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Abstract

Epigenetic research leads to complex data structures. Since parametric model assump-
tions for the distribution of epigenetic data are hard to verify we introduce in the present
work a nonparametric statistical framework for two-group comparisons. Furthermore, epi-
genetic analyses are often performed at various genetic loci simultaneously. Hence, in or-
der to be able to draw valid conclusions for specific loci, an appropriate multiple testing cor-
rection is necessary. Finally, with technologies available for the simultaneous assessment
of many interrelated biological parameters (such as gene arrays), statistical approaches
also need to deal with a possibly unknown dependency structure in the data. Our statistical
approach to the nonparametric comparison of two samples with independent multivariate
observables is based on recently developed multivariate multiple permutation tests. We
adapt their theory in order to cope with families of hypotheses regarding relative effects.
Our results indicate that the multivariate multiple permutation test keeps the pre-assigned
type I error level for the global null hypothesis. In combination with the closure principle,
the family-wise error rate for the simultaneous test of the corresponding locus/parameter-
specific null hypotheses can be controlled. In applications we demonstrate that group dif-
ferences in epigenetic data can be detected reliably with our methodology.

1 Introduction

Epigenetic mechanisms, such as deoxyribonucleic acid (DNA) methylation, constitute a cen-
tral principle of gene regulation. In contrast to other forms of regulation, e. g., transcriptional
or translational control, DNA methylation occurs without changing the primary DNA sequence,
see [1]. It refers to the selective addition of a methyl group to the 5′-carbon of the cytosine base
and occurs exclusively in the dinucleotide cytosine phosphate guanine (CpG). DNA methylation
occurs non-randomly and, if the target CpGs are located in the proximity of coding regions, is
often associated with inactive gene expression. Oppositely, demethylation of CpG in regulatory
elements is commonly accompanied by activation of expression. Shifts in DNA methylation have
been observed in cells for various diseases. These changes reflect the loss of tight gene regu-
lation as often observed in cancer. Aberrant methylation is a hallmark of dysregulation of gene
control, see [2].

On the other hand, substantial variations in methylation signals in tissues or body fluids may
- while still disease associated - be derived from different changes. They may result from the
changing abundance of specialized cells. For example, bacterial infections cause an innate
immune response to infection, and consequently the number of neutrophils is abruptly esca-
lated. This is invariably accompanied by an equivalent increase of neutrophil-specific methyla-
tion marks. Similarly, during human immunodeficiency virus infection, a drop of CD4+ T-cells is
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observed and along with that the CD4 T-cell specific DNA methylation signals drop when mea-
suring patient whole blood or leukocytes. Thus, and insofar as methylation controlled genes are
cell-type specific, the concept of differential DNA methylation is employed for the discrimination
and quantification of cell types, as initially shown in [3] and used in [4].

In this work, we are concerned with statistical methods in order to identify differentially methy-
lated loci, which may be disease markers, between two groups (typically: diseased versus non-
diseased). Irrespective of the exact application, numerous different technologies are employed
to identify specific methylation markers, see [5]. As consequence, studies remain disparate with
limited comparability between different experiments. This also extends to statistical analysis,
although for this aspect a more unified approach appears feasible, since for the majority of the
approaches an estimate of the methylation proportion (β-value) at each CpG locus for each ob-
servational unit is reported. Most current studies involve the analysis of the methylation status of
multiple loci separately (e. g., Illumina methylation arrays) or on a fixed sequence/pattern of loci
(e. g., Methylight). Statistically, this leads to a multiple test problem. It requires a multiple statis-
tical hypothesis test in order to find significant differences between the groups in terms of the
β-value at each locus or the methylation status of a sequence of loci, respectively. Depending
on the objective of the study different types of multiplicity correction are appropriate. In confirma-
tory studies one typically aims at strong control of the family-wise error rate (FWER), meaning
that the probability for at least one type I error among the locus-specific tests is bounded by a
pre-defined significance level α. In this context, a particular challenge for statistical methodology
is constituted by pronounced dependencies among the β-values between the loci.

Such dependencies result from at least two different principles: On one hand, due to linkage dis-
equilibrium (see [6]), physical proximity of different CpG sites may cause bivariate dependency,
with an increasing distance between two loci generally resulting in lower bivariate dependency,
cf. [7]. With respect to this, however, functionally relevant gene regulation may limit the linkage
(both in extent and distance). In the Foxp3 gene, for example, the promotor region is demethy-
lated in all T-cell types whereas the regulatory T-cell (Treg) specific demethylated region is fully
methylated in most and fully demethylated in just one cell type; cf. [8]. On the other hand, when
considering cell type specific markers, there is also a functional-biological dependency, which
must be taken into account. For example, the number of overall T-cells in peripheral blood also
influences (or depends on) the number of all cells and the number of, e. g., regulatory T-cells.
Hence, the number of demethylated CD3-intergenic regions - present only on all T-cells - some-
what correlates with the number of demethylated glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) copies - present in all cells - and the number of Foxp3 demethylated gene copies -
present only in Tregs.

These pronounced dependencies, at least within blocks of loci with small genomic distance, lead
to conservativity of traditional multiple test procedures like the Bonferroni correction, meaning
that α is not exhausted. For the classes of multiple test procedures considered in this work,
non-exhaustion of α is equivalent to sub-optimal power characteristics of the multiple tests; cf.
Lemma 3.1 of [9].

Several parametric models for the distribution of the β-values have been proposed, see [10].
Their parametric nature limits their applicability in practice. A nonparametric analysis of methy-
lation data was suggested in [11] and [12]. However, a formal notion of multiplicity adjustment
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is lacking in their work. In the present paper we develop a nonparametric statistical framework
for tight FWER control in the context of analyzing epigenetic methylation studies, taking the
described dependencies among loci into account, leading to multivariate procedures.

2 Methods

2.1 Basic Model

Suppose that we have two experimental groups denoted by A and B, for instance given by a
disease status. We consider N ∈ N observational units with nA observables in group A and
nB in group B, such that N = nA + nB . We assume that all N observables are stochastically
independent and that the observations in group i ∈ {A,B} are realizations of independent and

identically distributed (iid.) d-dimensional random vectors Xik = (X
(1)
ik , . . . , X

(d)
ik )>, where

the index i ∈ {A,B} denotes the group and 1 ≤ k ≤ ni indexes the k-th observational unit
within group i, while the superscript denotes the coordinate. The random vectors are assumed
to follow the distribution L(XA1) = P or L(XB1) = Q, respectively.

Example 1 (Identifying differentially methylated CpG loci). Consider an epigenetic methylation
dataset comprising d CpG loci. For each locus ` a methylation ratio (occasionally referred to as
β-value) is defined as

X(`) =
M (`)

M (`) + U (`)
, (1)

where M (`) (U (`)) is an intensity value for the amount of methylated (unmethylated) cells at
locus `, where we assume that suitable preprocessing steps have been performed prior to the
statistical analysis. In previous literature the family of beta distributions has been considered as
a model for the distribution of X(`), e. g., in [13]. However, often bimodality and skewness are
encountered, questioning this parametric assumption. Notice also that numerator and denomi-
nator in (1) are highly dependent. As we are not aware of a model capturing the aforementioned
distributional characteristics, we propose a nonparametric approach as in [12]. An application of
our general methodology to a two-sample problem involving such data is presented in Section
3.2.1.

Example 2 (Group differences for immune relevant parameters). As a second example, con-
sider the comparison of human colorectal tissue for two different stages of cancer as well as
healthy controls. In Section 3.2.2 we analyze data from a study in which three immune relevant
parameters were measured utilizing novel epigenetic markers based on methylation signatures
in tissue. Since no prior information about distributional properties of these marker data are at
hand, our nonparametric approach is applied, only making use of our basic model assumptions.
Three two-group comparisons are made regarding differences of the immune relevant parame-
ters between the disease stages.
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2.2 Aim of the statistical analysis

We denote by Fi the cumulative distribution function (cdf) of Xi1 with marginal cdfs F (`)
i for

each coordinate 1 ≤ ` ≤ d. We are interested in testing two families of marginal hypotheses,
say H = (H` : 1 ≤ ` ≤ d) and H′ = (H ′` : 1 ≤ ` ≤ d). The family H corresponds to
marginal homogeneity in the sense of [14], i. e.,

H` : F
(`)
A = F

(`)
B versus K` : F

(`)
A 6= F

(`)
B .

The familyH′ corresponds to finding a particular type of coordinate-specific differences. To this
end, recall the definition of the relative effect in the sense of [15].

Definition 1 (Relative effect). Let XA and XB denote two stochastically independent random
variables which are defined on a common probability space with probability measure P. Assume
that XA and XB have non-degenerate distributions and denote the normalized version of their
cdf, as considered in [16], by FA and FB , respectively. Then, the relative effect of FA with
respect to FB is defined as

pAB = P(XA < XB) +
1

2
P(XA = XB) =

∫
FAdFB.

For a d-variate distribution the relative effects can be defined coordinate-wise for each 1 ≤ ` ≤
d by

p
(`)
AB =

∫
F

(`)
A dF

(`)
B .

Let pAB = (p
(1)
AB, . . . , p

(d)
AB)> denote the vector of marginal relative effects in the latter case.

The functional pAB is capturing central tendencies, i. e., whether realizations of one of the
distributions are tending to larger values than the ones from the other. Hence, we let H ′` :

p
(`)
AB = 1/2 with two-sided alternatives K ′` : p

(`)
AB 6= 1/2, 1 ≤ ` ≤ d.

Let S ⊆ {1, . . . , d}. In the remainder, we make use of the notation

HS =
⋂
`∈S

H`, H0 = H{1,...,d} =
d⋂
`=1

H`,

and refer to H0 as the global hypothesis in H. An analogous notation applies for intersection
hypotheses inH′.

2.3 Test statistics and multiple test procedures

For the univariate nonparametric two-sample problem, i. e., for testing one particular hypothesis
H`, Wilcoxon’s rank sum test (or, equivalently, the Mann-Whitney U test) is commonly applied.
We make use of multivariate generalizations described in [17] (for testing H), and in [18] (for
testingH′).
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2.3.1 Wilcoxon-Mann-Whitney (WMW) statistic

Definition 2 (Mann-Whitney U -Statistic). For 1 ≤ ` ≤ d, we let

U (`) =
1

nAnB

nA∑
j=1

nB∑
k=1

φ(`)(XAj,XBk)

with
φ(`)(XAj,XBk) = I{X(`)

Aj > X
(`)
Bk}.

Proposition 1 (cf. Theorem 2 (iii*) of [17]). Assume that ni/N → τi ∈ (0, 1) for N → ∞,
i ∈ {A,B}. Then, under H0, it holds that

UN =
√
N

(
U (1) − 1

2
, . . . , U (d) − 1

2

)
D→ Nd(0,Σ), N →∞, (2)

where Σ = (σ`r)1≤`,r≤d with entries

σ`r =
ζ

(`,r)
10

τA
+
ζ

(`,r)
01

τB
,

ζ
(`,r)
10 = ζ

(`,r)
01 = Cov

(
φ(`)(XAj,XBk), φ

(r)(XAj,XBk′)
)
,

where 1 ≤ j ≤ nA and 1 ≤ k 6= k′ ≤ nB . In (2) and throughout,
D→ denotes conver-

gence in distribution, and Nd(µ,Σ) stands for the d-variate normal distribution with mean µ
and covariance matrix Σ.

Corollary 1 (Theorem 9.1 in [17]). Let Σ̂ be a consistent estimator of Σ. Assuming that
det(Σ) > 0 it holds that

WU
N = N

(
UN −

1

2
1d

)>
Σ̂−1

(
UN −

1

2
1d

)
is under H0 asymptotically χ2-distributed with d degrees of freedom as N →∞.

2.3.2 Empirical relative effects

The empirical counterpart of the vector pAB of relative effects is denoted by p̂AB = (p̂
(1)
AB, . . . ,

p̂
(d)
AB)> with p̂(`)

AB =
∫
F̂

(`)
A dF̂

(`)
B , 1 ≤ ` ≤ d, where F̂ (`)

i , given by

F̂
(`)
i (x) = n−1

i

ni∑
k=1

1

2

(
I(−∞,x](X

(`)
ik ) + I(−∞,x)(X

(`)
ik )
)
,

denotes the normalized version of the empirical cdf in group i ∈ {A,B} pertaining to coordi-

nate `. Notice that p̂(`)
AB = 1−U (`) almost surely for all 1 ≤ ` ≤ d, whereU (`) is as in Definition

2, under the assumption of absolutely continuous distributions (that there is zero probability for
ties).
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Proposition 2 (Theorem 3.3 in [18]). Let VN ∈ Rd×d denote the matrix with entries

v
(`,r)
N =

N

nA
c

(`,r)
A +

N

nB
c

(`,r)
B ,

c
(`,r)
i = Cov

(
Y

(`)
i1 , Y

(r)
i1

)
, i ∈ {A,B},

with the transformed random variables Y (`)
Ak = F

(`)
B (X

(`)
Ak) and Y (`)

Bk = F
(`)
A (X

(`)
Bk). Assuming

that VN converges to a positive definite covariance matrix V as N →∞, it holds that

TN =
√
N(p̂AB − pAB)

D→ Nd(0, V ), N →∞.

Furthermore, in (4.6) of [18] a consistent estimator V̂N defined via the ranks of the observations
has been provided.

Corollary 2. Making use of Proposition 2 and a Studentization by V̂N , it follows by Slutsky’s
lemma in analogy to Corollary 1 that, under H ′0 : pAB = 1d/2, the statistic

WN = N

(
p̂AB −

1

2
1d

)>
V̂ −1
N

(
p̂AB −

1

2
1d

)
is asymptotically χ2

d-distributed as N →∞.

2.3.3 Closure principle

A (non-randomized) multiple testing procedure ϕ = (ϕ1, . . . , ϕd)
> for testingH orH′, respec-

tively, is a vector of measurable mappings (individual tests) from the sample space into {0, 1}d.
In this, the event {ϕ` = 1} means rejection of the `-th null hypothesis H` or H ′`, respectively.
For given distributions P and Q, the FWER of ϕ is defined as the probability under (P,Q) of at
least one type I error, i. e.,

FWER(P,Q)(ϕ) = P(P,Q)

 ⋃
`∈I0(P,Q)

{ϕ` = 1}

 ,

where I0(P,Q) ⊆ {1, . . . , d} denotes the index set of true null hypotheses in H or H′, re-
spectively. The multiple test ϕ is said to control the FWER strongly at a given level α ∈ (0, 1),
if FWER(P,Q)(ϕ) ≤ α for all possible pairs (P,Q).

A general construction principle for FWER-controlling multiple tests is the closed test princi-
ple according to [19]. A closed test procedure tests every intersection hypothesis HS or H ′S ,
respectively, at full level α by an arbitrarily chosen level α test ϕS or ϕ′S , respectively, where
S ∈ 2{1,...,d}. The adjustment for multiplicity is then performed via the decision rule that only
those coordinate-specific hypotheses H` or H ′`, respectively, are rejected for which all intersec-
tion hypotheses HS (H ′S) with ` ∈ S have been rejected by ϕS (ϕ′S). Thus, the price to pay for
the multiplicity of the problem is that one has to perform 2d tests. A concise description of this
principle can for instance be found in Section 3.3 of [9].
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Remark 1. Application of the closed test principle is particularly convenient in our context by
noticing that the assertions of Propositions 1 and 2 and their corollaries remain valid if the
respective full d-dimensional vector of test statistics is replaced by a subvector which only con-
tains the indices in the subset S to which ϕS or ϕ′S , respectively, refer. In the corollaries, only
the degrees of freedom of the asymptotic χ2-distributions have to be changed from d to |S|.

2.3.4 Resampling-based approach

The results from the previous sections can also be used to construct asymptotically pivotal
statistics for usage in a resampling approach. This strategy is assumed to keep α more ac-
curately for finite N than the asymptotic methods resulting from Corollaries 1 and 2. In [20],
multivariate multiple permutation tests have been developed for more restrictive families of hy-
potheses thanH orH′, namely, for families where differences of coordinate-specific functionals
of P and Q, respectively, are of interest. In contrast, the relative effect depends both on P
and on Q. In Theorem 1 we adapt the theory derived in [20] to the case that multivariate rela-
tive effects are of interest. Thereby, we obtain an asymptotically FWER-controlling resampling
procedure based on the statistic WN or WU

N , respectively.

To this end, let π denote an arbitrary but fixed permutation of the set {1, . . . , N} and let
Xπ = (Xπ

A1, . . . ,X
π
AnA

, Xπ
B1, . . . ,X

π
BnB

) be the matrix containing the permuted observa-
tion vectors from X = (XA1, . . . ,XAnA

, XB1, . . . ,XBnB
). We make the convention that

the first nA columns of X and Xπ correspond to group A and the remaining nB columns to
group B. Denote by τ = τ(π, nA, nB) the fraction of observations from group B within the
first nA columns of Xπ, and let pπAB = pA′B′ , where L(XA′1) = τQ + (1− τ)P = P ′ and
L(XB′1) = (nA/nB)τP + (1 − (nA/nB)τ)Q = Q′. Analogously, let p̂πAB = p̂A′B′(Xπ)
denote the estimator of the vector of relative effects based on the permuted data set Xπ. A
simple calculation yields that pπAB = τ(1+nA/nB)1d/2+[(1− τ(1+nA/nB)]pAB . Finally,
let pπAB = τ(1 + nA/nB)1d/2 + [(1− τ(1 + nA/nB)]p̂AB .

Theorem 1. Under the general setup from above, assume that the sample sizes nA and nB
fulfill the regularity assumptions given in Lemma 5.3 of [21] as N →∞. Define the statistic

W π
N = N(p̂πAB − pπAB)>

(
V̂ π
N

)−1

(p̂πAB − pπAB), (3)

where V̂ π
N denotes the estimator from (4.6) in [18] applied to Xπ. Then, the permutation distri-

bution of W π
N (i. e., its discrete distribution induced by letting π be uniformly distributed on all

N ! possible permutations of the set {1, . . . , N}, while keeping the data X fixed), the cdf of
which we denote by R̂W

N , satisfies

∀t ∈ [0,∞) : |R̂W
N (t)− Fχ2

d(t)|
P−→ 0, N →∞.

A result analogous to Theorem 1 can be obtained for the statistic WU
N . Based on them, an

asymptotic null distribution for WN or WU
N , respectively, is given by its permutation distribution.

This permutation distribution, in connection with Remark 1, can be used instead of χ2
|S| in order

to calibrate each test ϕS or ϕ′S , respectively, for type I error control at level α.
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Proof. We approximate the conditional distribution (given X) of Xπ by an asymptotically equiv-
alent unconditional two-groups model. To this end, denote by Z = (Z1, . . . ,ZN) a random
matrix, the columns of which are stochastically independent such that the first nA columns are
distributed as P ′ and the remaining nB columns are distributed as Q′. Following the argument
of Theorem 3.5 in [18] the statistic TN(Z) has asymptotically a centered d-variate normal dis-
tribution with some covariance matrix which is non-degenerate for eventually all large N under
our general assumptions. Also, we note that both p̂πAB and pπAB consistently estimate pπAB . Ap-
plying the reasoning of Lemma 5.3 in [21], together with the continuous mapping theorem and
Slutsky’s lemma, completes the proof. �

3 Results

3.1 Computer simulations

In this section we consider the performance of the proposed tests in terms of type I error control
and power. To this end we present results of computer simulations under the following model.

Model 1. For each coordinate ` ∈ {1, . . . , d} the marginal cdf F (`)
i , i ∈ {A,B}, is the cdf of

the beta distribution with shape parameters equal to a(`)
i and b(`)

i . In all simulations, the value

of the second shape parameter b(`)
i was fixed as b(`)

i = 4 for all 1 ≤ ` ≤ d and i ∈ {A,B}.
We consider d ∈ {2, 5, 10} and set the values of the first shape parameter equal to a(`)

i = 3
in both groups for coordinates 1, . . . , d0, where d0 denotes the number of true null hypotheses.
For the remaining d1 = d− d0 coordinates the values of the first shape parameter in group A
are taken as a(`)

A = 3, while in group B the corresponding values are given as a(`)
B = 3 + δ,

where δ takes values in {0.5, 1, 1.5, 2, 2.5, 3}.
The dependency between the marginals is modeled by the correlation matrix R of a Gaussian
copula CΣ, where Σ is the covariance matrix originating from R and the marginal variances
induced by the shape parameters. The correlation matrix R = (R`,r) is of AR(1) structure, i.
e., R`,r = ρ|`−r|, 1 ≤ `, r ≤ d, where ρ takes values in {0, 0.2, 0.4, 0.6, 0.8}. This model is
motivated by interpreting coordinates as epigenetic loci and considering a decreasing strength
of dependency with increasing epigenetic distance.

First, we assessed the accuracy of the χ2 and the permutation-based approximation of the null
distribution of WN , respectively, under the global null hypothesis. The empirical type I error rate
was calculated as the relative frequency of occurrences of type I errors when testing the global
null hypothesis (d1 = 0), i. e.,

1

K

K∑
k=1

I{ϕ(k)(x(k)) = 1},

where ϕ(k) denotes the test of the global hypothesis H0 in the k-th of K simulation runs and
x(k) the pseudo-sample in simulation run k. The empirical power of the test of the global null
hypothesis was calculated as the same frequency for the cases with d1 > 0.
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Table 1: Monte Carlo simulation results, based on K = 10,000 repetitions, regarding the type I
error rate for testing the global hypothesis in the moderate sample size regime (nA = 20, nB =
30) for the asymptotic χ2-based test (χ2) and the permutation test (Perm). The data have been
generated according to Model 1 with correlation parameter ρ. The nominal significance level
was set to α = 5% in all simulations. The permutation test was carried out as a Monte Carlo
permutation test employing 9,999 randomly chosen permutations of {1, . . . , N}, together with
the identity permutation.

d = 2 d = 5 d = 10

ρ χ2 Perm χ2 Perm χ2 Perm

0 0.0654 0.0428 0.1034 0.0432 0.2154 0.0480

0.2 0.0668 0.0432 0.1092 0.0478 0.2064 0.0408

0.4 0.0730 0.0488 0.1092 0.0482 0.2092 0.0476

0.6 0.0654 0.0426 0.1012 0.0494 0.1898 0.0468

0.8 0.0628 0.0460 0.0848 0.0410 0.1662 0.0448

Type I error control of the multiple tests employing the closure principle was assessed by the
FWER. Empirical values of the FWER were calculated as the relative frequency of the occur-
rence of at least one type I error, i. e.,

F̂WER =
1

K

K∑
k=1

I{∃1 ≤ j ≤ d0 : ϕj(k)(x
(k)) = 1},

where ϕ(k) = (ϕ1(k), . . . , ϕd(k))
> stands for the multiple test in the k-th simulation run.

For the sample size N , we considered two different regimes, namely moderate (nA = 20,
nB = 30) and large (nA = 100, nB = 150). Tables 1 and 2 display empirical type I error rates
for testing the global hypothesis in the moderate and large sample regimes, respectively. The
empirical power for testing the global hypothesis is presented in Tables 3 and 4. Finally, Table
5 displays empirical values of the FWER, both in the moderate and in the large sample regime.
The nominal significance or FWER level, respectively, was set to 5% in all simulations. The
permutation test was carried out as a Monte Carlo permutation test employing 9,999 randomly
chosen permutations of {1, . . . , N}, together with the identity permutation.

In both sample size regimes, the empirical type I error rate of the permutation test is below the
desired level of 0.05, indicating its applicability even for moderate sample sizes. In contrast, the
test depending on critical values from the limiting χ2 distribution performs liberally in all simu-
lation settings displayed in Tables 1 and 2. With increasing dimension this test even becomes
more and more liberal. For example, its empirical type I error rate rises up to 20% for d = 10.
On the other hand the stronger the dependency between the coordinates, the less liberal the
χ2-based test.

Of course, the more stringent type I error control of the permutation test, compared with the
asymptotic χ2-based test, leads to lower power, see Tables 3 and 4. However, the differences
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Table 2: Monte Carlo simulation results, based on K = 10,000 repetitions, regarding the type
I error rate for testing the global hypothesis in the large sample size regime (nA = 100, nB =
150) for the asymptotic χ2-based test (χ2) and the permutation test (Perm). The data have been
generated according to Model 1 with correlation parameter ρ. The nominal significance level
was set to α = 5% in all simulations. The permutation test was carried out as a Monte Carlo
permutation test employing 9,999 randomly chosen permutations of {1, . . . , N}, together with
the identity permutation.

d = 2 d = 5 d = 10

ρ χ2 Perm χ2 Perm χ2 Perm

0 0.0527 0.0464 0.0604 0.0448 0.0734 0.0460

0.2 0.0551 0.0456 0.0554 0.0396 0.0772 0.0500

0.4 0.0543 0.0453 0.0590 0.0440 0.0792 0.0476

0.6 0.0520 0.0440 0.0526 0.0396 0.0708 0.0458

0.8 0.0547 0.0486 0.0585 0.0460 0.0640 0.0468

Table 3: Monte Carlo simulation results, based onK = 10,000 repetitions, regarding the power
for testing the global hypothesis in the moderate sample size regime (nA = 20, nB = 30)
for the asymptotic χ2-based test (χ2) and the permutation test (Perm). The data have been
generated according to Model 1 with correlation parameter ρ and d = 5. The nominal signif-
icance level was set to α = 5% in all simulations. The permutation test was carried out as a
Monte Carlo permutation test employing 9,999 randomly chosen permutations of {1, . . . , N},
together with the identity permutation.

δ 0.5 1 1.5 2 2.5 3

d1 = 1 χ2 0.1456 0.2696 0.4540 0.6512 0.7948 0.8984

Perm 0.0682 0.1524 0.2948 0.4964 0.6674 0.8176

d1 = 2 χ2 0.1702 0.3384 0.5834 0.7986 0.9152 0.9700

Perm 0.0890 0.2016 0.4148 0.6556 0.8270 0.9314

d1 = 3 χ2 0.1976 0.4108 0.6882 0.8780 0.9700 0.9926

Perm 0.1008 0.2722 0.5354 0.7824 0.9178 0.9736

d1 = 4 χ2 0.2082 0.4744 0.7768 0.9296 0.9882 0.9982

Perm 0.1098 0.3170 0.6402 0.8592 0.9642 0.9932

d1 = 5 χ2 0.2236 0.5182 0.8168 0.9580 0.9946 0.9992

Perm 0.1188 0.3560 0.6894 0.9056 0.9806 0.9962
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Table 4: Monte Carlo simulation results, based onK = 10,000 repetitions, regarding the power
for testing the global hypothesis in the large sample size regime (nA = 100, nB = 150) for the
asymptotic χ2-based test (χ2) and the permutation test (Perm). The data have been generated
according to Model 1 with correlation parameter ρ and d = 5. The nominal significance level
was set to α = 5% in all simulations. The permutation test was carried out as a Monte Carlo
permutation test employing 9,999 randomly chosen permutations of {1, . . . , N}, together with
the identity permutation.

δ 0.5 1 1.5 2 2.5 3

d1 = 1 χ2 0.2574 0.7732 0.9850 0.9998 1 1

Perm 0.2228 0.7326 0.9804 0.9996 1 1

d1 = 2 χ2 0.3624 0.9136 0.9990 1 1 1

Perm 0.3202 0.8938 0.9974 1 1 1

d1 = 3 χ2 0.4494 0.9676 1 1 1 1

Perm 0.4020 0.9524 0.9998 1 1 1

d1 = 4 χ2 0.5250 0.9848 1 1 1 1

Perm 0.4760 0.9804 1 1 1 1

d1 = 5 χ2 0.5760 0.9924 1 1 1 1

Perm 0.5258 0.9900 1 1 1 1

Table 5: Monte Carlo simulation results, based on K = 5,000 repetitions, regarding the FWER
for the asymptoticχ2-based multiple test (χ2) and the multiple permutation test (Perm). The data
have been generated according to Model 1 with correlation parameter ρ and d = 5. The nominal
FWER level was set to α = 5% in all simulations. The permutation test was carried out as a
Monte Carlo permutation test employing 9,999 randomly chosen permutations of {1, . . . , N},
together with the identity permutation.

d1 0 1 2 3 4

nA = 20, ρ = 0.1 χ2 0.050 0.056 0.060 0.061 0.065

nB = 30, δ = 3 Perm 0.021 0.024 0.032 0.036 0.049

nA = 20, ρ = 0.5 χ2 0.046 0.045 0.045 0.035 0.026

nB = 30, δ = 1 Perm 0.021 0.016 0.018 0.017 0.011

nA = 100, ρ = 0.5 χ2 0.028 0.030 0.033 0.029 0.024

nB = 150, δ = 0.5 Perm 0.020 0.020 0.024 0.022 0.018

in power become smaller for increasing δ.
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Regarding the empirical FWER (Table 5), we again observe that the permutation test keeps the
level better than the χ2-based multiple test, where level exceedances of the latter occur for large
δ and small ρ > 0 in the moderate sample size regime.

3.2 Empirical illustration

In this section, we present applications of the proposed methods to two epigenetic studies. We
applied the multiple tests based on the statistics defined in Section 2.3 in combination with the
closure principle and Remark 1.

On one hand, we re-analyzed a representative study utilizing a whole genome approach, which
aimed at the discovery of novel epigenetic markers to distinguish healthy (or good prognosis)
donors from those with disease (or bad prognosis). The primary statistical challenge of such
studies is the high number of locus-specific tests based on a sample with a moderate number
of observations. On the other hand, we re-analyzed a data set regarding three immune relevant
parameters which were derived from cell type specific real-time PCR markers in previous work
(see, e. g., [3]).

3.2.1 Identification of differentially methylated CpG loci

The UK Ovarian Cancer Population Study (see [22]) aimed at detecting differentially methy-
lated loci between ovarian cancer cases and healthy controls. To this end, 274 healthy controls
were compared with 131 untreated, confirmed ovarian cancer cases. Upon rigid quality control,
264 controls and 124 cases remained in the study. When applying our method, we randomly
assigned 176 and 84 controls and cases, respectively, to the screening sub-sample of a two-
stage selection approach (cf. [23] and references therein). We applied the univariate two-sample
Wilcoxon test at each locus on the screening sample and ranked the resulting p-values in as-
cending order. The remaining 88 and 40 control and case subjects, respectively, were used
for the confirmatory analysis (second step). The ten top-ranked loci from the screening stage
were tested for a relative effect unequal 1/2 based on asymptotic critical values from the limit
distribution (χ2) and permutation-based critical values (Perm) on the confirmatory group. In
Table 6, the results are presented as multiplicity-adjusted p-values. For locus 1 ≤ ` ≤ 10,
the multiplicity-adjusted p-value denotes the smallest FWER level such that H ′` is rejected by
the respective multiple test procedure. With both methods, all ten candidate CpG sites have a
multiplicity-adjusted p-value below 5%, an FWER level which is often chosen in practice.

Among the ten loci displayed in Table 6, there are two which are associated with the FUT7 gene.
In turn, the FUT7 gene encodes the Alpha-(1,3)-fucosyltransferase, see [24]. This enzyme plays
a role in connection with the surfaces of granulocytes, monocytes and natural killer cells.

3.2.2 Association of immune cell counts with cancer

As mentioned in Section 2.1 the discussed rank-based methods can be applied under almost
no assumptions due to their nonparametric nature. Furthermore, our approach implicitly adapts

12



Table 6: Multiplicity-adjusted p-values of the tests for relative effects for the loci selected at the
screening stage based on the asymptotic χ2 multiple test (χ2) and the multiple permutation
test (Perm) in combination with the closure principle. The multiplicity-adjusted p-value for locus
` denotes the smallest significance level such that H ′` is rejected for the actually observed
data. The permutation test was carried out as a Monte Carlo permutation test employing 9,999
randomly chosen permutations of {1, . . . , N}, together with the identity permutation.

Locus cg00645579 cg00974864 cg02679745 cg08044694 cg09134726

χ2 0.0046 0.0002 0.0002 0.0002 0.0002
Perm 0.0126 0.0029 0.0029 0.0029 0.0029

Locus cg09303642 cg09305224 cg20070090 cg24427660 cg24777950

χ2 0.0002 0.0047 0.0001 0.0002 0.0002
Perm 0.0029 0.0146 0.0029 0.0076 0.0029

to the dependency structure in the data via the permutation approach. Hence, it is especially
well-suited for situations with highly dependent coordinates, for example resulting from the con-
sideration of derived parameters.

Such a situation was present in [25]. In their study, a set of three pre-identified gene regions
was considered. These regions have been shown to be associated with particular cell types.
Namely, demethylated Foxp3 is associated with regulatory T-cells (Tregs), CD3 with all T-cells,
and GAPDH with all leukocytes. From this, three immune relevant parameters were derived:
the number of Tregs, the total number of T-cells (tTL) and the cellular ratio of immune tolerance
(immunoCRIT). As the Tregs constitute a subclass of the tTL and the immunoCRIT is the ra-
tio of the two other values, these three parameters are highly dependent. Nonetheless each
parameter is immune relevant in its own right.

We assessed the association of the three parameters with a disease indicator for cancer, with
cancerogenesis, and with cancer progression. In this context, the evaluation of the individual
roles of the parameters had to be investigated. This is because cancer tolerance may be either
driven by the immunoCRIT or by its individual components, i. e., the shear amount of Tregs
or all T-cells. In addition, it is important to understand, even if the most important part is the
immunoCRIT, which of the components drives the change during cancerogenesis. The results
are presented in Table 7.

Our data indicate a statistically significant role of all three parameters with respect to all three
endpoints, with the exception that the Treg parameter is not significantly associated with can-
cer progression. Thus, our multiple permutation test confirms the notion that manifestation of
cancer is strongly associated with a shift in immune tolerance as monitored by Tregs, overall
T-cells and the immunoCRIT. Notably, the change of the overall immunological tolerance from
healthy towards cancer tissue is driven by both the number of Tregs and the overall number of
T-cells. However, once a tumor is established the continuing increase of immunoCRIT-mediated
tolerance along with higher tumor stages is mainly caused by a diminished overall T-cell num-
ber and not by Treg increase. Hence, while there is an undoubted dependency among these
parameters, the biological mechanisms of cancer development allow for a detachment of these
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Table 7: Multiplicity-adjusted p-values of the tests for relative effects with respect to disease
groups for three different immune-relevant parameters based on the asymptotic χ2 multiple
test (χ2) and the multiple permutation test (Perm) in combination with the closure principle.
The multiplicity-adjusted p-value for parameter ` denotes the smallest significance level such
that H ′` is rejected for the actually observed data. The permutation test was carried out as a
Monte Carlo permutation test employing 9,999 randomly chosen permutations of {1, . . . , N},
together with the identity permutation. Treg: number of regulatory T-cells, tTL: total number of
T-cells, immunoCRIT: cellular ratio of immune tolerance

Parameter Treg tTL immunoCRIT

Cancer indicator:
Healthy colon versus χ2 < 10−16 4.926× 10−13 < 10−16

colorectal cancer Perm 0.0001 0.0001 0.0001

Cancerogenesis:
Healthy colon versus χ2 5.292× 10−12 0.0024 < 10−16

early stage cancer Perm 0.0001 0.0044 0.0001

Cancer progression:
Early stage cancer versus χ2 0.9043 9.710× 10−5 0.0002
late stage cancer Perm 0.9044 0.0005 0.0011

parameters such that individual changes of one of the parameters can be observed and statis-
tically evaluated.

4 Discussion

Epigenetic data pose their individual set of issues for their statistical interpretation, since in con-
trast to DNA and protein studies, they exhibit both linkage disequilibrium-type dependencies
and cell type specificity issues. Hence, dependencies have to be taken into account that go be-
yond the linear and parametric linkage of genetic loci, and the cell-specific linkage of expression
patterns.

Here, we assessed a new method to cope with these statistical issues in a general manner.
We demonstrated how group differences in epigenetic data can reliably be detected. To this
end, a statistical approach based on hypotheses regarding central tendencies in combination
with nonparametric Studentized multivariate multiple permutation tests has been proposed. We
adapted the theory of [20] such that it can be applied to the analysis of relative effects. In par-
ticular, our methodology addresses the so-called “null dilemma“ in the sense of [14], because
Studentization leads to asymptotically pivotal test statistics, even if the dependency structure
differs between the groups. Our approach features four important characteristics for analyzing
epigenetic methylation data: (i) The use of the relative effect as a functional for the definition
of differential methylation allows to declare a shift in central tendencies in case of a significant
finding. This is particularly important as other studies, see [2], have found that variation in DNA

14



methylation may play an important role in the development of complex diseases like cancer. The
restriction to shift alternatives, however, is convenient for the development of certain epigenetic
markers; (ii) the permutation-based approach keeps the desired type I error level even for mod-
erate sample sizes; (iii) carrying out the permutation test as a multivariate procedure implicitly
adapts to the dependency structure in the data; (iv) as we mentioned in Section 2.1 the dis-
cussed rank-based methods can be applied under almost no assumptions on the distribution of
the data.

Computer simulations revealed that the permutation-based approach keeps the type I error level
more accurately than asymptotic χ2 approximations of the distribution of Wald-type statistics,
especially in cases with moderate sample sizes. The latter finding is in line with the observations
from [26]. The convergence of Wald-type statistics towards their limiting χ2 distribution is known
to be slow and this problem becomes more severe for increasing dimensionality.

As indicated in the real data examples above, epigenetic studies usually involve several loci
simultaneously based on a single sample. In many medical applications, the number of obser-
vations is very limited. Each of the given examples represents one extreme - but very common
- experimental set-up: Microarray analyses with thousands of mildly dependent CpGs as in Ex-
ample 1 bear a substantial risk of false positives, even when relatively high sample sizes are
at hand. On the other end an unknown or complicated dependency structure in the data poses
a statistical challenge. This issue is true for both directly adjacent CpGs, which are usually
comethylated as well as when technically independent markers functionally overlap. The lat-
ter case was considered in Example 2 with the Foxp3 gene as marker for Tregs, and CD3g/d
intergenic region as marker for the overall T-cells.

As usual for resampling procedures, our approach based on permutations in combination with
the closure principle is computationally much more demanding than asymptotic approximations
based on tabulated χ2-quantiles. However, computations can be parallelized with respect to
the subsets S in the closed test procedure such that the computing time can be distributed
among nodes in a cluster computing system. Furthermore, efficient shortcut versions (step-
down variants) of the closed test procedure can be employed; see [27] for details.

Possible extensions of our methodology comprise multi-sample problems with more than two
groups, as well as the consideration of other types of limit laws (e. g., coming from extreme
value theory). Finally, Edgeworth expansions as in [28] for the Wald-type statistic can prevent
the costly resampling steps, at least if some concrete distributional assumptions for the obser-
vational units can be justified.
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