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Abstract 

The paper deals with a special problem concerning the transport of electrically 
charged species via diffusion, drift, and reaction mechanisms. We prove for a variety 
of models that without knowing any a priori estimate for the chemical potentials 
one can estimate the free energy from above by the corresponding dissipation rate. 
The inequality presented here can be interpreted as a nonlinear analogue of Korn's 
Inequality or Poincare's Inequality. As a consequence of our main result we show 
that the free energy approximates its equilibrium value exponentially as time tends 
to infinity. 

1. Introduction 

In this paper we prove that for many models of reaction-diffusion processes of electri-
cally charged species the free energy can be estimated from above by the corresponding 
dissipation rate. Such an estimate is of interest for several reasons. 

First we should mention that reaction-diffusion processes of species some of which are 
electrically charged take place in many branches of technology, for example in microelec-
tronics. 

Next we want to emphazise that by means of our estimate it is easy to show that 
the free energy approximates its equilibrium value exponentially as time tends to infinity. 
For this purpose one does not need further upper or lower bounds for concentrations or 
chemical potentials. On the contrary, the asymptotic behaviour of the free energy can 
be used as a starting point for a Moser iteration leading to £ 00-bounds for the chemical 
potentials. 

Finally we note that the inequality we prove can be seen as a nonlinear analogue of 
Korn's Inequality and Poincare's Inequality. To a certain extent the proof of our main 
result follows the proofs of these inequalities. Let us mention that in the field of mechanics 
another nonlinear analogue of Korn's Inequality has been proved by Kohn [8]. 

An estimate of the same kind as the main result of this paper had been proved for 
reaction-diffusion processes of uncharged species by Groger [5]. For a special case with 
only one kind of charged dopants analogous results have been obtained under the so called 
electroneutrality condition by [2], [3]. Glitzky and Hiinlich [4] present a more general 
result with arbitrarily many charged species. They assume that the relations between 
chemical potentials and concentrations of the species are governed by Boltzmann statistics. 
Moreover, they allow reactions to take place in the interior and on the boundary of the 
domain occupied by the species. In the present paper we generalize these ideas to a broader 
class of statistics and to more general reaction terms. In addition we include a nonlinear 
(capacity) term into the Poisson equation for the electrostatic potential. This allows to 
treat models arising by eliminating some of the species (cf. Hofler, Strecker [7]). Whereas 
for Boltzmann statistics concentrations and chemical activities are of the same order of 
magnitude, in the general case treated here this is no longer the case. To overcome the 

1 



difficulties related to this fact we need additional a priori estimates. Because we are able 
to present satisfactory a priori estimates only for the spatially two-dimensional case we 
restrict our considerations from the beginning to that case. Our new a priori estimates are 
essentially based on a well known imbedding result by Trudinger (see [11]). 

The paper is organized as follows. In Section 2 we introduce the model equations, we 
explain the notation adopted in this paper, and we state the basic assumptions with respect 
to the data of the problem under consideration. In Section 3 we deal with equilibrium 
states. We introduce a class of sets which are invariant with respect to the transient 
problem, and we show that each of these classes contains a unique equilibrium state. This 
section follows closely to the lines of the corresponding section of [4]. In the last section 
we formulate and prove our main result, the estimate of the free energy by the dissipation 
rate which leads to the exponential decay of the free energy to its equilibrium value along 
trajectories of the system. 

2. Model equations, notation, and assumptions 

In this section we describe the mathematical model of the processes we are interested in. 
Simultaneously, we introduce an appropriate notation and we formulate the assumptions 
needed in the main part of the paper. 

Let X 1 , ... , Xm be species, and let q1 , ... , qm be the specific charges of Xi, ... , Xm, 
respectively, i.e., let 

qi E 1R, i = 1, ... , m, (Al) 
be the charge of a mass unit of the species Xi, i = 1, ... , m. 

We assume that X 1, ..• , Xm occupy n, where 

n is a bounded Lipschitzian domain in 1R2 • (A2) 
As mentioned in the introduction, we restrict our considerations to the two-dimensional 
case because only in this case the results we can prove are satisfactory. As ususal, H 1 (0) 
denotes the Sobolev space of square integrable functions on n with square integrable 
first derivatives. For the norm of a function v E H 1(n) we write llvllHi. We intro-
duce D : H 1(n) --7 L 2 (n) by Du := grad u, u E H 1(0). Because of this definition the 
adjoint D* of D maps L2 (n) into (H1(n))*, the dual of H 1(n). If v = (v0 , ••• , vm) then 
Dv := (Dvo, ... , Dvm)· Unless otherwise specified expressions like "measurable" and "al-
most every" refer to the standard Lebesgue measure. 

The species X 1, ... , Xm take part in chemical reactions. Some of these reactions may 
be concentrated to the boundary of n or to interfaces between different parts of n. In 
order to treat all reactions in a unified manner we proceed in a way which is not standard 
but seems to be quite useful. We assume that a measure µ on n is given such that 

µ-measurable subsets of n are Lebesgue measurable (A3) 
and 
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for some increasing function cp: lR+--+ lR+; here µn denotes the Lebesgue measure on n. 
An example of such a measure isµ= µn +µan, where µan is the standard surface measure 
on 80 (cf. [11] and Lemma 1.1 in [4]). For results about the imbedding of H 1 (0) into V-
spaces for different measuresµ we refer to Mazja [9]. The norm of v E V(n, µ), 1:::; p:::; oo, 
will be denoted by llvllp,µ- It follows from (A4) that, for 1 :::; p < oo, 

Vv E H 1 (n) : llvllp,µ:::; c;illvllHi. 
As a consequence, each of the spaces Lq(n, µ), 1 < q:::; oo, can be understood as a subspace 
of (H1(0))*. The assumption (A3) and the propertyµ~ µn guarantee that each element 
of V(n, µ) can be considered as an element of V(O). Later on we shall exploit this fact 
tacitly. 

The relation between the densities u1 , ... , Um of the species X 1 , ... , Xm and the corre-
sponding chemical potentials v1 , ... , Vm is supposed to be of the form 

where 
9i E C1(lR), ui E L+\n, µ)\{O}, ifh E L00 (0, µ), i = 1, ... , m, ) 

lim -y19i(Y) = +oo, 0 < 8 min{l, 9i(y)}:::; 9HY) :::; 8-19i(y), 
y-+oo 
8 min{l, exp(y)} < 9i(Y) :::; 5-1 exp(y), i = 1, ... , m, y E lR. 

(2.1) 

(A5) 

The functions ui and Vi are known reference densities and reference potentials, respectively. 
The fact that the reference values may depend on the spatial position expresses the possible 
heterogeneity of the system under consideration. The functions 9i reflect the underlying 
statistics. In the case of Boltzmann statistics each 9i is the exponential function. Our 
assumptions with respect to 9i are such that all cases of practical interest are included, in 
particular the Fermi-Dirac statistics. In (A5) and in the sequel 8 denotes an appropriate 
strictly positive constant, and the subscript + indicates the standard positive cone in a 
space. 

With respect to the electrical field we assume that it is given as -Dv0 , where v0 is the 
electrostatic potential. This is a standard assumption in semiconductor theory. It means 
that changes of the magnetic field are so slowly that they can be neglected. To describe the 
flows j 1, ••• , im of the species X 1, ..• , Xm we need the quantities (i := qivo+vi, i = 1, ... , m, 
the so called electrochemical potentials of the species. The gradient D(i is to be interpreted 
as the driving force for ji. In the simplest case ji is proportional to -uiD(i· We shall assume 
that 

ji =-di(·, Vi, D(i), (2.2) 
where di is a given function with the following properties: 

di: n x 1R x 1R2 --+ lR2 is such that 
di(x, ·, ·) : 1R x lR2 --+ 1R2 is continuous for almost every x En, 
di(·, y, e) : 0--+ 1R2 is measurable for all y E 1R, e E 1R2

, (A6) 
8gi(Y) 1e12 :::; di(x, y, e) . e, ldi(x, y, e) I :::; 5-19i(Y) 1e1, 
for almost every x En, for ally E 1R, ~ E 1R2

, i = 1, ... , m. 
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These assumptions are such that several cases of practical interest are included. We don't 
allow, however, the flow ji to depend on all gradients D(1, ... , D(m· 

To describe chemical reactions we assume that 

R c Z~ x Z~ is a finite subset. (A7) 

A pair (a, f3) E R represents the vectors of stoichiometric coefficients of a pair of reactions, 
usually written in the following form: 

a1X1 + · · · + amXm :P f31X1 + · · · + f3mXm. 

We shall assume that the net rate of this pair of reactions is of the form kaf3 ( ao: - af3), 
where kaf3 is a reaction coefficient, ai := exp( (i) is the electrochemical activity of Xi, 
and aa := Il~1 afi. The difference of this model to standard mass action kinetics is 
that concentrations are replaced by activities. This is necessary for the model to be in 
accordance with the Second Law of Thermodynamics (cf. Othmer [10]). With respect to 
the reactions coefficients ko:f3, (a, f3) E R, we require that 

ka.{3 E L~(n, µ)\{O} for (a, /3) ER. (A8) 

Reactions taking place on the boundary an can be described by functions kaf3 supported 
on an. (It was this possibility to treat reactions on the boundary an in the same way as 
reactions in n which lead us to the introduction of the measure µ.) The net production 
rate of species Xi corresponding to the reaction rates for all reactions taking place is 
~ := 2=(a,{3)E'R kaf3(ao: - af3)(f3i - ai)· 

The continuity equation for the concentrations taking into account reaction, diffusion, 
and drift processes can be written as follows: 

aui D*. D_ • 1 at - ]i = .LLi, '/, = ' ... 'm. (2.3) 

These equations are to be considered as equations for functions of time with values in 
(H1(n))*. Note that (2.3) includes what is usually written as a differential equation inn 
and a boundary condition on an. With our way of writing the continuity equation we want 
to convince the reader that neither from the physical nor from the mathematical point of 
view it is necessary to treat separately processes in the interior and on the boundary (or 
on interfaces) of n. By the choice of ui we can model a capability of the boundary (or 
interfaces) to store the species temporarily ( cf. Remark 4. 7 at the end of this paper). 

The Poisson equation satisfied by the electrostatic potential can be written as 
m 

D*(cDvo) + eo(·, vo) = uo := L qiui, (2.4) 
i=l 

where c is the dielectric permittivity and e0 is a function modeling capacities (in the interior 
or on the boundary of n). We assume that 

c E L 00 (n), c 2:: 8, (A9) 
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eo : n x 1R --r 1R is such that 
eo(x, ·) : 1R --r 1R is continuous for µ-almost every x E 0, 
eo(·, y) : 0--r1R is µ-measurable for every y E 1R, 
leo(x, y) I ::; exp(6-1(IYI + 1)), eo(x, y) - eo(x, 'TJ) ;::: uo(x)(y - 'TJ) 
for y > 'TJ, x En, and some u0 E L~(n, µ)\{O}. 

(AlO) 

In order to give a more precise formulation of the equations (2.3), (2.4) we introduce the 
following spaces: 

V := H 1(0; 1Rm+1), W := {v E V: exp(vi) E L00 (n), i = 1, ... , m}, (2.5) 

S := span{a - (3: (a, (3) ER}, SJ_ := orthogonal complement of Sin 1Rm. (2.6) 
In addition to (Al) - (AlO) we assume that we are given u0 E V* such that 

u0 =(u~,u~, ... ,u?n), u~=fqiu?, u?;:::o, i=l, ... ,m,) 
m i=l (All) 
LAi (u?, 1) > 0 if A= (.X1, ... ,Am) E st\{O}. 
i=l 

As usual, V* denotes the space dual to V, and 1 means the constant function on n taking 
the value 1. (Generally we shall use the same notation for a constant function and its 
value. This should not lead to misunderstandings.) Note that the last assumption with 
respect to u0 is satisfied if u? ;::: 0, u? # 0, i = 1, ... , m. The element u0 plays the role of 
an initial value for the vector function u := (uo, ... , um)· 

Next we define operators L: V --r H 1(0; 1Rm), A: W --r V*, and E: V --r V* as 
follows: 

Lv := (v1 + qivo, ... , Vm + qmvo) for v = (vo, ... , Vm) E V, 

(Aw,v) := l f a.(·,w;,DL;w) · DL;vdx 
n i=l 

+ k L kap(a"' - aP)(a - (3) · Lv dµ for w E W, v E V, 
(a.,{3)En 

(2.7) 

(2.8) 

where a:= (exp(L1w), ... , exp(Lmw)), 

(Eovo, wo) :=Jn eDvo · Dwodx + fueo(·, vo)wodµ for vo, wo E H 1(0), (2.9) 

Ev := (Eovo, ei(·, v1), ... , em(·, vm)) for v E V, (2.10) 

where 
ei(x, y) := ui(x)gi(Y - vi(x)) for x E 0, y E 1R, i = 1, ... , m. (2.11) 

Using (A9) and (AlO) one can easily prove that E0 : H 1(0) --r H 1(0)* is strongly 
monotone, i.e., there exists 'Y > 0 such that 

(Eovo - Eowo, Vo - wo) ;::: 'Yllvo - woll~1 for Vo, Wo E H 1(n). (2.12) 
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Now we are able to write the transient problem (2.1) - (2.4) more precisely as follows: 
We are looking for functions u E Hz~c(lR+; V*), v E Lr0 c(lR+; V) n Lf:c(lR+; W) such that 

du dt (t) + Av(t) = 0, u(t) = Ev(t) for a.e. t E lR+, u(O) = u0
• (2.13) 

For v E V (and ( := Lv) the value 

p(v) := 1 f d;(·, v;, D(;) · D(;dx +fr L; kap(e(·a - e(·fl)(a - [3) · (dµ (2.14) 
n i=l n (a.,f3)en 

(which may be +oo) will be called the dissipation rate associated to v. The· reason for this 
terminology is the following. If ( u, v) is a solution to the initial value problem (2.13) then 

p(v(t)) = (Av(t), v(t)) = - ( ~~ (t), v(t)), 

and in thermodynamics this expression is the dissipation rate of the process governed by 
(2.13) at time t. 

To define the free energy of a state of the system under consideration we first introduce 
a functional G : V --+ lR as follows: 

(2.15) 

It is easy to check that G is convex and that G' = E, i.e., the operator E ( cf. (2.9) -
(2.11)) is the Gateaux derivative of G. The conjugate of the functional G will be denoted 
by F. For u E V* the value F(u) is to be interpreted as the free energy of the state u. It 
is given by 

F(u) :=sup{ (u, v) - G(v)}. (2.16) 
vEV 

As mentioned in the introduction we are mainly interested in a relation between the free 
energy and the dissipation rate. To describe this relation we need some information about 
stationary solutions to (2.13). 

3. Equilibria 

First we define 

U := { u E V*: u0 = ~ q;u;, ((ui, 1), ... , (u,,,, 1)) ES}. (3.1) 

The importance of U lies in the fact that u(t)-u0 EU for every t > 0 if (u, v) is a solution 
to (2.13). Hence, if u* := lim u(t) exists, then we have necessarily u* E U + u0 • 

t-+oo 
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Remark 3.1. It is easy to check that the set UJ_ := { v E V: (u, v) = 0 for every u EU} 
can be characterized as follows: 

UJ_ = {v E V: DLv = 0, Lv E S..L}. 

This will frequently be used throughout the paper. 

Theorem 3.2. There exists a unique v* E W such that Av* = 0 and u* := Ev* E U + u0 . 

It holds D Lv* = 0 and Lv* E S..L. 

Before we prove this theorem we present an auxiliary result. 

In the next lemma Iu.J.. denotes the indicator functional of U..L, i.e., the functional 
vanishing on UJ_ and taking the value +oo on V\U..L. 

Lemma 3.3. The functional Go:= G + lu.J.. - u0 is proper, convex, and lower semicontin-
uous. It satisfies lim G0 (v) = +oo. 

llvllv-+oo 

Proof. Only the last assertion needs to be proved, the other properties of G0 are evident. 
It is easy to check that, for v E U J_, 

m 

Go(v) 2:: 8llvoll~1 + L lluiv[ll1,µ - c. (3.2) 
i=l 

Here and in the sequel c denotes (not necessarily equal) constants the value of which 
is not important and the superscript + indicates the positive part of a function. By 
(3.2) it suffices to show that Jh~ Go ( vn) = +oo provided that Vn E U ..L, llvno llH1 :::; c, 
lluiv~lli,µ :::; c, i = 1, ... , m, and llvnllv ---t oo. Let (n := Lvn. Then D(n = 0 and 
(n E SJ_ (cf. Remark 3.1). In view of llvnllv ---too and llvnollH1 :::; c it holds l(nl ---too. 
On the other hand (~ :::; v~ + (qiVno)+ implies that (~:::; c. Without loss of generality we 
may assume that - 1 ~:! -t A in llr. Then A E Si\{O}, and by means of (All) and the 
boundedness properties of (vn) we derive from the definition of G0 that 

(3.3) 

This is possible only if lim Go ( vn) = +oo. D 
n-+oo 

Proof of Theorem 3.2. 
1. Let v* be such that G0 (v*) is the minimal value of G0 • (By Lemma 3.3 such v* exists.) 
Then 0 E 8G0 (v*), where 8G0 denotes the subdifferential of Go. We have 

8Go = E + 8IuJ._ - u0 , 8Iu.J..(v) = U for v E U..L. (3.4) 
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Since necessarily v* E U ..L we find 0 = Ev* + u - u0 for some u E U. Consequently, 
m 

Eov~ = u~ - uo = L qi(u~ - ui) 
i=l 

m m 

- L qiei(·, v;) = L qiei(·, C - qiv~), 
i=l i=l 

where (* = ( G, ... , (~) := Lv*. Standard arguments (test functions like ( v0 - k )+) show 
that v0 E L 00 (n, µ).This implies that v; = (t - qivo E L 00 (n, µ), i = 1, ... , m. 
2. Because of D(,* = 0 and (* E s..L we obtain, for every v E V, 

{Av*, v) = 1 t d;(·, v:, 0) · DL;v dx + .E fr:.kap ( e<··a - ec-fi) (a - /3) · Lv dµ = 0. 
n i=l (a.,f3)ER n 

Consequently, Av* = 0. 
3. Let Av = 0 and Ev EU+ u0 for some v E V, and let(,:= Lv. Then 

0 = {Av, v) = l td;(·, v;, D(;) · D(;dx + .'E fr:.kap (e<·a - e<·il) (a- /3) · (dµ. 
n i= 1 , c a.,f3) ER n 

In view of (A6) and (A8) we obtain D(, = 0 and, for (a, (3) E R, 

ka.f3 ( e(,·a. - e(,·!3) (a - {3) · (, = 0. 

This is possible only if ( E S..L. With v* as before we have 

{Ev - Ev*,v -v*) = 0, 

because Ev - Ev* E U and v - v* E U ..L. Hence ( cf. the definition of E) 

0 = fu eJD(vo - v~)l2dx + /n(eo(·, vo) - eo(-, vQ))(vo - vQ)dµ 

+ 'f ~ui(9i(vi -vi) - 9i(v; -vi))(vi - v;)dµ. 
i=l Jn. 

(3.5) 

Because of the properties of ea and g1 , ... , 9m required in (AIO) and (A5), respectively, 
this leads first to Vo = Vo and then to Vi(x) = v;(x), i = 1, ... , m, for X E fli, where 
ni c n is such that µ(Oi) > 0. Taking into account that, for i = 1, ... , m, the functions 
(i := Vi + qivo and (t := v; + qivo are constant we find that Vi = v;, i = 1, ... , m. 
Consequently, the desired result v = v* is true. D 

Lemma 3.4. If v* is the minimal point of G0 then u* := Ev* is the unique minimal point 
of Flu+ uo. 

Proof 1. If u E U + u0 then 

F(u) - F(u*) F(u) - {u*,v*) + G(v*) 
- F(u) - {u, v*) + G(v*) 2:: 0. 
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Here we have used the definition of F and the fact that u - u* E U and v* E U ..L. 

2. If u EU+ u0 and F(u) = F(u*) then 

(u, v*) = (u*, v*) = F(u*) + G(v*) = F(u) + G(v*). 

This equality is known to be equivalent to u E BG(v*). Hence, u = Ev* = u*. o 

Lemma 3.5. Let u = Ev EU+ u0 . Then, for some 'Y > 0, 
m 

F(u) - F(u*) 2:: 'Yllvo - v~llt1+'YL11Vu: - /i411~,µ· 
i=l 

Proo f. Under the hypotheses of the lemma we have 

F(u)- F(u*) - (u,v)-G(v) - (u*,v*) + G(v*) 
(u, v - v*) - G(v) + G(v*) 

- k ~/D(vo - v~)l2dx +lo~ f.;\e;(·, v;) - e;(·, y))dydµ 

> 'YI/Vo -v~l/t1 + J-f,U; {' (g;(v; -V;) - g;(y-V;))dydµ. 
Q i=l Vi 

Moreover, 

f' (g;(v;-V;)-g;(y-V;))dy > 
i 

b [Vi (gi( Vi - ~i) - 1) g~(y - Vi)dy 
iv; 9i(Y - Vi) 

(3.6) 

(3.7) 

- 8 {g;(v;-V;) log g;t:-:;~ - g;(v;-V;) + g;(vi-V;)} 
9i Vi -Vi 

> 8 [Vg;(v; -v;) -v19;(v; - v;)[
2

• 

Hence, the assertion (3.7) holds. In the preceding estimate we used the elementary relation 

~log~ - U 'I] 2'. (/i.- j;,)2 for ~''I]> 0. 

D 

Remark 3.6. The proof of Lemma 3.5 shows that, for u = Ev E U + u0 , 

J-f, u; Iog(u;)dµ < c(F(u) + 1). 
n i=l 

(3.8) 

Lemma 3.7. Let u = Ev EU+ u0 • Then 

F(u) -F(u*) ::; cl/vo-v~l/t1 +c ~ l/u.;-ui[/L, + fo(vo -v~)(eo(·, vo) - eo(·, v~))dµ. (3.9) 
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This lemma can be proved similarly as the preceding one. Therefore, we omit the details. 

4. Estimation of the Free Energy 

Let 

M := { u EU+ u0
: It exists a ~}1R~. such that aa = af3 fo~ (a, (3) E 'R } (4.l) 

and ui = ei(·, logai - qiEo uo) if ai > 0, Ui = 0 else, i = 1, ... , m} 

and 
RM := inf F(u) 

uEM 
(RM = +oo if M = 0). (4.2) 

Remark 4.1. Obviously, M = 0 if there is no a E 81R~ such that aa - af3 for all 
(a, (3) E 'R. But even if there exists such a E 81R~ it may happen that there is no u in 
U + u0 such that Ui = 0 ~ ai = 0. In that case the set Mis empty as well. 

Theorem 4.2. Let (Al) - (All) be satisfied. Moreover, let R <RM be fixed, and let u* 
be the same as in the preceding section. Then there exists a constant C such that 

F(u) - F(u*) ~ Cp(v) 

provided that v E V, u = Ev EU+ u0 , and F(u) ~ R. 

Proof. 1. If v E V, ( = Lv, and a= (exp((1), ... , exp((m)), then 

P( v) = ff, d;(·, V;, D(;) · D(;dx + k L kafJ(aa - afi)(a - (3) · (dµ 
n i=l n (a,f3)En 

> 18 f, g;( v;) JD(;J2dx + k L kafJ ( aa/2 - af!!2) 
2 

dµ =: p1 ( v). 
n i=l n (a,f3)En 

Therefore it is sufficient to prove that, under the hypotheses of the theorem, 

F(u) - F(u*) ~ Cp1(v). (4.3) 

2. We assume (4.3) to be false. Then we can find Un E U + u0 , Vn E V, n E JN, such that 

Un= Evn, F(un) ~ R, F(un) - F(u*) = CnP1(vn) > 0, (4.4) 

where lim Cn = +oo. Lemma 3.5, Remark 3.6 and the results of [6] show that 
n-700 

m 

llvnollH1 + llvnolloo,µ + L llunill1,µ ~C. (4.5) 
i=l 
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3. Let (n := Lvn. Then 

< r 9i((~) ID/" ·l2d 
Jn 9i(O) '=>ni x 

< C in g;(Vn;)jD(n;j2dx :S'. CP1 (vn) 
c < Cn (R- F(u*)) ----7 0 as n ----7 oo. 

At points x, where ui(x) =I- 0 we have 

ju.;(,;, I :S: ju.;(n; I :S: cti; lui 1 
( ~;) + 'ii";+ q;Vno I :S: c( 1 + Uni). 

(4.6) 

Hence llui(~lli,µ :::; c and ll(~llH1 :::; c (cf. (4.5) and (4.6)). Setting ani := exp((ni) we 
obtain by Trudinger's imbedding theorem that 

llanillP:::; Ill+ exp((~)llP:::; Cp, i = 1, ... , m, p E [1, oo[. 

Using (A5) and ( 4.5) we find that 

ani :::; c exp ( (ni) :::; c( ani + 1). 
V9i(Vni) V9i((ni) 

Hence 
llDanillr = llaniD(nillr:::; cllani + IllpllVYi(vni)D(nill2:::; cp1(vn), (4.7) 

provided that J: = ~ + i. The right hand side of ( 4. 7) converges to 0 as n ---r oo ( cf. 
(4.6)). Passing to a subsequence if necessary we may assume that 

an ----7 a in w1,r(n; Rm), r E [1, 2[, Vno ~Vo in H 1(0), 

where Da = 0. In addition we may assume that the sequence (an) converges pointwise 
almost everywhere (with respect to µ) to a. It is easy to check that 

(a~/2 _ a~/2)2 ----7 (aa/2 _ af3f2)2 

in W 1,r(n), if r < 2. Therefore, 

/r/"p(a~/2 - a~f2)2dµ--+ .kk"pdµ(a"/2 - af3f2)2. 

Since, for (a, (3) E R, 

we have necessarily 
'v'(a, f3) ER: aa = a!3. (4.8) 
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4. We define 
(4.9) 

If Ui i= 0 then 

luni - uil < clgi(Iog(ani) - qivno - vi) - 9i(log(ai) - qivo - vi)I 
< cl exp(log(ani) - qivno -vi) - exp(log(ai) - qivo -vi)I (4.10) 
< c(lani - ail+ (ani + 1) lvno - vol). 

This kind of estimate for luni -uil is true also if Ui = 0. Since the right hand side of ( 4.10) 
converges to 0 in V(fl, µ) for every finite pas n tends to oo, we have 

Uni ----+ Ui in LP(fl, µ), 1 ~ p < oo. 

5. Next we define u0 := E::1 qiui and u := (u0 , u1 , ... , um)· Starting from Un E U + u0 

and E0vno =Uno we obtain in passing to the limit 

u EU +u0
, Eovo = uo. 

The operator E01 : H 1(fl)* ----+ H 1(fl) being the inverse of a strongly monotone operator 
is Lipschitzian. Therefore, the sequence (vno) = (E01uno) converges strongly in H 1(fl) to 
v0• Moreover, due to the lower semicontinuity of Fon V*, 

F(u) ~ li~}nf F(un) < R <RM. n-roo 

Therefore, u ~ M (cf. (4.1),(4.2)). This is possible only if ai > 0, i = 1, ... , m. Setting 
(i := log(ai), Vi:= (i-qivo, i = 1, ... , m, we get v := (v0 , v1 , ... , vm) E V, u = Ev E U+u0 , 

and Av = 0. By Theorem 3.2 we conclude that v = v* and u = u*. 
6. In view of the convergence properties of the sequences ( Vno) and ( un) we have ( cf. 
Lemma 3.5, Lemma 3.7) 

An := J F(un) - F(u*) ----+ 0 as n----+ oo. (4.11) 

Furthermore ( cf. ( 4.4)), 

(4.12) 

We introduce 

_ 1 ( ) _ 1 ( ) b 1 (~ni ) . Vno := ~ VnO - Vo , Un := \ Un - U , ni := \ -. - 1 , 'l = 1, ... , m. n An An ai 

Lemma 3.5 shows that (vno) is bounded in H 1(fl) and that 

1 - II An(~ -ylui'J(~ + vfui)ll3/2,µ 
1 

< II An(~ -Vui'Jll2,µll(~ + vfui)ll6,µ ~C. 
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At points x where ui ( x) # 0 we have 

la,,; - a;I lexp (9i1 (~;) +v; +q;vno) - exp (gi1 
(;;) +v; + q;v0) I 

Therefore, 

Using 

and 

we find 

luni - uil < c(ani + 1) _ + clvno - vol-Ui 

b 1 1¥.ni 1 ani J D ni = -2 , -. D(ni = -2, . ·( ·)g;(Vn;)D(ni 
An ai An ai9i Vnz 

c <--c 2 n 

provided that J: = ~ + l By means of (4.10) we obtain 

The preceding estimates show that, passing to a subsequence if necessary, we may assume 
that 

bni --+bi in w1,r(n), r < 2, 

Vno ~ vo in H 1(n), Un~ u in LP(O, µ; JRm+l), 1:::; p < oo, 

and that the sequences (bni), (vno) converge pointwise almost everywhere with respect to 
µinn. 
7. In view of Un E U + u0 we have }n (Un - u) E U. Passing to the limit we find that u E U. 
In particular, 

(fnu1dµ, ... , fnu,,.dµ) ES. (4.14) 

On account of the definition of bni we have, for (a, /3) E 'R, 

where 
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Recalling that An~ 0 as n---+ oo, we find that 

This result combined with (4.12), (4.15) gives, for (a, {3) ER, 

Hence 
b := (b1, ... , bm) E SJ_. 

8. Letting n ~ oo in the equation 

Uni= ~: (g;(log(a,.;) - q;Vno - V;) - g;(Iog(a;) - q;vo - V;)) 

we find 

·This relation will be used in the next step of the proof. 
9. The equations satisfied by Vno and v0 , respectively, imply that, for some 'Y > 0, 

'Y { llvno - voll~1 + {(eo(·, Vno) - eo(·, vo))(vno - vo)dµ} 

(4.16) 

:S: (Eovno - Eovo, Vno - vo) = f £.q;(Un; - u;)(vno - vo) dµ. (4.18) 
i=l n 

Dividing by A; and passing to the limit as n ~ oo, we obtain, 

Using (4.14), (4.16), and (4.17) we derive from the preceding inequality that 

Hence v0 = 0, b = 0, and u = 0. 
10. Dividing (4.18) by A; we find that the sequence (vno) converges strongly in H 1 (0) to 
v0 = 0. Moreover, we obtain 

lim C ,1 (eo(·, Vno) - eo(·, vo))vnodµ = 0. 
n-+00}0, /\n 

By (4.13) 
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Hence Un ~ 0 in .V(n, µ; JRm+l) for every finite p. By definition of An (cf. (4.11)) and 
Lemma 3.7 

1 = ; 2 (F(un) - F(u*)) ~ c(llVnoll~• + f lliindlL) + £.; (eo(·, Vno) - eo(·, vo))Vnodµ. 
n i=l n n 

Because of the preceding results the right hand side converges to 0 as n ~ oo. This 
contradiction shows that the assumption made in the beginning of the second step of the 
proof was wrong, i.e., (4.3) holds, and the proof is complete. D 

The estimate of the free energy by the dissipation rate of Theorem 4.2 can be used to 
prove the exponential decay of the free energy to its equilibrium value along any trajectory 
of the problem (2.13). 

Theorem 4.3. Let (Al) - (All) be satisfied, let (u, v) be a solution to the initial value 
problem (2.13), and let u* have the same meaning as in Section 3. For the initial value u0 

we suppose that F( u0) < RM. Then there exists ,,\ > 0 such that, fort 2::: T 2::: 0, 

F(u(t)) - F(u*) :::; exp(--X(t - r))(F(u(r)) - F(u*)). 

Proof. If (u, v) is a solution to (2.13), then v(t) = E-1u(t) E 8F(u(t)) for a.e. t E IR+, 
and for,,\ E 1R we obtain (cf. Brezis [1], Lemma 3.3) 

exp(-Xt)(F(u(t))-F(u*)) -exp(-Xr)(F(u(r)) - F(u*)) 

= l exp(>. s){ >.(F(u(s)) - F(u*)) + (u'(s), v(s)}} ds 

= l exp(>. s){ A(F(u(s)) - F(u*)) - (A(v(s)), v(s)}} ds 
(4.19) 

= l exp(>. s){ A(F(u(s)) - F(u*)) - p(v(s))} ds. 

Setting,,\= 0, T = 0 in (4.19) we find 

\It E 1R+: F(u(t)):::; F(u0
) <RM· 

Since v(s) E V, u(s) = Ev(s) E U + u0 for a.e. s E 1R+ we conclude by Theorem 4.2 that 

F(u(s)) - F(u*):::; C p(v(s)) for a.e. s E 1R+ 

Using now ( 4.19) with ,,\ = 1/C we complete the proof. D 

Finally we want to comment the hypotheses under which we proved Theorem 4.2. 

Remark 4.4. In all cases of practical relevance we are aware of in semiconductor tech-
nology the set M defined in ( 4.1) is empty. In these cases RM = +oo, and the assumption 
F(u0) < RM means no restriction, i.e., Theorem 4.3 gives a global asymptotic stability 
result. If M is not empty we can prove the exponential decay of the free energy only for 
initial values u0 near the equilibrium state u*. In that case Theorem 4.3 contains at least 
a result on local asymptotic stability. 

15 



Remark 4.5. Theorem 4.2 remains true if the reaction coefficients ko:/3 depend continu-
ously on the electrostatic potential. This means that ko:/3 in the definition of the operator 
A (cf. (2.8)) is to be replaced by ko:13 (·, v0 ) and instead of (A8) we have to assume that 

ko:/3 : n x lR--+ lR+ is such that 
ko:13(x, ·) E C(lR) for µ-almost every x E n, 
ko:13(·, s) E L'.~'(n, µ)\{O} for every s E JR. 

(It is not necessary to impose a growth condition on ko:f3, if the domain of definition of A 
is modified slightly.) One may also allow ko:/3 to depend on the potentials v1 , ... , Vm if only 
the values of ko:/3 can be estimated independently of these potentials. 

Remark 4.6. One could admit more general functions e1 , ... , em than those described by 
(2.11) and (A5). We don't go into details here because all functions we met in applications 
satisfy our hypotheses. 

Remark 4. 7. We could treat also systems where in addition to the diffusion in n other 
diffusion processes take place on the surface an or on interfaces because the additional 
processes lead to an increase of the dissipation rate. 
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