
Weierstraß-Institut
für Angewandte Analysis und Stochastik
Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 2198-5855

Pricing under rough volatility

Christian Bayer1, Peter K. Friz1,2, Jim Gatheral3

submitted: February 3, 2015

1 Weierstrass Institute
Mohrenstr. 39
10117 Berlin
Germany
E-Mail: christian.bayer@wias-berlin.de

peter.friz@wias-berlin.de

2 Institute of Mathematics
TU Berlin
Strasse des 17. Juni 136
10623 Berlin
Germany
E-Mail: friz@math.tu-berlin.de

3 Baruch College
City University of New York
55 Lexington Avenue
NY 10010
USA
E-Mail: jim.gatheral@baruch.cuny.edu

No. 2071

Berlin 2015

2010 Mathematics Subject Classification. 91B25, 62P05.

Key words and phrases. Stochastic volatility, fractional Brownian motion, Bergomi model.



Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax: +49 30 20372-303
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/

preprint@wias-berlin.de
http://www.wias-berlin.de/


Abstract

From an analysis of the time series of volatility using recent high frequency data, Gatheral, Jais-
son and Rosenbaum [SSRN 2509457, 2014] previously showed that log-volatility behaves essen-
tially as a fractional Brownian motion with Hurst exponent H of order 0.1, at any reasonable time
scale. The resulting Rough Fractional Stochastic Volatility (RFSV) model is remarkably consistent
with financial time series data. We now show how the RFSV model can be used to price claims
on both the underlying and integrated volatility. We analyze in detail a simple case of this model,
the rBergomi model. In particular, we find that the rBergomi model fits the SPX volatility markedly
better than conventional Markovian stochastic volatility models, and with fewer parameters. Finally,
we show that actual SPX variance swap curves seem to be consistent with model forecasts, with
particular dramatic examples from the weekend of the collapse of Lehman Brothers and the Flash
Crash.

1 Introduction

From an analysis of the time series of volatility using recent high frequency data, Gatheral, Jaisson
and Rosenbaum [12] showed that log-volatility behaves essentially as a fractional Brownian motion with
Hurst exponent H of order 0.1, at any reasonable time scale. The following stationary Rough Fractional
Stochastic Volatility (RFSV) model was proposed:

dSt
St

= σt dZt

σt = exp {Xt} , t ∈ [0, T ], (1.1)

where Xt is a fractional Ornstein-Uhlenbeck process (fOU process for short) satisfying

dXt = ν dWH
t − α (Xt −m)dt,

where m ∈ R and ν and α are positive parameters, see [5]. Recall that sample paths of fractional
Brownian motion WH are (H − ε)-Hölder (and hence “rougher"than Brownian motion whenever H <
1/2. The reversion time scale is understood to be very long so that αT � 1 for any reasonable time
scale T of practical interest, in which case, the log-volatility behaves locally (at time scales smaller than
T ) as a fractional Brownian motion (fBm). The RSFV model is remarkably consistent with financial time
series data. Moreover, the RFSV model has a quantitative market microstructure-based foundation based
on the modeling of order flow using Hawkes processes.

On the other hand, from the perspective of options pricing, it is well-known that conventional low-dimensional
Markovian stochastic volatility models such as the Hull and White, Heston, and SABR models generate
implied volatility surfaces whose shapes differ substantially from that of the empirically observed volatility
surface. A typical such volatility surface generated from a “stochastic volatility inspired” (SVI) [11] fit to
closing SPX option prices as of August 14, 20131 is shown in Figure 1.1. It is a stylized fact that, at least

1Closing prices of SPX options for all available strikes and expirations were sourced from OptionMetrics (www.
optionmetrics.com) via Wharton Research Data Services (WRDS).
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in equity markets, although the level and orientation of the volatility surface do change over time, the gen-
eral overall shape of the volatility surface does not change, at least to a first approximation. This suggests
that it is desirable to model volatility as a time-homogenous process, i.e. a process whose parameters
are independent of price and time.

Figure 1.1: The SPX volatility surface as of August 14, 2013.

Given an implied volatility smile for a single expiration, little can be said about the process generating
it; any process that generates uncertain realized volatility from inception to expiration and with some
correlation between changes in volatility and returns of the underlying might suffice. To say more about
the underlying process, the scaling of smiles with respect to time to expiration needs to be examined.
In particular, one feature of the volatility surface that really does distinguish between models is the term
structure of at-the-money (ATM) volatility skew defined as

ψ(τ) :=

∣∣∣∣ ∂∂kσBS(k, τ)

∣∣∣∣
k=0

.

where τ = T−t denotes time to expiration. In conventional stochastic volatility models, the ATM volatility
skewψ(τ) is constant for short dates and inversely proportional to τ for long dates. Empirically, as shown
in Figure 1.2, we observe that ψ(τ) is proportional to 1/τα for some 0 < α < 1/2 over a very wide
range of expirations.

Let vu = σ2
u denote instantaneous variance at time u > t. Then the forward variance curve is given by

ξt(u) = E [vu| Ft] , u ≥ t.

Bergomi and Guyon [3] derive a small noise expansion for the smile in a stochastic volatility model written
in the following forward variance curve form:

dSt
St

=
√
ξt(t) dZt

dξt(u) = λ(t, u, ξt) dWt (1.2)
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Figure 1.2: The black dots are non-parametric estimates of the S&P ATM volatility skews as of August
14, 2013; the red curve is the power-law fit ψ(τ) = Aτ−0.407.

where Zt is a Brownian motion driving the asset price St andWt is a (suitably correlated) d-dimensional
Brownian motion driving the evolution of the forward variance curve. To first order in the volatility of
volatility λ, The Bergomi-Guyon expansion takes the form

σBS(k, T ) = σ0(T ) +

√
w

T

1

2w2
Cx ξ k +O(λ2) (1.3)

where the log-strike k = logK/S0, w =
∫ T

0 ξ0(s) ds is total variance to expiration T , and

Cx ξ =

∫ T

0
dt

∫ T

t
du

E [dxt dξt(u)]

dt
. (1.4)

where xt = logSt/S0. Thus, given a stochastic model written in the forward variance curve form (1.2),
we can easily (at least in principle) compute the term structure of ATM skew ψ(τ) to first order in λ.

One well-known example of a stochastic volatility model expressed in forward variance curve form is the
Bergomi model [2]. The n-factor Bergomi variance curve model may be written in the form

ξt(u) = ξ0(u) E

(
n∑
i=1

ηi

∫ t

0
e−κi (u−s) dW (i)

s

)
(1.5)

where E(·) denotes the stochastic exponential2. ξt(u) is thus a martingale in t, consistent with the fact
that forward variances are tradable. As was pointed out by Bergomi, the entire forward variance curve

2 For a continuous (semi)martingale Z , the stochastic exponential is classically defined as E(Z)t = exp(Zt − Z0 −
1
2
[Z,Z]0,t). If Z is a local martingale, then so is E(Z). On the other hand, for a zero-mean Gaussian random variable Ψ, one

defines the “Wickëxponential as E(Ψ) = exp(Ψ− 1
2
E[|Ψ|2]). When Ψ is the increment of a Gaussian martingale - such as∫ t

0
f(s)dWs with deterministic integrand - the two notions coincide.
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ξt(·) = {ξt(u) : u > t} is determined by n-factors, each of OU-type. Indeed, in the case n = 1 (for
notational simplicity only) one has

ξt(u) = ξ0(u) exp

(
ηe−κ(u−t)Yt −

1

2
η2e−2κ(u−t)E[Y 2

t ]

)
in terms of a scalar OU process,

dYt = −κYt dt+ dWt.

To achieve a decent fit to the observed volatility surface, and to control the forward smile, we need
at least two factors. In the two-factor case, there are 7 parameters: η1, η2, κ1, κ2, and the (constant)
correlations ρZ,W (1) , ρZ,W (2) , ρW (1),W (2) , in addition to the initial forward variance curve ξ0(u). When
calibrating the two-factor Bergomi model to option prices, we find that it is already over-parameterized.
Any combination of the parameters ηi, κi, and the various correlation parameters that gives a roughly
1/
√
T term structure of ATM skew fits well enough. Moreover, the calibrated correlations between the

Brownian increments dW
(i)
s tend to be high.

The Bergomi model generates a term structure of volatility skew ψ(τ) that has the qualitative form

ψ(τ) ∼
∑
i

ηi
κi τ

{
1− 1− e−κi τ

κi τ

}
.

Indeed, it can be seen from the Bergomi-Guyon expansion that this functional form is related to the
term structure of the autocorrelation functional Cxξ , as defined in (1.4), which is in turn driven by the
exponential kernels in the exponent in (1.5). To generate the empirically observed ψ(τ) ∼ τ−α for some
α, it would be tempting to replace the exponential kernels in (1.5) with a power-law kernel. This would
give a model of the form

ξt(u) = ξ0(u) E
(
η

∫ t

0

dWs

(u− s)γ

)
(1.6)

with ξt(u) again a martingale in t. Assuming constant ξ0(u) ≡ σ2
0 , and with the Wick interpretation of

the stochastic exponential, we would have instantaneous stochastic volatility

σt =
√
ξt(t) = σ0

√
E
(
η

∫ t

0

dWs

(t− s)γ

)
= σ0 exp

{
η

2
Vt −

η2

4
E[V 2

t ]

}
,

where Vt =
∫ t

0
dWs

(t−s)γ is known as “Volterra"fractional Brownian motion with Hurst parameter H =

1/2−γ and has, similar to classical fractional Brownian motion, (H−ε)-Hölder sample paths. We note
a striking resemblance to the RFSV model (1.1). Moreover, by applying his Martingale expansion to a
special case of a model originally proposed by Alós [1], Fukasawa [9] shows formally that the volatility
skew generated by such models has the form

ψ(τ) ∼ 1

τγ

for small τ .

In this paper, we show that the RFSV model does indeed lead naturally to a non-Markovian generalization
of the Bergomi model, which we call the Rough Bergomi (rBergomi) model. This model fits the observed
volatility surface markedly better than conventional Markovian stochastic volatility models, and with fewer
parameters.
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1.1 Main results and organization of the paper

Our paper is organized as follows. In Section 2, we show how the RFSV model leads naturally to an
options pricing model. In Section 3, we analyze a special case of this model, the rBergomi model, where
the change of measure fromP toQ is deterministic. In Section 4, we show how to simulate the rBergomi
model, and in Section 5 we show that volatility surfaces generated using the rBergomi model simulation
are remarkably consistent with observed ones (at least on the two specific days presented). In Section 6,
we examine consistency between the rBergomi model and the VIX options market, finding that in general,
the rBergomi model is not consistent with the VIX options market. In Section 7, we compute coefficients
of the Bergomi-Guyon expansion of the rBergomi model up to second order in volatility of volatility; sadly,
we find that this asymptotic expansion does not converge with parameters of practical interest. In Section
8, we show that the evolution of market variance swap curves is consistent with forecasts obtained from
the historical realized variance time series; we examine the cases of the collapse of Lehman Brothers
and the Flash Crash in detail. Finally, in Section 9, we summarize and conclude. Some more detailed
computations are relegated to the appendix.

2 Pricing under rough volatility

In [12], using RV estimates as proxies for daily spot volatilities, two startlingly simple regularities were
uncovered. Firstly, consistent with many prior studies, distributions of increments of log volatility were
found to be close to Gaussian. Second and more interestingly, for reasonable timescales of practical
interest, the time series of volatility was found to be consistent with the simple model

log σt+∆ − log σt = ν
(
WH
t+∆ −WH

t

)
(2.1)

where WH is fractional Brownian motion, which is simply the RFSV model (1.1) with α = 0. This
relationship was found to hold for all 21 equity indices in the Oxford-Man database, Bund futures, Crude
Oil futures, and Gold futures. Perhaps this feature of the time series of volatility is universal?

Consider the Mandelbrot-Van Ness representation of fractional Brownian motionWH in terms of Wiener
integrals3 :

WH
t = CH

{∫ t

−∞

dWP
s

(t− s)γ
−
∫ 0

−∞

dWP
s

(−s)γ

}
where γ = 1/2−H and the choice CH =

√
2H Γ(3/2−H)

Γ(H+1/2) Γ(2−2H) ensures that

E
[
WH
t WH

s

]
=

1

2

{
t2H + s2H − |t− s|2H

}
.

Substituting into (2.1) (and in terms of vt = σ2
t ), we obtain the following model for the evolution of vu

under the physical measure P:

3Strictly speaking, this expression is only formal. The rigorous form, as used in the computations below, exploits the cancel-
lation between the integrands as s→ −∞.
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log vu − log vt

= 2 ν CH

{∫ u

−∞

dWP
s

(u− s)γ
−
∫ t

−∞

dWP
s

(t− s)γ

}
= 2 ν CH

{∫ u

t

1

(u− s)γ
dWP

s +

∫ t

−∞

[
1

(u− s)γ
− 1

(t− s)γ

]
dWP

s

}
=: 2 ν CH {Mt(u) + Zt(u)} . (2.2)

Note that Zt(u) isFt-measurable, whereasMt(u) is independent ofFt, and Gaussian with mean zero,
and variance (u− t)2H/(2H). We introduce

W̃P
t (u) :=

√
2H

∫ u

t

dWP
s

(u− s)γ

which has the same properties as Mt(u), only with variance (u− t)2H . With η := 2 ν CH/
√

2H we
have 2 ν CHMt(u) = η W̃P

t (u) and so

EP [vu| Ft] = vt exp

{
2 ν CH Zt(u) +

1

2
η2E|W̃P

t (u)|2
}
.

As a consequence, in terms of the (Wick) stochastic exponential4

vu = vt exp
{
ηW̃P

t (u) + 2 ν CH Zt(u)
}

= EP [vu| Ft] E
(
η W̃P

t (u)
)
. (2.3)

This computation reveals that the conditional distribution of vu depends on Ft only through the variance
forecasts EP [vu| Ft] , u > t5. In particular, to price options, one does not need to know Ft, the entire
history of the Brownian motion WP

s for s < t.

2.1 Pricing underQ

We have a model (2.3) that accurately mimics the behavior of realized variance time series data, written
under P:

vu = EP [vu| Ft] E
(
η W̃P

t (u)
)
. (2.4)

where in particular EP [vu| Ft] is adapted to the filtration generated by WP which we assume is the
same as the filtration generated by WQ. Consider some general change of measure

dWP
s = dWQ

s + λs ds, (2.5)

4E(Ψ) = exp(Ψ − 1
2
EP[|Ψ|2]) where Ψ is zero-mean, Gaussian under P. (To be fully consistent, we should write

E = EP).
5This is analogous to what happens in Comte, Coutin and Renault [6] in the context of their fractionally integrated square

root model.
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where {λs : s > t} has a natural interpretation as the price of volatility risk. We may then rewrite (2.4)
as

vu = EP [vu| Ft] exp

{
η
√

2H

∫ u

t

1

(u− s)γ
dWP

s −
η2

2
(u− t)2H

}
= EP [vu| Ft] E

(
η W̃Q

t (u)
)

exp

{
η
√

2H

∫ u

t

λs
(u− s)γ

ds

}
.

(2.6)

The last term in the exponent obviously changes the marginal distribution of the vu; although the condi-
tional distribution of vu under P is lognormal, it will not be lognormal in general underQ.

VIX smiles and the change of measure

In the case of SPX, it is obvious from the shape of VIX implied volatility smiles that the change of measure
cannot be deterministic. If the change of measure were deterministic, it follows from (2.6) that vu would
be conditionally lognormal, VIX would also be approximately lognormal and so the VIX implied volatility
smiles would be approximately flat, a well-known problem with the conventional Bergomi model. In con-
trast, we observe VIX smiles that are strongly upward sloping (see Figure 2.1 for example), reflecting the
intuition that high volatility scenarios are priced more highly by the market than low volatility scenarios.
Specifically, we conclude that we the change of measure λ must be positively correlated with WQ.

Figure 2.1: VIX implied volatility smiles as of February 4, 2010. Blue points are ask volatilities; red points
are bid volatilities; orange lines are SVI fits; green dashed lines represent the VIX log-strip (VVIX).
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3 The Rough Bergomi (rBergomi) model

Despite the inconsistency with VIX smiles pointed out above, let’s nevertheless consider the simplest
change of measure

dWP
s = dWQ

s + λ(s) ds,

where λ(s) is a deterministic function of s. Then from (2.6), we would have

vu = EP [vu| Ft] E
(
η W̃Q

t (u)
)

exp

{
η
√

2H

∫ u

t

1

(u− s)γ
λ(s) ds

}
= ξt(u) E

(
η W̃Q

t (u)
)

(3.1)

where by definition, ξt(u) = EQ [vu| Ft]. Moreover, the forward variance curve

ξt(u) = EP [vu| Ft] exp

{
η
√

2H

∫ u

t

1

(u− s)γ
λ(s) ds

}
is the product of two terms: EP [vu| Ft] which depends on the history of the driving Brownian motion as
explained earlier, and a term which depends on the price of risk λ(s).

The model (3.1) is a non-Markovian generalization of the Bergomi model (1.5) which we might dub a
rough Bergomi (or rBergomi) model. Specifically, this rBergomi model is non-Markovian in the instanta-
neous variance vt: EQ [vu| Ft] 6= EQ[vu|vt] but is Markovian in the (infinite-dimensional) state vector
EQ [vu| Ft] = ξt(u).

Note also that with (3.1), we have achieved the aim we set out in the introduction by replacing the
exponential kernels in the Bergomi model (1.5) with a power-law kernel. We may therefore expect that
the rBergomi model will generate a realistic term structure of ATM volatility skew.

The observed anticorrelation between price moves and volatility moves may be modeled naturally, just
as in the conventional Bergomi model, by anticorrelating the Brownian motion W that drives the volatility
process with the Brownian motion driving the price process. Thus

dSt
St

=
√
vt dZt

with
dZt = ρ dWt +

√
1− ρ2 dW⊥t

where ρ is the correlation between volatility moves and price moves.

3.1 Re-interpretation of the conventional Bergomi model

According to [2], the conventional Bergomi model is a market model, by which it is meant that ξt(u) can
be any given initial forward variance swap curve consistent with market prices. However, for the Bergomi
model to properly describe the evolution of this curve, ξt(u) = E [vu| Ft] should be consistent with
the assumed dynamics; in this sense, a conventional n-factor Bergomi model is not self-consistent in
general.

Viewed from the perspective of the rBergomi model however, the initial curve ξt(u) reflects the history
{Ws; s < t} of the driving Brownian motion up to time t. The exponential kernels in the exponent of
(1.5) approximate more realistic power-law kernels. The conventional two-factor Bergomi model is then
justified in practice as a tractable Markovian engineering approximation to a more realistic rBergomi
model.
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4 Simulation of the rBergomi model

To simplify notation, we set the origin of the simulation to be t = 0 and drop the explicit reference to the
pricing measureQ. From (3.1), the model to be simulated is

St = S0 E
(∫ t

0

√
vu dZu

)
vu = ξ0(u) E

(
η
√

2H

∫ u

0

1

(u− s)γ
dWs

)
= ξ0(u) E

(
η W̃u

)
.

where W̃ is a Volterra process6 with the scaling property Var[W̃u] = u2H . So far W̃ behaves just like
fBm. However, the dependence structure is different. Specifically, for v > u,

E
[
W̃v W̃u

]
= u2H G

(u
v

)
where, for x ≥ 1,

G(x) = 2H

∫ 1

0

ds

(1− s)γ (x− s)γ

=
1− 2 γ

1− γ
xγ 2F1 (1, γ, 2− γ, x) (4.1)

where 2F1(·) denotes the confluent hypergeometric function.

Remark 4.1. The dependence structure of the Volterra process W̃ is markedly different from that of fBm
with the Molchan-Golosov kernel. In particular, for small H , correlations drop precipitously as the ratio
u/v moves away from 1.

We also need covariances of the Brownian motion Z with the Volterra process W̃ . With v ≥ u, these
are given by

E
[
W̃v Zu

]
= ρDH

{
vH+1/2 − (v − u)H+1/2

}
and

E
[
Zv W̃u

]
= ρDH u

H+1/2

where for future convenience, we have defined the constant,

DH =

√
2H

H + 1/2
.

These two formulae may be conveniently combined as

E
[
W̃v Zu

]
= ρDH

{
vH+1/2 − (v −min(u, v))H+1/2

}
.

Lastly, of course, for v ≥ u, E [Zv Zu] = u.

With m the number of time steps and n the number of simulations, our rBergomi model simulation
algorithm may then be summarized as follows.

6This is identical up to a constant factor to the definition of [7].
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� Construct the joint covariance matrix for the Volterra process W̃ and the Brownian motion Z and
compute its Cholesky decomposition.

� For each time, generate iid normal random vectors and multiply them by the lower-triangular matrix
obtained by the Cholesky decomposition to get a m × 2n matrix of paths of W̃ and Z with the
correct joint marginals.

� With these paths held in memory, we may evaluate the expectation under Q of any payoff of
interest.

The simulation procedure we have described is unsurprisingly very slow because of the high number of
matrix-vector multiplications with a lower-triangular but otherwise dense matrix. We leave the search for
faster simulation techniques based on the specific structure of the problem, including the specific choice
of the correlation structure between Z and W̃ for future research.

5 Consistency of the rBergomi model with the SPX volatility surface

As explained above, our simulation of the rBergomi model is very slow and this effectively rules out
optimization in practice. However, the model parameters H , η and ρ have very direct interpretations. H
controls the decay of the term structure of volatility skew for very short expirations whereas the product
ρ η sets the level of the ATM skew for longer expirations. Keeping the product ρ η roughly constant but
decreasing ρ (so as to make it more negative) has the effect of pushing the minimum of each smile
towards higher strikes. Thus, it is possible to guess parameters. Moreover, as we will show below, H
and η may be estimated from historical data. We will now show that on two particular days in history, the
rBergomi model was surprisingly consistent with the observed volatility surface. Fits for other days we
tried are not always as impressive as these two but nevertheless visibly superior to fits of conventional
Markovian stochastic volatility models.

5.1 Parameter estimation from the time series of realized variance

Both the roughness parameter (or Hurst parameter)H and the volatility of volatility η should be the same
under P andQ.

In [12], we estimated the RFSV model (1.1) on the Oxford-Man realized variance dataset obtaining the
historical effective parameter estimates Heff ≈ 0.14 and volatility of volatility νeff ≈ 0.3. Recall
however that the instantaneous volatility σt is not observed; rather we observe the realized variance
1
δ

∫ δ
0 σ

2
t dt where δ corresponds to a trading day from the open to the close, roughly 3/4 of a whole day

from close to close. Following the computation in Appendix C of [12], we may use these historical esti-
mates to approximate the roughness and volatility of volatility corresponding to instantaneous volatility.
This gives H ≈ 0.05 and ν ≈ 1.7. From Section 2, we have the relationship

η = 2 ν
CH√
2H

= 2 ν

√
Γ(3/2−H)

Γ(H + 1/2) Γ(2− 2H)

which yields the estimate η ≈ 2.5.
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5.2 Estimation of the variance swap curve

Variance swaps are actively traded so in principle, computation of the forward variance swap curve should
be straightforward. In practice however, it is not easy to obtain high quality variance swap quote data and
in any case, the bid/ask spread is wide. We thus choose to proxy the value of a τ -maturity variance
swap by the value of a τ -expiration log contract as explained for example in Chapter 11 of [10]. To
price the log contract for a particular expiration τ requires us to know the prices of τ -expiration options
for all strikes; of course prices are only quoted for a finite number of strikes. We therefore choose to
interpolate and extrapolate observed implied volatilities using the arbitrage-free SVI parameterization of
the volatility surface as explained in [11]. For any given day, we obtain the closing prices of SPX options for
all available strikes and expirations from OptionMetrics (www.optionmetrics.com) via Wharton
Research Data Services (WRDS). Having estimated variance swaps to each expiration, we interpolate
total variances using a monotonic spline to estimate variance swaps for intermediate dates. This allows
us in turn to estimate the the forward variance swap curve.

One subtlety is that by choosing SVI to interpolate and extrapolate, we may be assuming a smile that
is inconsistent with the one generated by the rBergomi model, and therefore that the forward variance
curve may not be accurate. The practical effect of this is that at-the-money implied volatilities are not
matched in the first pass, with good agreement for very short expirations but rather less good agreement
as time to expiry increases. A simple iteration on the forward variance curve soon reaches a fixed point
that achieves consistency between model ATM volatilities and market ATM volatilities.

5.3 Fits to two specific days in history

February 4, 2010

For our first comparison of the model to SPX options data, we choose February 4, 2010, a day when the
ATM volatility term structure happened to be pretty flat. With guessed parameters H = 0.07, η = 1.9,
ρ = −0.9, we obtain the impressive fit shown in Figure 5.1. Only three parameters to get a very good fit
to the whole SPX volatility surface, including the shortest dated smile (Figure 5.2).

In Figures 5.3 and 5.4, we see just how well the rBergomi model can match empirical skews and vols.
Recall also that the parameters we used are just guesses!

August 14, 2013

For our second comparison, we choose a date just prior to an expiration date for SPX options. Rather
than choosing the last Thursday of trading, we examine the volatility surface as of the close on the
final Wednesday prior to expiration so that the shortest expiration smile is more meaningful; the latest
such date available to us in our OptionMetrics data set is Wednesday August 14, 2013. With guessed
parameters H = 0.05, η = 2.3, ρ = −0.9, we obtain the fit shown in Figure 5.5. Once again, only
three parameters to get a very good fit to the whole SPX volatility surface, including the shortest dated
smile (from options with only one day of trading left).
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Figure 5.2: Shortest dated smile as of February 4, 2010: Red and blue points represent bid and offer
SPX implied volatilities; orange smile is from the rBergomi simulation.

Figure 5.3: As of of February 4, 2010: Blue points are empirical skews; the red line is from the rBergomi
simulation.
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Figure 5.4: As of of February 4, 2010: Blue points are empirical ATM volatilities; the red line is from the
rBergomi simulation.

5.3.1 Jump-like behavior of the rBergomi price process

It has often been claimed that jumps are required to explain the observed extreme short-dated smile in
SPX. In particular, in [4], Carr and Wu determine whether or not there are jumps in the asset process, and
if so, whether such jumps are finite or infinite activity. They determine based on their analysis that jumps
are required to generate the smiles observed in SPX. However, the class of processes that Carr and Wu
consider is too restrictive, excluding models like rBergomi where the out-of-the-money smile explodes as
time to expiration τ → 0. It is apparent from Figures 5.1 and 5.5 that the rBergomi model (where the
price process is continuous) generates smiles consistent with those observed empirically even for very
short expirations; there is no need for jumps.

6 The rBergomi model and VIX options

We pointed out earlier in Section 2.1 that observed VIX smiles are inconsistent with the rBergomi model.
Nevertheless, even if the rBergomi model is misspecified, it may be possible to impute its parameters H
and η by examining the term structure of VIX variance swaps7; if VIX corresponds to volatility, then VIX
of VIX should correspond to “volatility of volatility”.

7The VIX log-strip forms the basis for the VVIX (VIX of VIX) index computation. Indeed, following CBOE (www.cboe.com),
the VVIX term structure is computed every day (t) for various maturities (T ) of VIX options using the usual log-strip formula that
is used for the construction of VIX. More specifically, given T > t and assuming that VIX options with expiry T are traded, the
VVIXt,T is given by

VVIX2
t,T (T − t) = −2Et

[
log

√
ζ(T )− log

√
ζ(t)

]
,

where ζ(s) denotes the square of VIX at s and Et log
√
ζ(T ) can be expressed in terms of put and call prices on VIX with

expiry T . The usual VVIX index (at a given t) then corresponds to VVIXt,t+∆ for ∆ equal to one month.

14
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Denote the terminal value of the VIX futures by
√
ζ(T ). Then, by definition8,

ζ(T ) =
1

∆

∫ T+∆

T
E[vu|FT ] du.

where ∆ is one month. In the rBergomi model,

vu = ξt(u) E
(
η
√

2H

∫ u

t

dWs

(u− s)γ

)
with γ = 1/2 − H . Instantaneous variances vu are thus lognormally distributed. It should therefore
be a good approximation (and so it turns out) to assume that the VIX payoff and its square ζ(T ) are
also lognormally distributed. In that case, the terminal distribution of ζ(T ) is completely determined by
E [ζ(T )| Ft] and Var[log ζ(T )|Ft].

It is immediate that

E [ζ(T )| Ft] =
1

∆

∫ T+∆

T
ξt(u) du.

To estimate the conditional variance of ζ(T ), we approximate the arithmetic mean by the geometric
mean as follows:

ζ(T ) ≈ exp

{
1

∆

∫ T+∆

T
E[log vu|FT ] du

}
.

After some computation detailed in Appendix B, we obtain

Var[log ζ(T )|Ft] ≈ η2 (T − t)2H fH
(

∆

T − t

)
where

fH(θ) =
D2
H

θ2

∫ 1

0

[
(1 + θ − x)1/2+H − (1− x)1/2+H

]2
dx. (6.1)

It is straightforward to show that fH(θ) → 1 as θ → 0 which is the limit in which ζ(T ) → vT . In
Appendix B we show further how to express fH(θ) explicitly in terms of the hypergeometric function.
However, the above form (6.1) is more convenient for computation.

The VIX variance swaps (V V IX2) are then given by

V V IX2
t,T (T − t) ≈ Var

[
log
√
ζ(T )

∣∣∣Ft]
≈ 1

4
η2 (T − t)2H fH

(
∆

T − t

)
. (6.2)

VIX variance swaps may also be estimated directly from market prices of options on VIX using the log-
strip in the usual way as

V V IX2
t,T (T − t) = −2E

[
log
√
ζ(T )− log

√
ζ(t)

∣∣∣Ft] . (6.3)

By comparing the model VVIX term structure (6.2) with the market VVIX term structure (6.3), we can in
principle fix the model parameters H and η.
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Figure 6.1: Empirical VVIX term structure data (blue points) and rBergomi (using (6.2), red line and from
simulation, green points) estimates of Var(VIX) as of February 4, 2010 (left) and August 14, 2013
(right).

6.1 The VVIX term structure in practice

Recall that the parameters we used to obtain the reasonably impressive SPX fits of Section 5.3 were just
guessed; specifically these parameters were as follows:

H η

February 4, 2010 0.07 1.9
August 14, 2013 0.05 2.3

In Figure 6.1, we show plots of equation (6.2) with the above parameters, superimposed on the empirically
estimated variances of VIX. At least for February 4, 2010, given the qualitative agreement between the
shape of the curve (6.2) and empirical estimates, it might be possible to argue some consistency of the
rBergomi model with observation; for August 14, 2013 however, there is not even qualitative agreement.
Whether this disagreement between model and market should be ascribed to a misspecified model,
wrong market prices, or indeed both of these, is left for future research.

7 Volatility of volatility expansion

As simulation of the rBergomi model is so slow, one potential alternative is to estimate rBergomi param-
eters using an asymptotic expansion. Given a model expressed in variance curve form, Bergomi and
Guyon [3] derive the following expression for the Black-Scholes implied volatility smile to second order in
volatility of volatility:

σBS(k, t) = σ̂T + ST k + CT k2 +O(η3) (7.1)

8See Chapter 11 of [10] for more details.
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where

σ̂T =

√
w

T

{
1 +

1

4w
Cxξ +

1

32w3

(
12 (Cxξ)2 − w (w + 4)Cξξ + 4w (w − 4)Cµ

)}
ST =

√
w

T

{
1

2w2
Cx ξ +

1

8w3

(
4wCµ − 3(Cxξ)2

)}
CT =

√
w

T

1

8w4

(
4wCµ + wCξξ − 6(Cxξ)2

)
(7.2)

and

w =

∫ T

0
ξ0(s) ds

is total variance to expiration T . The autocorrelation functionals Cxξ , Cξξ , and Cµ have the following
explicit expressions:

Cx ξ =

∫ T

0
dt

∫ T

t
du

E [dxt dξt(u)]

dt

Cξ ξ =

∫ T

0
dt

∫ T

t
ds

∫ T

t
du

E [dξt(s) dξt(u)]

ds

Cµ =

∫ T

0
dt

∫ T

t
du

E [dxt dξt(u)]

dt

δCx ξt
δξt(u)

(7.3)

where the notation δ/δξt(u) denotes a functional derivative.

In the case of the rBergomi model (3.1), we have

dSt
St

=
√
ξt(t) dZt

dξt(u)

ξt(u)
= η

√
2H

dWt

(u− t)γ

with E[dZt dWt] = ρ dt so that

E [dxt dξt(u)]

dt
= ρ η

√
2H

√
ξt(t)

ξt(u)

(u− t)γ
.

The various autocorrelation functionals (7.3) may then be computed; explicit computations are presented
in Appendix A.

7.1 Special case: Flat variance curve

The special case ξ0(u) = σ̄2, u ≥ 0 where the initial forward variance curve is flat, is particularly
instructive. First, from (A.1), we have

Cxξ = ρ η
√

2H

∫ T

0

√
ξt(s) ds

∫ T

s
ξt(u)

du

(u− s)γ
(7.4)

= ρ η σ̄3EH T
H+3/2.

where we have further defined

EH =
DH

H + 3/2
.
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Also, w = σ̄2 T . Substituting back into (7.2) and then (7.1) gives, to first order in η,

σBS(k, t) = σ̄ +
ρ η

2
EH

1

T 1/2−H

(
k +

w

2

)
+O(η2) (7.5)

In particular, we see that to first order in η, the term structure of at-the-money volatility skew is given by

ψ(τ) =
∂σ2

BS(k, τ)

∂k

∣∣∣∣
k=0

=
ρ η

2
EH

1

τγ

with γ = 1/2 −H . Similarly, substituting ξ0(u) = σ̄2 into (A.2) and (A.3) respectively gives the terms
required for computation of the second order contribution:

Cξ ξ = η2 σ̄4D2
H

T 2+2H

2 + 2H

Cµ =
1

2
ρ2 η2 σ̄4D2

H

{
1 +

Γ(H + 3/2)2

Γ(2H + 3)

}
T 2+2H

2 + 2H
.

It follows that to second order in η, the term structure of at-the-money volatility skew is given by

ψ(τ) =
ρ η

2
EH

1

τγ
+

1

4
ρ2 η2 σ̄ τ2H

[
D2
H

1 +H

{
1 +

Γ(H + 3/2)2

Γ(2H + 3)

}
− 3

2
E2
H

]
.

(7.6)

Numerical test

The dimensionless Bergomi-Guyon expansion parameter is λ = η TH . When H is very small, λ ∼ η
for all reasonable expirations; with H < 0.1 as in Section 5.3, λ ∼ 1.9 which is not small enough for
the asymptotic expansion to converge, even at-the-money. With the much smaller value η = 0.4, we see
in Figure 7.1 very good agreement between the Bergomi-Guyon asymptotic skew formula (7.6) and the
simulation.

We thus conclude that both our Bergomi-Guyon computations and the simulation are likely to be correct.
Sadly however, the Bergomi-Guyon expansion does not converge with values of η consistent with the
SPX volatility surface, so the Bergomi-Guyon expansion is not useful in practice for calibration of the
rBergomi model.

8 Forecasting the variance swap curve

Recall that in the RFSV model (1.1), log vt ≈ 2 ν WH
t + C for some constant C . In [14], it is shown,

assuming H ∈ (0, 1/2), ∆ > 0, that WH
t+∆ is conditionally Gaussian with conditional expectation9

E[WH
t+∆|Ft] =

cos(Hπ)

π
∆H+1/2

∫ t

−∞

WH
s

(t− s+ ∆)(t− s)H+1/2
ds

and conditional variance
Var[WH

t+∆|Ft] = c∆2H

9Trivially E[WH
t+∆|Ft] = WH

t when either ∆ = 0 orH = 1/2. This corresponds to the singular behavior of the integrand,
as either ∆→ 0 or H → 1/2, with the necessary compensation given by ∆H+1/2 cos(Hπ) ∼ 0 in these regimes.
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Figure 7.1: The Bergomi-Guyon second order ATM skew approximation is in green; ATM skews from
Monte Carlo simulation are in red. Parameters used were H = 0.1, η = 0.4, ρ = −0.85, σ̄ = 0.235.

E[WH
t+∆|Ft] =

cos(Hπ)

π
∆H+1/2

∫ t

−∞

WH
s

(t− s+ ∆)(t− s)H+1/2
ds.

and conditional variance
Var[WH

t+∆|Ft] = c∆2H

where

c =
Γ(3/2−H)

Γ(H + 1/2) Γ(2− 2H)
.

Thus, we obtain the following natural form for the RFSV predictor of the variance:

EP [vt+∆| Ft] = exp
{
EP [ log(vt+∆)| Ft] + 2 c ν2∆2H

}
(8.1)

where

EP [ log vt+∆| Ft] =
cos(Hπ)

π
∆H+1/2

∫ t

−∞

log vs

(t− s+ ∆)(t− s)H+1/2
ds. (8.2)

The fair value of a τ -maturity variance swap is given (approximately) by

Vt(τ) =
1

τ

∫ t+τ

t
EQ[vs|Ft] ds

where Q is the risk neutral measure. If it were possible to ignore the change of measure so that

EQ[vs|Ft] = EP[vs|Ft],
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it would be possible to forecast variance swap curves using (8.1). In fact, we will see that from the data,
Q is close to P in this sense. We now proceed to compare forecast and actual variance swaps curves.

SPX variance curve forecasts are formed using the predictor (8.1) from the time series of daily realized
variance estimates from same Oxford-Man dataset that was used in [12].

As for market variance swap curves, although there is an active market, it is not easy to obtain high
quality variance swap quote data and in any case, the bid/ask spread is wide. We thus choose to proxy
the value of a τ -maturity variance swap by the value of a τ -expiration log contract as explained for ex-
ample in Chapter 11 of [10]. To price the log contract for a particular expiration τ requires us to know the
prices of τ -expiration options for all strikes; of course prices are only quoted for a finite number of strikes.
We therefore choose to interpolate and extrapolate observed implied volatilities using the arbitrage-free
SVI parameterization of the volatility surface as explained in [11]. With closing prices of SPX options for
all available strikes and expirations sourced from OptionMetrics (www.optionmetrics.com) via
Wharton Research Data Services (WRDS), we follow the procedure just described to compute proxy
variance swap curves each day from January 4, 1996 to August 30, 2013, a total of 4,443 days. We also
need a sufficient history to be able to compute a forecast. We end up with 2,681 days of forecast and
actual variance swap curves from Jan 3, 2003 to August 31, 2013.

(a) 3m variance swaps (b) Ratio of actual to forecast

Figure 8.1: Plot (a) shows actual (proxy) 3-month variance swap quotes in blue vs forecast in red. Plot
(b) shows the ratio between 3-month actual variance swap quotes and 3-month forecasts.

Plotting actual versus forecast 3-month variance swap curves in Figure 8.1, we immediately see that the
actual variance swap curve is a factor (of roughly 1.4) higher than the forecast one, which we may attribute
to overnight movements of the index. Recall that RV estimates are intraday from open to close. Realized
variance forecasts must therefore be rescaled to obtain close-to-close realized variance forecasts as
explained for example in [8] or alternatively using an econometric model such as the HEAVY model of
[13].

In Figure 8.2, we see that the 6-month, 9-month, and 12-month forecasts rescaled by the 3-month ratio
of actual to forecast seem to be very consistent with actual variance swap quotes. This implies that
although we can only forecast variance swap curves up to a factor, we can accurately forecast their
shapes. We now demonstrate this further with two dramatic examples where the variance swap curve
moved significantly from one day to the next. We will see that in both these cases, the evolution of the
variance swap curve seems to be consistent with our model paradigm.
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(a) Actual 3m variance swaps (b) Actual vs rescaled forecast 6m variance swaps

(c) Actual vs rescaled forecast 9m variance swaps (d) Actual vs rescaled forecast 12m variance swaps

Figure 8.2: Plot (a) shows actual (proxy) 3-month variance swap quotes. The other 3 figures show actual
variance swap quotes for 6, 9, nd 12 month respectively in blue with forecast variance swap quotes
multiplied by the 3-month actual to forecast ratio in red.

8.1 The collapse of Lehman Brothers

As an interesting experiment10, consider the evolution of the S&P variance swap curve over the week-
end of the collapse of Lehman Brothers. As of the market close on Friday September 12, 2008, it was
generally expected that Lehman Brothers would be rescued over the weekend. As of the market close
on Monday September 15 however, there had been no rescue and the market was in crisis. In Figure
8.3, we plot the actual variance swaps curves as of the Friday and Monday market closes together with
forecast curves rescaled by the 3-month ratio as of the close on Friday September 12 (which was 1.29).
Perhaps surprisingly, it appears that most of the evolution of the variance swap curve may be explained
by a single extra data point – intraday realized variance from the open to the close of trading on Monday
September 15, 2008.

8.2 The Flash Crash

In the so-called Flash Crash of Thursday May 6, 2010, major US equity indices suddenly dropped by
about 10% intraday only to recover within 30 minutes or so. Consequently, intraday realized variance

10Suggested by Peter Leoni of KU Leuven.
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Figure 8.3: S&P variance swap curves as of September 12, 2008 (red) and September 15, 2008 (blue).
The dashed curves are RFSV model forecasts rescaled by the 3-month ratio (1.29) as of the Friday close.

for May 6 was much higher than normal. In Figure 8.4, using the same methodology as in Section 8.1,
we plot the actual variance swap curves as of the Wednesday and Friday market closes together with
forecast curves rescaled by the 3-month ratio as of the close on Wednesday May 5 (which was 2.52).
We see that the actual variance curve as of the close on Friday is consistent with a forecast from the
time series of realized variance that includes the anomalous price action of Thursday May 6. In Figure
8.5 we see that actual variance swap curve as of the following Monday close is no longer consistent
with the forecast. However, if we drop the May 6 datapoint, we get a forecast that is much closer to the
actual variance swap curve. The obvious explanation is that volatility traders realized over the weekend
that the anomalous intraday price action of the Flash Crash should not influence future realized variance
projections, adjusting index option quotes accordingly.
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Figure 8.4: S&P variance swap curves as of May 5, 2010 (red) and May 7, 2010 (green). The dashed
curves are RFSV model forecasts rescaled by the 3-month ratio (2.52) as of the close on Wednesday
May 5.

9 Summary and conclusions

The Rough Fractional Stochastic Volatility (RFSV) model of [12] is remarkably consistent with the time
series of realized volatility for a wide range of different underlying assets. In this paper, we have shown
that this model written under the physical measure P leads naturally to an options pricing model under
Q that is remarkably consistent with the observed shape of the implied volatility surface in the particular
case of SPX. A special case of this model where we assume a deterministic change of measure between
P andQ turns out to be a non-Markovian extension of the well-known Bergomi model, which we conse-
quently dub the Rough Bergomi (or rBergomi) model. The rBergomi model is particularly tractable and
seems to fit the SPX volatility surface very well, despite our lack at this stage of an efficient computational
algorithm. We computed terms Bergomi-Guyon expansion up to second order in volatility of volatility but
the expansion parameter λ = η τH ≈ 2 required to fit SPX option prices is too big for this asymptotic
expansion to be valid. However, we do not see agreement between the rBergomi model and the term
structure of VIX volatility (VVIX).

Taken together, the present work and the econometric analysis of [12] offer a (perhaps even the first)
promising paradigm for the understanding of asset price formation all the way from a basic microstruc-
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(a) Including Flash Crash (b) Excluding Flash Crash

Figure 8.5: May 7 variance curves are in green; May 10 variance curves are in orange. Solid lines are
actual curves and dashed lines are forecast curves. In plot (a), we see that the May 10 actual curve
is completely inconsistent with a forecast based on a realized variance dataset that includes the Flash
Crash. In contrast, in plot (b), we see that the Monday May 10 actual curve is consistent with a forecast
using a dataset that excludes the Flash Crash.

ture description at the order book level to option pricing. Not least, our framework allows for accurate
prediction of the volatility surface from high-frequency price data. More efficient computational methods
and a more thorough investigation of the market implied change of measure dQ/dP are left for further
research.

A Computation of Bergomi-Guyon autocorrelation functionals in the rBer-
gomi model

Computation of Cxξ

Cx ξt =

∫ T

t
ds

∫ T

s
du

E [dxs dξs(u)]

ds

= ρ η
√

2H

∫ T

t
ds

∫ T

s
E
[√

ξs(s) ξs(u)
∣∣∣Ft] du

(u− s)γ

= ρ η
√

2H

∫ T

t

√
ξt(s) ds

∫ T

s
ξt(u)

du

(u− s)γ
+O(η3). (A.1)
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Computation of Cξξ

By definition,

Cξ ξ =

∫ T

0
dt

∫ T

t
du

∫ T

t
ds

E [dξt(s) dξt(u)]

dt

=

∫ T

0
dt

∫ T

t
du

∫ T

t
ds

η2 2H

(u− t)γ (s− t)γ
ξt(s) ξt(u)

= η2 2H

∫ T

0
dt

(∫ T

t

ξt(u)

(u− t)γ
du

)2

= η2 2H

∫ T

0
dt

(∫ T

t

ξ0(u)

(u− t)γ
du

)2

+O(η4). (A.2)

Computation of Cµ

By definition,

Cµ =

∫ T

0
dt

∫ T

t
du

E [dxt dξt(u)]

dt

δCx ξt
δξt(u)

and from (A.1) above,

δCx ξt
δξt(v)

= ρ η
√

2H

{∫ T

t
ds
√
ξt(s)

1

(v − s)γ
1v>s +

1

2
√
ξt(v)

∫ T

v
ξt(u)

du

(u− v)γ

}

= ρ η
√

2H

{∫ v

t
ds
√
ξt(s)

1

(v − s)γ
+

1

2
√
ξt(v)

∫ T

v
ξt(u)

du

(u− v)γ

}
.

Thus

Cµ = ρ2 η2 2H

∫ T

0

√
ξt(t) dt

∫ T

t
du

ξt(u)

(u− t)γ

×

{∫ u

t
ds
√
ξt(s)

1

(u− s)γ
+

1

2
√
ξt(u)

∫ T

u
ξt(s)

ds

(s− u)γ

}

= ρ2 η2 2H

∫ T

0

√
ξt(t) dt

∫ T

t

du

(u− t)γ

×
{∫ u

t

√
ξt(s)

ξt(u)

(u− s)γ
ds+

1

2

√
ξt(u)

∫ T

u

ξt(s)

(s− u)γ
ds

}
= ρ2 η2 2H

∫ T

0

√
ξ0(t) dt

∫ T

t

du

(u− t)γ

×
{∫ u

t

√
ξ0(s)

ξ0(u)

(u− s)γ
ds+

1

2

√
ξ0(u)

∫ T

u

ξ0(s)

(s− u)γ
ds

}
+O(η4).

(A.3)

For any given initial forward variance curve ξ0(u), the above expressions for Cxξ , Cξξ and Cµ may be
easily computed numerically.
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B Approximate variance of VIX

Let yu = log vu and consider the following approximation of the arithmetic mean by the geometric mean:

ψ(T ) =
1

∆

∫ T+∆

T
E[vu|FT ] du ≈ exp

{
1

∆

∫ T+∆

T
E[yu|FT ] du

}
.

Apart from Ft measurable terms (abbreviated as “drift”), we have∫ T+∆

T
E[yu|FT ]du = η

√
2H

∫ T

t

dWs

(u− s)γ
du+ drift

= η
√

2H

∫ T

t

∫ T+∆

T

du

(u− s)γ
dWs + drift

= η

√
2H

1− γ

∫ T

t

[
(T + ∆− s)1−γ − (T − s)1−γ] dWs + drift.

This gives

Var[logψ(T )|Ft] ≈
η2D2

H

∆2

∫ T

t

[
(T + ∆− s)1/2+H − (T − s)1/2+H

]2
ds

= η2 (T − t)2H fH
(

∆

T − t

)
where

DH =

√
2H

H + 1/2

and

fH(θ) =
D2
H

θ2

∫ 1

0

[
(1 + θ − x)1/2+H − (1− x)1/2+H

]2
dx.

To compute this integral explicitly, we use that, for κ = 1/2 +H ,∫ T

t
(T + ∆− s)κ(T − s)κds =

∫ τ

0
(s+ ∆)κsκds

=
τ(∆τ)κ

1 + κ
2F1 (−(H + 1/2), 3/2 +H, 5/2 +H,−τ/∆) .

Thus, we get

Var[logψ(T )|Ft] ≈
2Hη2

∆2

[
(τ + ∆)2(H+1) −∆2(H+1) + τ2(H+1)

2(H + 1)

− 2
τ(τ∆)H+1/2

H + 3/2
2F1

(
−(H +

1

2
), H +

3

2
, H +

5

2
,− τ

∆

)]
with τ := T − t.
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