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Abstract

We study the coupling induced destabilization in an array of identical oscillators coupled in a ring
structure where the number of oscillators in the ring is large. The coupling structure includes different
types of interactions with several next neighbors. We derive an amplitude equation of Ginzburg-
Landau type, which describes the destabilization of a uniform stationary state and close-by solutions
in the limit of a large number of nodes. Studying numerically an example of unidirectionally coupled
Duffing oscillators, we observe a coupling induced transition to collective spatio-temporal chaos,
which can be understood using the derived amplitude equations.

The understanding of the complex dynamical behavior of networks of coupled nonlinear units
can contribute to the explanation of various collective phenomena that can be observed in cou-
pled systems in biology, economy, or physics [30, 17, 26]. Discrete media, e.g. in neural systems,
can exhibit complex coupling structures including feed-forward loops, large coupling ranges,
and interaction mechanisms of different kind. In such systems, the influence of the coupling can
transform simple equilibrium dynamics of a single unit into complicated spatio-temporal struc-
tures of the network dynamics. For continuous media, amplitude equations of Ginzburg-Landau
type have been a powerful tool for a universal description of diffusion induced spatio-temporal
dynamics and pattern formation in a spatially homogeneous system. In this paper, we apply this
technique to a large class of spatially discrete systems, where a one dimensional array of iden-
tical dynamical units is coupled in a homogeneous but possibly complicated structure including
different types of interactions to several next neighbors. Under the assumption that the number
of units is large, we can derive an amplitude equations of Ginzburg-Landau type not only for
discrete versions of well understood examples of diffusion induced pattern formation in continu-
ous media, but also for e.g. unidirectional or anti-diffusive interactions. We show that in all these
cases, the collective dynamics close to the destabilized homogeneous state can be described by
the amplitude equations, and illustrate this by an example of a chain of unidirectionally coupled
Duffing oscillators, showing a coupling induced transition from equilibrium to spatio-temporal
defect dynamics.

1 Introduction

Dynamics on coupled networks have been the subject of extensive research in the last decade. Coupled
systems can display a huge variety of dynamical phenomena, starting from synchronization phenomena
in various types of inhomogeneous or irregular networks, up to complex collective behavior, such as
for example various forms of phase transitions, traveling waves [8, 25, 21, 14], phase-locked patterns,
amplitude death states [5], or so called chimera states that display a regular pattern of coherent and
incoherent motion [1, 20, 28, 32]. Of particular interest are situations, where complex spatio-temporal
structures can emerge in regular arrays of identical units induced only by the coupling interaction. In
many cases, the resulting phenomena differ substantially from corresponding situations in continuous
media [18] and depend strongly on the underlying network topology.
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Our specific interest is in the emergence of spatio-temporal structures in a homogeneous array of identi-
cal units that have a stable uniform equilibrium at which the coupling vanishes. In continuous media, the
Turing instability gives a classical paradigm of a coupling induced instability. There is of course a natural
direct counterpart in the discrete setting, but it turns out that in addition there appear also some genuinely
new phenomena. In Refs [36, 23, 35] it has been shown that in a ring of unidirectionally coupled oscil-
lators, i.e. in a purely convective setting, the Eckhaus scenario can be observed that is characterized by
a coexistence of multiple periodic patterns, whose number is proportional to the domain size [6]. In Ref.
[24] it has been shown that Duffing oscillators coupled in the same way, exhibit a complex transition to
spatio-temporal chaos. In this paper we develop a general theoretical framework for such phenomena in
large arrays, using the amplitude equation approach, see e.g. Refs [19, 15, 13, 27, 34, 37]. We derive an
amplitude equation of Ginzburg-Landau type that governs the local dynamics close to the destabilizing
uniform steady state. It provides a universal destabilization scenario that is already well known in the con-
text of reaction-diffusion systems [6, 31, 4, 3]. However, as we show, it can be applied to a much larger
class of coupling mechanisms, including the case of unidirectional and anti-diffusive interaction and al-
lowing for a mixture of such interactions in the coupling to several next neighbors. As a specific feature,
the convective part will appear in the amplitude equation as a rotation of the coordinates in an interme-
diate time scale that is faster than the diffusive processes described by the Ginzburg-Landau equation.
Having deduced the amplitude equation and the corresponding scaling laws in terms of the number of
oscillators, which is assumed to tend to infinity, we use this theory for the explanation of spatio-temporal
chaos in a ring of unidirectionally coupled Duffing oscillators.

2 Model equation, spectral conditions, and notations
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Figure 1: An example of a ring of N coupled oscillators. Apart from the self-coupling M0, each oscillator
yj is also coupled with yj+2 (M2) as well as yj−1 (M−1). See Eq. (1) for the equation of motion.

We are interested in a system of N identical coupled oscillators that has a uniform equilibrium, where
the coupling vanishes. The coupling network is organized as an array with possibly different types of
interactions between several next neighbors, closed to a ring by periodic boundary conditions. Such
systems can be written in general form as

ẏj =

R∑
m=−R

Mm(p)yj+m + h(yj−R, yj−R+1, . . . yj+R; p), (1)

where yj ∈ Rn, j = 1, . . . , N describes the state of the j-th oscillator and R ≤ N/2 the coupling
range. Closing the system with periodic boundary conditions, all indexes have to be considered modulo
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N . The linear part of the dynamics is given by the n× n matrices Mm(p), m = 1, . . . , N , depending
on the bifurcation parameter p and accounting for the coupling to the m-th neighbor; in particular M0(p)
describes the linear part of the local dynamics (self-coupling). The nonlinear part h, again including a
local dependence and a dependence on the m-th neighbor, should vanish at the origin h(0, . . . , 0; p) =
0 and have also zero derivatives there. Note that this system is symmetric (equivariant) with respect to
index shift. Figure 1 illustrates an example with self coupling and coupling to the neighbor on the left and
to the second neighbor on the right. The specific form of (1) also implies that the coupling vanishes at
the equilibrium y1 = · · · = yN = 0, which is true e.g. when the coupling is a function of the difference
yj − ym for any two coupled oscillators j,m.

Due to the spatial homogeneity, the modes of the linearization at the zero equilibrium of (1) are plane
waves of the form yj+1 = e2πik/Nyj with discrete wave numbers k = 1, . . . , N . Hence, the character-
istic equation can be factorized as

χ(p, λ, e2πik/N ) = det

[
λId−

∑
m

e2πimk/NMm(p)

]
= 0,

where Id denotes the identity matrix in Rn and the index k = 1, . . . , N accounts for the N -th roots
of unity that appear as the eigenvalues of the circular coupling structure [22]. Following the approach in
Refs [36, 23], we replace for large N the discrete numbers 2πk/N by a continuous parameter φ, and
obtain the asymptotic continuous spectrum

Λp =

{
λ ∈ C : χ(p, λ, eiφ) = det

[
λId−

∑
m

eimφMm(p)

]
= 0, φ ∈ [0, 2π)

}
, (2)

containing all eigenvalues and, for large N , being densely covered by the eigenvalues. Since the ex-
pression (2) is periodic in φ, the asymptotic continuous spectrum Λp has generically the form of one or
several closed curves λp(φ) in the complex plane, parametrized by φ.

At the bifurcation value p = 0, we assume that the asymptotic continuous spectrum touches the imagi-
nary axis at some point iω0 (see Fig. 2), i.e. the following conditions are fulfilled

λ(φ0) = iω0,
∂λ

∂φ
(φ0) = iκ1, κ1 ∈ R, (3)

Reλ(φ) < Reλ(φ0) for all φ ̸= φ0. (4)

The first condition from (3) means that the point iω0 belongs to the asymptotic continuous spectrum,
while the second condition from (3) guarantees that the real part ℜ(λ(φ)) is tangent to the zero axis
at φ = φ0 (see Fig. 2). This tangency describes the condition for the destabilization (or bifurcation) of
the zero solution with respect to a plane wave solution with temporal frequency ω0 and wave number
k0 ≈ φ0N

2π . Indeed, if the spectrum Λp is contained in the left half of the complex plane with Reλ < 0,
then the uniform equilibrium y1 = · · · = yN = 0 is asymptotically stable. As soon as Λp crosses the
imaginary axis, it becomes unstable for sufficiently large N . The conditions (3)–(4) are, in fact, conditions
on the matrices Mm of the linearization.

Before we present our main result, we now introduce some useful notations and formulate a technical
lemma, which follows from the bifurcation conditions (3). With v0 and v1 we denote the eigenvector and
the adjoint eigenvector to the critical eigenvalue λ0(φ0) = iω0, which we assumed in (3) to exist for
p = 0. Moreover, it will be convenient to denote by

L0 =
∑
m

eimφ0Mm(0),
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Figure 2: Asymptotic continuous spectrum Λp at the destabilization; schematically.

L1 =
∑
m

meimφ0Mm(0),

L2 =
∑
m

m2eimφ0Mm(0)

the “moments” of the coupling matrices Mm. In this notation, the equations for the eigenvectors v0 and
v1 read as

[iω0Id− L0] v0 = 0, (5)

[−iω0Id− L∗
0] v1 = 0. (6)

These vectors can be normalized as

|v0|2 = 1, ⟨v0, v1⟩ = 1. (7)

Finally, we expand the matrices Mm(p) with respect to the parameter p and write them as Mm(0) +
pKm +O

(
p2
)
. In this way, we can define

LK =
∑
m

eimφ0Km.

Lemma 1. Assume that φ0 is a regular point of the asymptotic continuous spectrum (2), such that λ0(φ)
exists and is locally differentiable in a small neighborhood of φ0. Further, let the bifurcation condition (3)
hold. Then

⟨L1v0, v1⟩ = κ1. (8)

The proof of this Lemma will be given together with the proof of the main result in Section 5.

3 Main Result: Reduction to Ginzburg-Landau Equation

In this section, we present an amplitude equation that describes for system (1) the dynamics close to
the destabilization threshold in the limit of large N . We perform a limiting procedure, where for a fixed
coupling range R the total number of oscillators N tends to infinity. In this way, the coupling becomes
local in the limit N → ∞, and coupling terms will be approximated by derivatives of the amplitude.
Consequently, our results will be valid for large arrays, where the coupling range is small compared to
the total size. It will be shown that the amplitude equation has the form of a complex Ginzburg-Landau
equation with periodic boundary conditions. With Proposition 2 we present here the main assertions,
while the technical details of the derivation and the proof is deferred to Section 5.
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Proposition 2. Assume that the bifurcation conditions (3)–(4) hold and φ0 is a regular point of the
asymptotic continuous spectrum Λ0. Additionally, let the points ±3iω0 not belong to the asymptotic
continuous spectrum with φ = φ0 (non-resonance condition). Let the nonlinearity h be of third order.
Introduce the small parameter

ε =
1

N

and apply the multiple scale ansatz

yj(t) = εeiω0t+iφ0jv0A(T1, x1, T2) + ε3e3i(ω0t+φ0j)v2A
3(T1, x1, T2) + c.c., (9)

with the amplitude A ∈ C depending on the rescaled coordinates T1 = εt, T2 = ε2t, and x1 = εj
(c.c. denotes complex conjugated terms, v2 ∈ Cn) to the following system

ẏj =

R∑
m=−R

(
Mm(0) + ε2rKm +O

(
ε4
))

yj+m + h(yj−R, . . . yj+R; p), (10)

with the rescaled parameter p = ε2r and j = 1, . . . , N with periodic boundary conditions. Then, the
solvability conditions up to the order ε3 imply the following partial differential equation of Ginzburg-Landau
type

∂T2u = rκ2u+
κ3
2
∂2
ξu+ ζu |u|2 (11)

with periodic boundary conditions
u(ξ, T2) = u(ξ + 1, T2),

where u(ξ, T2) with ξ ∈ [0, 1] is related to the amplitude A by

A(T1, x1, T2) = u(κ1T1 + x1, T2). (12)

The coefficient κ1 in (12) is given by (3) or (8), and

κ2 = ⟨LKv0, v1⟩ , κ3 = ⟨L2v0, v1⟩ . (13)

Finally, the coefficient ζ of the cubic nonlinearity and the vector v ∈ Cn have to be determined by the
nonlinearity h according to expressions (18) and (19), see Appendix.

According to this proposition, small solutions of a coupled system of the form (10) close to criticality, i.e.
p = O(ε2) can be approximated in the form (9), where the amplitude A is related to a solution of the
Ginzburg-Landau equation (11) via (12). Note that the relation (12) introduces a rotating frame on the
timescale T1 = εt with rotation velocity κ1. κ1 is called also the group velocity of the basic pattern [16].
The time evolution of the Ginzburg-Landau equation enters only on the slowest time scale T2 = ε2t.

Remark 3. For the case of a symmetric coupling Mm = M−m, Km = K−m, the rotation group

velocity vanishes κ1 = 0. This follows from Eq. (3) and iκ1 = ∂λ(φ0)
∂φ0

= −∂χ/∂φ
∂χ/∂λ . Indeed, since the

characteristic polynomial χ is real-valued for a symmetric coupling, its derivatives are also real-valued,
and hence κ1 = 0. Note that such a symmetric coupling induces an additional reflection symmetry
m → −m.

If, additionally to the symmetric coupling, the matrices Mm and Km are symmetric, i.e. Mm = MT
m

and Km = KT
m, then the coefficients κ2 and κ3 of the amplitude equation (11) are real. Indeed, in such
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a case, the characteristic matrix L0 is symmetric and real implying that ω0 = 0 and v1 = v0 = v∗0 .
Moreover

L2 =
∑
m>0

m2
(
eimφ0 + e−imφ0

)
Mm(0) = 2

∑
m>0

m2 cos(mφ0)Mm(0)

is real, similarly also LK . This implies that κ2 and κ3 are real as well. Further symmetry properties
determine whether the nonlinear term is real or complex. Finally note that, for the case φ0 = 0, one
obtains spatially homogeneous Hopf bifurcation.

4 Example: spatio-temporal dynamics in a ring of unidirectionally cou-
pled Duffing oscillators

In this section, we illustrate the obtained result by considering a ring of unidirectionally coupled Duffing
oscillators. A similar system has been studied theoretically and experimentally in Ref. [24], where the
bifurcation mechanisms, leading subsequently to the destabilization of the homogeneous steady state,
to the appearance of multiple stable periodic solutions, and to chaotic behavior, have been studied. We
show that our approach allows to reveal the spatio-temporal features in the dynamics of this system,
which can be traced back to the amplitude equation, derived in the previous section.

The autonomous Duffing oscillator is described by the following second order ordinary differential equa-
tion

ÿ + dẏ + ay + y3 = 0, (14)

where d and a are positive constants. System (14) is a single-well Duffing oscillator, which has a single
equilibrium point at y = ẏ = 0. Due to the presence of damping (d > 0) this equilibrium is an attractor
for all initial conditions. We consider now a ring of N such oscillators with a linear unidirectional coupling
to the next neighbor. Introducing new coordinates x = y, z = ẏ and the coupling into Eq. (14), the
equations of motion have the form

ẋj = zj ,
żj = −dzj − axj − x3j + k (xj+1 − xj) ,

(15)

where k is the coupling coefficient and indices are considered modulo N . As follows from the results in
Ref. [23], for at least three coupled oscillators and increasing coupling strength k, one can observe rich
dynamics starting from periodic oscillations to hyperchaos.

In the case of large N , we can use for system (15) the characteristic equation (2) for the asymptotic
spectrum given by

det
[
λId −M0 − eiφM1

]
= 0, (16)

where M0 =

(
0 1

−a− k −d

)
and M1 =

(
0 0
k 0

)
. Equation (16) can be solved explicitly with

respect to λ:

λ1,2(φ) = −d

2
±

√(
d

2

)2

− a− k (1− eiφ). (17)

In the following we fix the a = 0.1 and d = 0.3. For these values a simple numerical analysis shows that
the spectral curves (17) are stable (Reλ < 0) for all values of the coupling satisfying k < k0 ≈ 0.1399.
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At k = k0, the spectrum is tangent to the imaginary axis for φ0 ≈ 1.245 (cf. Fig. 2) leading to a purely
imaginary eigenvalue λ = iω0with ω0 ≈ 0.441. For k > k0, the zero steady state is unstable.

In a neighborhood of the destabilization at k = k0, the dynamics of system (15) can be approximated by
the normal form (11), and the correspondence between the solutions of the oscillator chain (15) and the
normal form is given by Eq. (9). The leading terms in this approximation are(

xj(t)
zj(t)

)
≈ εeiω0t+iφ0jv0A(εt, εj, ε2t) + c.c.

showing that the dynamics are given to leading order by a small amplitude wave with the temporal fre-
quency ω0, corresponding time period Pt = 2π/ω0 ≈ 14.25, and the spatial wave number φ0 corre-
sponding to a wavelength of 2π/φ0 ≈ 5. The amplitude of this wave is given by a solution of equation
(11) inducing in this way modulations on a slow timescale and a large scale in space. Using formu-
las (8), (13), and (18), the coefficients of the normal form (11) for the chosen parameter values are
κ1 = κ3 = 0.15, κ2 = 0.73 − 1.02i, and ζ = −0.29 − 0.85i. According to the numerical results
on the one-dimensional Ginzburg-Landau equation on large domain [29, 2, 7], the obtained parameter
values correspond to the spatio-temporal intermittency region, where, despite of the fact that there exist
stable periodic patterns, a chaotic attractor is typically reached from a random initial condition, which is
characterized by turbulent bursts interrupted by regions of periodic patterns. Moreover, the modulus of u
is touching zero leading to the phase defects.

The chaotic behavior observed in the chain of oscillators (15), possesses all the above mentioned qualita-
tive features. Indeed, as it has been shown in Ref. [24], the coexistence of the stable periodic patterns, as
well as a chaotic intermittent patterns. In the following, we present some additional numerical results for
the corresponding oscillator system. In particular, we will show the existence of the phase defects, which
have not been mentioned in Ref. [24], but which are predicted by the corresponding Ginzburg-Landau
system.
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Figure 3: Lyapunov exponents for N = 30 unidirectionally coupled Duffing oscillators (a) five largest
Lyapunov exponents, kH and kCh indicate the Hopf bifurcation and the transition to chaos, k ∈
(0.139, 0.17), (b) twenty largest Lyapunov exponents for k ∈ (0.0, 0.8). At k = 0.8, there are fourteen
positive Lyapunov exponents.

As already observed in Ref. [23], there is a coupling induced destabilization of the zero equilibrium. In-
creasing the coupling strength k, one can observe a transition to periodic oscillations and shortly after
that to high dimensional chaos. In Fig. 3 we present the Lyapunov spectrum for N = 30 coupled os-
cillators and increasing coupling parameter k. Panel (a) shows a Hopf bifurcation close to k = k0and
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( )a ( )b

( )c ( )d

Figure 4: Numerical solutions for the ring of coupled Duffing oscillators (15) for a = 0.1, d = 0.3,
k = 0.15, and N = 200. Slow modulations of x1(t) and x50(t) in (a) and of x21(t) + z21(t) and
x250(t) + z250(t) in (c); corresponding fast oscillations in (b) and (d). Phase defect close to t ≈ 14950,
with a drop of the amplitude and a phase jump for j = 1.

a transition to chaos at kCh = 0.164 where two Lyapunov exponents become positive almost simulta-
neously. With further increasing coupling coefficient k (Fig. 3(b)) one can observe that more and more
Lyapunov exponents become positive, indicating the presence of high dimensional spatio-temporal chaos
[10, 12, 11]. For larger system size, the transition to chaos occurs at coupling values kCh closer to k0
such that for N = 200 we are in the regime of spatio-temporal chaos already for k = k0 + 0.01.

Figure 4 shows the corresponding time traces for two arbitrarily chosen oscillators in the chaotic regime.
The panels (a) and (c) show the time traces xj(t) on a slow (a) and fast (c) time scale. Panels (b) and (d)
show the corresponding amplitudes x2 + z2 of the oscillators. One can clearly observe fast oscillations
with the frequency ω0 and their slow modulation. The regime of collective macroscopic spatio-temporal
chaos is characterized by the fact that the modulations of the time traces are chaotic on a large time
scale and for two sufficiently distant oscillators they are not correlated. An interesting feature is the phase
jump at t ≈ 14950, where the amplitude x21 + z21 ≈ 0 Fig. 4. This indicates so called defect chaos, a
typical regime in the complex Ginzburg-Landau equation beyond the Benjamin-Feir instability, which is
characterized by localized phase defects appearing irregularly in space and time, see e.g. Refs [4, 9].
A representation of the amplitude dynamics can be seen on the space-time plot in Fig. 5, where the
numerical time traces xj(t) and x2j (t) + z2j (t) are plotted for all oscillators j = 1 . . . 200 (horizontal
axis). The figure shows nicely the slow modulations of the amplitude, where the locations of the defects
can be seen as the points where the amplitude of oscillations tends to zero. Moreover, one can see
the convective motion given in the amplitude equation ansatz 12 by the rotating frame on the timescale
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( )a ( )b

Figure 5: Spatio-temporal plots of the solutions xj(t) (a) and x2j (t)+z2j (t) (b). Magnitude of the solution
is shown in color. Phase defects at the spots where the amplitude approaches zero.

T1 = εt. Note that also the fast oscillations with the frequencies ω0 (temporal) and φ0 (spatial) can be
also seen as a fine structure in the plot.

5 Proofs

Proof of Lemma 1. We have to show that κ1, defined by (3), can be calculated as given in (8). To this
end, we differentiate the eigenvalue equation (cf. (5))[

λ0 (φ) Id−
∑
m

eimφMm(0)

]
v (φ) = 0,

with respect to φ:[
Id

∂

∂φ
λ0(φ)− i

∑
m

meimφMm(0)

]
v(φ) +

[
λ0(φ)Id−

∑
m

eimφMm(0)

]
∂

∂φ
v(φ) = 0.

Evaluating the obtained expression at φ = φ0, λ(φ0) = iω0, and v(φ0) = v0, we obtain

[Idiκ1 − iL1] v0 + [iω0Id− L0]
∂v

∂φ
(φ0) = 0.

The projection onto v1 gives

iκ1 ⟨v0, v1⟩ − i ⟨L1v0, v1⟩+
⟨
[iω0Id− L0]

∂v

∂φ
(φ0), v1

⟩
= 0,

which implies

iκ1 − i ⟨L1v0, v1⟩+
⟨
∂v

∂φ
(φ0), [−iω0Id− L∗

0] v1

⟩
= 0.

Taking into account (6), we obtain the relation (8), which proves the Lemma.

Proof of Proposition 2. Substituting the multiple scale ansatz (9) into (10), we obtain

ε
d

dt

(
eiω0t+iφ0jv0A+ ε2e3i(ω0t+φ0j)v2A

3 + c.c.
)

9



= ε
∑
m

(
Mm(0) + ε2rKm

)
eiω0t+iφ0jeimφ0v0A(T1, x1 +mε, T2)

+ε3
∑
m

(
Mm(0) + ε2rKm

)
e3i(ω0t+φ0j)e3imφ0v2A

3(T1, x1 +mε, T2) + c.c.

+h(yj−R, . . . , yj+R; ε
2r)

Dividing the obtained equation by ε, expanding necessary arguments of A, we obtain up to the terms of
the order ε2 (the complex conjugated terms are omitted here for brevity)

eiω0t+iφ0jv0
(
iω0A+ ε∂T1A+ ε2∂T2A

)
+ 3iω0ε

2e3i(ω0t+φ0j)v2A
3

= eiω0t+iφ0j
∑
m

(
Mm(0) + ε2rKm

)
eimφ0v0

(
A+mε∂x1A+

1

2
m2ε2∂2

x1
A

)
+ε2

∑
m

Mm(0)e3i(ω0t+φ0j)e3imφ0v2A
3

+ε2eiω0t+iφ0jA |A|2 h1 (v0) + ε2e3i(ω0t+φ0j)A3h2 (v0)

where h1 (v0) and h2 (v0) are determined by the leading terms in the expansion of the nonlinearity.
Note that due to our assumption, h is of third order and the leading order terms are given by expanding
h(yj−R, . . . , yj+R; 0) in the homogeneous state ym = αv0 + c.c, m = j − R, . . . , j + R with
respect to α ∈ C. The solvability condition requires that different harmonics as well as different orders
of ε up to ε2 are equal. We start with the first harmonic. By equating the terms containing eiω0t+iφ0j we
obtain the following equation

v0
(
iω0A+ ε∂T1A+ ε2∂T2A

)
=

=
∑
m

(
Mm(0) + ε2rKm

)
eimφ0v0

(
A+mε∂x1A+

1

2
m2ε2∂2

x1
A

)
+ ε2A |A|2 h1 (v0) .

Since it should be satisfied for all ε, we first consider the ε0 equation

iω0Av0 = AL0v0,

which holds according to the spectral condition (5). The ε1 terms result into

v0∂T1A− L1v0∂x1A = 0.

Multiplication with vT1 and using (8) from Lemma 1, we obtain

∂T1A− κ1∂x1A = 0.

This will be accounted for by introducing the new amplitude u by

u(ξ, T2) = u(κ1T1 + x1, T2) = A(T1, x1, T2)

in a correspondingly rotating coordinate ξ = κ1T1 + x1. Finally, the ε2 terms result into

v0∂T2A = rALKv0 +
1

2
∂2
x1
AL2v0 +A |A|2 h1 (v0)

10



Note that the dependence on T1 does not show up in this equation. Hence, after multiplication with vT1 ,
we can write it in terms of u as

∂T2u = rκ2u+
κ3
2
∂2
ξu+ ζu |u|2 ,

where
ζ = ⟨h1 (v0) , v1⟩ . (18)

Finally, it is simple to check that the solvability of the terms for the third harmonic leads to the expression

v2 =

[
3iω0 −

∑
m

Mm(0)e3imφ0

]−1

h2 (v0) (19)

Here, the existence of a nonzero solution v2 is guaranteed by the non-resonance condition. Indeed,
since the points ±3iω0 do not belong to the asymptotic continuous spectrum with φ = φ0, the matrix[
3iω0 −

∑
mMm(0)e3imφ0

]
is non-singular. Finally, note that the set of equations should be comple-

mented by periodic boundary conditions in ξ, taking into account the ring structure of system (10). The
proposition is proved.

6 Conclusions

In this paper, we studied coupling induced instabilities in large arrays of coupled systems. It turned
out that also in such systems the Ginzburg-Landau equation can be used as a normal form for spatio-
temporal dynamics close to the destabilization of a homogeneous equilibrium. This approach is classical
for reaction-diffusion systems [6, 31] in continuous media and recently has been also applied to systems
with large delay [33]. For discrete systems, a similar behavior should be obviously expected in systems
resulting from a spatial discretization of a diffusive coupling in continuous media. However, our results
show that in coupled oscillator systems applicability of the Ginzburg-Landau equation goes far beyond
these obvious generalizations and can also be used to describe the dynamics in much more general
systems e.g. with unidirectional, i.e. purely convective coupling or even with anti-diffusive interaction. In
this sense, the class of coupled oscillators that we treated in this paper differs substantially from discrete
analogs of the classical results for continuous media.

We illustrated our theoretical results by a detailed study of a ring of unidirectionally coupled Duffing
oscillators in the regime of spatio-temporal chaos. Using the insight obtained from the amplitude equation,
one can clearly describe the collective motion as a slow modulation of a rapidly oscillating plane wave
as a basic solution. According to the amplitude equation, the spatio-temporal chaos observed in the slow
dynamics of the oscillator system for suitably chosen parameters, could be identified as defect chaos.
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