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ABSTRACT. We construct codimension 1 surfaces of any dimension that minimize a nonlocal perimeter
functional among surfaces that are periodic, cylindrically symmetric and decreasing.

These surfaces may be seen as a nonlocal analogue of the classical Delaunay surfaces (onduloids). For
small volume, most of their mass tends to be concentrated in a periodic array and the surfaces are close to
a periodic array of balls (in fact, we give explicit quantitative bounds on these facts).

NOTATION

Most of the notation used in this paper is completely standard. For the convenience of the reader, to
avoid ambiguities, we state it clearly from the beginning. The standard Euclidean basis of R" is denoted
by e1,- -, e, (so that, in particular, e; = (1,0,---,0)). If £ C R™ and v € R", we use the notation

E+v:={p+v, p€ E}.

Also, |E| is the Lebesgue measure of E. The (n — 1)-dimensional Hausdorff measure is denoted by "1,
The notation A will be used for the symmetric difference, i.e. EAF := (E'\ F)U (F \ E). We denote
by xg the characteristic function of a set F, i.e.

(.= (1 HeER
XEVT)"=N0 ifz ¢ E.

Also, throughout the paper, the world “decreasing” stands simply for “non increasing”.

1. INTRODUCTION

The main goal of this paper is to construct a nonlocal analogue of the classical Delaunay surfaces (see [5]),
i.e. surfaces that minimize a fractional perimeter functional among cylindrically decreasing symmetric
competitors that are periodic in a given direction. We also study their main geometric properties, such as
dislocation of mass and closedness to periodic array of balls.

For this scope, we will introduce a new fractional perimeter functional that takes into account the
periodicity of the surfaces and we develop a fine analysis of the functional in order to obtain suitable
compactness properties. The setting we work in is the following. We consider a fractional parameter s €
(0,1). We use coordinates x = (x1,2’) € R x R*1 =R", with n > 2, and deal with the slab

S:=[-1/2,1/2] x R* .
We consider the kernel K : R"\ (Z x R"™!) — R,

Z ’56 + kel‘nJrs

and, given a set £ C R", we define

dx dy
= K(x —y)dxdy —/ / .
/EOS S\E ( ) ENS JS\E kze; |z —y + key[nFs

This fractional functional is related to, but quite different from, the nonlocal perimeter introduced in [2]

(namely, it shares with it some nonlocal features, but it has different scaling behaviors and periodicity

properties). More precisely, on the one hand, the functional studied here may be considered as a periodic

version (in the horizontal direction) of the fractional perimeter in [2]. On the other hand, the kernel that

we consider is non-standard, since it has different scaling properties in the different coordinate directions.
We consider the class of our competitors %", that is given by the sets F' C S of the form

F = { x1,2") € S with |2/] < f(z 1)},
1




2

for a given even function f : [-1/2, 1/2] — [0, +o0] that is decreasing in [0, 1/2].
In this setting, we prove the existence of volume constrained minimizers of Pg in ¢ ":

Theorem 1. For any i > 0 there exists a minimizer for Ps in & with volume constraint equal to p.
More explicitly, for any pu > 0 there exists a set F, € A such that |F,| = p and, for any F € & such
that |F| = p, we have that Ps(F,) < Ps(F).

Recently, in the literature, there has been an intense effort towards the construction of geometric object
of nonlocal nature that extend classical (i.e. local) ones, see e.g. [4, 7, 6]. In some cases, the nonlocal
objects inherit strong geometric properties from the classical case, but also important differences arise. In
our setting, we think it is an interesting problem to determine whether cylinders are minimizers for large
volume.

As for small volumes, the next result points out (in a quantitative way) that in this case the minimizing
set does not put a considerable proportion of mass close to the boundary of the slab (in particular, it is
“far from being a cylinder”):

Theorem 2. Let
F, = {(xl,x/) €S st |a'] < f(xl)}
be a minimizer with volume constraint p > 0, as given in Theorem 1. Then

(1.1) f(1{4) < Cwﬂ(im,

Mn—l
for some C' > 1. In particular, for any § € (0,1), if p € (0, C‘léé), we have that

.0l > /4 _
7]

(1.2)

for a suitable constant C' > 1.

In case of small volumes, we also show that minimizers are close to balls. The notion of closedness will
be measured by the so-called Fraenkel asymmetry (or symmetric deficit) of a set E, which is defined as

Def(FE) := inf

where the infimum is taken over every ball B C R™ with |B| = |E|. Roughly speaking, the Fraenkel asym-
metry measures the L! distance of E from being a ball of the same volume (the ball may be conveniently
translated in order to cover the set F as much as possible, and the quantity above is normalized with
respect to the volume in order to be scale invariant). In this setting we have:

Theorem 3. Let F, C .S be a minimizer according to Theorem 1, with volume constraint p. Then, if u is
small enough, F, is close to a ball.
More precisely, for any p € (0,1), we have that

n2_ g2
Def(F,) < C p2*e-1,

The rest of the paper is organized as follows. In Section 2 we study the decay properties of the kernel.
Then, in Section 3 we give a detailed comparison between our functional and the one in [2] (this is not
only interesting for seeing similarities and differences with the existing literature, but it is also useful for
constructing competitors and deriving estimates).

As a matter of fact, the proof of Theorem 1 also requires a careful energy analysis and ad-hoc compactness
arguments in order to use the direct minimization method: these arguments are collected in Sections 4
and 5. With this, all the preliminary work will be completed, and we will be able to prove Theorems 1, 2
and 3 in Sections 6, 7 and 8, respectively.

The paper ends with two appendices. First, in Appendix A, we show that the limit as s 1 of our
fractional functional converges to the classical “periodic” perimeter (i.e. to the perimeter on the cylinder
obtained by identifying the “sides” of the slab S). Then, in Appendix B, we remark that the assumption of
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cylindrical symmetry for the competitors in %" can be relaxed (in the sense that our fractional functional
decreases under cylindrical rearrangements).

2. KERNEL DECAY

First, we point out that our functional is compatible with the periodic structure in the horizontal
direction. For this, if F' C S, we define the periodic extension of F' as

Foer = | J(F + key),

ke
and we have:
Lemma 4. For any 7 € R, it holds that Ps(Fpex + 7€1) = Ps(Fper)-

Proof. The function @y — xp,,,(z1,2") is 1-periodic, and so is z; — K(x1,2’), for any fixed 2/ € R"'.
Therefore, for any 7 € R,

/ da, / Ay X (21, 2 X\ By treny (91, ) K (2 — )

[—1/2,1/2] [—1/2,1/2]

_ / da, / Ay X (01, @)X e (s VK (2 — )
[-1/2,1/2]—1 [-1/2,1/2]—7

_ / da, / Ay X (21, 2 Xrm o (50, 8V K (2 — ).
[—1/2,1/2] [—1/2,1/2]

Thus the desired result follows by integrating over z’ and /. ([l

Now we prove a useful decay estimate on our kernel. We remark that the scaling properties of our kernel
are quite different from the ones of many nonlocal problems that have been studied in the literature: as a
matter of fact, the kernel that we study is not homogeneous and it has quite different singular behaviors
locally and at infinity. Indeed, close to the origin the dominant term is of the order of |z|™"~*, but at
infinity the z; direction “averages out”, as detailed in the following result:

Lemma 5. For any x = (z1,2') € R™ with |2'| > 1, we have that K(z) < C |2/|1™"7%, for some C > 0.

Proof. Fix x = (z1,2) € R™ with |2/| > 1. Let ay := +|2'| — 21 + 1 and by := £3|2| — z1. Let also y1 be
the integer part of b... We observe that

by =32 | —x1 > |2 |+2— 21 =a, + 1.
This says that at least one integer lies in the segment [ay,b,] and so y, > ay. Therefore
yr +o1—1>ay +x—1=12'].

Moreover

Yo+ +1<b+o+1< -2 -1
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Consequently

1 1 1
> W<Zm+2m

1

keZ kEZ kEZ
k€ (—oo,b_JU[by ,+00) k>yy k<y_+1

- Z k n+s + Z k n+s
kEL (:El + I +
k>yy k> y 71

z1+k —z1+k

< E /

= n+s n+s
k€EZ z1+k—1 t kez —x1+k—1 t
k>y+ k>—y_—1

- /+oo dt +/+oo dt
o1ty —1 tn+s Ci—y_—2 tn+s

o /+oo dt +/+oo dt
= |x’| thrs \a:’| tn+s

B C
- |$/’n+371 :
This says that
1 C
2.1 E < :
( ) |x1 + k|n+s |x/|n+s—1

keZ
kg (=3|a!|—=z1, 3|z’ |—21)

Now, we observe that the interval [=3|2'|—x1, 3|2’|—x1] has length 6|2’| and so it contains at most 6|2'|+1 <
7|2'| integers. This implies that

1 7
(22) Z |w/|n+s < |w/|n+s—1'

keZ
ke[=38la'| -1, 3|2/ |—21]

Moreover,
n—+s

|17 + ]{,‘61|n+s — <|,171 =+ k|2 + |ZI)/|2) 2 > maX{|SU1 + k|n+5’ |xl|n+s}‘

Thus, recalling (2.1) and (2.2), we conclude that

1 1
K(r) < ) S D YN
n+s n+s
- |z + ke — |z + keq|
kg (=32 |-aq, 3|z’ |—21) ke[=3|a’|~a1, 3|2’ | —z1]
< X S SR
< — T
|x1 + k| kez ’:17 l
k¢(=3la’| -z, 3|a’|—x1) ke[=3[z|-z1, 3|z’ |-=1]
cC+7
|xl|n+s—l’

which gives the desired claim up to renaming C'.
Corollary 6. Fiz M € N. We define
(2.3) har(z) := min{M, K(z)}.
Then, for any x € R",

has(z) < Cprmin{l, |2/|'~"5},
for some Cyr > 0 possibly depending on M.



Proof. 1t |'| > 1, we use Lemma 5 to see that
min{1, |2/} = |2/)|" " > O K () = C M hyy ().
On the other hand, if |2/| < 1, we have that
min{1, [2/|'"""} =1> M 'hy ().

Combining these two estimates we obtain the desired result. (l

3. RELATION WITH THE FRACTIONAL PERIMETER

The aim of this section is to point out the relation between our functional and the fractional perime-
ter Per, introduced in [2]. That is, we set

dx d
Per(F // i d
n\F |x - Z/’n“

and we show that: on the one hand, our functional is always below the fractional perimeter Per,, on the
other hand, our functional is always above the fractional perimeter Per, up to a correction that depends
on higher order volume terms, and on a volume term coming from the boundary of the slab S. The precise
statement goes as follows:

Proposition 7. Let F C S. Then
(3.1) Ps(F) < Pery(F).
More precisely,

(3.2) Per,(F) — Ps(F / / o dz dy

n+s’
keZ\{0} y + kel

In addition, if we set
F:=Fn{z e[1/4,1/2]},
(3.3) F = (F+e)N{z €[1/2, 3/4]}

dx dy
d Tg(
and Ils( / / |z —y[rts’
we have that

(3.4) Per,(F) < Ps(F) + C (|FI? + TIs(F)),
for some C' > 0.

Proof. We use the change of variable y = y + ke; to see that

// dx dy _// dxdy // dxdy
S\F |z —y + key |t FJ(S\F)+ke:r 4y, ’x —y|nts (S\F)per 1T — \"+s

keZ
We observe that (S'\ F)per € R™\ F, so we obtain that

dx d dx d
F)g// nyr // nyr = Pery(F).
FJs\F)pe [T —y"te mp |7 =yt

This establishes (3.1). More generally, we see that

R*\E)\ ((S\ Flper) = |J (F + ken),

keZ\{0}

therefore, with another change of variable, we have

_dzdy // dz dy
3.5 Per, (F Ps( )
(3.5) R I R =R DN ) e s

kezZ\{0} kez\{0}
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This proves (3.2). Now we observe that, if |k| > 2 and z, y € 5, then

k
‘x_y"f_kel’}’ml_y1+k’>’k’_‘wl_yll>’k‘_1>%7
therefore
dx dy dx dy 9
(3.6) // — < // e < CIFJ,
2 e demmyrrar= < 2 Jo b T
|k|>2 [k|>2
for some C' > 0. Moreover,
dxdy dxdy 5
(3.7) // X el =) // <C|FP,
F+e /o) ‘n+s F+ep 1/4 n+s
for some C' > 0. Also,ifx € S,ye S+e; and ]:vl —y1| < 1/4, we have that
> | | > 1+1 L1
T =y — o — > ——= —— ==
120 1— U 5 1 1
d 1<| |+ - EE .
an —1< —x z1—1<~-4+=-—-1=—-.
Y1 hn 1 1 175 1

As a consequence, ifre FC Sandy € F+e CS+ep, with | —y| < 1/4, we have that z € F
and y € F where the notation in (3.3) is here in use, therefore

dx dy
T —Y < Mg (F).
ey ot =D <
This and (3.7) give that

(3.8) / /Ml |xd_xd|gi+8 <C (|F|2 + HS(F)).

Thus, using the change of variable z := z + e; and § := y + e;, we also have that

dx dy dx dy 9
. < F [Ms(F) ).
(3 9) / /F e1 |£IZ' - |n—|—s /F—i—el / |‘7" - |n+s s¢ <| ’ - S( ))

Putting together (3.8) and (3.9) we obtain
kez\{0}

dx dy / / dx dy / / dx dy 9
= < C|F]"+1g(F)).
[t [ [ e enn)
[k|<1

This and (3.6) imply that

dx d
//I - xk:y n+s<0(|F|2+HS(F))'
keZ\{0} z —y+ ke

Recalling (3.5), we see that this ends the proof of (3.4). O
As a consequence of our preliminary computations, we obtain that cylinders have finite energy:

Corollary 8. The functional attains a finite value on cylinders. Namely, for any R > 0, let € =
{(x1,2") e Rx R s.t. |2/| < R}. Then Ps(¢ NS) < +oo.

Proof. We take a set ¢ with smooth boundary and contained in [—1, 1] x R"! such that ENS=%NS.
Then, we use (3.1) and we obtain that

+00 > Pery(€) = Ps(€NS) = Ps(€NS),
as desired. O

Next result computes the term Ilg in (3.4) in the special case of small cylinders (this will play a role in
the proof of Theorem 3).



Lemma 9. For any r € (0, 1/4), let € := {(z1,2) € S s.t. |2'| <r}. ThenIlg(€) < Cr"*.
Proof. We first translate in the first coordinate and then change variable X := z/r and Y := y/r, so that

we obtain
3/4 1
/ dx; / dy, / dx’' / dy —————
1/4 2| <r i< T — y|"+s
1/4
3.10 dz’ dy’
( ) /1/4 / A'<T /;/|<r o=y ’$ - |n+s

/ 1/(4T) , 1
=" dX1/ le/ dXx’ Y —— ..
—1/(4r) 0 IX'|<1 ly'|<1 | X —Y|nts

Now we take a bounded set €* C [-1,0] x R™! with smooth boundary that contains {(z1,z") €
R™ s.t. x1 € [-1,0] and |2'| < 1}. Then we have that

dX dY
dX/ dY/ / / / < Per, (¢~ C,
/ ! " ixn< i< !X Y!W o Jrmyge [ X =Yt (@) <

for some C' > 0, thus (3.10) becomes
) -1 1/(4r) 1
[Ig(€) < Cr™° 1+/ dX/ dY/ dX’/ dY ———M
s —1/(4r) ! 0 ' IX7|<1 ly/|<1 | X — Y|nhs

0 1/(4r) / / 1
+/ Xm/ le/ dX / Y —— | .
—1/(4r) 1 IX'|<1 Iy'|<1 | X — Y|nhs

Notice that we can change variable (x,y) := (=Y, —X) and see that

/0 1/(47") , , 1
dX; / dY; / dX / dY ———
—1/(4r) 1 Ix7|<1 y'|<1 | X — Y|nts

1/(4r) -1 1
= / dy; / dzx, / dy / dx' IS
0 —1/(4r) wi<t  Jw<a 2=yl

As a consequence, we can write (3.11) as

-1 1/(4r) 1
(3.12) Hg(€) < Cr"™s 1—1—2/ dwl/ dy1/ d:c’/ dy’—nﬂ )
—1/(4r) 0 |2/ |<1 ly'|<1 |z —y

Now we observe that
1/(4r) 1
/ dxy / dyl/ dx’ / dy ————
—1/(4r) 0 /| <1 i<t T =yt
-1 1/(47") 1
< dxl/ / da’ / dy ————
71/(47") 0 2| <1 i<t =yt

/ 1/(4r)
dl’l / d F———
—1/(4r) 0 Haw — y1|”+5

-1
< C / dl’l(—fﬁl)l_n_s
—~1/(4r)

+oo
< C / dr 71—
1

< O

(3.11)

I
Q

The desired result thus follows by plugging this estimate into (3.12). 0



4. ENERGY BOUNDS

We consider here an auxiliary energy functional and we prove that the functional Pg is bounded from
below by it. The proof requires a very careful analysis of the different contributions and the result, together
with the one in the subsequent Proposition 11, will play a crucial role for the proof of Theorem 1, since it
will lead to the compactness of the minimizing sequences.

Proposition 10. Let ' C S. Suppose that there exists an even function f:[—1/2, 1/2] — [0, +o0], with
f decreasing in [0, 1/2], such that

F = {(ml,x/) €S st |2 < f(xl)}
Let e, < o, € [0, 1/2] and suppose that

(4.1) f(x1) =4 for all xy € [0,¢.)

and

(4.2) f(z1) = 2f(y1) for all x1 € [0,e,) and y1 € (s, 1/2].
Then

n— 1(1.1)
C/ / dy,| da,
[ |ZL’1 y1|1+5 yl] X1

for a suitable constant C' > 0.

Proof. We have

Ps(F) = / S\FK(w—y)dxdy

> // da:dy
S\F [z — y|+s
/ / 1
= / dml/ dyl/ dx/ dy P ——
~1/2 ~1/2 {l2’|<f(x1)} Qyl>rey 1T =Yl

Now we introduce cylindrical coordinates by writing 2’ = pf and ' = rw, with 0, w € S""2. We obtain

1/2 1/2 fz1) panTnf2
(4.3)  Ps(F) 2/ dxl/ / d@/ dw/ dp/ I
~1/2 ~1/2 sn-2 sn-2 fo) |z =y + |pf — rwl]?) 2

Here and in the sequel, df and dw are short notations for d#""1(0) and d#""'(w), respectively. Now,
for any 6 € S"2, we consider a rotation Ry on S" 2 such that § = Ryes. Then, we can rotate w = Ry,
and obtain that

n—2,.n—2 n—2,.n—2
/ dio P _ :/ do prr __
s772 oy — g + [pf — rw]?) 2 5772 (|zy — 1 |? + [pRoes — rwl]?) ?

n—2,.n—2 n—2 2
- / A& Fr = / 4o Fr _
s772 |y — g |? + |Ro(pes — r@)[?) 2 s772 (|oy — g2 + |pea — @) 2

Notice that the latter integral in now independent of . Then we can write (4.3) as

fz1) pn—Q,r. -2
wy o sc / dy, / dw / dp / =
~1/2 ~1/2 sn—2 fo) |z — i |? + |pes — rw]?) 2

for some C' > 0.
Now we observe that

pey — rwl® = p* + 1% = 2prwy = |p —r|* + 2pr(1 — wy).
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where wy = w - e is the second component of the vector w € S"2 C {0} x R*"!. Now' we define w :=
(w3, ,wy). Then w = (0, ws,w) and

(4.5) w3 + |w|? =
We also set

Sf_Q::{w—(Owg, w) €8 st wy

{\g\ < @} C S,

10

WV
Sk
—

Using (4.5), we see that,

Also, in "2,
2por(1 — w3)

20r(1 — wq) = T

< 27 (1 — wh) = 2pr(w[*.

Therefore, fixed any a > 0, we have

dw dw
nts nis
5772 (a2 + |pey — rwl?) 2 5772 (a® + |p —r|2 4 2pr(1 — wy)) 2

dw dw
> nts 2 nye
(@ lp—rP A 2or(L—wa)) 2 IS (@ 4 | — P+ 2pr|wl?) 2

20 du_j s )

nts
{ll<V19/10} (a2 + |p — 7|2 + 2pr|w|?) 2

for some C' > 0, possibly different from line to line. So we use polar coordinates R"2 3 w = Ry,
with ¢ € S"73 and obtain from the latter estimate that

d V/19/10 n— Bd
(4.6) / s C/ AL —
5772 (a2 + |pes — rw|? ) (a®+ |p—r>+2prR?) 2

Now we observe that, for any X, Y > 0, we have that

VI Rres R X\ 1w
o ()T R e
o (x24yzRe) \Y/) XM o)

where the change of variable R = Xt/Y was performed.

Now we denote, for any = > 0,
T3t
I(x) = —-
0 (1+1¢2) 2

We observe that if z € [0,1] and ¢ € [0, 2], then 1 +#? < 2 and so

I(z)>C / "3 dt = C 2",

0
up to renaming C' > 0. Moreover, if z > 1, then

1 n—3
"o dt
F(‘r) 2/ n+s 2 C
0 (1+1¢2) 2
Summarizing, for any > 0, we have that

[(r) > C min{z""?, 1}.

IFor concreteness we suppose in this part that n > 3. In the very special case n = 2, one does not have any compo-
nent (ws, -+ ,wy), so she or he can just disregard w and go directly to (4.10).
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Thus, going back to (4.7),

/mﬂo R"3dR _(X)"“" 1 F(@Y)
0 (X2+ysz)"T+s Y Xnts 10X

(4.8)
- X n—2 1 . . Y n—2 _c 1 . X n—2 .
> v ~ors ming L {5 =C <o ming {3 , 1.
Now we take X := \/a? + |p —r|? and Y := /2pr and we plug (4.8) into (4.6). In this way we obtain
n—2
d 1 2 — 2\ z
(4.9) / nd —— — min{(m> , 1} .
2 (@t e — o) T (@ o) o
Hence we take a := |z1 — y1| and we insert (4.9) into (4.4), obtaining that
flx1)
Ps(F) = C d:c1 / dyl/ dp/
—1/2 -1/2 Fy1)
(4.10)

- {<Iw1—yl\2+|p—r\2) }
min , 1o ..
(|901—?/1|2+\P—7“|)2 pr
Now we observe that

1/2 1/2 f(z1)
[ f | f o
—1/2 -1/2 fy1)
n—=2
X P2 min{<|zl_yl|2+‘p_r‘2>2 1}
{lz1—y1 2+ p—r|2<pr} nts J
(Jer =+ [p—r[?) 2 pr

1/2 1/2 f(z1) +o0 ,0?7’%
/ dz / dy / dp/ A7 X{lar 12 +lp—r 12 <pr} 4=
-1/2 -1/2 0 flyr) (‘xl — 2+ |p— 7,’2) 2

This and (4.10) give that

f(z1) ]
(4.11) Ps(F)=C dxl/ dyl/ dp/ AT X{|z1—y1 [2+|p—r[2<pr}
-1/2 —-1/2 f) e ’ (|331 —ul*+p— 7"|2)1+2

Accordingly, we perform the change of variable p = |21 — y1| @ and r = |27 — y1| 3, so that (4.11) becomes

1/2 ‘zfl(m)l‘ 400 |l’1 o n—2—s , 22 gn=2
y y1| a2 ﬂ 2
C / / / do / . dB X{1+]a-pB2<ap} 43
~1/2 ~1/2 = (I+la—p7)

lz1—y1l

flxq) n—2 n—2

2 el 21 — | PP
d d _ —,
/ xl/ y1/9m1> /f(y) 5X{1+\a B12<ap} (1+ |a—ﬂ\2)1+§

10 [z1—y1 | —y1l

where ¢, and a, were introduced in (4.1) and (4.2). As a matter of fact, using (4.2), we obtain that, in

the domain above,
fly) o fl) _ 9f(@)

w1 —yi| © 2|er —yi| 10|z —yi]
As a consequence
f(z1) _o_ n—2 n-2
lz1—y1l xl_yln Sa/QﬁQ
>C / dzq / dy1/9f( ) / ag X{1+|a—B2<aB} | | N 1T3
0 10 o ] (1+|a—ﬁ|) ?

(4.12) .

12 le1—v1l +1 |331 _ y1|n72fs a”T*zﬁ”Tﬂ
>C d d d d o Bl2<a 'z
/0 21 / y1/9f( D O‘/ B X{1+la—p2<ap} (1 o ﬁ|2)1+§

10 [z1 —yq|
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Now we observe that in the domain above 0 <  — « < 1, therefore, recalling (4.1),

[ (1) < f2(x1)

l+]a—pBP <2< <
’ ‘ 8 8|$1—y1|2

and

81 f2(xy) f? (1)
113 af 2 a* > g ’
(4.13) B 100|z1 — w1 > = 8zy — yaf?
that is

1+ ]a— B < ap.
Accordingly, (4.12) boils down to

1/2 |$f1( 1)1\ |.Z'1 — n=2-s o "3" g3
Y y1| a 2 ﬁ 2
/ dl’l/ dyl/gf(“) / dﬁ 5 1+% ..
1021 —1] (1+ o= B1%)
Hence, using again (4.13),
f(z1) +1 _92_ -2
Jz1—y1l ‘[Bl — yl’n s fn (Z’l)
C/ n / dyl/w( 1) / a5 1 gyt |21 — [
1021 —u1 ] (1+ o= BP)
Now we point out that
/a+1 g B /1 dr S
o (+la-pR)" Jo 14,2t
and thus we get that
f(z1) n—2
lz1—y1l _9_s xT
Ps(F) > C/ dwl/ dyl/gﬂ do |21 — |2 H
e 15
Ex 1/2 n=2(,. T
C / dz, / dyy lwy — [P0 L ,13_2 : fz) )
0 o |21 — 1| |21 — 1|
which completes the proof of Proposition 10. O

5. CONVERGENCE ISSUES

Here we show that uniform energy bounds, as the ones obtained in Proposition 10, joined with volume
constraints, imply a suitable compactness.

Proposition 11. Let Cy, Cy > 0. Consider a sequence of even functions fy : [—1/2, 1/2] — [0, +o0], with
fr decreasing in [0, 1/2]. Assume that for any e, < a. € [0, 1/2] such that

(5.1) fr(z1) =4 for all z1 € [0,e.4)
and
(5.2) fr(z1) = 2fe(yr) for all xy € [0,6.p) and y1 € (up, 1/2]

it holds that

Ex ke 1/2 n l(x)
k 1
53) / [/ Wdy] tn <G
Qs ke

Suppose also that

1/2
(54) g_l(l'l) dl’l = CQ.
0
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Then, there exists a function f such that, up to a subsequence, fr, — f a.e. in [—1/2,1/2] as k — 400,
and

1/2
/ fn_l(l'l) de’l e 02.
0

Proof. First we point out that, for any r € [0,1/2],
(x1)dxy = r inf n-t
Coz [ @) dey = v ot
that is
. AN
(55 ) = it fi< ()
In particular f(1/2) < (2C’2) . So, for any M >4+ (26’2)n 1, we are allowed to define
(5.6) ep(M) :=1inf{r € [0, 1/2] s.t. fr(r) < M}.

We claim that
Cy
Mn—1 :
Indeed, if ex(M) = 0 we are done, so we assume (M) > 0. Then, for any k& and M fixed, for any j € N,
we can take r; € [(1 —277) ex(M), e, (M)] such that fi(r;) = M. Hence, from (5.5), we have that

M < fi(r;) < (%)n_l

Ty

(5.7) ex(M) <

So we pass j — 400 and we obtain
1

Cy >"1
M<({—= ;
<€k(M)
that proves (5.7).

Now we define ay(M) := e, (M/2). We point out that, if z; € [0,,(M)) then fi(xy) > M, and there-
fore fi(z1) = 4. Also, if y1 € (ap(M), 1/2] = (ex(M/2), 1/2], we have that fr(y1) < M/2. Accordingly,
if x1 € [0,ex(M)) and y; € (ax(M), 1/2], we have that f(z1) > M > 2f(y1)

These considerations show that (5.1) and (5.2) are satisfied by e, 1= (M) and o = ag(M). As a

consequence
(5.8) formula (5.3) holds true with e, 1= ex(M) and a, 1= ai(M).
Now we claim that there exists a constant C, > 1 such that, if M > C, then
(5.9) /0 o () day < %
To prove this, we use (5.8) to notice that
aon [ ez 1
(5.10) Cy > /0 [/O%(M) () mdw] dzy.

Now, fixed 21 < ex(M) < g,(M/2) = a.(M), we compute

1/2 1/2
5.1 / L / L] [ 1 1
anany [T =[5 o an (=2 s (M) =) ((1/2) = 21)°
Now, if 21 < (M), we have that
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if M is sufficiently large (independently on k), thanks to (5.7). Moreover, using again (5.7), we see that

C
ap(M) —x < ap(M) = e,(M/2) < M"?’—l’
for some C3 > 0. Therefore (5.11) implies that
1/2 1
/ T = [Cy Mol — Cs| > CeM*1),
a(a) |71 — Y[

for suitable constants C; > 0, as long as M is large enough, independently on k.
So we plug this information into (5.10), and we conclude that

e (M)
Cr 2 Ms("l)/ 2 () dy,
0

and this proves (5.9).
Now we claim that

(5.12) fr — fae in[0,1/2], as k — +o0,

up to subsequences, for some function f. To prove this, we use the compactness of the functions with
bounded variation, joined with a diagonal trick. We fix M € N, M > 1, and we use (5.7) to see
that (e, (M), 1/2) D (CoM*'~™, 1/2), for any k, and so, by (5.6),
sup  fr< sup fip <M.
(C2M1=7,1/2) (ex(M),1/2)

Since f; is monotone, this gives that ||fi|lpv(comr—n,1/2) < 2M. As a consequence of this and of the
compactness of bounded variations functions (see e.g. Theorem 3.23 in [1]) we get that, for any fixed M € N,
fe — fM ae. in (CoM'™", 1/2), up to a subsequence, for some function f) : (CoM'~" 1/2) — [0, +00].
More explicitly, we write this subsequence by introducing an increasing function ¢,; : N — N, and by
stating that

(5.13) Fonsooimm — fOM ace. in (CoM'™", 1/2).
As a matter of fact, for a.e. x; € (CoM'™", 1/2), we have that

f(M—H)(xl) = kl—l}foo f¢M+lo¢'M°‘“O¢1(k) (‘Tl) = kl—lf—{loo f¢1\40“‘°¢1(k)(xl) = f(M) (‘T1>:

so we can define f : (0,1/2) — [0, 4+oc] by setting f(z;) := f)(z;), for some M so large that CoM'™" <
r1. Hence, we consider the diagonal subsequence fg, o..0¢,(x) and we prove that it converges to f a.e.
in (0, 1/2). For this scope, we fix ¢ > 0, ; € (0, 1/2) (possibly outside a set of measure zero) and M,, € N
such that CoM}~™ < x1 and we use (5.13) to find k(e, 1) such that, if & > k(e, z1), then

|f¢leO---O¢1(k)($1) - f(xl)’ <e.
Now, if k > M., + k(e, z1), we have that ¢; o--- 0 ¢ (k) is a subsequence of ¢py, o---0¢(k) and thus

| foromom ) (T1) — f(z1)] < e

Since ¢ is arbitrary, this shows that fg,o...00,(k)(21) — f(21), which in turn completes the proof of (5.12).
Now we identify fj, with the subsequence constructed in (5.12) and prove that

(5.14) Pl — " in L1(0,1/2), as k — +o0.

For this scope, we fix § > 0 and we use (5.12) and Egoroff’s Theorem to find Es C (0,1/2) such
that (0,1/2) \ Es| < 6 and ' — f*! uniformly on Es. We choose M; := §~1/2 and we use (5.9)
to conclude that

s(n—1)

ek (Ms) C
/ gil(t’L’l)dIl S —r = C*(S 2,
0 M

s(n—1)
é
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for every k. Therefore
(5.15)

1/2
/0 () — 7 () da < /( (" (o) + £ ) do - 152" — 2 ey | Bl

A/2\Es
s(n—1) n— n— n— n—
<2057+ | i+ [ o+ I R e
(ek(M5),1/2)\E;5 (en(Ms),1/2)\E5
Now we recall that, by (5.6), fr < Ms in (g(M;),1/2), thus

/ o) oy < My (M), 1/2) \ Bs] < Mg = v
(ex(Ms),1/2)\Es

The same holds with A instead of k. Consequently, formula (5.15) gives that

1/2 s(n—1)
/0 i @) = [N ) day 26,67 7 +2V8 + |1 i = i Ml (-
So, if we choose h, k so large that || fr= — £ || () < V9, we obtain
1/2 s(n—1)
fi N ) = fi N @) dey < 20,87 7 +3V6.
k h
0

Since & was arbitrarily fixed, we have just shown that f; is a Cauchy sequence on L'(0,1/2), which
implies (5.14).

The desired claim now follows from (5.14) and an even reflection in (—1/2,0). O

6. PROOF OF THEOREM 1

The proof uses the direct methods of the calculus of variations, combined with the fine estimates of
Propositions 10 and 11. That is, we take a minimizing sequence of sets Fy € ¢ with |F;| = u and

|Fl|=n

Since F}j, € , we have that F), has the form
Fy={(m1,2) € $ st. o' < fulm) },

with fr : [-1/2, 1/2] — [0, 400] even and decreasing in [0, 1/2]. We remark that, for any k € N,

1/2
p=|F| = C, » (@) day,
0

for some dimensional constant C, > 0. Also, we can fix a set F, with Pg(F,) < +oo (recall for instance
Corollary 8), and we may assume that

(6.2) Ps(Fy) < Ps(F,) for every k € N.
We want to prove that
1/2
(6.3) up to a subsequence, fr — f a.e. in [—1/2, 1/2], with C, / " Ywy) doy = p.
0

Indeed, if there is a sequence along which

Sup [| fill Lo ((-1/2,1/2)) < +00

keN

then
sup || f£ v (-1/2,1/2) < +00
keN
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and so, again up to a subsequence, we can pass to the limit in L'([—1/2, 1/2]) and a.e. in [—1/2, 1/2], see
e.g. Theorem 3.23 in [1], and obtain (6.3). Thus, we can suppose that

sup || fell oo ((-1/2,1/2)) = +00.
keN

In this case, we check that the assumptions of Proposition 11 are satisfied. For this, let €, < au . € [0, 1/2]
such that

(6.4) fr(z1) =4 for all x; € [0,e.4)
and
(6.5) Je(w1) = 2fi(y1) for all z; € [0,6,%) and y; € (o, 1/2].

We observe that (6.4) and (6.5) say that (4.1) and (4.2) are satisfied (for all the indices k), hence we can
use Proposition 10 and conclude that, for every k € N,

€k 1/2 n_l(l’ )
Py(Fy) = C kU g | da,
S( k) A [/a*’k |x1 . y1|1+s 91] T1

for a suitable C' > 0. Therefore, for every k € N,

1/2 n 1<{E )
C/ / Y dyi | dan,
[ Ay ke |$1 y1|1+S yl] !

thanks to (6.2), and this gives that condition (5.3) is satisfied in this case. Consequently, (6.3) follows
from Proposition 11.
Thus, we define

F, = {(ml,:v’) € Sst. |2 < f(xl)},

and we show that F, is the desired minimizer. First of all, |F,| = p, thanks to the integral constraint
n (6.3). Furthermore, as k — +oo,

(6.6) XF, — XF. a.c. inS.

To check this, we recall that, by (6.3), fr — f in S\ Z;, with |Z;| = 0. Moreover, we have that, for any
fixed x; € [—1/2, 1/2], the set A® := {2/ € R" ! s.t. |2/| = f(z1)} is a sphere in R"™! and so it is of
measure zero in R"™! (in symbols, |A®| = 0). Thus, if Zy := {(x1,2') € S s.t. |2/| = f(x1)}, we have, by
Fubini’s Theorem, that

1/2
2] = / / A2 stenymioy (1)) = / dry A% = 0.
1/2 n—1 1/2

Therefore, (6.6) would follow if we show that f; — f in S\ (Z, U Z,). For this, fix z € S\ (Z; U Z3).
Since x ¢ Zy we have that either |2/| < f(z1) or |2/| > f(z1). Since ¢ Z; we have that fi(z) — f(z), so
that for large k, either |z| < fx(z1) or |2/| > fix(z1), respectively. This shows that, for large k, = € F, if
and only if x € F}, therefore xp, () = xr(x), and this proves (6.6).

Consequently, using (6.1) and (6.6), we have, by Fatou Lemma,

inf Pg(F)= lim Pg(Fy)= lim K(r —y)dxdy
Pl )= B B = B JS\Fy @=9)
=t [ @m0 K= pdedy > [ [ @) o @) Ko - g) dedy = P(F).
—T>®JsJs S JS

This shows the desired minimization property and it ends the proof of Theorem 1.
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7. PROOF OF THEOREM 2

We suppose that f(1/4) > ﬁ,uﬁ, for some (3 > 0, and we obtain an estimate on (3. For this we use the
volume constraint and we observe that

1 1/8 n—1
Copt :/0 N ay) day 2/0 " Nay) doy > fTﬂ/&,

for some C, > 0. That is, by monotonicity, we have that

B < f(1/4) < fla) < f(1/8) < Crp

for every x; € [1/8, 1/4] (here and in the sequel C; > 0 is an appropriate dimensional constant). Notice
that this already says that

(7.1) 8 < Ch.
As a consequence, we see that (1.1) is obvious if p > 1/16"7, so we suppose from now on that
(7.2) pe (0,1/16™1).

We let B the ball with volume p (say, centered at the origin) and we use the minimality property of F,
and (3.1) to see that

Cou™ = Pery(B)
> PS(B)
>
1/4 1/4 1
> 03/ dxl/ dyl/ dx// dy’—m
1/8 2/ <f(a1) W>fe) 1T =Yl

1/4 1/4 1
Cg/ / yl/ 1 d.ﬁlf,/ 1 dy/—m
|2/ | BT y>CipmT T =Yl

Now we let M =y~ » 1. Notice that M > 16, thanks to (7.2), thus, if N is the integer part of M/8, we
have that N < M/8 and

V

M M
7.3 N>— 1>
(7.3) 8 16°
Hence we change variables X := Mz and Y := My and then we translate in the first coordinate, and we

obtain

- M/4 M/4 1
04/1, n > Msn/ Xm/ in/ dX,/ dyl—+
M/8 M/8 X7 | <BMpu T |Y’|>C1M,wTI | X — Y|nts

M/8 M/S
= M*~ / / / dz’ / dy ————— e
|2/|<B ly'|>C1 ‘95 - ?J|
n/ dﬂfl / dyl / dl'// dy/—nJrs
0 0 j2/|<8 wison 12—yl
N k k 1
- Z/ dl’l / dyl / dSC'// dy,—n_i_s
k—1 k—1 |2/ |<B ly/|>C1 [z —y|
1
= M" / dxl/ dyl/ / dy ————
Z |2'|<8 ly/|>Cy |z — y|ts
1
= MS_HN/ d:l?l/ dyl/ dl‘l/ dy/—+
0 0 |2'|<B wiscr v =yl
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Now we observe that if xzq, 11 € [0, 1], |2/| < f and |¢'| > C; + 1, then
o= 1< O+ 1= Y| = 2| < 2" =9,
thanks to (7.1), thus in this case

lz—y| < Csla’ — /| < C5(|2'] + []) < Cs(B+1y]) < C5(Cr+ |y']) <2C5 Y.
Accordingly

1 1 1 1 1 1
/ dl’l/ dyl/ dx'/ dy/—+ 2/ d$1/ dyl/ dl‘l/ dy/—+
|2/|<8 ly/|>C1 |z — y|nts 0 |2/|<B Wiscit1 T =yt
> Cq / da; / dyyy / da’ / dy ——— = C7 ",
|2/ |<B ly'|>C1+1 |y’ |

By inserting this information into (7.4) and using (7.3) we obtain that

C M1+s nﬁnfl ns—1
— = Cop"nr "7,

n—

pn = Cs MP"NB ! >

and this gives that [ < Cmunz(;;l). This proves (1.1).
Now we prove (1.2). For this we use the monotonicity of f, the volume constraint and (1.1) to compute
> 1/4}| o

A =Cpp ! " Hxy) dry < Cropt f771(1/4) < 013,&"%7
x 1/4

which implies (1.2). The proof of Theorem 2 is thus complete.

8. PROOF OF THEOREM 3

We take B the ball of volume p (say, centered at the origin). Using the minimality of F, and Proposi-
tion 7, we see that

Ps(B) = Ps(F.) _

o pon
Now we use Theorem 2, so we write

F, = {(ggl,x’) €S st |2 < f(iﬂl)}

o . Per,(B) — Pery(F,) + C <|F*\2 + HS(F*)>

with
f(1/4)

/’Lﬁ
In particular, using the monotonicity of f, we have that, for any z; € [1/4, 1/2]
1) < F(1/4) < Cpe D x pit =i,

This (in the notation of (3.3)) says that F, and F, are contained in the cylinder of radius 7, and therefore,
by Lemma 9,

< CunQ(n*l) .

s(n—s)

L(F) < O~ = Cpittes x i,
Using this and the fact that |F,| = p = |B|, we write (8.1) as
n2_ 2
eI (e )
[BI' R

Now we use the quantitative isoperimetric inequality in Theorem 1.1 of [7], according to which
Pery(F,) _ Pery(B)
n—s > n—s

|Eu] |B|

(8.2) 0<

(1 + CDef2<F*)).
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By inserting this into (8.2) we conclude that
_ Pery(B)

—s

|B| "

2_ .2

C Def?(F*) + C (ﬂi n Wz(;il))_

(8.3) 0<

Since
n? — s? n—s (n+s) n (n—l—s)<(n+s)

)

n2(n—1) nn-1 n "~ nh-1 n = n
we see that (8.3) implies the thesis of Theorem 3.

APPENDIX A. LIMIT OF Ps AS s /1

Now we show that (a suitably scaled version of) our nonlocal perimeter functional Ps approaches the
classical perimeter as s /" 1. Notice that of course the functional Ps depends on the fractional parame-
ter s € (0,1) (though we did not keep track explicitly on this dependence when it was not necessary to
use it). Also, heuristically, points “close to each other”, up to periodicity, provide the biggest contribution
to Pg, due to the singularity of the kernel. A rigorous version of this concept is given by the following
result:

Proposition 12. Let F € X be a set with (OF) N {|z1| < 1/2} of class C*. Then

. 1—s
lim
5,/1 Wp—1

Ps(F) =" ((0F) N{]z1| < 1/2}).
Proof. First of all, we fix A\ € (0,1/4), to be taken as small as we wish in the sequel, and we define
o ::Fﬂ{m\ e B—A, %H
We observe that if z € F' and y € F'\ F\ then
eyt >ln k1 > 1 F ] ol > 54 A o> A
Similarly, if y € F and x € F'\ F) then

1
e —yEeal o -y 1> [1xa]—lnl>5+A=|nl= A

£ Lt [ f et ] e
FJrp [T —y+ keg["ts PRy IRy [T — Y+ key[r s

ke{—-1,+1}

Consequently,

As a consequence
dr d drd
- I =) 2 {// i ++/ / i +]:0,
1 ke{—1,41} W F F\Fy |$ -yt k61|” ® F\F\ JF, |33 —y—+ k€1|” s

for any fixed A € (0,1/4).
Now we claim that

(A.2)
limlim(1—s) 3 /F /F = ;id1361]”+5 = s [N OF) — 2 (OF) 0 {|en] < 1/2})]

ke{-1,+1}

To prove this, we write

1 1 _ 1 1 1
F; ::Fﬁ{xle |:§—)\, §:|} and F)\ ::Fﬂ{xle |:—§, —§+)\§:|}
Notice that

(A.3) F\=FlUF,
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and that if z € Fy and y € Fyf + ey, orif x € Fy and y € FY\ + ey, orif z € F, and y € F, + ey, then
we have that |z — y| > 1/4, and so

dx d dx d dx d
IR A N R A = o R
Ff JF+e E Fiter |z =yl Fy +e |z —y|

and therefore

(A4) lim(1 — s) / / dx dy / / dx dy / / dx dy _0
8/1 Ff JFte |x —y|mts Ff e |x — y|mts Fy el |5C —y|nts

Now, we define ) as the interior of the closure of Fyf U (Fy +€;). By Lemma 11 in [3], we have that

dx dy
lim(1 — s / / = wp_1Per(Fy, Q) = w1 A" H(F N {x; =1/2}).
5/1 Py J O\ Fy |z — y[n+s ( )

Accordingly,

dxdy dxdy
lim lim (1 — s) m = lim lim(1 m
(A.5) A\Osﬂ Ft JF e [ —y[n+e A\Osﬂ FanQy J23\Fy [ — y|m+
= w, 1 " (F Nz =1/2}).

Now, we decompose the set F)\ as in (A.3) and we change variable, to see that

/ / dxdy / / dxdy
BJE T =y — et Py JFyte o — y|m+s
B / / dx dy / / dx dy / / dx dy / / dx dy
Fy JF ter |z —y[rts F +er o —y|rte FF JFf e [ — y|+ Ff SR e [ =yl

Using this, (A.4) and (A.5), we obtain that

dx dy
A.G lim lim(1 — s) =Wy 1 " HE N {z =1/2}).
( ) )\\05/1 /F\‘A /FA "T _61’n+s ' ( { ! / })
Similarly, one sees that

dx dy
AT hmhml—s/ / = w1 Y E N {x, = —1/2)).
( ) ANOs/71 Fy JF, ‘[L’ _y+61’n+s . ( { ! / })

Notice also that
AN F O {ar = —1/2}) + " H(F 0 {1 = 1/2}) + 7 ((0F) N {|z1] < 1/2}) = 5" 1 (OF).

This, (A.6) and (A.7) give the proof of (A.2).
Now we observe that

/ / dx dy
|v — y + keq|nts

dx dy dx dy dx dy
k n+s + k n+s + k n+s
ke{ Ty R R |z —y + key| Fdrm T —y+ kel PRy Jry |7 =Y+ ke

Thus, we exploit (A.1) and (A.2) and we obtain that

(A8) lm(i-s 3 //|x_dxdy =y [ANOF) — " (OF) 1 {ar] < 1/2))].

S n+s
/1 ke{—T41} y+k€1‘

ke{—1,+1}

Now we observe that if |k| > 2 and z, y € S, then

N

[z =y +ker| = [k —|o—y[ > [k 1> 2,

[\
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therefore, for any s € [1/2, 1),

dx dy 2n+s|F|2 2n+1|F’2
< — 7 < T
[ [t Y e Y g

keZ\{0,—1,4+1} keZ\{0,—1,4+1}

dx dy
lim(1 — s) =0
8/1( // |z —y + keq["te

kEZ\{O 1,41}

keZ\{O —1,4+1}

which implies that

This and (A.8) yield that

_ dl’dy _ n—1 _ n—1
a9) g0 3 | [ = e 0F) — o (0F) 0 (] < 1/23)].

Moreover, by Theorem 1 in [3], we have that

li}r%(l — 8)Pery(F) = w,_1Per(F) = w, 1" (OF).

Using this, (3.2) and (A.9), we conclude that
W AN OF) — lim(1 — ) P5(F) = lim(1 — s) [Pers(F) — Py(F)

dx dy
= lim(1 — s) o e
5/1 keZ\{O} rle—y+ ke
= Wn-1 [%”” 1(E?F — " 1((8}7’) N{]z1] < 1/2})]
which gives the desired result. 0

APPENDIX B. SYMMETRIC REARRANGEMENTS IN

Here we show that spherical rearrangements in the variable 2’ € R"™! make our functional decrease.
Given a set A C R™! (respectively, a function f : R"™* — [0, +00]), we consider its radially symmetric-
decreasing rearrangement A* (respectively f*, see e.g. pages 80-81 in [8] for basic definition and properties).
Given A C R" (respectively, f : R® — R), fixed any z; € R we denote by A%""* (respectively, f&* : R"~1 —
R) the radially symmetric-decreasing rearrangement of the set

A" = {2 e R" 1 st. (11,2) € A}

(respectively, of the function f(xy,-)).
Given A C S we also set

A= ) A{m}x A

z1€[-1/2,1/2]
We now show that Pg decreases under this radially symmetric-decreasing rearrangement in the vari-
able x':

Proposition 13. For any F C S with |F| < 400, we have that Ps(F*) < Ps(F).

Proof. Fix M € N (to be taken arbitrarily large in what follows). We take hj; as in (2.3). Notice that, by
Corollary 6 (and up to renaming C\y),

K ::/hM( )dz < Cy / min{1, |2/|"""*} d2’ < Cp < 400,
S Rn—1

Furthermore, K(x; + 1,2") = K(z1,2’). This implies that also the map xy — hy(z1,2’) is 1-periodic for
any fixed 2/ € R"!. Thus we can consider its integral on a period, and we have that, for any r € R,

/ hy (2, 2') dzy = / har(xq, o) day.
r+[-1/2,1/2] [~1/2,1/2]
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So, if we integrate over ' € R"!, we obtain that

/r-i—S P () dr = /ShM@) dr = K.

Now, given any y € R", we notice that —y +.5 = —y; + .5, and thus

(B.1) /ShM@; _y)dr = /_M has () de = reng.

Moreover, fixed x; € R, we have that the map R"™' > 2/ +— K(z1,2') is radially symmetric and
decreasing, therefore K*'*(2') = K (x1,2'). Accordingly, hy; ™ (2') = has(x1,2"). Also, for any fixed z; € R,
we have that xj., = X(pe1)» = Xxpe1+. Thus, fixed 2, € R, we use the Riesz rearrangement inequality (see
e.g. Theorem 3.7 in [8]) and we obtain

/ 1 / ! xr (@) har (21 =y, 2" — Y )xr(yn,y') do’ dy’
Rr—1 JR7™

N / / xrer (@) hor(ay — g1, 2 =y ) xen (y) da’ dy'
Rn—1 JRn—1

< / 1 / 1 X}k«"m (xl)h}(\/f (5171 — U, x’ — y/)X*Fyl (y/) dx’ dy/
Rr—1 JR"

= / / XFzL*(l'/)hM(Z'l — 1, - y/)Xwa (y/) dx’ dy/
Rn—1 JRn—1

fd 1 / XF*(Z'lax’>hM(l‘l _ylyxl _y/)XF*<y]_,y/) dLL‘/dy/,
Rn— Rn,

Now we integrate over x; € [—1/2,1/2] and y; € [—1/2,1/2] and we obtain that

(B.2) //XF Vha(z — y)xr(y) doedy < //XF* Vhar(z — y)xr-(y) dx dy.

On the other hand, if € S, we have that yp(z) = 1 — xs\r(x), therefore

/S/SXF@)hM(x_y)XF(y) dz dy
- /S/ShM(CII—y)XF(y)dzdy—/S/st\p(:l?)hM(x—y)xp(y)dxdy
— RM\F|—/S\F/hM(x—y)dxdy,

thanks to (B.1). Similarly, we have that

//XF* Vo (z — y)xr(y )dxdy—fiM|F*|—/ / hy(x —y) dz dy.
S\F* *

Therefore, recalling (B.2), we obtain that

K | F| — / /hM:c— )dxdy < KJM|F*|—/ /th— )dx dy.
S\F S\F* J

Hence, using that |F*| = |F| and that hy < K, we obtain that

(B.3) /S\F*/*hM(x—y)dxdyg/S\F/FK(x—y)dwdy.

Now we observe that, by Fatou Lemma,

hrninf/ / hy(z —y)dedy > / K(x —y)dzdy,
M—>+OO S\F* * S\F* F*

thus we can pass to the limit (B.3) and obtain the desired result. 0
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In the light of Proposition 13, we have that the cylindrical symmetry assumption for the set of com-
petitors in J# (recall the definition on page 1) can be weakened. Indeed, it is not necessary to suppose
that the competitors are a priori cylindrically symmetric, since the cylindrical rearrangement makes the
energy functional decrease. It would be interesting to weaken also the assumption that the set is a priori
decreasing with respect to z; € [0, 1/2]. In principle, a periodic version of the cylindrical rearrangement
should prove that the energy also decreases under monotone rearrangement in the x; variable. Though this
property is in accordance with the intuition and with some numerical simulations, it is not immediate to
give a rigorous proof of it, due to the presence of competing terms in the sum that defines the functional,
so we leave this as an open problem.
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