 7?7 we give a description
of the operator L!/2. In Section ?? we prove some interior regularity results for
the quotient u/d®, which are important in our proof of Proposition ??7. Then, in
Section ?? we study the singular behavior of the function L'/?u near the boundary
0f). In Section 77 we give the proof of Proposition ?? in the case of star-shaped
domains. In Section 7?7 we finish the proof of Proposition 7?7 and we prove Theorem
?7?7. Finally, in Section 77 we prove Proposition 7?7 and Corollary ?7.

Let us stress the main novelties of the present paper with respect to the results in
[?]. The contents of Sections 2 and 3 are new with respect to [?], while the results
of Section 4 are a modified (and simplified) version of the corresponding ones in [?].
The results in Sections 5 and 6 have been carefully adapted to the present case of
anisotropic operators, while Section 7 is more similar to [?]. Finally, the results in
Section 8 are new even for the fractional Laplacian.

Throughout Sections 5, 6, and 7, we will skip the parts of the proofs that are
more similar to the ones in [?], to focus in the ones that present new mathematical
ideas or difficulties.

2. AN APPROXIMATION ARGUMENT

The hypotheses of Proposition 7?7 allow the spectral measures a(:) to be very
irregular. In this section we show that, by an approximation argument, it suffices
to consider the case in which a € C>(S"!).

More precisely, in this Section we assume that the following result holds, and we
prove that Proposition ?? follows from it.
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Proposition 2.1. Let Q be any CY' domain, and let L be an operator of the form
(??), with a € C>*(S"1). Let u € H*(R™) be any function satisfying
(a) u=0 i R™\ Q.
(b) For al B €[0,1+ s) and all p > 0, we have
(U] o8 (fdist(2,00)>p)) < Cp.
(¢) Lu is bounded in €.
Then, u/d® is Holder continuous up to the boundary, and the identity (?7?) holds.

Let us give next the proof of Proposition ??. After this, the rest of the paper will
consist essentially on the proof of Proposition 7?7 (the proof of Proposition 7?7 will be
completed on Section 7?7 and this will at once also give the proof of Proposition 77
and Theorem ?7).

Proof of Proposition 7?7. Let Q and L satisfy either (??) or (??), and let v and g be
as in the statement of Proposition ?77.

Let ap € C™(S™!) be a sequence of nonnegative functions converging weakly
towards the spectral measure of the operator L. Let Ly be the operator (??) whose
spectral measure is ay, and let u; be the solution of

Lyuy = g in )
{ U = 0 in Rn\Q

Then, by Theorems ?? and 77, we have
Cs(R™) < Cv Huk/dSHC'y(ﬁ) < C? ‘vuk’ < CdSil»

[

for some constant C' that depends on g, n, {2, and the ellipticity constants, but not
on k.

Thus, up to a subsequence, the sequence u; converges uniformly to a function w
which satisfies w = 0 in R™ \ Q,

cwy <0 wllenm <O [Vu[ < Odh

]
Furthermore, since the functions u satisty
[uk]05+ﬁ({dist(x,3§2)>p}) < Cp_ﬁ for all pe (07 1)7

for all B € [0,1+ s), then the same bound holds for the function w.
This allows us to show that, for every x € Q, Ljuy is defined pointwise, and

g(x) = Lyug(x) — Lw(z).

Hence, Lw = g in €.

But then, by uniqueness of the solution to Lu = ¢g in 2, u = 0 in R", we have
that u = w.

Finally, since each uy; satisfy the hypotheses of Proposition 7?7, then we have that

_2s—n Cy U\ 2
/Q(x -Vug)g dv = 5 /Qukgda: -3 A(v) <E> (x - v)do.

o0
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Thus, taking the limit & — oo in the previous identity, we find (??), and thus we
are done. 0

3. FOURIER SYMBOLS AND KERNELS

The proof of the Pohozaev identity (?7?) follows the steps of the one for the
fractional Laplacian (—A)® in [?]. In the proof of [?], the function (—A)*/?u played
a very important role, and this role will be played here by the L/?u.

In order to establish fine estimates for this function L'/?u, we will need the fol-
lowing result, which states that the square root of L also possesses an associated
spectral measure.

Lemma 3.1. Let s € (0,1), and L be an operator of the form (?7?7)-(??), with
a € C°(S™ Y. Then, there exists b € C=(S™) such that

L1/2u(:1:) = /n (u(:p) —u(z + y)) % dy

Moreover, the function b satisfies

/SM - 0°b(6)df = ¢ </S v 9|zsa(9)d9) 2 -

for all v € S™1, for some constant c.

Proof. The Fourier symbol of L is given by
A@) =c [ 1€ oalo)ip
Sn—l

see for example [?]. Thus, the Fourier symbol of L'/? is given by

s = (o [ le-opaom)

This symbol is homogeneous of degree s, and is positive and C* in R™\ {0}. Hence,
this means that the operator can be written as

LPule) = [ (u(e) = o + ) K5)dy,

for some kernel K (y) homogeneous of degree n+ s, and such that K € C*°(R"\ {0});
see for example Section 0.2 in [?].
In other words, we may write K as

b/ lyl)

K(y) - |y|n_._S )

with b € C®(S" 1), as desired.
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In fact, the function b can be computed explicitly in terms of B by using that, for
any a € N? with |a| = n, we have

K@ = [ 0D Bew,

for all y € R".
It is important to notice that since B is even then b will be even, but that the
positivity of B does not yield the positivity of b. O

Remark 3.2. We expect a similar result to hold not only for spectral measures
a € C°(S™71), but also for a € L>(S"™1) or for general measures . However, we
do not need this here, since by the approximation argument in the previous Section
we can assume from now on that a € C(S"1).

4. INTERIOR REGULARITY FOR u/d*

In this section we will obtain interior estimates for the quotient u/d®, that is,
Proposition ?? below. These estimates hold for all operators (??)-(??) in any C*!
domain €2 (with no convexity assumption on the domain, with no regularity assump-
tions on the spectral measure).

Throughout this section, L is any operator of the form (?7)-(?7). Also, throughout
this section, d is a C™! function that coincides with dist(x, R™\ Q) in a neighborhood
of Q2. That is, d is just the distance function but avoiding possible singularities
inside €.

As in [?], the key idea to obtain these estimates is to use the following equation

1
Lv = ﬁ{Lu—des—i—IL(v,ds)} in €,

where v € C7(R"™) is an extension of u/d*|q, with v € (0, s), and

I (wy,wy) = /n (wi(z) —wi(z 4+ y)) (wa(z) — wa(z + y))% dy. (4.1)

The following is the main result of this section.

Proposition 4.1. Let L and Q be as in (?77?), and u be such that u =0 in R™\ Q
and || Lu|| Ly < C. Then, for all v < s and for all § < 2s

[u/d°) o5 (dist(z.00)>0)) < CpF forall pe(0,1),
where C' is a constant that do not depend on p.

The proof of this result is a modified (and even somehow simplified) version of
the one in [?, Section 4].

As said before, we need several lemmas to prove Proposition ??. We start with
the first one, which reads as follows.
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Lemma 4.2. Let Q be any CY' bounded domain, s € (0,1), L be given by (77).
Then, for all € > 0 there exists a constant C' such that

|d® Ld®|| ooy < C.
Moreover, the constant C' depends only on n, s, €, A, and €.

Proof. Note that d* is C*! inside €2, so we only need to prove that |d(x)Ld*(z)| < C
for z € € near OS).

Let x € Q, and let g € 92 be such that |z — x| = d(x). Let us consider the
function ¢,,(x) = (= - )%, where v is the unit outward normal to 0§ at zy. It
follows from Lemma 2.1 in [] that

Lipgy(z) = 0;
see Section 2 in [?] for more details. Hence, we only have to prove that
Lw(x) < Cod “(z),

where we have denoted w = d° — ¢y, .
Let p = d(z)/2. Then, the function w satisfies

Cp*yl* forye B,
jw(z +y)| < § Cly[* fory € B\ B,
Cly|® for y € R™\ By.

Therefore, we have that

A
|Lw(x)| < ’w —w(x+y)’Wdy

s 1| 2 2s S
Yl || ||
< A/ dy + A dy + A dy
|y | +2s B1\B, |y | +2s Re\ B, Y[
< C(1+|logp|)
< Cd (x),
as desired. O

The next result is the analog of Corollary 2.5 in [?], and can be found in [?].

Lemma 4.3 ([?]). Let L be given by (?7?), and let w € C®°(R™). Then, for all
0 <2s ande >0,

lwlless, ) < C (||LwHL°°(Bl) + [Jwllzoe sy + sup {Re_QSHWHLw(BR)}) ,

where C'is a constant depending only on n, s, (3, €, X, and A.

As a consequence of the previous lemma we find the following.
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Lemma 4.4. Let s and v belong to (0,1), with v < 2s. Let U be an open set with
nonempty boundary. Then, for all 3 < 2s,

2s
ol < € (ollimen + 20l )
for all w with finite right hand side. The constant C depends only on n, s, v, and
G.

Proof. For each xy € U, let R = dist(zo,0U)/2 and w(y) = w(zo + Ry) — w(xo).
Then, we have that
l@llcpy < B wlonen),

sup p~ ||| e (B,) < R [w]cv(wn),
p=>1

and
~ s 25—
L@ 1o (1) = BZ||Lw|| 1o (Bpenyy < RY||Lw]|$e .

Hence, using Lemma ?7, we find that
~ 25—
l@llcogs,m < CR ([wlermn + 1w ™).

Then, since this happens for all x5 € U, the proof finishes exactly as in the proof of
[?7, Lema 2.10]. O

Finally, the last ingredient for the proof of Proposition ?? is the following.

Lemma 4.5. Let Q be a bounded CY' domain, and U C € be an open set. Let s
and € belong to (0,1) and satisfy e < s. Then,

1z @)1 < € fuleren + 10152 ). (1.2
for all w with finite right hand side. The constant C depends only on €2, s, and €.
Proof. Let xy € U and R = dist(zq,0U)/2. Let

1 = ({udoren + 101600 ) ([@horen + (153 ).
We have that
11w, d°) (o) | < A [ (o) = w(awo + )| d*(20) = d*(z0 +)

Rn
dy
PR e

dy

|y |t

dy
+0/‘ 0] oegam [ &) coam 9]
R™\ BR(0) = = ‘Z/‘an

<CRK.

Hence, the result follows. O
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We can now continue with the proof of Proposition ??7. To complete it, we need
to recall the definition of the following weighted Holder norms:

Definition 4.6. Let 3 > 0 and ¢ > —(3. Let 8 = k + 3, with k integer and
B € (0,1]. For w € C?(Q) = C*¥(Q), define the seminorm

[w }(50&)2 = S;le% (min{d(x),d(y)}ﬂ+g|D wi:;)_—yﬁ/w(yﬂ)

For o > 0, we also define the norm || - H(% as follows: in case that o > 0,

HwIIE;”@z—Zsup( (2)+| D' (>\)+[w]§;§é,
while
k
ol = ollery+ 3 sup (-~ 1D"w(e)) +
=1 %

Proof of Proposition 7?7. Let v be a C7(R") extension of u/d*|g. Then, as in [?,
Section 4], we have that v solves the equation

1
Lv = = {Lu —v Ld’® + I, (v,d*)} in €, (4.3)

where

Ir(f.g) = / (f(2) = f(z+y))(9(z) — g(x +y)) jgjﬂg') d

Here, d is a function that coincides with dist(z, R™ \ ) in a neighborhood of 02
and that is O inside . With this slight modification on the distance function, we

will have that (?7) holds everywhere inside ).
We want to prove that

lolls.a < C.
where the Holder norms || - H(ﬁ_” are defined in above.
Let us use the equation for v to prove the result. Let U CC 2. We prove next
that

lellye! < €
for some constant C' independent of U, and this will yield the desired result.
Since v = u/d® in ©, and u € C*7¢ and d* € C™! inside 2, then it is clear that
||vH/(g_[}’) < 00. Next we obtain an a priori bound for this seminorm in U. To do it,
we use equation (??) and Lemma ??. Namely,

(2
< | Loflgy

<|d ULdSH G e ld Ll (S I (o, @)

ol
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Now, by Lemma ?? (with e = s —~ > 0), we have
ld=*v Ld* |5 < Clld* 70 Ld? || oy < Cllv]l (o).
Similarly,
ld~° Lu| 5™ < Ol Lul| e (0-

Moreover, by Lemma ?7 (with e = s — ), we have

a0, @)1 < € (elon + 101520 )

Thus, assuming # > v + s without loss of generality, we deduce that

|M“w<C@MMmm+WMWM+WMQQ

SC@MM%WWWWWO 2l

This last inequality is by standard interpolation.
Hence, we have proved that

||U||/(aig) < C(HLUHLOO(Q) + ||U||C"/(R”));
and letting U T €2 we obtain the desired result. O

5. BEHAVIOR OF L2y NEAR 0f)

Throughout this section, L is an operator of the form (??)-(??) with a € C>(S"™1).
We will also use the following:

Definition 5.1. Given a C%! domain € a point zy € 92, and € > 0, we define the
cone
Coo = {l(0 — 2) - 1] > ez — mol},
where v = v(xy) is the outward unit normal to 02 at xy. We also consider
Ch={(wg—a)-v>elr—wx|} and C,, =Cy \Cy,
and a ball B,(zg), with p > 0 small enough so that Cjo N By(xg) C Q and C,, N
Bp(l'()) C R" \ Q.

Theorem 5.2. Let ) be a bounded and C*' domain, L be given by (?77)-(?7) with
a € C°(S™™Y), and u be a function such that u = 0 in R"\ Q and that Lu is bounded
in Q. Let o € 02, and let v, C,, and p as in Definition 77.

Then, for all x € Cyy N B,y(x),

L2y z) = c1{log™ |z — zo| + caxa(z) } v/ A(v(zo) (ds) xo) + h(x),

where A is given by (?7), and h is a CV(R™) function satisfying
1Allc (CagnBo (o)) < C,
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with C' independent of xy.
Here, the number (u/d*)(xo) has to be understood as a limit (recall that u/d® €
C*(R2)), and ¢ and cy are constants that depend only on n and s.

The proof of this result is splitted into two results: Propositions 7?7 and 77.
The first one, stated next, compares the behavior of L'/?u near 9§ with the one
of L'/2(d*). Recall that, by Lemma ??,

LYw(x) = /n(w(a:) —w(z +y)) b‘(;/’élﬂ) dy,

for some b € C*°(S™1).

Proposition 5.3. Let Q be a bounded and C*' domain, L be given by (77)-(?7)
with a € C=(S™1), and u be a function such that w =0 in R"\ Q and that Lu is
bounded in €.

Then, there exists a C*(R™) extension v of u/d®|q such that

LY2u =vL'Y%d* + h in R",

where h € C*(R™), and
for some constant C' that does not depend on 6.
The second result gives the singular behavior of L'/2d* near 0.

It is important to notice that, in the following result, d = 0 in R™\ €2, while 6 > 0
in R™\ Q.

Proposition 5.4. Let Q be a bounded and C*' domain, L be given by (77)-(77?)
with a € C®(S™1). Let xy € 0, and let v, Cy, and p as in Definition 77.
Then, for all x € Cyy N B,y(xo),
L'2(d%) () = ¢1 {log™ |z — @o| + caxa(e) } v/ A (x0)) + I (2),
where hy is C*(R™), and log™ t = min{logt,0}.
To prove these results it is important to recall that, by Lemma 7?7, we have

LVw(x) = /n (w(z) —w(z +y)) b|(§|{z|ﬂ> dy

for some b € C°(S"1).
In the proof of Proposition 7?7 we will also use the product rule

Ll/Q(wlwg) = w1L1/2w2 + UJ2L1/2’UJ1 — I(wl, ’lUQ),

where

Iwy,wy)(x) = /n (wi(z) — w1z + y)) (wa(z) — wa(z +y)) bf;/‘gfsl) dy.  (5.1)

The next lemma will lead to a Hélder bound for I(d®, v).
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Lemma 5.5. Let Q be a bounded domain, and I be given by (?7). Then, for each
a € (0,1),

Hl(ds, w)Hca/z(Rn) S C[’w]ca(Rn), (52)
where the constant C' depends only on n, s, and «.
Proof. Let x1, x5 € R". Then,

[ (d*, w)(@1) — I(d*, w)(w2)| < Sy + Ja,

where
hi= [ Jwlw) = wi+y) = we) + wes +y)||d @) - d'(+y) ‘y% dy
and
Jy = Rn}w(xg) —w(wy +y)||d*(x1) — &° (21 + y) — d*(x2) + d° (22 + )| = dy .
Using that ||d*[|cs&=) < 1 and supp d® = ,
3= [ Juled) = wler+) — o) + s + )| minflyP, (iam 0)°)C dy
<€ [ fulowguolen - a2y minlyP 1} ,yf dy

§ C|l‘1 — x2|°‘/2[w]ca(w) .
Analogously,
JQ S C\xl — $2‘a/2[UJ]Ca(Rn) .

Finally, the bound for [|1(d®, w)|| e (®n) is obtained with a similar argument, and
hence (?7) follows. O

The following lemma, which is the analog of Lemma 4.3 in [?], will be used in the
proof of Proposition ?? below (with w replaced by v) and also in the next section
(with w replaced by u).

Recall that the norms ||w||gfg2 were defined in the previous section.

Lemma 5.6. Let 2 be a bounded domain and o and (3 be such that 0 < a < s < 3
and (3 — s is not an integer. Let k be an integer such that 8 = k+ (" with §' € (0, 1].
Then,

[L2w]5750 < C(lwllca@n + wll5s) (5.3)
for all w with finite right hand side. The constant C' depends only on n, s, a, and
B (but not on 0).

Proof. The proof is exactly the same as the one of Lemma 4.3 in [?]. The only
important point in the proof is that the kernel b(y/|y|) is a C®~* function on the
unit sphere — which is the case here since b € C*(S"1). O

Next we give the:
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Proof of Proposition 7?. Since Lu € L>=(Q), then u/d*|q is C*(Q2) for some a €
(0,s). Thus, we may define v as a C*(R") extension of u/d®|q.
Then, we have that
LY?u(z) = v(x)LY2d* (z) + d*(z) LY ?v(x) — I(v,d*),

where

I(v,d*) = /Rn (v(z) —v(z +y))(d(z) — d*(z +y)) bgj{%” dy

This equality is valid in all of R™ because d®* = 0 in R"\Q and v € C*** inside Q —
by Proposition ??. Thus, we only have to see that the terms d*L'/?v and I(v,d?)
belong to C*(R™).

For the first one we combine Proposition 7?7 with § = s + a and Lemma ?7. We
obtain

1LY 20|80 < ¢, (5.4)

and this immediately yields d*L'/?v € C%(R"); see the proof of Proposition 3.1 in
[?] for more details.
The second bound, that is,

HI(U’ dS)HCO‘(R”) < C’
follows from Lemma ?77. O

Let us now prove Proposition ??. For it, we need some lemmas.

Lemma 5.7. Let L be given by (7?)-(?7?) with a € C=(S"1).
Let n be a CX(R) with support in (—2,2) and such that n = 1 in [—1,1]. Let
ve St and

Gy (1) = ((& = 20) - v)_n((w — w0) - v), (5.5)

where z_ = min{z,0}. Then, we have
LYV2p(z) = a{log|(z — m) - V| + caX(0,00) () } v/ A(V) + h(z)
for x € Byjs(x0), where h € C*(B1/2(0)).

Proof. On the one hand, since ¢,, is a 1-D function, then by Lemma 2.1 in [?] we
have that

L2 (@) = ¢ B) (= A) 0w = 20) - v),
where ¢(t) = (t-)*n(t) and

B(v) = /S v - 0)°b(6)db.

Moreover, by Lemma ??, we have B(v) = ¢y/.A(v) for some constant c.
On the other hand, by Lemma 3.7 in [?], we have that

(—=A)2(t) = e {log |t + cax(0,00) (£) } + ho(t),
with hg € C®. Thus, the result follows. O
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Remark 5.8. Throughout the rest of the Section the quantity py > 0 will be a fixed
constant, depending only on €2, such that every point on 02 can be touched from
both inside and outside {2 by balls of radius py.

Lemma 5.9. Let s € (0,1), and L be an operator of the form (??)-(?7), with
a € C°(S" ). Let Q be any bounded CY' domain in R™, and let py be given by
Remark ?7.

Fiz xy € 09, and define ¢u, as in (?7), with v = v(zxo) the outward unit normal
to OX) at xq. Let us consider the segment

Sz = {0 +tv, t € (—po/2,p0/2)}, (5.6)
where ¢ is giwven by (7?) and v is the unit outward normal to O at xy. Define also

Wy = d® — ¢x0‘
Then, for all x € S,,,

|L1/2wro<x) - L1/2wro<x0)| < C|Z’ - x0|s/2’
where C' depends only on € and py (and not on xg).
Proof. We denote w = w,, and §(x) = dist(x, 092).
Note that, along S,,, the distance to 02 agrees with the distance to the tangent
plane to 02 at xg. That is, denoting d+ = (xo — xrm\)0 and dx(x) = —v - (z — 20),
we have 04 (z) = dy(z) for all x € S,,. Moreover, the gradients of these two functions

also coincide on S, i.e., Vii(x) = —v = Vdy(z) for all 7 € S, .
Therefore, for all x € S, and y € B,,/2(0), we have

|0+ (z +y) — da(z + )| < Clyl?
for some C' depending only on po. Thus, for all x € S,, and y € B, /2(0),
w(z +y)| = [0z +y))5 — (do(z +))3] < Clyl™, (5.7)

where C' is a constant depending on 2 and s.
On the other hand, since w € C*(R™), then

lw(z 4+ y) — w(ze + y)| < Cle — x|’ (5.8)
Finally, let p < po/2 to be chosen later. For each z € S,,, we have

Lw(z) = LPw(wg)| < C [ |w(z +y) = w(zo +y)|

C
— _dy
Rn |y|+s

C
<C \w($+y)—w($o+y)|Wdy
By

C
+0/' jw(z + 1) — w(zo +4)| e dy
R\ B, |yl

C C
sC/\Wan@+C % — ol dy
B, Yl R\B, Y|

=C(p* + |z —x0|*p "),
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1/2

where we have used (??) and (??). Taking p = |z — x¢|"* the lemma is proved. [

Finally, we give the proof of Proposition ?7.
Proof of Proposition ?7. Let py be given by Remark 77?7, and
U={zeR": dist(z,00) < po}.

For each x € U, let 2* € 02 be the unique point such that |z — z*| = dist(z, 02).
Define

ho(z) = L?d(z) — 1 {log™ |z — 2*| + caxa(x) } v/ A(v(27)).

We claim that hy € C*(U).
Indeed, we show next that we have

(i) hg is locally Lipschitz in U and
|Vho(z)| < K|z —2*|7™ in U

for some M > 0.
(ii) There exists o > 0 such that

|ho(x) — ho(2™)| < K|z — 2*|* in U.
Then, (i) and (ii) yield that
[hollcreny < CK

for some v > 0; see for example Claim 3.10 in [?].
Let us show first (ii). On one hand, by Lemma ?7, for all 2o € 92 and for all
x € Sy, where S, is defined by (?7?), we have

ho(z) = LV2d*(x) — LY?¢, () + h(x),
where £ is the C* function from Lemma ?7. Hence, using Lemma 77, we find
\ho(x) — ho(o)| < Cla — zo|*’?  for all z € S,

for some constant independent of x.

Recall that for all z € S,, we have x* = x, where z* is the unique point on 052
satisfying 6(x) = |z — x*|. Hence, (ii) follows.

Let us now show (i). Observe that d* = 0 in R"\Q, |Vd*| < Cd*~! in Q, and
|D?d*| < Cd*=2 in U. Then, letting r = dist(z, 992)/2, we have

VLY d ()| < O | |Vd*(2) = Vd*(z + y)lly| " dy

Rn

s—2 S S
cof SO o[ (I9HL TR,
- R\ B,

|y|ts |y|+s y|+s

¢ C

d
§—+—+0/ d(o+y)l
r r R”\ B, Y
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Now, by Lemma 4.2 in [?] (with § and & therein replaced by s/2 and 1 — s/2 here)
we have that

dy C
|d(z +y)[~ < —,
/R"\BT |y|ts r

\VLY2d(z)| < Cla — |71

and thus we get

This yields (i).

Thus, we have proved that hg € C7(U) for some v > 0.

To finish the proof, we only have to notice that the function |z — x*|/|z — x¢| is
Lipschitz in C,, N By/2(x¢) and bounded by below by a positive constant, so that

log™ |z — z*| — log™ |x — x|

is Lipschitz in C,, N By ja(x0). Moreover, /A(v(z*) — \/A(v(z¢) is also Lipschitz in
Cyo N B1/2(w0) and vanishes at x = xy. Thus, the functlon

{log™ |z — 2"| + caxa(z) } vV A(v(27)) — {log™ |z — x| + caxa(2) } v/ A(v(0))

is Holder continuous in Cy, N By /2(o).
This implies that

h(z) = LV2d%(x) — ¢ {1og_ |x — xo| + CQXQ(x)} A(v(xg))
is C* in Cyy N Byj2(0), as desired. O
To end this section, we give the

Proof of Proposition ?7. By Propositions 7?7 and 7?7, we have that

LY u(x) = = c1{log™ |z — mo| + caxa (@) } v/ A (zo))v(z) + ha(z

for some function hy € C*(Cy, N B,(x0)).
Thus, the result follows by taking into account that v is C* and that v(zg) =
(u/d”) (o). O

6. PROOF OF THE RESULTS IN STAR-SHAPED DOMAINS

In this section we prove Proposition 77 for strictly star-shaped domains. Recall
that € is said to be strictly star-shaped if, for some z5 € R",

(x—2z) - v>c>0 for all x € 00 (6.1)

for some ¢ > 0. The result for general C*! domains will be a consequence of this
strictly star-shaped case and will be proved in Section ?77.

Before proving Proposition 7?7 we state an essential ingredient in the proof of this
result. It is a fine 1-D computation that we did in [?].
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Proposition 6.1 ([?]). Let A and B be real numbers, and
@(t) = Alog™ |t — 1| 4+ Bx(o,(t) + h(1),
where log™ t = min{logt,0} and h is a function satisfying, for some constants [3
and 7 in (0,1), and Cy > 0, the following conditions:
(1) [12llcs(0,00)) < Co-
(ii) For all B € [y,1+ 7]

1Plles0a-poaspzy < Cop™  forall pe(0,1).

(i) [P/ (t)] < Cot™7 and |W"(t)| < Cot™37 for all t > 2.
Then,

d
dA

o t
/ o (M) p (—) dt = A’n* + B2
A=1+J0 A

Moreover, the limit defining this derivative is uniform among functions ¢ satisfy-
ing (1)-(11)- (1) with given constants Cy, (3, and .

We can give now the

Proof of Proposition ?? for strictly star-shaped domains. By the argument in [?, Sec-
tion 2], we may assume without loss of generality that 2 is strictly star-shaped with
respect to the origin, that is, zp = 0 in (?77?).

We start with the identity

d
: L - =
/Q(ac Vu)Ludz o
where uy(z) = u(Ar) and L

25 |y_p+ 1s the derivative from the right side at A = 1. At
a formal level, formula (??) follows by taking derivatives under the integral sign;
rigorously, this can be justified using the bounds |Lu| < C and |Vu| < Cd*~! in Q
and the fact that uy =0 in R™\ Q for A\ > 1.
Thus, as in [?], integrating by parts and using the change of variables y = v/Az,
we find

/ uyLu dz, (6.2)
A=1+ JR?

/ u,\Ludl’:)\QSZ‘n/ wﬁwl/ﬁdy,
n R’Vl

where

w(z) = LY?u(z), and wy(z) = w(iz).
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This leads to

/(Vu-z‘)Lud:c = i {)\232%/ wﬁwl/ﬁdy}
Q dA A=1+ R™
925 _
= 20 wtde (6.3)
2 Jun
]
— W sW Yy
d\ N VA1V

2s —n 1 d
= Lud - —
5 /Q““"HMA

/ wawindy.  (6.4)
A=1t JR”

Hence, we have to prove that

_d
dx

u

L= /8 Aw) (d—)2 (z - v) do, (6.5)

A=1+

where
[)\—/ w,\wl/)\dy. (66)

We write the integral (?7) in coordinates (¢, x) € (0,00) x 02, where each y € R"
is written as y = txy. We find

R [t ()
— = — z-v)do(x t"rw(Mx)w | — | dt. 6.7
B h= | [ e [t (5 (6.7)

Fix now zy € 012, and define

o(t) = "7 w(tze) = t'2 LY ?u(tz).

By Theorem ?7?, we have
u

o(t) = "7 /AW)e {log™ |t — 1] + eaxon (t)} (d—) (o) + ha(t)

in [0, 00), where h; is a C7([0, c0)) function.
Thus, this yields
u

o(t) = VVAW)er{log™ |t = 1] + exxon ()} (5 (20) + h(t)

in [0, 00), where h € C7([0, 0)).

We want to apply now Proposition ?? to this function ¢(t). For this, we have to
check that (ii), and (iii) hold — we already checked (i).

To check (ii), we just apply Lemma ?? with w = u, § € (0,14 s), and o« = s. We
find that ¢ satisfies the bound in (ii), and thus h also satisfies the same bound.

To check (iii), we notice that for z € R"™\ (202) we have

LV2u(z) = - / u(y)K (z — y)dy,
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where K (y) = b(y/ly|)|y|~™%. Since b € C>°(S"!), differentiating under the inte-
gral sign one gets
IVLY?u(z)| < Clz|™*Y and |D*LY?u(x)| < Clz| "2
And this yields (iii).
Therefore, we can apply Proposition ?? to find that, for each xy € 0f2,
d o t 2
ol /0 "L (M )w (;) dt = ¢ A(v(xo)) (dﬂ) (0)
for some constant c.
Finally, by uniform convergence on xq of the limit, and by (??), this leads to

4 I, = c/ (zo - v)A(v) (E)Qda:
A\ s A — 00 0 s 0
which is exactly what we wanted to prove. O

7. NON-STAR-SHAPED DOMAINS AND PROOF OF THEOREM 77

In this section we prove Proposition ?? for general C'' domains.

The key idea, as in [?], is that every C*! domain is locally star-shaped, in the
sense that its intersection with any small ball is star-shaped with respect to some
point. To exploit this, we use a partition of unity to split the function w into a set
of functions uy, ..., u,,, each one with support in a small ball. Using this, we will
prove a bilinear version of the identity, namely

2s—n

/(:13 - Vuy)Lug dx + /(x - Vug)Luy dx = / w1 Lug do+
Q Q 2 Q

2s —n

(7.1)

/ ug Ly do — A(v)— —(x - v)do.
) o9 d* d

The following lemma states that this bilinear identity holds whenever the two
functions u; and uy have disjoint compact supports. In this case, the last term in
the previous identity equals 0, and since Lu; is evaluated only outside the support
of u;, we only need to require Vu; € L'(R").

Lemma 7.1. Let uy and uy be WH(R™) functions with disjoint compact supports
Ki and K5. Then,

/ (x - Vuy)Lug dx + / (x - Vug)Luy dox =
K1

K>

2s—n 2s—n

= / Uy LU2 dx +
2 K

/ wo Ly dx.
K>

Proof. Notice first that

Lw(z) = ¢4 /Snl(—ﬁgg)sw(x)du(@), (7.2)
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see e.g. formula (2.2) and Lemma 2.1 in [?].
We claim that, for each 6§ € S*~ !,
(—0p9)°(z - V) = - V(—0po)°u; + 25(—Dpe)’u;  in R™\K;. (7.3)

Indeed, fix € S" ! and fix 7y € {x+70 : 7 € R}. Let 7, be such that zo+760 = x.
Then, using that u; = 0 in R" \ K}, for each € R"\ K; we have

. _ —(xo + 70) - Vu;(zo + 70)
(ow)e- Vugw) = e, [ ST
T —11)0 - Vu;(zo + 70
= 01,5/ ( 4 ulgg ) dr
ro+TOEK, |T - 7—1|

ter, / —(zo +10) - Vu;(xg + 70) ir
zo+TOEK

|7- _ 7-1|1-i-2$

dr

T —T
= 0173/ 0- <1—1+2s> w;(y)dT + x - (—0ga)*Vu; ()
ro+70EK; ‘T - T1|

= 1 / e T ) dr + - V(=) ()
:28< 699) ul( )+l‘ V( 699)31“(:6),

as claimed.
Therefore, using (??) and (??), we find

L(x - Vu;) = x - VLu; + 2s Lu; in R™"\ K. (7.4)

We also note that for all functions w; and wy in L'(R™) with disjoint compact
supports W; and W, it holds the integration by parts formula

/ wy Lwy = / / —un(@ +2 )a<$_ )dydx—/ wy Lwy. (7.5)
W, wy Jw, T — ‘" 3 [z =y Wa

Now, integrating by parts,

/ (x - Vuy)Lug = —n/ w1 Lug — / wrx - VLus.
K1 K1 K1

Next we apply (??) and (??) to w; = u; and wy = x - Vuy. We obtain

/ wx - V>Lug = / ur L(z - Vug) — 23/ wy Lug
K K1 K1
= / Luy(z - Vuy) — 25/ uy Lus.
Ko K

/ (x - Vuy)Luy = —/ Luy(z - Vug) + (25 — n) / uy Lus.
K K> K

Hence,
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Finally, again by the integration by parts formula (??) we find

1 1
/ U1Lu2 = 5/ UlLUQ + 5/ u2Lu1,
Kl Kl K2

and the lemma follows. O

The second lemma states that the bilinear identity (??) holds whenever the two
functions u; and us have compact supports in a ball B such that 2N B is star-shaped
with respect to some point zg in QN B.

Lemma 7.2. Let Q be a bounded CY' domain, and let B be a ball in R™. Assume
that there exists zo € 2N B such that

(x — z9) -v(z) >0 for all x € 90N B.

Let u be a function satisfying the hypothesis of Proposition 77, and let u; = un and
ug = ung, where n; € CX(B), i = 1,2. Then, the following identity holds

2s—n

/ (x - Vuy)Lug dx + / (x - Vug)Luy do = / wy Lug do+
B B 2 B

26 —
42 n/ ug Ly dx—F(1+3)2/ E%(x-u)da.
2 Jp oonp d° d°

Proof. The proof is exactly the same as Lemma 5.2 in [?]. One only has to check that
for all n € C°(B), and letting @ = un, then the function @ satisfies the hypotheses
of Proposition ?77.

Hypotheses (a) and (b) are immediate to check, since 7 is smooth. So, we only
have to check that Lu is bounded. But

L(un) = nLu + uLn — I (u,n),

where Iy, is given by (??). The first term is bounded because Lu is bounded. The
second term is bounded since n € C*(B). The third term is bounded because
u € C*(R") and n € Lip(R"™). Thus, the lemma is proved. O

We now give the

Proof of Proposition ?7?. As in [?], the result follows from Lemmas 7?7 and ?77. We
omit the details of this proof because it is exactly the same as in [?]. O

Hence, recalling the result in Section 7?7, Proposition 77 is proved.
Finally, as in [?], the other results follow from Proposition ?7.

Proof of Theorem ??. The first identity follows immediately from Proposition 77
and the results in [?]. The second identity follows from the first one by applying it
with two different origins; see [?] for more details. O

Proof of Corollary ?7?7. The result follows immediately from the first identity in The-
orem ?7. U
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Proof of Corollary 7?7. Applying Proposition 7?7 with two different origins, we find

that
1 w2
o Lwds = = YN d
/sz wdx 2/99A(V)<d5> v;do

whenever w satisfies the hypotheses of the Proposition. Then, the result follows by

applying this identity with w = v + v and w = uw — v, and subtracting the two

identities. 0
8. PROOF OF PROPOSITION 7?7 AND COROLLARY 7?7

The aim of this Section is to prove Proposition 7?7 and Corollary ?7.
To establish Proposition 77, we will need the following.

Lemma 8.1. Let L be any operator of the form (7?)-(??). Then,

o 2 dr
c[u]fsgny < / /S l/ (u(z) — u(z + ) L dp(0)dz < Cluips gy,
where the constants ¢ and C depend only on the ellipticity constants in (77).

Proof. The result follows by writing each of the terms in the Fourier side. Indeed,
since the symbol of L is A(§), and it satisfies

AE)P < A(E) < AP,

then we have

o[ wlaras < [ Aelapas<c [ jelapas
as desired. O]

We will also need the following result, established in [?].

Proposition 8.2 ([?]). Let Q2 C R™ be any bounded domain, and L any operator of
the form (?7)-(??). Let u be any weak solution of
Lu = g mQ
u = 0 inR"\Q,

Then,

() fl<p<g,

np

n—2ps’

[ullza) < Cllgllze@), ¢ =

(ii) If £ < p < o0,
lull @) < Cllgllz@-
The constant C' depends only on n, s, p, Q and ellipticity constants.

The last ingredient for the proof of Proposition 77 is the following technical result.
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Lemma 8.3. Fiz T >0 and 3 > 0. Then, for all real numbers a,b, we have
|a§1a - bgb’Z < C(a —b)(a3’a — b2'b),
where ar = min{|a|, T} and by = min{|b|,T'}. The constant C" depends only on (.

Proof. Let
. B
f(2) = 2 - (min|], 7})".
Then, we clearly have
2

f(a) = FO)] = (/abf’) < (a—10) /ab(f’)2-

2
)

Also,
|f(a) = f(b) = |afa — 7D

so that we only have to show that

(@=8) [ (17 < a = B)(aFa~b7%), (5.1)

But
N A if |z| >T
Fz) = { (B+1)|z|? if |2| < T,

and therefore
(min{|2], 7})” < f'(2) < (8 + 1) (min{|2], T})”.
Similarly, the function
9(2) = 2+ (min{|z|, T})*
satisfies
(min{|2], T})* < ¢'(2) < (8 + 1)(min{|2], T})*".
Thus,

(a—b) / (F)? < (B +1)2a—0) / ¢ = Cla—b)(g(a) - g(0)),
and this yields (77). O

We give now the:

Proof of Proposition ?77. We adapt a classical argument of Brezis-Kato for —Au =
f(z,u) to the present context of nonlocal equations.
Fix f > 0and T > 1, and let ur = min{|u|, T'}. By Lemma ??, for all z,y € R™,

|u(@)ui (@) = uly)ui (v)]” < C(u(x) = u(y)) (u(@)ud’ (@) — uly)yud’ (). (8.2)
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Hence, using (77), we find

[ [ 1neni@) st P~ pavay

< [ [ (o)~ ulw) (u(o)id (@) ~ ulo) ()) K - y)dwdy,

where we denoted K (y) = a(y/|y|)|y| ™" 2.
Moreover, using the equation (77), we also have

| () = ) (wlo)i @) = ) ) Ko = )dady = [ ) wid
Now, by (??), we have that

|f (2, u)| < alx)(1+]ul),
with |f( )|
o) = Ty

We have used that u € L-2 (), since v € H*(R"™) by Lemma ?7.
Combining these facts, we find

[ i) st ) Ko~ pieay < © [ ayu+juas

and thus, using Lemma 77,

0y < € [ @)1+ o

Therefore, by the fractional Sobolev inequality,

C(1+ M=z =) € L2 (Q).

n—2s

(/ |uu§{|ﬁ’ésdx) ' gol/a(x)(1+|u|)2u§ﬂdx. (8.3)
Q Q

Assume that

/ lu[*Pdx < C,
Q

for some 3 > 0. Then,

/a(x)|u]2u2Tde < MO/ lu*° dx +/ () |ul?ud’ dz
9} Q {a(x)>Mo}

n—2s
2n

< CyMy + (M) ( / |uu§\rf%dx) ,
Q

where

1/n
e(My) = (/ |a(:c)|"dx) —0
{a(z)>Mo}
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as My — oo. Also, note that we can deal with fQ oz(x)u%ﬁ dx in the analogue proce-
dure.
Therefore, taking My large enough so that Cie(My) < 1/2, we find

n—2s

(/ \uughin%dx) ' < CCy,
Q

with C' independent of T. Thus, letting 7' — oo, we obtain that

/ |u| #2555 dr < CO,.
Q

Hence, iterating By = 0, 1 + B = (1 + Br—1);7%5; for & > 1, we conclude that
u e LP(N) for all p < oco.
Finally, by Proposition ?? and (?7), this yields u € L>(Q), as desired. O

Remark 8.4. Notice that Proposition 77 establishes the boundedness of solutions
for critical and subcritical nonlinearities |f(x,u)] < C <1 + |u|%> whenever the

operator L satisfies (?7)-(??), but the assumption (??) is only needed in order to
apply Proposition ?77.

For subcritical nonlinearities | f(z,u)| < C(1 + |ufP), with p < 2£25the result in
Proposition 7?7 could be proved by using the argument in [?, Theorem 2.3]. In this
proof, only does not need to use Proposition ??7 but only Lemma 7?7, and thus the

result would be true for any operator (??)-(?7).
We can finally give the:
Proof of Corollary ??. First, since f is locally Lipschitz and (??) holds, then

n+2s )

|f(a:,u)| < C(l + |u|n—zs

Hence, by Proposition 77, the solution u is bounded, and by Theorem ?? u/d* €

C*(Q).
Assume that u/d*|sq = 0 on 9. Then, by Corollary ?? we have

/Q{F(u) - 2_”28 uf(u)} _0.

But since )
n
F(t) — tf(t) >0
()= =" ](1)
whenever t # 0, then we find that « = 0 in . U
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