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Abstract

We study a system of phase oscillators with non-local coupling in a ring that supports

self-organized patterns of coherence and incoherence, called chimera states. Introducing

a global feedback loop, connecting the phase lag to the order parameter, we can observe

chimera states also for systems with a small number of oscillators. Numerical simulations

show a huge variety of regular and irregular patterns composed of localized phase slip-

ping events of single oscillators. Using methods of classical finite dimensional chaos and

bifurcation theory, we can identify the emergence of chaotic chimera states as a result of

transitions to chaos via period doubling cascades, torus breakup, and intermittency. We

can explain the observed phenomena by a mechanism of self-modulated excitability in a

discrete excitable medium.

Chimera states are self-organized patterns of coherence and incoherence that appear

spontaneously in spatially extended systems of identical oscillators with homogeneous

coupling. After their discovery by Kuramoto e.a. [1] they have been investigated mainly

in the context of statistical mechanics using the continuum limit with the number of

oscillators tending to infinity, where they can be described as non-homogeneous equi-

librium profiles of macroscopic (averaged) quantities. However, as soon as the numbers

of oscillators becomes too small the classical chimera states in the Kuramoto-Sakaguchi

oscillators with non-local coupling become unstable and collapse toward a completely

coherent state. This has been explained by characterizing them as chaotic transients

with a life time that increases exponentially with the system size [2].

As discovered in [3], slightly modifying the coupling scheme with a global feedback on

the phase-lag parameter drastically enhances the stability of chimera states without oth-

erwise significantly changing them. For an appropriate choice of the feedback parame-

ters they appear to be the only attractor in this system and can be found as stable objects

close to the completely coherent state. Moreover, they can be traced down to very small

system size. This offers the opportunity to study the resulting dynamical regimes by the

methods of classical finite dimensional chaos and bifurcation theory. Pursuing this ap-

proach, we show that chimera states, which have been described in large systems as a

single, statistically stationary regime, in small systems transform into a huge variety of

regular or irregular self-localized patterns. The variety of different patterns is organized

in a complex bifurcation scenario including transitions between regular dynamics and

chaos by period-doubling cascades, torus breakup, and intermittency.
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1 Introduction

The self-organized formation of patterns in homogeneous media is a fundamental paradigm in

nonlinear science. Recently, a lot of interest has been attracted by self-organized coherence-

incoherence patterns in spatially extended oscillator systems, called chimera states [4, 5]. After

their first description by Kuramoto and Battogtokh in a system of coupled phase oscillators,

similar dynamical regimes have been reported for a variety of theoretical and experimental

settings, including e.g. chemical, electronic and mechanical oscillators [6, 7, 8, 9, 10] as well

as models of neuronal systems [11, 12, 13, 14]. In all of these studies, a basic requirement

for the observation of chimera states was a sufficiently large number of oscillators of typically

at least N ≈ 40. This imposes a substantial restriction on experimental realizations, see [6],

and leads to the fact that up to now, with a few exceptions [15, 16], the main tool for theoretical

investigations of chimera states has been the continuum limit with the number of oscillators

tending to infinity. In this paper, we will study a slightly modified system, which has been recently

presented in [3], where an additional global feedback stabilizes the chimera states in a way such

that they can be observed for a smaller number of oscillators.

As in the classical chimera system, we start with N identical Kuramoto-Sakaguchi phase oscil-

lators of the form

dθk

dt
= ω −

2π

N

N
∑

j=1

Gkj sin(θk − θj + α), k = 1 . . . N (1)

with phases θk ∈ [0, 2π) and a coupling matrix G ∈ R
N×N . The natural frequencies of

the oscillators are all chosen identical, such that without loss of generality we can assume

ω = 0. We consider a one-dimensional array of oscillators, where each oscillator is located at

the position xk = 2kπ/N −π in the interval [−π, π] and which is closed by periodic boundary

conditions. Then, the coupling constants Gkj can be expressed by a coupling function G(x),

depending on the distances x = xk−xj such that the coupling is smaller between more distant

oscillators. In this paper we choose a sinusoidal function,

Gkj = G(xk − xj) =
1

2π
[1 + A cos(xk − xj)], (2)

as it has been suggested in [4]. In order to find a classical chimera state in this system, the

phase-lag parameter α in the phase response function, governing the attraction and repulsion

between the oscillators, has to be well tuned to values slightly below π/2. However, following [3],

we choose the phase lagα not as a constant parameter. Instead, we introduce a global feedback

loop

α(t) =
π

2
−K(1 − r(t)), (3)

between phase lag α and the global order parameter

r(t) =

∣

∣

∣

∣

∣

1

N

N
∑

j=1

eiθj(t)

∣

∣

∣

∣

∣

. (4)

In [3] it has been described in detail that this additional global feedback can be interpreted as

a proportional control that stabilizes the chimera states. For systems with a large number of
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oscillators it is non-invasive on average, i.e the branch of equilibrium solutions of the continuum

limit remains unchanged, while only its stability properties change. In particular, it has been

shown that for suitably chosen control parameters the completely coherent state loses its sta-

bility and for large N the chimera state is the only attractor of the system. The loss of stability

of the completely coherent state rules out the main instability mechanism for chimera states

with small N . As shown in [2] chimera states in the classical Kuramoto-Sakaguchi system with

non-local coupling show sudden collapses to the completely coherent state and can be charac-

terized as chaotic transients with a life time that increases exponentially with the system size.

Due to this effect, it is impossible to observe stable chimera states for small N in systems with-

out the feedback term. The main purpose of the present paper is to give a detailed description

of the dynamical phenomena in the feedback system with a small number of oscillators, using

methods of classical finite dimensional chaos and bifurcation theory. We first present a detailed

numerical study of the dynamics displaying a huge variety of regular and irregular stationary and

propagating patterns. Then, we give an explanation of the observed phenomena in this system,

describing it as a discrete medium at the threshold between stationary excitable and oscilla-

tory behavior, where the pattern formation is caused by an interplay of activation and inhibition

due to the nonlocal coupling and the global feedback, which leads to a self-organized spatial

modulation of the excitability threshold.

2 Symmetries of the system

System (1)–(4) possesses several symmetries. It is equivariant with respect to phase shifts,

i.e. adding a constant to a given solution θk(t), k = 1 . . . N provides again a solution of the

system. In particular, this leads to the possibility of uniformly rotating periodic solutions of the

form

θk(t) = Ωt+ θ̂k mod 2π,

so called relative equilibria that turn into equilibria in a corotating coordinate frame. In addition

there can appear relative periodic solutions, i.e. quasiperiodic solutions that turn into periodic

solutions in a corotating coordinate frame with a suitably chosen frequency Ω. Moreover, the

dihedral group DN acting on the indices k = 1 . . .N obviously maps solution to solutions. As

we will see below, this opens the possibility for relative periodic solutions with different spatio-

temporal symmetries, i.e solutions returning after a period P > 0 not to the initial state, but to

a state related to it by symmetry, i.e.

θk(t+ P ) = θσ(k)(t) + ψ mod 2π (5)

for some group elements ψ ∈ S1, σ ∈ DN , and a period P > 0.

3 Numerically calculated patterns and bifurcation diagrams

Numerical simulations of system (1)–(4) show a huge variety of periodic and chaotic solutions,

displaying different types of stationary and traveling patterns. Fig. 1(a) shows an example of

3



 0

 0.5

 1

 0  100  200  300

Time, t

f k

∆t1 ∆t2

fcr

(b)

O
sc

ill
at

or
, k

0

5

10

-1

-0.5

 0

 0.5(a)

Figure 1: (a): Space-time profile of the phase velocities θ̇k(t) for N = 10 oscillators with

A = 0.9 and K = 2.8 (dark spots are phase slips, bright regions have coherent motion).

(b): The peaks in the time traces of fk(t) indicate the corresponding location of the oscillators

in anti-phase to their respective local mean fields (k = 5 is green, k = 6 blue, and k = 7
magenta). Vertical lines indicate times at which events ts are recorded.

a numerically obtained time profile for θ̇k(t) for N = 10 oscillators. Note that this solution

displays clearly separated phase slipping events, which appear in the phase velocity plots as

sharp peaks separated by long intervals where the velocity is nearly constant. At the velocity

peaks, the phase θk of the corresponding oscillator is in anti-phase to its local mean field

Wk := Rke
iΘk =

2π

N

N
∑

j=1

Gkje
iθj , (6)

while in the intervals in between all oscillators are nearly in phase with their local mean field.

This leads to the fact that the function

fk(t) =
1

2
(1 − cos(θk(t) − Θk(t))) (7)

has a sharp peak as well, see Fig. 1(b). We use this observation for the construction of a

Poincaré section in the following way: We record the time moment ts of a velocity peak, using

the condition that for some oscillator ks the function fks
(t)|t=ts enters into the region above the

chosen level fcr = 0.95.

In our simulations we have chosen A = 0.9 and treated K as a bifurcation parameter. In this

way, we obtained the bifurcation diagram given in Fig. 2, where we sampled the time-intervals

∆ts = ts−ts−1 between two consecutive velocity peaks, starting for each parameter value with

a random initial condition and discarding an interval of 20 000 time units for the transients. The

diagram shows several regions with different types of chaotic and regular solutions. The panels

(a)–(h) in Fig. 2 show the time traces of the solutions for selected values of the parameter K,

indicated by dashed vertical lines in the bifurcation diagram above.
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Figure 2: Bifurcation diagram: sampled time intervals between velocity peaks for varying K.

Panels (a)–(h): space time plots of the phase velocities for selected values ofK (dashed vertical

lines in the bifurcation diagram). Parameters: N = 10, A = 0.9.

Note that both the regular and the chaotic solutions are reminiscent to the chimera states

that can be observed in such systems for large values of N . One can clearly distinguish self-

organized regions of coherent oscillation from those regions where velocity peaks are localized.

For the regular solutions, these regions are either stationary, as in (c), (e), (g), (h), or propagat-

ing at a constant speed, as in (a), (d). For the chaotic solutions (b), (f), one can also observe

regions where velocity peaks are localized, however, they show an irregular motion of their po-

sition in space. As it has been shown in [17], there is a similar irregular motion also for classical

chimera states with larger N . In the case of [17], the motion can be described as a Brownian

process with a diffusivity proportional to N−2. We study now in more detail the different types
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of transitions to chaos that can be observed in this system.

3.1 Period doubling cascade

The bifurcation diagram in Fig. 2 shows that in the parameter interval K = [2.1, 2.15] we can

observe a period doubling cascade which transforms the periodic pattern given in Fig. 2(d) into a

chaotic regime. In Fig. 3 we show an enlargement of the bifurcation diagram for this region. The

observed period doubling bifurcations subsequently change the symmetry type of the periodic

solutions. The solutions on the primary branch, given in Fig. 2(d), return to the same state after

exactly four velocity peaks and an index shift by one, i.e

∆ts+4 = ∆ts and ks+4 = ks + 1 mod N.

According to (5) we have in this case a relative periodic solutions with period P = ∆t1 +
∆t2 + ∆t3 + ∆t4 and σ(k) = k + 1 mod N . At each period doubling the space-time

symmetry is changed in a way such that both the number of velocity peaks and index shifts

which are necessary to reach the same state increases by a factor of two. In this way, the

regular succession in space of the velocity peaks of the solution in Fig. 2(d)

{ks}s∈N = {3, 4, 5, 6, 4, 5, 6, 7, 5, . . .}

remains unchanged, while the sequences of inter-peak intervals ∆ts become more and more

irregular.

 9

 24

 2.11  2.12  2.13  2.14

K

∆t

Figure 3: Enlarged region from the bifurcation diagram in Fig. 2, containing a period doubling

cascade of the periodic pattern given in Fig. 2(d).

3.2 Torus breakup

The periodic pattern given in Fig. 2(a) loses its stability in a torus bifurcation atK ≈ 1.5452 and

a stable quasiperiodic pattern appears. Fig. 4(a) shows an enlargement of the corresponding
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Figure 4: (a) Enlarged region from the bifurcation diagram in Fig. 2, containing a period torus

bifurcation of the pattern Fig. 2(a). (b) Two-dimensional representation for selected values of K
(dashed vertical lines in panel (a))

region in the bifurcation diagram. The two dimensional representation in panel (b) shows the

emergence of a stable invariant curve in the Poincaré section. For further increasing parame-

ter K there is a locking on the torus and a subsequent transition to chaos via a torus breakup.

The primary pattern corresponds to a relative periodic orbit with period two in the Poincaré

section. Again, as in the case of the period doubling bifurcation, the torus bifurcation does not

change the pattern given by the succession in space of the velocity peaks, which is in this case

{ks}s∈N = {2, 1, 3, 2, 4, 3, 5, 4, . . .}

while the sequences {∆t2s}s∈N, {∆t2s+1}s∈N of inter-peak intervals, which have been con-

stant in the period two orbit, start to vary periodically with an incommensurate period.

3.3 Intermittency

Within the complex bifurcation scenario in Fig. 2 one can also identify a transition from regular

to chaotic motion via intermittency. Fig. 5 shows another enlargement, displaying the region

around Kcrit ≈ 2.5894 where for decreasing K the regular periodic pattern given in Fig. 2(h)

loses its stability in an inverse (subcritical) period doubling bifurcation. As we see in space-

time plots in Fig. 5(a)–(c), this results in an intermittent behavior: After the destabilization one

can observe intervals of nearly periodic motion that are interrupted by irregular occurring larger

excursions in phase space. According to general theory [18, Sec. 8.2], the average time interval

between these excursions scales like (K − Kcrit)
−1. Note that during the 3000 time units

displayed in panel (b) there is only a single defect in the nearly regular pattern at t ≈ 1590 (see

arrow). This corresponds to an excursion from the period two orbit that has been destabilized

at the bifurcation and is accompanied by large variations of the inter-peak-intervals. In between

the defects the trajectory stays close to the unstable period two orbit and shows nearly regular

inter-peak-intervals. More distant to the bifurcation we observe more frequent excursions from

the regular motion, see panel (a).
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Figure 5: Enlarged region from the bifurcation diagram in Fig. 2, containing an intermittency

transition from the pattern Fig. 2(g) to chaos.

3.4 Influence of the system size

In Fig. 6 we show the results of our simulations for N = 20 oscillators. We observe a similar

scenario, including traveling and stationary regular patterns as well as various types of irregular

patterns. Moreover, using the same procedure with a randomly chosen initial condition for each

parameter value as it was described above for N = 10, we detected some regions of coexis-

tence of several stable regular patterns. For instance, the patterns shown in panels (d) and (e)

coexist for the same parameter values around K = 5. Moreover, three coexisting patterns (a)–

(c) can be found around K = 3.9. This is in contrast to the case N = 10, where we obtained

no indications for a multistability. However, for sufficiently large values of K we observe again

the simple zigzag pattern as forN = 10 as the only attractor. Since for increasing K in general

the distance between the velocity peaks grows, it seems likely that for increasing K a conden-

sation to regular patterns can be expected also for larger N , however with a possibly larger

extent of multistability.
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Figure 6: Bifurcation diagram and space time plots of the phase velocities for selected values

of K (dashed vertical lines in the bifurcation diagram) for N = 20 oscillators.
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4 Self-modulated excitability

Note that for increasing K one observes a decreasing number of localized velocity peaks even

for larger N , coming close to the completely coherent state. For this type of behavior the contin-

uum limit describing chimera states by time independent averaged quantities can be no longer

considered as a valid description. Instead, we suggest here a description of the patterns as

self-localized regions of excitation in a discrete excitable medium. Indeed, the behavior of the

velocity peaks is often reminiscent to propagating excitation waves, where preceding peaks trig-

ger subsequent peaks in their neighborhood and where the nonlocal nature of the coupling can

induce jumps and changes in their direction of propagation in a regular or irregular manner.

To unveil the nature of system (1) as a discrete excitable medium, we rewrite it as

dθk

dt
= ω − Rk sin(θk − Θk + α), k = 1, . . . , N, (8)

using the phase Θk and the absolute valueRk of the complex local mean field defined in (6). For

the completely coherent state with θ1 = . . . = θN we get the uniform rotation θj(t) = Ωt with

phase velocity Ω = ω− sinα. Transforming equation (8) into a corotating frame ψk = θk −Ωt
and inserting (3) for the feedback, we obtain

dψk

dt
= sinα− Rk sin(ψk − Ψk + α)

= cos(K(1 − r)) −Rk cos(ψk − Ψk −K(1 − r)), k = 1, . . . , N. (9)

Here, Ψk is the phase of the local mean field in the rotating coordinates ψk. The Jacobian

of (9) with respect to (ψ1, . . . , ψN ) is zero in the completely coherent state ψ1 = . . . ψN =
0, where we have also Ψ1 = . . . = ΨN = 0, R1 = . . . RN = 1, r = 1. Thus, the

completely coherent state is a degenerate equilibrium, which displays a saddle-node-on-limit-

cycle bifurcation in each component.

During the intervals between the velocity peaks, the system comes close to the uniformly phase

locked solution and we have Rk(t) close below 1, and r(t) close below 1. Regarding these

quantities as external parameters, each oscillator k can be either in a stable excitable or oscil-

latory regime, depending on whether

E =
cos(K(1 − r))

Rk

is smaller or bigger than 1, respectively. The oscillator may change between these regimes upon

small changes of r and Rk, which are both close below 1. Note that an increasing total number

of velocity peaks decreases the global order parameter r, thus decreasing the enumerator ofE.

This acts as a global, i.e. long range inhibition, taking all oscillators towards the non-oscillatory

regime. In particular, for increasing K we have a stronger inhibition, which explains the increas-

ing distance of the peaks in this situation.

In contrast, a locally increasing number of velocity peaks (say, for oscillators j near a given in-

dex k) decreases the local order parameter Rk in the denominator, increasing E and pushing

the oscillator k towards the oscillatory regime. Hence, it acts as a local activation. This interplay
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of activation and inhibition in a discrete excitable medium close to threshold explains a mecha-

nism of self-modulated excitability, where in the self-organized region of oscillatory motion the

observed variety of regular and irregular patterns can take place.

5 Conclusions

We have shown that in addition to the well elaborated approach of studying chimera states in

the framework of the continuum limit N → ∞, there is also a way to study their emergence for

small N by methods of classical dynamical systems theory. In particular, we could show that

in the feedback system investigated here chaotic chimera states can be found as true chaotic

attractors, emerging in well understood transitions such as period doubling cascades, torus

breakup, and intermittency. An increasing global feedback parameter K, pushing the dynamics

closer towards the unstable completely coherent state induces a condensation of the irregular

chimera states to simple regular patterns composed of localized phase slipping events of single

oscillators. Moreover, we could show that discrete excitable media with nonlocal and global

coupling can support not only the classical scenario of propagating of excitation waves, but

also a pattern formation process leading to self-localized regions of excitation organized by an

interplay between short range activation and long range inhibition.
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