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Abstract
In this paper we establish Hölder estimates for solutions to non-auto-
nomous parabolic equations on non-smooth domains which are com-
plemented with mixed boundary conditions. The corresponding elliptic
operators are of divergence type, the coefficient matrix of which depends
only measurably on time. These results are in the tradition of the clas-
sical book of Ladyshenskaya et al. [39], which also serves as the starting
point for our investigations.

1. Introduction. Parabolic equations are one of the most common features when
modelling phenomena in science and engineering, see [2] and [12]. One of the main
problems, however, is that the input to the equations is very often (highly) non-
smooth: the corresponding domains are not smooth (often they are not even strong
Lipschitz domains), the coefficient functions are definitely discontinuous, and the
boundary conditions are mixed: on one part D of the boundary Dirichlet conditions
are imposed, while on the complement N Neumann- or Robin conditions hold. In
the meantime these phenomena are also well investigated – as long as the coeffi-
cients do not depend explicitly on time, see [36], [33], [35] and [6]. In this paper
we intend to investigate non-autonomous equations which incorporate all the phe-
nomena described above with the central aim being Hölder estimates. This is also
classical ever since the monography [39], as long as mixed boundary conditions are
not considered.

Unfortunately, those investigations contain – in their generality – some pecu-
liarities which make it not easy to apply them to problems originating from the
applications: First, the Hölder spaces under consideration, see [39, pg. 7], are not
the classical ones – the oscillation of the function is only measured over the con-
nected components of the intersection of the domain with suitable balls (what is
indeed adequate in case of general Dirichlet boundary data). Secondly, the esti-
mates affect distributional right hand sides which are represented as the (spatial)
divergence of vector-valued Lp-functions. As is well-known, such representations
are highly non-unique; in particular the zero-functional may be represented as the
divergence of a non-zero vector valued function. Lastly, it is not quite clear how
broad the admissable geometric setting really is: on one hand “piecewise C1” is
demanded, on the other the crucial “Condition A” ([39, pg. 9], compare also [38,
Ch. II.B, Definition B.3]) – well-known from elliptic theory – comes into play.

Our intention is to deliver a text which
• clearly defines the underlying geometric concept for the domain Ω – thereby

avoiding “Condition A”,
• incorporates mixed boundary conditions within an appropriately defined frame-

work,
• allows for right hand sides from Ls(]T0, T1[,W−1,q

D (Ω)) (for a precise definition,
see Definition 2.6),

• avoids a global Lipschitz condition for Ω – at least insofar the Dirichlet bound-
ary part D is concerned, compare also [26],

• gives a result in the formulation of classical Hölder spaces.
The paper is organized as follows: In the next chapter we first introduce some

terminology and our geometrical assumptions on the domain Ω and the Dirichlet
boundary part D. Then, as a starting point, we quote the classical result on the
existence and uniqueness of solutions for non-autonomous parabolic equations in a
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Hilbert spaces setting, namely the right-hand side f being taken from L2(J ;V ∗)
yielding solutions from L2(J ;V ) ∩W 1,2(J ;V ∗), where V ↪→ H ↪→ V ∗ is a Gelfand
triplet. Afterwards the main result is announced, cf. Theorem 2.13. In Ch. 3
we give the proof of this theorem, starting with the quotation of several classical
results from the book [39]. The idea is to take these in a setting – namely the
half cube and the ball and homogeneous Dirichlet boundary conditions – where the
inherent technical difficulties are still not appearing: here it is clear that the general
suppositions on the domain posed in [39] are fulfilled and, concerning the results,
falls back to the classical Hölder spaces. After establishing some preliminaries in
Ch. 3.2, in Ch. 3.3 we establish permanence principles, such as localization of the
equation, bi-Lipschitz transformations and reflection which allow us to treat the
problems in the geometric setting established above. This results in problems of
the same complexity as before on a half-cube or a cube, respectively. Now employing
the classical Ladyshenskaya results, one is enabled to deduce the required Hölder
results for the solution in space and time. Here the homogeneous Dirichlet condition
allows us establish global Hölder continuity from the known Hölder continuity on
the connected components of the intersection of Ω with suitable domains.
Up to this point, the considerations are restricted to initial value zero and, as
mentioned before, homogeneous Dirichlet conditions. In Ch. 4 we deviate from this
and admit nonzero initial values together with inhomogeneous Dirichlet data. Since
one can show (cf. Theorem 4.3) that in our geometric setting the Dirichlet boundary
part D is a (n−1)-set in the sense of Jonsson/Wallin [37], one may apply their deep
restriction/extension results for Sobolev spaces. This allows again to prove Hölder
regularity for the solution in space and time also in the inhomogeneous case. In
Ch. 5 we give a typical application of the Hölder result by proving global existence
and uniqueness for a corresponding nonlinear problem, whereas in Ch. 6, a link to
optimal control theory is established. We end with some concluding remarks.

2. The result.

2.1. Notations, general assumptions. In this paper the symbol J always stands
for the time interval ]T0, T1[, which we assume as fixed. The roman letters x, y, z
are reserved for points in Rn (n > 1), whereas the actual components of x will
be denoted by italics x1, x2, . . . , xn. For our model constellations, we define the
n-dimensional unit cube K̂ := {x: ‖x‖∞ < 1}, whereas by K we denote the strictly
“lower” half cube K̂ ∩ {x : xn < 0}. The upper plate of K is called Σ = K̂ ∩
{x : xn = 0} and Σ0 is the “left half” of Σ, i.e., Σ0 = Σ ∩ {x : xn−1 ≤ 0}. Finally,
by Hn−1 we denote the (n− 1)-dimensional Hausdorff measure, cf. [18, Ch. 2].

Definition 2.1. The symbol Mn denotes the set of real n × n-matrices, and
Mn(κ0, κ1) stands for all matrices % from Mn which satisfy the condition

κ0‖z‖2 ≤
n∑

i,j=1

%i,jzjzi ≤ κ1‖z‖2, z = (z1, . . . , zn) ∈ Rn, (2.1)

for some κ0, κ1 > 0. We denote the set of measurable mappings µ : J×Ω→Mn (in
the sequel usually identified with the mapping J 3 t 7→ µ(t, ·)) taking their values
in the set Mn(κ0, κ1) by Mn(κ0, κ1) in all what follows.

Moreover, throughout this article the following is supposed to hold.
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Assumption 2.2. • Ω ⊆ Rn is a bounded domain and D (Dirichlet) is a closed
subset of ∂Ω (which may be empty). In all what follows, ∂Ω\D will be denoted
by N (Neumann).

• The coefficient function µ belongs to Mn(κ0, κ1) for some fixed κ0, κ1 > 0.

Remark 2.3. Concerning the notions “Lipschitz domain” and “domain with Lips-
chitz boundary” (synonymous: strong Lipschitz domain) we follow the terminology
of Grisvard [27, Ch. 1.2], see also [40, Ch. 1.1.9].

Let us introduce the basic assumption on Ω and D which will define our geomet-
rical framework and which is of fundamental importance in the sequel.

Assumption 2.4. I) If x ∈ (∂Ω \ N), there is a domain Ux =: U with x ∈ U ,
such that U ∩ N = ∅ and U ∩ Ω has only finitely many connected compo-
nents V1, . . . , Vk, where x is a limit point of each Vj. Moreover, for every
j ∈ {1, . . . , k}, there exists a number τj > 0, an open neighbourhood Uj
of x satisfying Vj ⊆ Uj ⊆ U , and a bi-Lipschitz mapping φj, defined on
an open neighbourhood of Uj into Rn, such that φj(x) = 0, φj(Uj) = τjK̂,
φj(Vj) = τjK and φj(∂Vj ∩ Uj) = τjΣ.

II) For each point x ∈ N there is an open neighbourhood Ux =: U of x, a number
τx =: τ > 0 and a bi-Lipschitz mapping φx =: φ from an open neighbourhood
of U into Rn, such that φ(x) = 0 ∈ Rn, φ(U) = τK̂, φ(U ∩ Ω) = τK and
φ(∂Ω ∩ U) = τΣ.
a) If x ∈ N , then U does not intersect D, i.e., φ(D ∩ U) = ∅.
b) If x ∈ N ∩D, then φ(D ∩ U) = τΣ0.

III) Each of the occurring mappings φ is, in addition, volume-preserving.

Figure 1. The figure shows (locally) an admissable geometric con-
stellation around a Dirichlet point – here violating the Lipschitz
condition of the domain

Remark 2.5. i) Primarily, Assumption 2.4 gives a typology of boundary points
of Ω in the following sense: I) sets the conditions for points from the relative in-
terior of the Dirichlet part, while IIa) is a condition for the Neumann boundary
points and IIb) gives a condition for points from the border between Dirichlet
and Neumann boundary part. In fact, this latter condition goes back to the
paper of Gröger [28]. A simplifying topological characterization of Gröger’s
condition in case of space dimensions n = 2 and n = 3 is given in [32, Ch. 5].

ii) Note that Assumption 2.4 I) in particular demands that every connected com-
ponent Vj of U ∩Ω satisfies the assumptions for the Dirichlet boundary part of
a Lipschitz domain on its own. Setting V := U ∩ Ω in II), we find ∂V ∩ U =
∂(Ω ∩ U) ∩ U = ∂Ω ∩ U , which is the analogue to ∂Vj ∩ Uj in I) and shows
compatibility of the conditions on the mappings on τΣ in I) and II).
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iii) The inclusions ∂Vj ⊂ Vj ⊂ Uj imply the disjoint union ∂Vj = (∂Vj ∩ Uj) ∪
(∂Vj ∩ ∂Uj). Thus, ∂Vj ∩ Uj is a distinguished part of ∂Vj . Moreover, it is
indeed not really necessary to demand the properties φ(U ∩ ∂Ω) = τΣ and
φj(∂Vj ∩ Uj) = τjΣ – they follow from the other ones by purely topological
reasons. We have added them only to be at this point more suggestive, see also
the previous item of this remark.

iv) In particular, all domains with Lipschitz boundary (strong Lipschitz domains)
admit bi-Lipschitzian boundary charts which are volume preserving: if, after a
shift and an orthogonal transformation, the domain lies locally beyond a graph
of a Lipschitz function ψ, one defines

φ(x1, . . . , xn) = (x1 − ψ(x2, . . . , xn), x2, . . . , xn).

This way, the mapping φ obviously is bi-Lipschitz and the determinant of its
Jacobian is identically 1.

v) Note that the additional property volume-preserving also has been required in
several similar contexts (see [25] and [29]). It turns out that the property bi-
Lipschitz together with volume-preserving is not a too restrictive condition. In
particular, there are bi-Lipschitzian, volume-preserving mappings – although
not easy to construct – which map the ball onto the cylinder, the ball onto the
cube and the ball onto the half ball, see [24], see also [19]. The general message
is that this class of transformations has enough flexibility to map “non-smooth”
objects onto smooth ones.

a

Figure 2. The – topologically regularized – double beam is the
the prototype of a domain which is Lipschitzian, but not strong
Lipschitzian. Moroever, a boundary chart around a may be con-
structed also as a volume-preserving one, cf. [33, Ch. 7].

In the following, all considered space are real ones.

Definition 2.6. Let Λ be a bounded open set, and let F be a closed part of ∂Λ.
For 1 ≤ q <∞ we define W 1,q

F (Λ) as the closure of

C∞F (Λ) := {ψ|Λ : ψ ∈ C∞0 (Rn), supp(ψ) ∩ F = ∅} (2.2)

in the real Sobolev space W 1,q(Λ). If F = ∂Λ, then we write W 1,q
F (Λ) = W 1,q

∂Λ (Λ) =
W 1,q

0 (Λ).

If Λ is a Lipschitz domain and F = ∅, then W 1,q
F (Λ) equals the usual Sobolev

space W 1,q(Λ). The latter follows from the fact that, for Lipschitz domains, the set
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C∞∅ (Λ) is dense in W 1,q(Λ), cf. [27, Thm. 1.4.2.1]. The space W−1,q
F (Λ) is defined

as the space of continuous linear forms on W 1,q′

F (Λ) for 1/q + 1/q′ = 1.

Definition 2.7. For O ⊂ Rn and κ ∈ ]0, 1], following [4, Ch. II.1.1], we define the
Hölder space Cκ(O) as follows:

Cκ(O) :=
{
ψ : ψ is a bounded function on O, sup

x,y∈O,x 6=y

|ψ(x)− ψ(y)|
‖x− y‖κ <∞

}

with the norm

‖ψ‖Cκ(O) = ‖ψ‖C(O) + |ψ|κ,O := sup
x∈O
|ψ(x)|+ sup

x,y∈O,x 6=y

|ψ(x)− ψ(y)|
‖x− y‖κ .

We call | · |κ,O the Hölder seminorm.

Remark 2.8. i) It is clear that any function ψ from Cκ(O) is necessarily uni-
formly continuous. Therefore, it admits a (uniquely determined) uniformly
continuous extension ψ̂ to the closure O, for which |ψ|κ,O = |ψ̂|κ,O and thus
‖ψ‖Cκ(O) = ‖ψ̂‖Cκ(O) holds.

ii) If O ⊂ Rn is an open set, the condition of boundedness may be replaced by
only essential boundedness.

iii) If O is bounded, then it suffices to have supx,y∈O,0<‖x−y‖<ε
|ψ(x)−ψ(y)|
‖x−y‖κ for one

ε > 0 under control in order to show Hölder continuity. Namely, one has for
x, y ∈ O with ‖x−y‖ ≥ ε the trivial estimate |ψ(x)−ψ(y)| ≤ 2

εκ sup |ψ|‖x−y‖κ.
iv) The reader should carefully notice that in [39, Ch. I.1] there are two notions

of Hölder continuity in use, one coinciding with ours.

Furthermore, for the sake of clarity, we will write 〈·, ·〉X for the dual pairing of
elements of X and its dual X ′. For a (vector-valued) function u, defined on J , we
denote by u′ its derivative in the sense of vector valued distributions, cf. [4, Ch.
III.1] and define

W 1,s(J ;X) := {v : v, v′ ∈ Ls(J ;X)}.
The symbol ∇ always stands for the spatial gradient – even if the corresponding
function depends on space and time.

Definition 2.9. Let Λ be a bounded domain, and let F ⊆ ∂Λ be closed. Let
ρ : Λ → Mn be a bounded Lebesgue-measurable function. Then we define −∇ ·
ρ∇+ 1 : W 1,2

F (Λ)→W−1,2
F (Λ) by

〈
(
−∇ · ρ∇+ 1

)
ψ,ϕ〉W 1,2

F (Λ) :=
∫

Λ

ρ∇ψ · ∇ϕ+ ψϕ dx, ψ, ϕ ∈W 1,2
F (Λ). (2.3)

We maintain the notation of the operator when the range space is restricted to
W−1,q
F (Λ) for q > 2. By Hölder’s inquality, the domain of this restricted operator

always contains the space W 1,q
F (Λ) ⊃ C∞F (Λ). For a bounded measurable function

σ : J × Λ → Mn, we write A(σ) for the operator defined by (A(σ)u)(t) = −∇ ·
σ(t, ·)∇u(t) + u(t) for u ∈ L2(J ;W 1,2

D (Ω)), taking its values in L2(J ;W−1,2
D (Ω)),

with the analogous restriction conventions for the spatial operator as for the time-
independent case.



6

2.2. Formulation of the main result. In order to establish the frame in which
our main result can be formulated, we quote the following classical result, cf. [12,
Ch. XVIII.3 and XVIII.4.2].

Proposition 2.10. Suppose that V ↪→ H ↪→ V ′ is a Gelfand triplet of real Hilbert
spaces with dense embeddings. Let {at}t∈J be a family of bilinear forms on V the
norms of which are uniformly bounded and such that each at is coercive with a
coercivity constant κ, also uniformly in t ∈ J . Suppose that the mapping J 3 t 7→
at(ψ,ϕ) is measurable for all ψ,ϕ ∈ V . Then, for any f ∈ L2(J ;V ′), there is a
unique u = uf ∈ L2(J ;V ) ∩W 1,2(J ;V ′) such that u(T0) = 0 and

〈u′(t), ψ〉V + at(u(t), ψ) = 〈f(t), ψ〉V , ψ ∈ V (2.4)

holds true for almost all t ∈ J . Moreover, u admits the following estimates:

‖u‖L2(J;V ) ≤
1
κ
‖f‖L2(J;V ′), ‖u‖C(J;H) ≤

√
1
κ
‖f‖L2(J;V ′). (2.5)

Thus, the mapping which assigns to the right hand side f ∈ L2(J ;V ′) the solution u
of (2.4) with initial value u(T0) = 0 is well-defined and continuous from L2(J ;V ′)

into L2(J ;V ) ∩ C(J ;H), and its norm is not larger than 1
κ +

√
1
κ .

Remark 2.11. Defining, for t ∈ J , the operator A(t) : V → V ′ by

〈A(t)w,ψ〉V = at(w,ψ), w, ψ ∈ V, (2.6)

equation (2.4) reads as

〈u′(t), ψ〉V + 〈A(t)u(t), ψ〉V = 〈f(t), ψ〉V , ψ ∈ V (2.7)

for almost almost all t ∈ J .

In the following considerations using Proposition 2.10, the spaces W 1,2
F (Λ) always

play the role of V , and the form at will be of type

W 1,2
F (Λ)×W 1,2

F (Λ) 3 (ψ,ϕ) 7→
∫

Λ

σ(t, ·)∇ψ · ∇ϕ+ ψϕ dx (2.8)

for some coefficient function σ : J×Λ→Mn. Clearly, the resulting operator A(t) is
then the corresponding divergence operator −∇·σ(t, ·)∇+1 on W 1,2

F (Λ). Note that,
vice-versa, −∇·σ(t, ·)∇+1 also induces a family of forms at on W 1,2

F (Λ)×W 1,2
F (Λ).

Remark 2.12. Let us point out that the following considerations may also be
carried out for the operators −∇ · σ(t, ·)∇ alone, if F 6= ∅. The corresponding form
(as in (2.8)) is then, via the Poincaré-inequality, still coercive on W 1,2

F (Λ) (see [6,
Rem. 3.4] for the Poincaré-inequality, see also Theorem 4.3), while the rest of the
considerations remains untouched in its essence.

The subsequent theorem contains the main result of this paper.

Theorem 2.13. Assume that Ω and D are given and fulfil Assumption 2.4, and
let µ ∈Mn(κ0, κ1) for some κ0, κ1 > 0. Let q > n and s > 2(1− n

q )−1 be fixed and
f ∈ Ls(J ;W−1,q

D (Ω)). Then the solution u = uf of the equation

u′(t)−∇ · µ(t, ·)∇u(t) + u(t) = f(t), u(T0) = 0 (2.9)

in the sense of Proposition 2.10/Remark 2.11 exists and is unique. Moreover, let
B denote the unit ball in Ls(J ;W−1,q

D (Ω)). Then the following holds true:
i) The supremum supf∈B ‖uf‖L∞(J×Ω) is finite and depends exclusively on κ0, κ1.
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ii) There is an α > 0, such that even supf∈B ‖uf‖Cα(J×Ω) is finite and depends
exclusively on κ0, κ1. In other words: Let (∂t + A(µ))−1 denote the linear
operator which assigns to the right-hand side of the parabolic equation in (2.9)
the solution u = uf with initial value u0 = 0. Then the mapping

(∂t +A(µ))−1 : Ls(J ;W−1,q
D (Ω))→ Cα(J × Ω) (2.10)

is well-defined and continuous for some α. For fixed κ0, κ1, the mappings (2.10)
are equicontinuous for all coefficient functions µ ∈Mn(κ0, κ1).

Remark 2.14. It is straight-forward to check that for q, s ≥ 2, Ls(J ;W−1,q
D (Ω))

continuously injects into L2(J ;W−1,2
D (Ω)) with embedding constant |Ω| q−2

2q |J | s−2
2s .

In this sense, right-hand sides f from Ls(J ;W−1,q
D (Ω)) are implicitly always to be

understood as right-hand sides from L2(J ;W−1,2
D (Ω)) without further comment in

the sequel.

3. The proof. Let us give the proof of Theorem 2.13. We first collect some clas-
sical results of Ladyzhenskaya et al. [39] adopted for our cause. The basis of our
considerations will be Corollaries 3.5 and 3.7 which are based on space-time lo-
cal estimates for so-called generalized solutions of corresponding equations in [39,
Ch. III]. However, in order to use those, we invest quite some work and introduce a
non-trivial localization-procedure for (2.9) which allows to transform the localized
equation onto a very regular object, namely the lower half-cubes τK and (via re-
flection) the full cubes τK̂ in such a way that the resulting equation still provides
a generalized equation in the sense of Ladyzhenskaya.

3.1. Classical results. We begin by introducing the notion of a generalized equa-
tion. The crucial link to the concept of Lions is the space V 1,0

2 (J×Ξ) introduced in
the next definition, which corresponds to the spaces L2(J ;V ) ∩ C(J ;H) in Propo-
sition 2.10.

Definition 3.1. Let Ξ ⊂ Rn be a bounded Lipschitz domain.
i) Let V 1,0

2 (J ×Ξ) be the space L2(J ;W 1,2(Ξ))∩C(J ;L2(Ξ)), equipped with the
norm

v 7→ sup
t∈J
‖v(t, ·)‖L2(Ξ) +

(∫

J

∫

Ξ

v(t, ·)2 + |∇v(t, ·)|2dx dt
)1/2

.

ii) Suppose that f = (f0, f1, . . . , fn) ∈ L2(J ;L2(Ξ; Rn+1) ' L2(J × Ξ; Rn+1). We
say that a function u ∈ V 1,0

2 (J × Ξ) is a generalized solution of the equation

u′ −
n∑

i,j=1

∂

∂xi

(
µij

∂u

∂xj

)
+ u =

n∑

k=1

∂fk

∂xk
+ f0, (3.1)

if for every ϑ ∈W 1,2
0 (J × Ξ) it holds for almost all T ∈ J the integral identity

0 =
∫

Ξ

u(T, x)ϑ(T, x) dx−
∫ T

T0

∫

Ξ

u
∂ϑ

∂t
dxdt+

∫ T

T0

∫

Ξ

n∑

i,j=1

µij
∂u

∂xj

∂ϑ

∂xi
dxdt

+
∫ T

T0

∫

Ξ

uϑ dx dt−
∫ T

T0

∫

Ξ

f0ϑ+
n∑

k=1

fk
∂ϑ

∂xk
dxdt.

(3.2)

We denote the right-hand side in (3.2) by N(u, ϑ, t) for later reference. Finally,
we say that u ∈ V 1,0

2 (J × Ξ) is a generalized solution of the equation (3.1)
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with initial value u0 = 0, if the integral identity (3.2) is satisfied even for all
functions ϑ ∈W 1,2

J×∂Ξ
(J × Ξ).

Remark 3.2. Integrating the term
∫ T
T0

∫
Ξ
u∂ϑ∂t dxdt formally by parts with respect

to time, the term
∫

Ξ
u(T0, x)ϑ(T0, x) dx appears, which is not compensated by other

terms in (3.2). Thus, if test functions ϑ are admitted which are nonzero on {T0}×Ξ,
such as those from W 1,2

J×∂Ξ
(J × Ξ), this enforces u(T0, ·) to be the zero function –

on a formal level.

The next results are in their essence space-time local estimates for generalized
solutions if the right-hand side in (3.1) is regular enough. However, for initial value
0 we may re-obtain the estimates for the whole time interval J , see Corollaries 3.5
and 3.7.

Proposition 3.3. [39, Ch. III, Thm. 8.1] Let Ξ ⊂ Rn be a bounded Lipschitz
domain, and let µ be from Mn(κ0, κ1). Fix q > n and s > 2(1− n

q )−1. Let the set
F be given such that

F ⊆
{
f ∈ Ls(J ;Lq(Ξ; Rn+1)) : ‖f‖Ls(J;Lq(Ξ;Rn+1)) ≤ C

}
, (3.3)

for some C ≥ 0. Moreover, assume that for every f ∈ F a generalized solution
u = uf of (3.1) exists and {uf : f ∈ F} is contained in a ball around 0 in V 1,0

2 (J×Ξ)
with radius rV .

i) Let Ξ0 ⊂ Ξ be a subdomain which has a positive distance d < T1 − T0 to ∂Ξ.
Then supf∈F ‖uf‖L∞(]T0+d,T1[×Ξ0) is finite, and depends only on n, κ0, κ1, rV , d
and C, cf. (2.1).

ii) Let F be a closed part of ∂Ξ and let all uf belong to the space L2(J ;W 1,2
F (Ξ)).

If a subdomain Ξ0 of Ξ has a positive distance d < T1−T0 to ∂Ξ \F , then also
supf∈F ‖uf‖L∞(]T0+d,T1[×Ξ0) is finite, and depends only on κ0, κ1, d, rV and C.

Remark 3.4. For Lipschitz domains Ξ the usual trace operator tr : W 1,2(Ξ) →
L2(∂Ξ;Hn−1) exists and is continuous, cf. [34, Ch. 3.1]. Hence, if F is any closed
subset of ∂Ξ, then the mapping W 1,2(Ξ) 3 ψ 7→ trψ|F ∈ L2(F ;Hn−1) also is
well-defined and continuous. Moreover, it is clear that any function ψ ∈ W 1,2

F (Ξ)
has trace 0 on F , since this is obviously true for all functions ψ ∈ C∞F (Ξ). This
shows that, for any function w ∈ L2(J ;W 1,2

F (Ξ)), the function J 3 t 7→ tr(w(t, ·))|F
belongs to L2(J ;L2(F,Hn−1)) ∼ L2(J × F ; dt ⊗Hn−1) and is negligible on J × F
with respect to the measure dt ⊗ Hn−1. Namely, if w ∈ L2(J ;W 1,2

F (Ξ)), then, for
almost every t ∈ J , the function tr(w(t, ·))|F is a negligible one on F (with respect
to the Hausdorff measure Hd−1). In fact, this is the link to the suppositions in [39,
Ch. III, Thm. 8.1].

Corollary 3.5. Suppose the general conditions of Proposition 3.3 and consider the
case of initial value 0 for the generalized solutions.

i) Let Ξ0 ⊂ Ξ be a subdomain which has a positive distance d to ∂Ξ. Then for the
generalized solutions uf, the supremum supf∈F ‖uf‖L∞(]T0,T1[×Ξ0) is finite and
depends only on n, κ0, κ1, d, rV and C, cf. (2.1) and (3.3).

ii) Let F be a closed part of ∂Ξ and let all uf belong to the space L2(J ;W 1,2
F (Ξ)). If

a subdomain Ξ0 has a positive distance d to ∂Ξ\F then supf∈F ‖uf‖L∞(]T0,T1[×Ξ0)

is finite and depends only on κ0, κ1, d, rV and C.
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Proof. One associates to the problem (3.1) another one on the interval J0 := ]T0 −
d− 1, T1[ in the following manner: one defines a coefficient function µ̌ on J0×Ξ by

µ̌(t, x) =

{
κ0+κ1

2 id if t ∈ J0 \ J,
µ(t, x) else.

Moreover, one defines a new right-hand side f̌ as 0 on J0 \J and as f on J and finds
the solution ǔ on J0×Ξ with u(T0−d−1) = 0. This solution ǔ is zero on (J0\J)×Ξ
and coincides with u on J × Ξ. Applying Proposition 3.3 i) to the function ǔ one
gets i). Point ii) is deduced analogously from ii) of the foregoing Proposition.

Proposition 3.6. [39, Ch. III, Thm. 10.1] Let Ξ ⊂ Rn be a bounded, convex domain
(and, hence, a Lipschitz domain), and suppose µ ∈ Mn(κ0, κ1). Fix q > n and
s > 2(1 − n

q )−1. Assume that F is again a subset of the set in (3.3), such that
for every f ∈ F a generalized solution u = uf of (3.1) exists and that this set of
generalized solutions is contained in a ball around 0 in L∞(J × Ξ) with radius r∞.
Then there is an α > 0 such that the following is true:

i) For every subdomain Ξ0 ⊂ Ξ having a positive distance d ∈ ]0, T1 − T0[ to
the boundary ∂Ξ, supf∈F ‖uf‖Cα(]T0+d,T1[×Ξ0) is finite and depends only on
n, κ0, κ1, d, r∞ and C, cf. (2.1) and (3.3).

ii) Let F be a closed part of ∂Ξ and suppose that all uf belong to the space
L2(J ;W 1,2

F (Ξ)). If a subdomain Ξ0 of Ξ has a positive distance d ∈]0, T1 − T0[
to ∂Ξ\F , then the supremum supf∈F ‖uf‖Cα(]T0+d,T1[×Ξ0) is finite and depends
only on n, κ0, κ1, d, r∞ and C.

Corollary 3.7. Suppose the assumptions of Proposition 3.6 to hold and assume,
additionally, that the initial value u0 of the solution is zero. Then there is an α > 0
such that the following is true:

i) For every subdomain Ξ0 ⊂ Ξ having a positive distance d to the boundary ∂Ξ,
supf∈F ‖uf‖Cα(]T0,T1[×Ξ0) is finite and depends only on n, κ0, κ1, d, r∞ and C,
cf. (2.1) and (3.3).

ii) Let F be a closed part of ∂Ξ and suppose that each uf belongs to the space
L2(J ;W 1,2

F (Ξ)). Then, for any subdomain Ξ0 with a positive distance d to
∂Ξ \ F , supf∈F ‖uf‖Cα(]T0,T1[×Ξ0) is finite and depends only on n, κ0, κ1, d, r∞
and C.

The proof works analogously to the one of Corollary 3.5.

Remark 3.8. In fact, the quoted result holds for much more general domains as
convex ones. However, we have good reasons to restrict ourselves to this case:

• If Ξ is convex and B ⊂ Rn is a ball, then Ξ ∩ B is still convex and therefor
always consists of only one component. Thus, one may deal with the classical
notion of Hölder continuity – and not of the much more sophisticated one
in [39, Ch. I]

• Secondly, if Ξ is convex, then every point x ∈ ∂Ξ admits a supporting hy-
perplane such that Ξ lies on one side of this hyperplane. Thus, for any ball
B ⊂ Rn with center x, the intersection Ξ∩B has at most half the measure of
B, what makes the crucial “Condition A” ([39, Ch. 1, p.9]) obviously fulfilled
in our context, with the constant θ0 = 1

2 – universal for all convex domains
and all balls.
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• We will need the result only in case of balls, cubes and half cubes, serving as
our local model sets.

The next proposition establishes the link between generalized solutions and solu-
tions in the sense of Proposition 2.10. For doing so, we restrict ourselves to the case
of right hand sides which are step functions in time only (these being dense in the
whole space under consideration). The reason is as follows: By a classical theorem,
the elements f from W−1,q

D (Ω) may be represented as the sum of the divergence of
a Rn-valued function f ∈ Lq and f itself. The problem is that this representation is
highly non-unique and, the worse, not obviously linear. So we preferred to restrict
ourselves to step functions and to use the corresponding representation theorem
separately on any of the constancy intervals only.

Proposition 3.9. Let Ξ ⊂ Rn be a bounded Lipschitz domain, and F be a closed
portion of the boundary ∂Ξ. Put V = W 1,2

F (Ξ), H := L2(Ξ), such that V ′ =
W−1,2
F (Ξ). Let a bounded, elliptic coefficient function σ on J × Ξ be given and put

tt(ψ,ϕ) =
∫

Ξ
σ(t, ·)∇ψ · ∇ϕ + ψϕdx for ψ,ϕ ∈ W 1,2

F (Ξ). Fix q, s ≥ 2. Assume
that f ∈ Ls(J ;W−1,q

F (Ξ)) is a step function, i.e., there exists a partition (Jk)k of J
such that f =

∑
k χkfk for fk ∈ W−1,q

F (Ξ) – χk being the indicator function of the
interval Jk.

i) For every k, there is fk = (fk,0, . . . , fk,n) ∈ Lq(Ξ; Rn+1) such that fk is repre-
sented by

〈fk, ϕ〉W 1,q′
F (Ξ)

=
∫

Ξ

fk,0ϕ−
n∑

j=1

fk,j
∂ϕ

∂xj
dx, ϕ ∈W 1,q′

F (Ξ) (3.4)

and with ‖fk‖Lq(Ξ;Rn+1) ≤ 2‖fk‖W−1,q
F (Ξ). Setting f =

∑
k χJk fk, this conse-

quently implies

‖f‖Ls(J;Lq(Ξ;Rn+1)) ≤ 2‖f‖Ls(J;W−1,q
F (Ξ)).

ii) The solution with initial value 0 of (2.4)/ (2.7), there taking the forms tt and
right-hand side f , is a generalized solution of (3.1) with f =

∑
k χJk fk and

µ = σ.

A proof of this is given in the Appendix.

3.2. Preliminaries. One of the main technical ingredients of our proof is a certain
localization procedure of the equation (2.9). In contrast to [28] and many following
papers it is not carried out by multiplying the solution with suitable cut-off functions
and afterwards deriving a corresponding equation for the product. We only restrict
the function to open subsets of the domain and deduce a corresponding equation for
this restriction – in an adequate weak formulation. In fact, this idea was developed
in [17] for elliptic problems.

The following lemmata allows us in the sequel to perform this in an appropriate
manner. The first lemma covers the cases of neighbourhoods of interior points of Ω
and from the Neumann boundary (i.e., satisfying case II) of Assumption 2.4).

Lemma 3.10. Let Ω ⊂ Rn be a domain and D ⊂ ∂Ω be a relatively closed subset.
Let U ⊂ Rn be open. Set Λ := U ∩ Ω, S := N ∩ U and E := ∂Λ \ S.

i) Then S is open in ∂Λ and E is closed.
ii) Let p ∈ [1,∞). Then there exists a unique isometric map EU : W 1,p

E (Λ) →
W 1,p
D (Ω) such that EUw is the extension of w to Ω by 0 for all w ∈ C∞E (Λ).
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iii) Set R := D ∩ U . Then R ⊂ ∂Λ and R ⊆ D ∩ E. Moreover, u|Λ ∈ W 1,p
R (Λ), if

u ∈W 1,p
D (Ω). Thus, the restriction operator from W 1,p

D (Ω) is a continuous one
into W 1,p

R (Λ) with norm not larger than 1.

Proof. i) There exists an open V ⊂ Rn such that (∂Ω \ D) = V ∩ ∂Ω. Then
S = (∂Ω \ D) ∩ U = U ∩ V ∩ ∂Ω ⊂ U ∩ V ∩ ∂Λ. But ∂Λ ⊂ ∂Ω ∪ ∂U . Therefore
U ∩ V ∩ ∂Λ ⊂ U ∩ V ∩ ∂Ω. So (U ∩ V ) ∩ ∂Λ = U ∩ V ∩ ∂Ω = S, and S is open in
∂Λ.
ii) Let w ∈ C∞c (Rn) with suppw ∩ E = ∅. Since

Λ = Λ ∪ ∂Λ = Λ ∪ S ∪ E ⊂ U ∪ E
and E ∩ suppw = ∅ it follows that Λ ∩ suppw ⊆ U . Therefore there exists an
η ∈ C∞c (Rn) such that η|Λ∩suppw = 1 and supp η ⊂ U . Consider the function ηw.
First, observe that U∩D ⊂ E – this results from the relations U∩D ⊆ U∩∂Ω ⊆ ∂Λ
and U ∩D∩S = U ∩

(
D∩(∂Ω\D)

)
= ∅. Hence supp(ηw)∩D = ∅ and ηw ∈ C∞D (Ω).

Secondly, one has (ηw)|Λ = w|Λ. Moreover, if x ∈ Ω \Λ, then x ∈ U c and η(x) = 0.
So

(ηw)|Ω(x) =

{
w|Λ(x) if x ∈ Λ

0 if x 6∈ Λ
for all x ∈ Ω. Hence

‖(ηw)|Ω‖W 1,p
D (Ω) = ‖(ηw)|Ω‖W 1,p(Ω) = ‖w|Λ‖W 1,p(Λ) = ‖w|Λ‖W 1,p

E (Λ).

Therefore there exists a unique isometric map EU : W 1,p
E (Λ) → W 1,p

D (Ω) such that
EUw is the extension of w to Ω by 0 for all w ∈ C∞E (Λ).
iii) Observe that D ∩U ⊂ ∂Ω∩U ⊂ ∂Λ. Since ∂Λ is closed, this gives R ⊂ ∂Λ. On
the other hand, R = D ∩ U ⊂ D = D, since D is closed. Let us show the assertion
R ⊂ E: in ii) we have already proved U ∩ D ⊆ E, what implies R ⊆ E, thanks
to the closedness of E. Hence, if u ∈ C∞D (Ω), then the restriction u|Λ belongs to
C∞R (Λ) with the obvious estimate ‖u|Λ‖W 1,p(Λ) = ‖u|Λ‖W 1,p

R (Λ) ≤ ‖u‖W 1,p
D (Ω) =

‖u‖W 1,p(Ω).

In case I) in Assumption 2.4 the local model set is allowed to be disconnected.
Nevertheless, one can also in this case find an adequate localization procedure. In
the spirit of Remark 2.5, this relies on the localization procedure for each of the
connected components.

Lemma 3.11. Let p ∈ [1,∞[. In the terminology of Assumption 2.4 I) the following
holds true for each j ∈ {1, . . . , k}:

i) There is an isometric operator Ej which extends any function from W 1,p
0 (Vj)

by 0 to a function from W 1,p
0 (Ω) ⊆W 1,p

D (Ω).
ii) We have ∂Vj ⊆ ∂(Uj ∩ Ω).

iii) Let Rj = ∂Vj ∩ Uj. Then Rj ⊂ ∂Vj and one has ψ|Vj ∈ W 1,p
Rj

(Vj), if ψ ∈
W 1,p
D (Ω).

Proof. i) The support of every function from C∞0 (Vj) has a positive distance to ∂Ω;
thus the extension by zero leads to a function from C∞0 (Ω) in this case. The general
claim follows by density.
ii) By the definition of Vj it is clear that ∂Vj is contained in Uj ∩ Ω. Now suppose
that a point y ∈ ∂Vj lies in Uj ∩Ω (i.e., not on ∂(Uj ∩Ω)). Since Uj ∩Ω is open, we
find an open ball B containing y which is still a subset of Uj ∩ Ω. By supposition,
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y is a boundary point of Vj , hence Vj ∩B 6= ∅. Thus, the connectedness of both Vj
and B implies that Vj ∪B ⊃ Vj is also open and connected – and, hence, identical
with Vj . But then B ⊂ Vj which is a contradiction to y being a boundary point of
Vj . So indeed ∂Vj ⊆ ∂(Uj ∩ Ω).
iii) The inclusion Rj ⊂ ∂Vj is obvious. Let u ∈ W 1,p

D (Ω). Applying Lemma 3.10
with U = Uj shows that u|Uj∩Ω ∈W 1,p

R (Uj ∩Ω) for R = D ∩ Uj . We now restrict u
further to Vj . By ii), we have ∂Vj ⊂ ∂(Uj ∩Ω). Together with R ∩ ∂Vj = Uj ∩ ∂Vj
due to Uj ∩ ∂Vj ⊆ U ∩ ∂Vj ⊂ D, we obtain u|Vj ∈W 1,p

Rj
(Vj).

We aim lastly at equations on τK and τK̂ for localized equations in neighbour-
hoods of boundary points of Ω, to be achieved via the bi-Lipschitzian transforma-
tions occurring in Assumption 2.4. Hence it is, of course, of interest onto which sets
the different boundary parts are mapped by these transformations:

Lemma 3.12. Let x ∈ ∂Ω.
• If x satisfies Assumption 2.4 I), then for each j ∈ {1, . . . , k} one has φj(∂Vj) =
∂(τjK) and, in the terminology of Lemma 3.11, φj(Rj) = φj(∂Vj ∩ Uj) = τjΣ.

• If x satisfies Assumption 2.4 II), one has in the terminology of Lemma 3.10
(putting U := Ux and φ := φx):

i) φ(E) = ∂(τK) \ τΣ and φ(R) = ∅ in case IIa),
ii) φ(E) = ∂(τK) \ (τΣ \ τΣ0) and φ(R) = τΣ0 in case IIb).

Proof. This is straight-forward from the mapping properties of the transformations
φx and φj .

It turns out that the model constellation in Assumption 2.4 IIb) is indeed sug-
gestive, but not optimal for further analytical purpose. We show in the next lemma
that it can be replaced by another one which is much more controllable later, cf. [32,
Sect. 4.2].

Lemma 3.13. For every τ > 0, there exists a volume-preserving, bi-Lipschitzian
mapping ςn : Rn → Rn that maps τK onto τK, ∂(τK)\(τΣ\τΣ0) onto ∂(τK)\τΣ
and τΣ0 onto the set ] − τ, τ [n−2×{−τ} × [−τ, 0]. Finally, ςn( τ2K) = τK with
K :=]− 1

2 ,
1
2 [n−2×]− 1, 0[×]− 1

2 , 0[.

Proof. Let us start with the case n = 2, thereby focussing first on the case τ = 1.
We define on the lower halfspace {(x, y) ∈ R2 : y ≤ 0}

ξ1(x, y) :=





(x− y/2, y/2), if x ≤ 0, y ≥ x,
(x/2,−x/2 + y), if x ≤ 0, y < x,

(x/2, x/2 + y), if x > 0, y < −x,
(x+ y/2, y/2), if x > 0, y ≥ −x.

Observing that ξ1 acts as the identity on the x-axis, we may define ξ1 on the upper
half space {(x, y) ∈ R2 : y > 0} by ξ1(x, y) = (x, y/2). In this way we obtain a
globally bi-Lipschitz transformation ξ1 from R2 onto itself that transforms K ∪ Σ0

onto the triangle shown in Figure 3. Next we define the bi-Lipschitz mapping
ξ2 : R2 → R2 by

ξ2(x, y) :=

{
(x, x+ 2y + 1), if x ≤ 0,
(x,−x+ 2y + 1), if x > 0,

in order to get the geometric constellation in Figure 4. If ξ3 is the (counter-



13

K_

x

y

1−1
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−1

−1 1

x

Σ0

Figure 3. K ∪ Σ0 and ξ1(K ∪ Σ0)

x

y

1−1

−1

1

Figure 4. ξ2(ξ1(K ∪ Σ0))

clockwise) rotation of π/4 around 0 ∈ R2, we thus have achieved that ξ := ξ3ξ2ξ1 :
R2 → R2 is bi-Lipschitzian and satisfies

ξ(K) =
1√
2
K̂, and ξ(Σ0) =

{−1√
2

}
×
[−1√

2
,

1√
2

]
.

Let ξ4 : R2 → R2 be the affine mapping (x, y) 7→ (
√

2x, 1√
2
y − 1

2 ). Then ς2 = ξ4ξ

is bi-Lipschitzian and maps K onto itself, ∂K \ (Σ \ Σ0) onto ∂K \ Σ, and Σ0 bi-
Lipschitzian onto {−1}×[−1, 0]. The assertion for K is verified by a straight forward
calculation. As is easy to check, the determinant of the Jacobian is identically one
almost everywhere. Hence, ς2 is volume-preserving.
If τ 6= 1, then one first applies the homothety y 7→ 1

τ y, then the mapping ς2 just
constructed for the case τ = 1 and afterwards the inverse homothety y 7→ τy.
For n ≥ 3, one simply puts ςn(x1, . . . , xn) := (x1, . . . , xn−2, ς2(xn−1, xn)).

Corollary 3.14. Suppose that Assumption 2.4 IIb) holds true. Then for every point
x from ∂D (within ∂Ω) there is a an open neighbourhood Ux, a positive number
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τ = τx and a bi-Lipschitzian, volume-preserving mapping from a neighbourhood of
Ux into Rn, which maps Ux ∩ Ω onto τK, E onto ∂(τK) \ τΣ, and R onto the set
[−τ, τ ]n−2 × {−τ} × [−τ, 0], where E,R are defined as in Lemma 3.10.

Proof. If one defines the asserted mapping as the composition ςn ◦ φx, then the
application of Lemma 3.12 and Lemma 3.13 gives the assertion.

Having the bi-Lipschitz mappings φ and ς defined above at hand, we collect prop-
erties of bi-Lipschitzian transformations if applied to the typical data of parabolic
equations as (2.9). It turns out that (volume-preserving) bi-Lipschitz mappings
essentially preserve the structure of the underlying problem.

Proposition 3.15. Let Λ be a bounded Lipschitz domain, and let F be a closed por-
tion of its boundary. Assume that ζ is a bi-Lipschitzian mapping from a neighbour-
hood of Λ into Rn. Define for any function ϕ : ζ(Λ)→ R the function Φϕ : Λ→ R
by

(Φϕ)(x) := ϕ(ζ(x)) = (ϕ ◦ ζ)(x), x ∈ Λ.

i) For every ϕ ∈ W 1,1(ζ(Λ)), the (generalized) gradient of the function ϕ ◦ ζ is
calculated for almost all x ∈ Λ as follows:

∇
(
ϕ ◦ ζ

)
(x) =




∂ζ1
∂x1

(x) . . . ∂ζn
∂x1

(x)
...

. . .
...

∂ζ1
∂xn

(x) . . . ∂ζn
∂xn

(x)







∂ϕ
∂x1

(ζ(x))
...

∂ϕ
∂xn

(ζ(x))


 = (Dζ)T (x)∇ϕ(ζ(x)).

ii) For every p ∈ ]1,∞[, the mapping Φ induces linear, topological isomorphisms

Φ1,p : W 1,p
ζ(F )(ζ(Λ))→W 1,p

F (Λ) and Φ∗1,p′ : W−1,p
F (Λ)→W−1,p

ζ(F ) (ζ(Λ))

as well as Φp : Lp(ζ(Λ))→ Lp(Λ). These are consistent for different values of
p.

iii) If α ∈ ]0, 1[, then Φ induces a topological isomorphism Φ0,α between Cα(ζ(Λ))
and Cα(Λ). The norms of Φ0,α and Φ−1

0,α only depend on the Lipschitz constants
of ζ and ζ−1.

iv) Let ρ : Λ→Mn be bounded and measurable. Then one has for every p ∈ ]1,∞[
and every pair (ψ,ϕ) ∈W 1,p(ζ(Λ))×W 1,p′(ζ(Λ)) the identity

∫

Λ

ρ∇(ψ ◦ ζ) · ∇(ϕ ◦ ζ) dx =
∫

ζ(Λ)

ρζ∇ψ · ∇ϕdy. (3.5)

with

ρζ(y) =
1

|det(Dζ)(ζ−1(y))| (Dζ)(ζ−1(y)) ρ(ζ−1(y)) (Dζ)T (ζ−1(y)) (3.6)

for almost all y ∈ ζ(Λ). Here, Dζ denotes the Jacobian of ζ and det(Dζ) the
corresponding determinant.

v) Let lζ , lζ−1 denote the Lipschitz constants of ζ and ζ−1, respectively, and assume
that ζ is volume preserving. If ρ takes its values in Mn(κ0, κ1), then ρζ takes
its values in Mn(κ̂0, κ̂1) where κ̂0 := κ0

l2
ζ−1

and κ̂1 := κ1l
2
ζ .

Proof. For i) see [40, Ch. 1.1.7]. The proof of ii) is contained in [25, Thm. 2.7/2.10].
iii) is obvious. Assertion iv) can be deduced from i), for a complete proof see [31,
Prop. 16]. v) First one observes that for a volume-preserving mapping ζ the function
|det(Dζ)(·)| is identically 1, [18, Ch. 3]. Secondly, Rademacher’s theorem shows
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that ‖Dζ‖L∞(Λ;Mn) ≤ lζ and ‖D(ζ−1)‖L∞(ζ(Λ);Mn) ≤ lζ−1 . With all this in mind,
one easily calculates for almost all y ∈ ζ(Λ) and all z ∈ Rn as follows:

‖ρζ(y)z · z‖Rn = ‖ρ(ζ−1y)(Dζ)T (ζ−1(y))z · (Dζ)T (ζ−1(y))z‖Rn
≤ κ1‖(Dζ)T (ζ−1(y))z‖2Rn ≤ κ1l

2
ζ‖z‖2Rn .

In order to deduce the lower bound, one first recalls the equality

(Dζ)(ζ−1y) =
(
Dζ−1)(y)

)−1
, (3.7)

which holds for almost all y ∈ ζ(Λ), see [18, Ch. 3.1.2 Cor. 1]. Having this at hand,
one estimates for almost all y ∈ ζ(Λ) and all z ∈ Rn

‖ρζ(y)z · z‖Rn = ‖ρ(ζ−1y)(Dζ)T (ζ−1(y))z · (Dζ)T (ζ−1(y))z‖Rn
≥ κ0‖(Dζ)T (ζ−1(y))z‖2Rn = κ0‖

(
(D(ζ−1))T (y)

)−1z‖2Rn
≥ κ0

ess supy∈ζ(Λ) ‖D(ζ−1)(y)‖2 ‖z‖
2
Rn ≥

κ0

l2ζ−1

‖z‖2Rn .

Remark 3.16. If µ is a coefficient function on J × Λ and ζ : Λ → Ξ is bi-
Lipschitzian, then we denote by µζ the coefficient function t 7→ µζ(t, ·) on J × Ξ
given as in (3.6).

3.3. Localization, transformation, reflection. Now we have the principle ideas
at hand and will first localize the parabolic equation suitably in order to consider
it on smaller sets. The resulting equations are then transformed by bi-Lipschitzian
mappings, corresponding of course to Assumption 2.4, to equations on the half
cube K. In the case of points from the Neumann boundary part, one finally needs
a reflection argument, which will be established in the last part of this subsection.

Having this in mind, let us now localize the equation

〈u′, ϕ〉W 1,2
D (Ω)−〈∇ ·µ(t, ·)∇u, ϕ〉W 1,2

D (Ω) +
∫

Ω

uϕdx = 〈f, ϕ〉W 1,2
D (Ω), ϕ ∈W 1,2

D (Ω),

(3.8)
where f ∈ L2(J ;W−1,2

D (Ω)). Note that a solution u to this equation belongs to the
space L2(J ;W 1,2

D (Ω)) ∩W 1,2(J ;W−1,2
D (Ω)) ↪→ C(J ;L2(Ω)), cf. Proposition 2.10.

Let us fix an arbitrary point x ∈ Ω and consider an open neighbourhood U of x. If
x ∈ Ω, we assume U ⊂ Ω. We will now localize the equation around x according
to the constructions from Lemmata 3.10 (for the first two cases) and 3.11 (the last
case), respectively:

• If x ∈ Ω, set Λ = U , E = ∂Λ and R = ∅.
• For x ∈ N , we choose Λ = Ω ∩ U and E,R as in Lemma 3.10, i.e., E =
∂Λ \ (N ∩ U) and R = D ∩ U .

• In case of x ∈ D \ N , Ω ∩ U may be disconnected with, say, k connected
components Vj . We thus set Λj = Vj , Ej = ∂Vj and Rj = ∂Vj ∩ Uj , where
Uj is an open set with Vj ⊂ Uj ⊂ U , for each j ∈ {1, . . . , k}. The following
localization procedure then has to be done for every j ∈ {1, . . . , k}. We will,
however, omit the index j to simplify the notation.
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In this terminology, one calculates for w ∈W 1,2
D (Ω) and every ϕ ∈W 1,2

E (Λ)

〈−∇ · ρ|Λ∇w|Λ, ϕ〉W 1,2
E (Λ) =

∫

Λ

ρ|Λ∇w|Λ · ∇ϕdx

=
∫

Ω

ρ∇w · ∇(EUϕ) dx = 〈−∇ · ρ∇w, (EUϕ)〉W 1,2
D (Ω).

(3.9)

Remark 3.17. The first term in (3.9) does not contain abuse of the above intro-
duced notation in the following sense: for w ∈W 1,2

D (Ω) the restriction w|Λ belongs
to the space W 1,2

R (Λ), cf. Lemma 3.10 iii) and 3.11 iii). The operator −∇ · ρ|Λ∇ is
well-defined from W 1,2

R (Λ) to W−1,2
R (Λ), see Definition 2.9, giving −∇ · ρ|Λ∇w|Λ ∈

W−1,2
R (Λ). But R is contained in E, which yields W 1,2

E (Λ) ↪→W 1,2
R (Λ) with isomet-

ric injection. Thus, W 1,2
E (Λ) 3 ϕ 7→ 〈−∇ · ρ|Λ∇w|Λ, ϕ〉W 1,2

E (Λ) is to be understood

as the restriction of the linear form −∇ · ρ|Λ∇w|Λ ∈ W−1,2
R (Λ) to the subspace

W 1,2
E (Λ) ⊆W 1,2

R (Λ).

Assume now that a given function u ∈ L2(J ;W 1,2
D (Ω)) ∩ W 1,2(J ;W−1,2

D (Ω))
satisfies (3.8) with f ∈ L2(J ;W−1,2

D (Ω)). From the identity
∫

Λ

u(t)ϕdx =
∫

Ω

u(t)EUϕdx for all ϕ ∈W 1,2
E (Λ),

one easily deduces [12, Ch. XVIII.1.2 Prop. 7] that for all ϕ ∈W 1,2
E (Λ)

〈(u|Λ)′(t), ϕ〉W 1,2
E (Λ) =

d

dt

∫

Λ

u|Λ(t)ϕdx =
d

dt

∫

Ω

u(t)EUϕdx = 〈u′(t),EUϕ〉W 1,2
D (Ω),

(3.10)
where the time derivative on the left hand side is taken in the sense of W−1,2

E (Λ)-
valued distributions and in the sense of W−1,2

D (Ω)-valued distributions on the right-
hand side. Note carefully that everything is indeed in order since EU : W 1,2

E (Λ)→
W 1,2
D (Ω) is well-defined and continuous, thanks to Lemma 3.10 ii) and Lemma 3.11 i).

One step further, using (3.10) and (3.9) in case of w = u(t) and ρ = µ(t, ·), one
obtains for every ϕ ∈W 1,2

E (Λ) and almost every t ∈ J

〈(u|Λ)′, ϕ〉W 1,2
E (Λ)−〈∇·µ|Λ∇u|Λ, ϕ〉W 1,2

E (Λ) +
∫

Λ

u|Λϕdx = 〈f,EUϕ〉W 1,2
D (Ω). (3.11)

For q ∈ ]1,∞[ and g ∈ W−1,q
D (Ω), we denote the linear form W 1,q′

E (Λ) 3 ϕ 7→
〈g,EUϕ〉 by gU = E∗Ug. One easily estimates

‖gU‖W−1,q
E (Λ) ≤ ‖E∗U‖L(W−1,q

D (Ω),W−1,q
E (Λ))‖g‖W−1,q

D (Ω) ≤ ‖g‖W−1,q
D (Ω) (3.12)

since EU is an isometry. This shows the following: the function J 3 t 7→ fU (t),
defining the right-hand side in (3.11), belongs to L2(J ;W−1,2

E (Λ)), and its norm does
not exceed ‖f‖L2(J;W−1,2

D (Ω)). Analogously, if q, s ∈]2,∞[, and f ∈ Ls(J ;W−1,q
D (Ω)),

then fU ∈ Ls(J ;W−1,q
E (Λ)) with a similar estimate. In this spirit, let us write (3.11)

in the form

〈(u|Λ)′, ϕ〉W 1,2
E (Λ) + 〈−∇·µ|Λ∇u|Λ, ϕ〉W 1,2

E (Λ) +
∫

Λ

u|Λϕdx = 〈fU , ϕ〉W 1,2
E (Λ). (3.13)
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Remark 3.18. In any case, the property u ∈ L2(J ;W 1,2
D (Ω))∩C(J ;L2(Ω)) implies

that we have u|Λ ∈ L2(J ;W 1,2
R (Λ))∩C(J ;L2(Λ)), and the corresponding V 1,0

2 -norm
of u|Λ is not larger as the V 1,0

2 -norm of u, cf. Lemmata 3.10 and 3.11.

This completes the localization procedure so far: For every possible constellation
in and around a point x ∈ Ω, we have constructed a suitable local equation in
W−1,2
E (Λ) which is satisfied by the global solution u. Next, we transform these local

equations according to Assumption 2.4 using the properties of the transformations
established in Proposition 3.15. Suppose from now on that for every point x ∈ ∂Ω,
a neighbourhood U of x is given as declared in the fitting case in Assumption 2.4
and that Λ, E and R are chosen accordingly as in the localization procedure above
(with the obvious adjustments).

We now exploit III) of Assumption 2.4, that is, for each case of boundary points
x, there is a volume-preserving, bi-Lipschitzian mapping ζ from a neighbourhood
of Λ onto a neighbourhood of the cube τK. Let us assume that E is mapped onto
E• ⊂ ∂(τK), and that R is mapped onto R• ⊂ ∂(τK) – where ζ and E•, R• will be
specified later and, of course, in correspondence with Assumption 2.4, Lemma 3.12
and Corollary 3.14.

For almost all t, u|Λ(t) ∈ W 1,2
R (Λ) is of the form v(t) ◦ ζ for a v(t) ∈ W 1,2

R• (τK),
just as ϕ ∈ W 1,2

E (Λ) is of the form ϕ = ψ ◦ ζ for some ψ ∈ W 1,2
E• (τK), both thanks

to Proposition 3.15 ii). Taking this into account, one obtains

〈(u|′Λ, ϕ〉W 1,2
E (Λ) =

d

dt
〈u|Λ, ϕ〉W 1,2

E (Λ) =
d

dt
〈v◦ζ, ψ◦ζ〉W 1,2

E (Λ) =
d

dt

∫

Λ

(v◦ζ)(ψ◦ζ) dy

=
d

dt

∫

τK

v ψ dx = 〈v′, ψ〉W 1,2
E• (τK), (3.14)

since ζ is volume-preserving, i.e., |det(Dζ)| = |det(Dζ−1)| ≡ 1 almost everywhere.
On the other hand, one gets for every ϕ ∈W 1,2

E (Λ) for almost every t ∈ J
〈∇ · µ(t, ·)|Λ∇u|Λ(t), ϕ〉W 1,2

E (Λ) = 〈∇ · µ(t, ·)|Λ∇
(
v(t) ◦ ζ

)
, ψ ◦ ζ〉W 1,2

E (Λ)

= −
∫

Λ

µ(t, ·)|Λ∇
(
v(t) ◦ ζ

)
· ∇
(
ψ ◦ ζ

)
dy

= −
∫

τK

µζ(t, ·)∇v(t) · ∇ψ dy

= 〈∇ · µζ(t, ·)∇v(t), ψ〉W 1,2
E• (τK),

cf. Proposition 3.15 iv). Finally, for almost all t ∈ J ,
∫

Λ
u(t)|Λϕdx is calculated

to
∫
τK

v(t)ψ dx since ζ is volume-preserving. Hence, (3.13) leads to the following
equation for the transformed function v:

〈v′, ψ〉W 1,2
E• (τK) − 〈∇ · µζ(t, ·)∇v, ψ〉W 1,2

E• (τK) +
∫

τK

v(t)ψ dx = 〈fU , ψ ◦ ζ〉W 1,2
E (Λ)

(3.15)
for ψ ∈W 1,2

E• (τK). In view of (3.12) one gets for every ψ ∈W 1,q′

E• (τK) and almost
all t ∈ J
∣∣∣〈fU (t), ψ ◦ ζ〉

W 1,q′
E (Λ)

∣∣∣ ≤ ‖fU (t)‖W−1,q
E (Λ)‖ψ ◦ ζ‖W 1,q′

E (Λ)

≤ c‖f(t)‖W−1,q
D (Λ)‖ψ‖W 1,q′

E• (τK)
, (3.16)
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the constant c only depending on ζ, see Proposition 3.15i). Thus, for almost every
t ∈ J , the linear form

W 1,q′

E• (τK) 3 ψ 7→ 〈fU (t), ψ ◦ ζ〉

belongs to W−1,q
E• (K). If one denotes this linear form by g(t), then (3.16) shows the

following: if f in (2.7), cf. also (2.9), even belongs to Ls(J ;W−1,q
D (Ω)), then g is

from Ls(J ;W−1,q
E• (τK)) and, additionally, fulfils the estimate

‖g‖Ls(J;W−1,q
E• (τK)) ≤ c‖f‖Ls(J;W−1,q

D (Ω)), (3.17)

the constant c only depending on the mapping ζ. Expressing the right-hand side
of (3.15) in this manner, we get the final equation for v on τK, namely

〈v′(t), ψ〉W 1,2
E• (τK)−〈∇ ·µζ(t, ·)∇v(t), ψ〉W 1,2

E• (τK) +
∫

τK

v(t)ψ dx = 〈g(t), ψ〉W 1,2
E• (τK)

(3.18)
for ψ ∈W 1,2

E• (τK).

Remark 3.19. Again, the property u|Λ ∈ L2(J ;W 1,2
R (Λ) ∩ C(J ;L2(Λ)) leads to v

being from L2(J ;W 1,2
R• (τK)) ∩ C(J ;L2(τK)) inclusively a corresponding estimate

– where the norm depends only on the bi-Lipschitz mapping ζ, cf. Lemma 3.15 ii).
Moreover, (3.14) gives the inclusion v ∈ W 1,2(J ;W−1,2

E• (τK)) together with esti-
mates for the corresponding norms.

Let us now specify the mapping ζ in dependence of the different cases in As-
sumption 2.4 and the conventions from the beginning of the localization procedure,
defining the sets E• = ζ(E) and R• = ζ(R) correspondingly:
• In case I) one puts ζj := φj , thus obtaining

Ej,• = ζj(Ej) = ∂(τjK) and Rj,• = ζj(Rj) = τjΣ, (3.19)

for each j ∈ {1, . . . , k}, see Lemma 3.12.
• In case IIa), we set ζ = φx, such that

E• = ζ(E) = ∂(τK) \ τΣ and R• = ζ(R) = ∅, (3.20)

cf. Lemma 3.12.
• In case IIb) we choose ζ := ςn ◦ φx and obtain, in view of Corollary 3.14,

E• = ζ(E) = ∂(τK)\ τΣ and R• = ζ(R) = [−τ, τ ]n−2×{−τ}× [−τ, 0]. (3.21)

Observe that in this last case ζ(x) = (0, . . . , 0,−τ, 0).
Having the transformed equations on the half cubes with transformed boundary

conditions at hand, we lastly introduce reflection for case II) from Assumption 2.4.
Inspection of Corollaries 3.5 and 3.7 reveals why this is necessary: Both corollaries
require a subdomain Ξ0 which has a positive distance to the whole boundary ∂Ξ or to
the complement of the Dirichlet boundary part F . But in case II) of Assumption 2.4,
after the localization and transformation procedure we end up with ζ(x) being
a boundary point on the half square without prescribed Dirichlet boundary part
(remember ζ(R) = ∅ in case a)) and ζ(x) being at the boundary of the Dirichlet
boundary part itself, respectively. Both cases do not admit a suitable neighbourhood
of ζ(x) which would satisfy the assumptions of Corollaries 3.5 and 3.7. By reflecting
the equation across the “upper” plate of the half cubes, we obtain ζ(x) being inner
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points of the whole cube and the (combined) Dirchlet boundary part, respectively,
allowing to use the aforementioned corollaries.

Let us first define for x = (x1, . . . , xn) ∈ Rn the symbol x− := (x1, . . . , xn−1,−xn),
and for a n× n matrix %, the matrix %− by

%−i,j :=





%i,j , if i, j < n,

−%i,j , if i = n and j 6= n or j = n and i 6= n,

%i,j , if i = j = n.

Corresponding to a coefficient function ρ on τK, we then define the coefficient
function ρ̂ on τK̂ by

ρ̂(x) :=





ρ(x), if x ∈ τK,(
ρ(x−)

)−
, if x− ∈ τK,

1, if x ∈ Σ.

Finally, we define for w ∈ L1(τK̂) the function w− by w−(x) = w(x−), and for
w ∈ L1(τK) the (symmetrically) reflected function by

E : L1(τK)→ L1(τK̂), (Ew)(x) =

{
w(x), if x ∈ τK,
w(x−), if x− ∈ τK,

Lemma 3.20. Let F be a closed subset of ∂(τK) \ τΣ, put F̂ := F ∪ {x : x− ∈ F}
and assume p ∈ [1,∞[. Then w ∈W 1,p

F (τK), if and only if Ew ∈W 1,p
bF (τK̂).

Proof. First, Ew ∈ W 1,p
bF (τK̂) trivially implies w ∈ W 1,p

F (τK). In view of the

converse assertion, it is known that w ∈ W 1,p
F (τK) ⊆ W 1,p(τK) implies Ew ∈

W 1,p(τK̂), see [23, Lemma 3.4]. Lastly, standard arguments show that Ew may be
approximated in the W 1,p-norm by restrictions of C∞0 (Rn)-functions the support of
which avoids F̂ .

Let us next introduce an extension operator for distribution-type objects: For
p ∈ ]1,∞[, define the extension operator S : W−1,p

F (τK)→W−1,p
bF (τK̂) by

〈Sf, ϕ〉
W 1,p′

bF (τ bK)
= 〈f, ϕ|τK + ϕ−|τK〉W 1,p′

F (τK)
, ϕ ∈W 1,p′

bF (τK̂).

We immediately obtain the following properties:

Lemma 3.21. Assume p ∈ ]1,∞[.

i) If ψ ∈ L1(τK) ∩W−1,p
F (τK), then Sψ = Eψ.

ii) For any closed subset F ⊆ ∂τK\τΣ, the operator S : W−1,p
F (τK)→W−1,p

bF (τK̂)
is continuous with norm not larger than 2.

Proof. One has for all ϕ ∈W 1,p′

bF (τK̂) the identity

〈Sψ,ϕ〉
W 1,p′

bF (τ bK)
=
∫

τK

ψ(ϕ|τK + ϕ−|τK) dx =
∫

τ bK
Eψ ϕ dx,

which proves the first point. Moreover, the operator under consideration is the
adjoint of the continuous operator W 1,p′

bF (τK̂) 3 ϕ 7→ (ϕ|τK +ϕ−|τK) ∈W 1,p′

F (τK),
which implies both assertions from the second point.

Lemma 3.22. Let E•, R• with R• ⊆ E• be two closed subsets of ∂(τK) \ τΣ.
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i) If w ∈W 1,2
R• (τK) satisfies

〈−∇ · ρ∇w + w,ψ〉W 1,2
E• (τK) = 〈h, ψ〉W 1,2

E• (τK), ψ ∈W 1,2
E• (τK) (3.22)

for some h ∈W−1,2
E• (τK), then

〈−∇ · ρ̂∇(Ew) + Ew,ϕ〉W 1,2
dE•

(τ bK) = 〈Sh, ϕ〉W 1,2
dE•

(τ bK), ϕ ∈W 1,2
cE•

(τK̂) (3.23)

ii) Suppose that v ∈ W 1,2(J ;W−1,2
E• (τK)) ∩ L2(J ;W 1,2

R• (τK)) with initial value
u0 = 0 satisfies

〈v′(t), ψ〉W 1,2
E• (τK) +〈−∇·µ(t, ·)∇v(t)+v(t), ψ〉W 1,2

E• (τK) = 〈g(t), ψ〉W 1,2
E• (τK), (3.24)

for all ψ ∈ W 1,2
E• (τK) and some g ∈ L2(J ;W−1,2

E• (τK)) and almost all t ∈ J .
Then the function J 3 t 7→ Ev is from W 1,2(J ;W−1,2

cE•
(τK̂))∩L2(J ;W 1,2

cR•
(τK̂))

and still has initial value 0. Finally, the function Ev satisfies

〈(Ev)′(t), ϕ〉W 1,2
dE•

(τ bK) + 〈−∇ · µ̂(t, ·)∇(Ev)(t) + (Ev)(t), ϕ〉W 1,2
dE•

(τ bK)

= 〈Sg(t), ϕ〉W 1,2
dE•

(τ bK) for all ϕ ∈W 1,2
cE•

(τK̂) (3.25)

for all almost all t ∈ J .
iii) Assume s, q ≥ 2. If g ∈ Ls(J ;W−1,q

E• (τK)), then Sg ∈ Ls(J ;W−1,q
cE•

(τK̂)), and
the norm of Sg is not larger than two times the norm of g.

Proof. i) The assertion is obtained by the definitions of Ew, Sh, ∇ · ρ∇, ∇ · ρ̂∇
and straightforward calculations, based on Proposition 3.15, when applied to
the transformation x 7→ x−.

ii) The first two assertions follow from Lemmata 3.20 and 3.21; let us show that
Ev indeed satisfies the correct equation: coming from (3.24),

〈−∇ · µ(t, ·)∇v(t) + v(t), ψ〉W 1,2
E• (K) = 〈g(t), ψ〉W 1,2

E• (K) − 〈v′(t), ψ〉W 1,2
E• (K) (3.26)

for ψ ∈ W 1,2
E• (K) is for almost all t ∈ J an equation of type (3.22). According

to i), this leads to an equation

〈−∇ · µ̂(t, ·)∇(Ev)(t) + (Ev)(t), ϕ〉W 1,2
dE•

(τ bK)

= 〈(Sg)(t), ϕ〉W 1,2
dE•

(τ bK) − 〈(Sv′)(t), ϕ〉W 1,2
dE•

(τ bK), ϕ ∈W 1,2
cE•

(τK̂). (3.27)

Now one calculates for ϕ ∈W 1,2
cE•

(τK̂)

〈(Sv′)(t), ϕ〉W 1,2
dE•

(τ bK) = 〈v′(t), ϕ|τK + ϕ−|τK〉W 1,2
dE•

(τ bK)

=
d

dt

∫

τK

v(t)(ϕ+ ϕ−) dx

=
d

dt

∫

τ bK
(Ev)(t)ϕdx = 〈(Ev)′(t), ϕ〉W 1,2

dE•
(τ bK),

what gives the last assertion.
iii) The assertion follows immediately from Lemma 3.21 ii).
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3.4. The core of the proof. Now we have all preparations at hand and will prove
our main result, Theorem 2.13. The following lemma is the starting point for the
usage of the foregoing results.

Lemma 3.23. Let B be the unit ball in Ls(J ;W−1,q
F (Ω)). Then, for every f ∈ B,

the solution u = uf of (2.4)/ (2.7) is contained in a ball B around 0 in V 1,0
2 (Ω)

with radius

rV :=

(
1
κ

+

√
1
κ

)
|Ω| q−2

2q |J | s−2
2s ,

here κ = min(κ0, 1) being the (uniform) coercivity constant of the forms

W 1,2
D (Ω)×W 1,2

D (Ω) 3 (ψ,ϕ) 7→
∫

Ω

µ(t, ·)∇ψ · ∇ϕ + ψϕdx.

Hence, for all coefficient functions µ admitting the same ellipticity constant κ0, in
particular all those from M(κ0, κ1), the radii rV may be taken uniformly.

Proof. The unit ball B is contained in the corresponding ball in L2(J ;W−1,2
D (Ω))

with radius |Ω| q−2
2q |J | s−2

2s , cf. Remark 2.14. Then an application of Proposition 2.10,
there using the triple W−1,2

D (Ω) ↪→ L2(Ω) ↪→W 1,2
D (Ω), yields the desired result.

We now proceed to construct a finite open covering of Ω and to show uniform
L∞- and Hölder-bounds on the intersection of each of the covering sets with Ω.
To this end, we localize the parabolic equation (2.9) with respect to a suitable
neighbourhood of each point, transform the localized equations to such on the half
cubes and reflect the problem to the whole cube, if necessary. This allows to use
Corollaries 3.5 and 3.7, respectively, to deduce the wished-for estimates.

Choose for any point x ∈ Ω a ball B•x around x which satisfies B•x ⊂ Ω and
has a positive distance to ∂Ω. Define Bx as the ball with half the radius of B•x .
Further, for every y ∈ ∂Ω, let Uy be an open neighbourhood of y which satisfies
the conditions in Assumption 2.4. In case I of that assumption, we put Wy =
∩jφ−1

j ( τj2 K̂). If y fulfils case II of that assumption, then we put Wy = φ−1
y

( τy
2 K̂

)
,

which implies Wy ∩ Ω = φ−1
y

( τy
2 K

)
. Obviously, the collection of the sets {Bx}x∈Ω

and {Wy}y∈∂Ω forms an open covering of Ω. Let Bx1 , . . . , Bxm0
,Wy1 , . . . ,Wym1

be
a finite subcovering.

Before we continue, we need the following property of the sets Wy in case of
Assumption 2.4 I):

Lemma 3.24. In the situation of Assumption 2.4 I), with W :=
⋂k
j=1 φ

−1
j ( τj2 K̂)

one has

W ∩ Ω ⊆
k⋃

j=1

φ−1
j (

τj
2
K), (3.28)

the right hand side being a disjoint union.

Proof. Since W ⊂ ⋂kj=1 Uj ⊆ U , we find

W ∩ Ω = W ∩ Ω ∩ U = W ∩
k⋃

l=1

Vl =
k⋃

j=1

(Vj ∩W ) ⊆
k⋃

j=1

(
Vj ∩ φ−1

j (
τj
2
K̂)
)

=
k⋃

j=1

(
φ−1
j (τjK) ∩ φ−1

j (
τj
2
K̂)
)

=
k⋃

j=1

φ−1
j

(
τjK ∩

τj
2
K̂
)

=
k⋃

j=1

φ−1
j (

τj
2
K).
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Let B be again the unit ball in Ls(J ;W−1,q
D (Ω)), and let Bstep denote the set of

step functions in B.
Step 1: For every f ∈ Ls(J ;W−1,q

D (Ω)) ↪→ L2(J ;W−1,2
D (Ω)) a (unique) solu-

tion u = uf of (2.9) exists, cf. Proposition 2.10/Remark 2.11. The set of solutions
{uf : f ∈ B} is bounded in V 1,0

2 (J ×Ω), and the bound in this space can be taken
uniformly with respect to all coefficient functions µ ∈Mn(κ0, κ1), cf. Lemma 3.23.

Step 2: We consider the restricted problem on each of the balls B•xl according
to Ch. 3.3 (there setting U = B•xl), cf. (3.13), where the right-hand side fU in
the restricted problem is still bounded by 1 for f ∈ B. For f ∈ Bstep, however,
the solution uf is a generalized solution of a corresponding generalized problem
on B•xl with right-hand side fU , cf. Proposition 3.9, fU still being a step function
in time and contained in the ball with radius 2 in Ls(J ;Lq(Bxl ; Rn+1)). Thanks
to Corollary 3.5, the functions uf |J×Bxl

are essentially bounded, and the norms
‖u|J×Bxl

‖L∞(J×Bxl )
are bounded uniformly in f ∈ Bstep and in µ ∈ Mn(κ0, κ1).

This of course implies uniform boundedness for all l ∈ {1, . . . ,m0}.

Step 3: Let us now consider the boundary points, thereby temporarily fixing
y = yl ∈ ∂Ω.
We start with case I) of Assumption 2.4): Intersecting Ω with Uy, the restriction of
the function u = uf to each of the connected components Vj belongs to W 1,2

Rj
(Vj)

when taking Rj as ∂Vj ∩ Uj , cf. Lemma 3.11. One obtains a restricted problem on Vj
which is of the same quality as (2.9), cf. (3.13) with Λ = Vj and E = ∂Vj . Further,
we transform this resulting problem to a problem for the function vj := u|Vj ◦φ−1

j on
τjK. According to (3.18)/(3.19), one ends up with an equation for the transformed
function vj on τjK with new right-hand side gj ∈ Ls(J ;W−1,q

0 (τjK)), which is still
a step function in time. By Proposition 3.9, vj is then a generalized solution of the
transformed equation (3.18) on τjK with right-hand side gj ∈ Ls(J ;Lq(τjK; Rn+1))
and coefficient function µφj . This is the setting for all j ∈ {1, . . . , k}. Let us show
that we are in the situation to use Corollary 3.5 for each problem on Vj .
• The new right-hand sides gj may be estimated suitably with respect to the

original ones, cf. (3.17) and Proposition 3.9, giving

‖gj‖Ls(J;Lq(τjK;Rn+1)) ≤ 2‖gj‖Ls(J;W−1,q
0 (τjK)) ≤ 2cj .

• The resulting transformed coefficient functions µφj on J × τjK still admit
uniform upper bounds κ̂1,j , and uniform ellipticity constants κ̂0,j , cf. Propo-
sition 3.15 v).

• Moreover, it is clear that ‖u|J×Vj‖V 1,0
2 (J×Vj) is not larger than ‖u‖V 1,0

2 (J×Ω),
which was uniformly bounded over Mn(κ0, κ1) and with respect to f ∈ B
by the constant rV thanks to Lemma 3.23. Proposition 3.15 ii) shows that
‖vj‖V 1,0

2 (J×τjK) may be estimated by c̃jrV for some constant c̃j depending on
j via φj .

• By Remarks 3.18 and 3.19, we have vj ∈ L2(J ;W 1,2

τjΣ
(τjK)).

Summing up, we have, for each j, coefficient functions from Mn(κ̂0,j , κ̂1,j) and
right-hand sides gj contained in the 2cj-ball around 0 in Ls(J ;Lq(τjK; Rn+1)) such
that the generalized solutions vj to all those right-hand sides are in turn contained
in a ball with radius c̃jrV in V 1,0

2 (J × τjK) and even belong to L2(J ;W 1,2

τjΣ
(τjK)).
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Applying Corollary 3.5 ii) with the subdomain τj
2 K, we get L∞-bounds on J× τj

2 K
for every vj which are uniform in f ∈ Bstep and µ ∈Mn(κ0, κ1). Thanks to (3.28),
this gives L∞-bounds for u on J × (Wy ∩ Ω), independent of f ∈ Bstep and µ ∈
Mn(κ0, κ1).

Next we will consider the case II) in Assumption 2.4. We abbreviate τy =: τ .
Localizing around y with respect to Uy according to Ch. 3.3 results in a problem
for u|Λ in the form (3.13) with Λ = Uy ∩Ω and E = ∂Λ \ (N ∩ Uy). By afterwards
transforming the resulting problem via ζ = φy (case IIa)) and ζ = ςn◦φy (case IIb)),
one again ends up with a problem on τK as in (3.18), which we interpret as a
generalized problem solved by the function v = u|Λ ◦ ζ. We obtain analogous
estimates and bounds, especially uniformly in µ ∈ Mn(κ0, κ1) and f ∈ Bstep, for
the coefficient function µφy , right-hand side g and solution v ∈ V 1,0

2 (J × τK) as
we did for each j in the previously handled case I). The following considerations
require further distinguishing the assumptions.

In case IIa) of Assumption 2.4, we get v ∈ L2(J ;W 1,2(τK)) according to Re-
mark 3.19 and (3.20). Here, the upper plate τΣ is disjoint to the (transformed)
Dirichlet boundary part (which in fact is even empty here, cf. (3.20)), permitting
the direct application of Corollary 3.5 for a neighbourhood of φy(y) = 0, since
the latter is obviously also a boundary point of τK. However, we may reflect the
problem across τΣ according to Lemma 3.22, thus obtaining the corresponding
equation (3.25) on τK̂ for the symmetrically reflected function Ev. It is clear that
the bounds for the data and the V 1,0

2 -estimate for v carry over to τK̂ in a straight
forward manner, cf. Lemma 3.21 and the definition of the reflection operator E,
and that φy(y) = 0 ∈ τK̂ is an interior point in τK. Hence, we may apply Corol-
lary 3.5 i) for the subdomain τ

2 K̂ and obtain an L∞-bound for Ev on J× τ
2 K̂, again

uniformly in µ ∈ Mn(κ0, κ1) and f ∈ Bstep. Obviously, this implies an L∞-bound
with the same property for u on J × (Wy ∩ Ω) = J × φ−1( τ2K).

In case IIb) of Assumption 2.4, where y sits at the boundary between Neumann-
and Dirichlet boundary parts, Remark 3.19 and (3.21) give v ∈ L2(J ;W 1,2

R• (τK))
with R• = [−τ, τ ]n−2 × {−τ} × [−τ, 0] ⊂ ∂(τK) and ζ(y) = (0, . . . , 0,−τ, 0). Since
this point is not an interior one of the Dirichlet boundary part R•, we also reflect
this problem across τΣ and, again, end up with a corresponding parabolic equation
for the symmetrically extended function Ev on the set τK̂. The Dirichlet part of
the extended solution Ev now equals R̂• = [−τ, τ ] × {−τ} × [−τ, τ ] ⊂ ∂(τK̂), cf.
Lemma 3.20. Recalling Lemma 3.13, we had

τK := ςn

(τ
2
K
)

=
]
−τ

2
,
τ

2

[n−2

× ]−τ, 0[×
]
−τ

2
, 0
[

and one observes that τK has the distance τ
2 to the set

∂(τK̂) \ R̂• = ∂(τK̂) \
(
[−τ, τ ]n−2 × {−τ} × [−τ, τ ]

)
.

Another application of Corollary 3.5 ii), this time for the subdomain τK, gives an
L∞-bound for v on J×τK, and, correspondingly, on J×ζ−1(τK) = J×φ−1

y ( τ2K) =
J × (Wy ∩ Ω), which again does not depend on f ∈ B, but only on κ0, κ1.

Hence we have L∞-bounds on J ×Wyl ∩ Ω for each l ∈ {1, . . . ,m1} which then
clearly implies L∞-bounds uniform in l. Since the finite systemBx1 , . . . , Bxm0

,Wy1∩
Ω, . . . ,Wym1

∩ Ω is an open covering of Ω, this altogether gives L∞-bounds on the
whole set J×Ω, which are uniform for all f ∈ Bstep for the corresponding functions
uf and which do only depend on the constants κ0, κ1. This was the first point of
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Theorem 2.13.

Step 4: Having the essential boundedness at hand, we will now establish the
Hölder estimates by essentially re-iterating the considerations in the foregoing steps,
this time investing the obtained uniform global L∞-bounds instead of the V 1,0

2 -
estimates and then applying Corollary 3.7 instead of Corollary 3.5.

In detail: Both Step 2, which was the case of the balls Bxl , and the considerations
in case II) of Assumption 2.4 in Step 3 work exactly as above, using Corollary 3.7
this time. In case I) of Step 3, the situation is a bit more complicated and needs
more care: Repeating the procedure outlined above to the point where Lemma 3.24
and (3.28) are used, one obtains the Hölder property for every transformed local
solution vj (including estimates uniform in f ∈ Bstep, depending only on κ0, κ1)
on the set J × τj

2 K for each j ∈ {1, . . . , k}. Due to the disjoint union in (3.28),
u can be represented as u =

∑k
j=1 vj ◦ φj on J × (Ω ∩ Wy). It is essential to

observe, however, that this implies only Hölder continuity for u on each of the
disjoint sets J×φ−1

j ( τj2 K) ⊂ J×Vj on its own – it is not (yet) clear why the Hölder
property should hold “across” different connected components. Let us note that
this is exactly the result of Ladyshenskaya in [39]. In the sequel we will show that
our setting allows to derive from this the required global Hölder estimates on the
sets J × (Ω ∩Wy).

Let us in the following identify the Hölderian function vj , defined on J × τj
2 K,

with its unique Hölderian extension on J × τj
2 K, cf. Remark 2.8. The crucial point

is here that we imposed in our general ansatz a very special boundary value on
the whole Dirichlet part D of the boundary – namely, 0. Indeed, the property
vj ∈ L2(J ;W 1,2

τjΣ
(τjK)) implies that vj(t, ·) has trace 0 on τj

2 Σ, i.e., vanishes there
almost everywhere with respect to the boundary measure Hn−1 for almost all t ∈ J ,
see Remark 3.4. However, vj(t, ·) is also a continuous function on τj

2 K, and τj
2 K

has a Lipschitz-boundary around 0, hence in fact vj(t, ·) ≡ 0 on τj
2 Σ for almost all

t ∈ J . But then, this time due to continuity in time, vj must be identically 0 on
the whole J × τj

2 Σ. It is straight forward to verify that the continuation v̂j of vj to
J × τj

2 K̂ by zero is also Hölder continuous – with the same Hölder-norm as vj on
J× τj

2 K. This means we may extend u via û :=
∑
j v̂j ◦φj to the set J×Wy (which

indeed is an extension of u =
∑
j vj ◦ φj due to v̂j = vj and v̂i = 0 on φ−1

j ( τj2 K)
for i 6= j) and obtain a Hölder-continuous function, such that u = û|Wy∩Ω is also
Hölderian on Wy ∩ Ω with the same estimates.

Let us inspect the corresponding Hölder bounds in some more detail: Let t1, t2 ∈
J and z1, z2 be from two different connected components of Wy ∩ Ω, that is, z1 ∈
φ−1
j ( τj2 K) ∩Wy and z2 ∈ φ−1

i ( τi2 K) ∩Wy for j 6= i and let αj , αi be the degree of
Hölder continuity of v̂j and v̂i on J × τj

2 K̂ and J × τi
2 K̂, respectively. We write

|u(t1, z1)− u(t2, z1)| = |vj(t1, φj(z1))− vi(t2, φi(z2))|
= |v̂j(t1, φj(z1))− v̂j(t2, φj(z2)) + v̂i(t1, φi(z1))− v̂i(t2, φi(z2))|
≤ (1 ∨ lφj )|v̂j |αj‖(t1, z1)− (t2, z2)‖αj

+ (1 ∨ lφi)|v̂i|αi‖(t1, z1)− (t2, z2)‖αi
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since v̂j(t, φj(z2)) = v̂i(t, φi(z1)) = 0 for all t ∈ J . This shows that the Hölder
seminorm of u may be estimated as follows, using α∗ = minj∈{1,...,k} αj = αj∗ :

|u|α∗ ≤ max
j∈{1,...,k}

(
(1 ∨ lφj )|v̂j |αjdiam(J ×Wy ∩ Ω)αj−α

∗
+ (1 ∨ lφj∗ )|v̂j∗ |α∗

)
.

In particular, the Hölder seminorm estimate does not depend on all k of connected
components of Wy ∩ Ω but only on two of those at once.

Now we have achieved the following: There exist constants α(x1), . . . , α(xm0)
and α(y1), . . . , α(ym1), such that

sup
f∈Bstep

‖uf‖Cα(xi)(J×Bxi )
<∞, and sup

f∈Bstep
‖uf‖Cα(yl)(J×(Wyl∩Ω)) <∞ (3.29)

for each i ∈ {1, . . . ,m0} and l ∈ {1, . . . ,m1}, and these suprema are even uni-
form for all coefficient functions µ ∈ Mn(κ0, κ1). Diminishing the α(xi) and α(yl)
in (3.29) to their common minimum, called α, (3.29) certainly remains true and
we have Hölder-continuity of degree α on each of the sets Bx1 , . . . , Bxm0

,Wy1 ∩
Ω, . . . ,Wym1

∩ Ω.

Step 5: In order to deduce global Hölder continuity from the previous consider-
ations, we need the following

Lemma 3.25. There exists an ε > 0 such that, for every x ∈ Ω, the balls in Ω with
center x and radius not larger than ε lie completely in at least one of the sets Bxi

or Wyl .

Proof. Consider the function

Ω 3 y 7→ ε(y) :=
1

m0 +m1

(m0∑

i=1

dist(y,Rn \Bxi) +
m1∑

l=1

dist(y,Rn \W (yl))
)
.

This function is continuous and strictly positive, since every y ∈ Ω is contained in
at least one of the sets Bxi or Wyl . Therefore, it has to attain its minimum, say,
ε > 0. Then it is straight forward to see that this ε fulfills the asserted condition,
since at least one summand in the definition has to be bigger or equal to ε(y) for
each y ∈ Ω.

Now Lemma 3.25 in combination with Remark 2.8 iii) allows to fall back to the
sets Bxi and Wyl ∩ Ω and thus implies global Hölder bounds on J × Ω, and this
uniformly in f ∈ Bstep and in µ ∈Mn(κ0, κ1).

Step 6: The previous considerations show that, for each µ ∈Mn(κ0, κ1), the lin-
ear mapping (∂t +A(µ))−1 maps bounded sets in Lsstep(J ;W−1,q

D (Ω)) into bounded
set in the space Cα(J×Ω), the bounds being uniform in κ0, κ1. Consequently, these
mappings are equicontinuous with respect to µ ∈ Mn(κ0, κ1) as mappings from
Lsstep(J ;W−1,q

D (Ω)) into the space Cα(J × Ω). Since Lsstep(J ;W−1,q
D (Ω)) is dense

in Ls(J ;W−1,q
D (Ω)), they hence possess extensions to the whole Ls(J ;W−1,q

D (Ω))
which are still equicontinuous. This was the claim in Theorem 2.13.

4. Nonzero initial values and inhomogeneous Dirichlet boundary data.
Up to now, the fundamental difference between the approach in [39] and ours con-
sists in the fact that here only the zero Dirichlet datum is allowed, which allowed
to deduce global Hölder continuity for the solution (it is clear that also constant
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nonzero data is admissible by obvious modifications). In this chapter we will show
a way how to admit (nonconstant) nonzero Dirichlet data – without losing the clas-
sical Hölder property for the solution. We restrict ourselves to the case where the
Dirichlet datum does not depend on time. Moreover, aiming at Hölder continuity
for the solution in both time and space, it is clear that the initial value must admit
the correct boundary behaviour. In particular, in this context one can never expect
that a solution with initial value 0 admits a nonzero Dirichlet datum.

We start with the introduction of the fundamental property for this chapter.
Recall that we denote the (n− 1)-dimensional Hausdorff measure by Hn−1.

Definition 4.1. We call a set O ⊂ Rn a (n−1)-set if there exist constants c0, c1 > 0
such that for all r ∈ ]0, 1[ the inequality

c0r
n−1 ≤ Hn−1(B(z, r) ∩ O) ≤ c1rn−1, z ∈ O (4.1)

holds true, [37, Ch. II.1 and VIII.1].

Remark 4.2. i) It is clear that any finite union of (n−1)-sets is again a (n−1)-
set.

ii) If O ⊂ Rn is a (n − 1)-set and φ is a bi-Lipschitzian mapping from a neigh-
bourhood U of O into Rn, then φ(O) also is a a (n− 1)-set, cf. [18, Ch. 2.4.1],
see also [34, Ch. 3.1].

Having this at hand, we can prove our first preparatory lemma.

Theorem 4.3. Let Ω and D satisfy Assumption 2.4. Then D is a (n− 1)-set.

Proof. Consider for each z ∈ D\N the domain Uy, the neighbourhoods Uz,1, . . . , Uz,k

of the connected components Vz,1, . . . , Vz,k and φz,1, . . . , φz,k, the bi-Lipschitz map-
pings from Assumption 2.4 I). For z ∈ ∂D we collect the bi-Lipschitz mapping φz

and the neighbourhood Uz of z from case II) of Assumption 2.4.
For z ∈ D \N we define another neighbourhood Wz as follows: Let τ̌z ∈ ]0, τz,1[

be a number such that

φ−1
z,1(τ̌zK̂) ⊆

k⋂

j=2

Uz,j =
k⋂

j=2

φ−1
z,j (τz,jK̂)

and define Wz := φ−1
z,1(τ̌zK̂) (this is well-defined since each Uz,j is an open neigh-

bourhood of z). Then the systems {Uy}y∈∂D and {Wz}z∈D\N form an open covering
of D from which we choose a finite subcovering Uy1 , . . . , Uym2

,Wz1 , . . . ,Wzm3
, which

allows to write D in the form D =
⋃m2
l=1 (Uyl ∩D)∪⋃m3

l=1 (Wzl ∩D) . Thanks to the
foregoing Remark 4.2, one has to show only that each of the sets Uyl∩D and Wzl∩D
is a (n − 1)-set. For the sets D ∩ Uyl this is immediate by Remark 4.2 ii) and the
supposition on the mappings φyl . For the sets Wyl one has

D ∩Wzl =
k⋃

j=1

∂Vzl,j ∩Wzl ⊆
k⋃

j=1

∂Vzl,j ∩ Vzl,j ⊆
k⋃

j=1

∂Vzl,j ∩ Uyl .

Let us now consider the terms ∂Vzl,j ∩ Wzl , j = 1, . . . , k separately. From the
definition of Wzl it is clear that ∂Vzl,1 ∩ Wzl is mapped by the bi-Lipschitzian
transformation φzl,1 onto the set τ̌Σ. Thus, ∂Vzl,1 ∩Wz1 is a (n− 1)-set, thanks to
Remark 4.2. This already assures the lower bound in (4.1) for the whole set D∩Wzl .
On the other hand, from the definition of Wzl it follows that ∂Vzl,j ∩Wzl is mapped
by the bi-Lipschitzian mapping φzl,j onto a subset of τzl,jΣ. Since τz,jΣ admits the
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upper bound in (4.1), its subset φzl,j(∂Vzl,j ∩Wzl) surely also does so. Finally, the
upper bound for ∂Vzl,j ∩Wzl itself again follows from Remark 4.2. Hence, each of
the sets Uyl ∩D and Wzl ∩D are a (n− 1)-set, making D also a (n− 1)-set.

First, let us, for a (n−1)-set M ⊂ Rn, denote by Bp,pβ (M) the usual Besov space
on M with p ∈ ]1,∞[ and β ∈ ]0, 1[, cf. [37, Ch. V.1.1.]. Using the just established
fact that D is an (n− 1)-set (Lemma 4.3), we obtain the following characterization
of traces for W 1,q(Ω)-functions where q ∈ ]1,∞[ ([8, Thm. 5.1]):

Proposition 4.4. There exists a linear, continuous “trace” operator trD, which
maps W 1,q(Ω) onto Bq,q

1− 1
q

(D). In particular, there is a linear continuous exten-

sion operator ED from Bq,q
1− 1

q

(D) into W 1,q(Ω), such that trD ED is the identity on

Bq,q
1− 1

q

(D).

Remark 4.5. Note that for q > n, W 1,q(Ω)-functions are Hölder continuous on
Ω and thus in fact continuous up to the boundary of Ω, cf. Remark 2.8. So for
ψ ∈W 1,q(Ω), the pointwise restriction ψ|D is meaningful and indeed coincides with
trD ψ. We will use the notion ψ|D in the following.

Secondly, for q ∈ [2,∞[, we define the operator −∇ · ρ∇ + 1 : W 1,q(Ω) →
W−1,q
D (Ω) by

〈
(
−∇·ρ∇+1

)
ψ,ϕ〉

W 1,q′
D (Ω)

:=
∫

Ω

ρ∇ψ ·∇ϕ+ψϕdx, ψ ∈W 1,q(Ω), ϕ ∈W 1,q′

D (Ω),

(4.2)
thereby extending Definition 2.9.

Let us now define the notion of a solution of a problem with inhomogeneuos
Dirichlet-data:

Definition 4.6. Assume q > n and let u0 ∈ W 1,q(Ω) admit the D-trace ι, i.e.,
u0|D = ι. Then we say that for g ∈ L2(J ;W−1,2

D (Ω)) the function w = u + u0 ∈
L2(J ;W 1,2(Ω)) ∩W 1,2(J ;W−1,2

D (Ω))) is a solution of the equation

w′(t)−∇ · µ(t, ·)∇w(t) + w(t) = g(t), w(t)|D = ι, u(T0) = u0 (4.3)

if u satisfies (2.9) with f(t) := g(t) + ∇ · µ(t, ·)∇u0 − u0. Here, the divergence
operators are meant as in (4.2).

Theorem 4.7. Adopt Assumption 2.4 and suppose q > n and s > 2(1 − n
q )−1.

Let ι ∈ Bq,q
1− 1

q

. Assume that u0 ∈ W 1,q(Ω) satisfies u0|D = ι and let g be from

Ls(J ;W−1,q
D (Ω)). Then (4.3) admits exactly one solution w, and this solution is

even Hölder continuous in space and time. The Hölder norm of w is uniformly
bounded within the class µ ∈Mn(κ0, κ1) for fixed g.

Proof. Thanks to the assumption u0 ∈W 1,q(Ω), the function t 7→ ∇·µ(t, ·)∇u0−u0

belongs to any space Ls(J ;W−1,q
D (Ω)). Thus, by Theorem 2.13 there is exactly one

solution u of the corresponding equation

w′(t)−∇ · µ(t, ·)∇w(t) + w(t) = g(t) +∇ · µ(t, ·)∇u0 − u0 u(T0) = 0

which is even Hölder continuous. Since u0 is from W 1,q(Ω) with q > n, it is in
particular Hölder continuous, hence w = u+ u0 also is.
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Remark 4.8. Following the strategy to split off the initial value requires u0 to be
in the domain of −∇ · µ(t, ·)∇ + 1 for each t ∈ J , which in general is only to be
achieved if u0 ∈ W 1,q(Ω), cf. Definition 2.9. Hence, in view of Proposition 4.4, the
space Bq,q

1− 1
q

(D) for the boundary values on D is exactly the “optimal” one.

5. Global solvability of a non-linear heat equation and optimal regularity
for the solution. We show an application of the results established in the foregoing
chapters. More specifically, we employ Theorem 2.13 to establish unique global
existence of a solution to a quasilinear equation in divergence-form. We fix the
following assumptions on the (nonlinear) forcing terms in the following problem:

Assumption 5.1. The function F : J×C(Ω)→W−1,q
D (Ω) is a Caratheodory func-

tion and, for s ∈ ]1,∞[, such that the superposition operator w 7→ [t 7→ F(t, w(t))]
is continuous from every bounded subset of C(J × Ω) to Ls(J ;W−1,q

D (Ω)), with
supw∈C(Ω) ‖F(·, w)‖Ls(J;W−1,q

D (Ω)) being bounded by a constant CF <∞.

Remark 5.2. Assumption 5.1 is satisfied for a Caratheodory function F if the
boundedness assumption holds true and for every R > 0 there exists a function
LR ∈ Ls(J ;W−1,q

D (Ω)) such that

‖F(t, w1)−F(t, w2)‖W−1,q
D (Ω) ≤ LR(t)‖w1 − w2‖C(Ω) for almost all t ∈ J,

where w1, w2 ∈ C(Ω) with ‖w1‖C(Ω), ‖w2‖C(Ω) ≤ R.

5.1. A quasilinear heat-equation with optimal regularity for the solution.
Although we first have to introduce some auxiliary results for its proof (which,
however, are of their own interest), this is the result:

Theorem 5.3. Put n = 3 and adopt Assumption 2.4. Let ρ be a measurable
coefficient function on Ω with values in Mn(κ0, κ1). Assume that φ : R → [φ, φ],
where 0 < φ ≤ φ, is Lipschitz continuous on bounded sets. Suppose further that,
for some q > n,

−∇ · ρ∇+ 1 : W 1,q
D (Ω)→W−1,q

D (Ω)

is a topological isomorphism. Let s > 2(1− n
q )−1 and w0 ∈ (W 1,q

D (Ω),W−1,q
D (Ω)) 1

s ,s
.

Let moreover F : J × C(Ω) → W−1,q
D (Ω) satisfy the Assumption 5.1 for this s.

Then there exists a global solution w ∈W 1,s(J ;W−1,q
D (Ω))∩Ls(J ;W 1,q

D (Ω)) of the
quasilinear equation

w′(t)−∇ · φ(w(t))ρ∇w(t) + w(t) = F(t, w(t)), w(T0) = w0. (5.1)

If F even satisfies the assumptions in Remark 5.2, this solution is unique.

Let us first compare Theorem 5.3 with other well-known general existence- and
uniqueness theorems for quasilinear equations such as [42, Thm 3.1], which allow
for more general data but yield only local solutions. The trade-off we make for
global solutions, at this point, is twofold: First, we restrict ourselves to divergence-
type operators, and secondly the requirements for the (nonlinear) inhomogeneity are
stricter – we have to require uniform boundedness over C(Ω) and a slightly stronger
Lipschitz condition. However, we emphasize that even for right-hand sides not
depending on the function itself, e.g. [42, Thm. 3.1] does not yield global solutions,
while our theorem/proof nearly immediately does, cf. Corollary 5.8. Moreover, we
have the requirement of space dimension n = 3, whose necessity is a bit hidden: it is
needed to guarantee uniformity of the domains of each of the operators −∇·φ(w)ρ∇
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for varying w – which in turn is a common assumption – by using invariance under
pertubation by continuous functions of the assumed isomorphism property of −∇ ·
ρ∇, which is only available for space dimension up to 3.

For the proof of Theorem 5.3 we, amongst others, need the following

Lemma 5.4. Let ρ be a measurable coefficient function on Ω. Adopt Assump-
tion 2.4 and assume that −∇ · ρ∇ is a topological isomorphism between W 1,q

D (Ω)
and W−1,q

D (Ω) for some q > n.

i) For θ ∈ ] 1
2 + n

2q , 1[, the real interpolation space (W−1,q
D (Ω),W 1,q

D (Ω))θ,q contin-
uously injects into C(Ω).

ii) If s > 2(1−nq )−1, then W 1,s(J ;W−1,q
D (Ω))∩Ls(J ;W 1,q

D (Ω)) continuously injects
into the space C(J ;C(Ω)) ' C(J × Ω).

Proof. i) First, Lemma 4.3 shows that, under Assumption 2.4, D is a (n − 1)-set.
Knowing this, [6, Thm. 11.5] tells us that the operator −∇ · ρ∇+ 1, considered on
W−1,q
D (Ω), is a positive one (cf. [44, Ch. 1.14]) and that dom(−∇ · ρ∇ + 1)1/2 =

Lq(Ω), if q ≥ 2 [6, Thm. 5.1]. Thus, the reiteration theorem for domains of positive
operators (cf. [44, Ch. 1.15.4]) gives for θ as given in the suppositions:

(W−1,q
D (Ω),W 1,q

D (Ω))θ,q = (W−1,q
D (Ω),dom(−∇ · ρ∇+ 1))θ,q

= (dom(−∇ · ρ∇+ 1)1/2,dom(−∇ · ρ∇+ 1))2θ−1,q = (Lq(Ω),W 1,q
D (Ω))2θ−1,q.

Secondly, recall thatW 1,q
D (Ω) admits a continuous extension operator E : W 1,q

D (Ω)→
W 1,q(B), where B ⊂ Rn is an open ball containing Ω cf. [6, Lem. 3.2]. Moreover,
it is not hard to see that this extension operator E simultaneously extends the
functions form Lq(Ω) to function in Lq(B), inclusively a corresponding estimate.
Having this at hand, one can estimate for τ > n

q and every ψ ∈W 1,q
D (Ω)

‖ψ‖C(Ω) ≤ ‖Eψ‖C(Ω) ≤ c ‖Eψ‖Hτ,q(B)

≤ c ‖Eψ‖τW 1,q(B)‖Eψ‖1−τLq(B) ≤ c‖ψ‖τW 1,q
D (Ω)

‖ψ‖1−τLq(Ω), (5.2)

cf. [44, Ch. 4.6.1/Ch. 4.3.1]. But it is well-known (cf. [44, Ch. 1.10.1] or [7,
Ch. 5, Prop. 2.10]) that an inequality of type (5.2) is constitutive for the em-
bedding (Lq(Ω),W 1,q

D (Ω))τ,1 ↪→ C(Ω). Moreover, it is clear that our supposition
θ ∈ ] 1

2 + n
2q , 1[ implies 2θ − 1 > n

q . Let ζ ∈ ]nq , 2θ − 1[. According to [44, Ch. 1.3.3],
we find

(W−1,q
D (Ω),W 1,q

D (Ω))θ,q = (Lq(Ω),W 1,q
D (Ω))2θ−1,q ↪→ (Lq(Ω),W 1,q

D (Ω))ζ,1 ↪→ C(Ω).

ii) One knows the (classical) embedding

W 1,s(J ;W−1,q
D (Ω)) ∩ Ls(J ;W 1,q

D (Ω)) ↪→ C(J ; (W−1,q
D (Ω),W 1,q

D (Ω))1− 1
s ,s

), (5.3)

cf. [4, III.4.10]. Thus, if 1− 1
s >

1
2 + n

2q , or, equivalently, s > 2(1− n
q )−1, then one

has for any τ ∈ ] 1
2 + n

2q , 1− 1
s [

C(J ; (W−1,q
D (Ω),W 1,q

D (Ω))1− 1
s ,s

) ↪→ C(J ; (W−1,q
D (Ω),W 1,q

D (Ω))τ,q) ↪→ C(J ;C(Ω)),

according to i).

Recall from Definition 2.9 the operator A(σ) for a coefficient function σ : J×Ω→
Mn. We consider the special case σ(t, x) = ϕ(t, x)ρ(x) for a coefficient function
ρ : Ω → Mn and measurable function ϕ : J × Ω → R, both bounded. Moreover,
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denote by γT0 the point evaluation in T0, cf. (5.3). This gives rise to the continuous
linear operator

(∂t +A(ϕρ), γT0) : W 1,s(J ;W−1,q
D (Ω)) ∩ Ls(J ;W 1,q

D (Ω))

→ Ls(J ;W−1,q
D (Ω))× (W 1,q

D (Ω),W−1,q
D (Ω)) 1

s ,s
.

The following lemma establishes non-autonomous maximal parabolic W−1,q
D (Ω)-

W 1,q
D (Ω) regularity of A(ϕρ) for continuous functions ϕ with positive lower bound.

Lemma 5.5. Let n = 3 and s ∈ ]1,∞[. Suppose that ρ is a measurable coefficient
function on Ω and that ϕ ∈ C(J × Ω) with lower bound 0 < ϕ < ϕ. Adopt Assump-
tion 2.4 and assume that −∇·ρ∇+1 is a topological isomorphism between W 1,q

D (Ω)
and W−1,q

D (Ω) for some q > n.

i) For every f ∈ Ls(J ;W−1,q
D (Ω)) and u0 ∈ (W 1,q

D (Ω),W−1,q
D (Ω)) 1

s ,s
, there exists

a unique solution to the problem

u′(t)−∇ · ϕ(t)ρ∇u(t) + u(t) = f(t), u(T0) = u0 (5.4)

which is from W 1,s(J ;W−1,q
D (Ω)) ∩ Ls(J ;W 1,q

D (Ω)).
ii) The operator (∂t+A(ϕρ), γT0

)
is continuously invertible and the mapping ϕ 7→

(∂t +A(ϕρ), γT0)−1 is continuous.

Proof. First, [6, Thm. 11.5] yields maximal parabolic regularity in Ls(J ;W−1,q
D (Ω))

for each of the operators−∇·ϕ(t)ρ∇+1. For each t ∈ J , the operator−∇·ϕ(t)ρ∇+1
is still a topological isomorphism between W 1,q

D (Ω) and W−1,q
D (Ω), see [15, Thm.

6.2] – note that this is the (only) point in the proof where space dimension n = 3 is
the limiting factor. In particular, the domain of the operators is uniformly W 1,q

D (Ω).
Since the mapping

t 7→ −∇ · ϕ(t)ρ∇+ 1 ∈ L(W 1,q
D (Ω);W−1,q

D (Ω)) (5.5)

is continuous, [3, Thm. 7.1] shows existence of the unique solution u in the correct
space. By [3, Thm. 3.1], this is equivalent to continuous invertibility of (∂t +
A(ϕρ), γT0)−1. Due to

sup
t∈J
‖ − ∇ · ϕk(t)ρ∇+∇ · ϕ(t)ρ∇‖L(W 1,q

D (Ω);W−1,q
D (Ω)) ≤ ‖ρ‖L∞‖ϕk − ϕ‖C(J×Ω),

the operators A(ϕkρ) converge to A(ϕρ). This implies also convergence of (∂t +
A(ϕkρ), γT0)−1.

Remark 5.6. For initial value 0, the results of Lemma 5.5 may also be transferred
to the operators ∂t +A(ϕρ) on W 1,s

0 (J ;W−1,q
D (Ω))∩Ls(J ;W 1,q

D (Ω)) with values in
Ls(J ;W−1,q

D (Ω)) in a straightforward way (see also [3, Thm. 3.1]). For s > 2(1 −
3
q )−1, the operators (∂t+A(ϕρ))−1 as just established and the one in Theorem 2.13
(with µ(t, ·) = ϕ(t)ρ(·)) then indeed agree on Ls(J ;W−1,q

D (Ω)) and we directly
obtain

W 1,s
0 (J ;W−1,q

D (Ω)) ∩ Ls(J ;W 1,q
D (Ω)) ↪→ Cα(J × Ω),

completing the usual collection of embeddings from Lemma 5.4.

It follows the proof of Theorem 5.3.
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Proof. We choose an arbitrary function u ∈ W 1,s(J ;W−1,q
D (Ω)) ∩ Ls(J ;W 1,q

D (Ω))
with the initial value u(T0) = w0 (due to the very definition of the interpolation
space which w0 is from, this is always possible – we may, for instance, choose
t 7→ e∇·ρ∇(t−T0)w0). Note that, due to Lemma 5.4, u is a continuous function on
J × Ω. Set w = u+v. The equation under consideration then becomes an equation
in v, since u is fixed, that is, we now have to solve

v′ −∇ · φ(u+ v)ρ∇v+ v = F(u+ v)− u′ +∇φ(u+ v)ρ∇u− u, v(T0) = 0. (5.6)

To this end, we consider for ψ ∈ C(J × Ω) the equation

v′−∇ ·φ(u+ψ)ρ∇v+ v = F(u+ψ)−u′+∇φ(u+ψ)ρ∇u−u, v(T0) = 0. (5.7)

and define a function T (ψ) = v, such that v ∈W 1,2(J ;W−1,2
D (Ω))∩L2(J ;W 1,2

D (Ω))
solves (5.7) (this is well-defined due to Proposition 2.10). Clearly, a fixed point of
T would yield the searched-for solution for (5.6). Let us construct an appropri-
ate setting: First, the set of all right-hand sides in (5.7) is bounded in the space
Ls(J ;W−1,q

D (Ω)) – boundedness of F in Ls(J ;W−1,q
D (Ω)) over C(J × Ω) was an

assumption – and for the divergence-term we estimate for every t ∈ J as follows:

‖∇φ(u(t) + ψ(t))ρ∇u(t)‖W−1,q
D (Ω) = sup

‖ζ‖
W

1,q′
D

(Ω)
=1

∣∣∣∣
∫

Ω

φ(u(t) + ψ(t))ρ∇u(t) · ∇ζ dx
∣∣∣∣

≤ φ ‖ρ‖L∞(Ω) ‖u(t)‖W 1,q
D (Ω),

hence
‖∇φ(u+ ψ)ρ∇u‖Ls(J;W−1,q

D (Ω) ≤ φ ‖ρ‖L∞(Ω) ‖u‖Ls(J;W 1,q
D (Ω)), (5.8)

which is independent of ψ. As u is fixed, this means the right-hand sides in (5.7)
are contained in a ball around the origin in Ls(J ;W−1,q

D (Ω)), say, of radius r. Now
set

B :=
{
v : v′(t) +A(ζ(t)ρ)v(t) = g(t), v(T0) = 0,

with ‖g‖Ls(J;W−1,q
D (Ω)) ≤ r, ζ ∈ C(J × Ω) and φ ≤ ζ ≤ φ

}

as a subset of W 1,2(J ;W−1,2
D (Ω)) ∩ L2(J ;W 1,2

D (Ω)). Theorem 2.13 shows that B is
in fact contained in a ball Qα in some Hölder space Cα(J × Ω), which in turn is
compactly included in some ball Qc in C(J × Ω). Clearly, T maps Qc to B ⊂ Qα
and the set {T (ψ) : ψ ∈ Qc} is compact in Qc. Hence, the Schauder fixed point
theorem yields a fixed point v = T (v) in Qc, provided we are able to show continuity
of the mapping T from Qc to Qc. So:
The mapping ψ 7→ φ(u+ψ) is continuous from C(J × Ω) into itself by the Lipschitz
assumption on φ, such that Lemma 5.5 implies that ψ 7→ (∂t +A(φ(u+ ψ)ρ))−1 is
continuous from C(J × Ω) to the linear bounded operators from Ls(J ;W−1,q

D (Ω))
to W 1,s

0 (J ;W−1,q
D (Ω))∩Ls(J ;W 1,q

D (Ω)), cf. Remark 5.6. Thanks to the assumptions
on F , ψ 7→ F(·, u(·)+ψ(·)) is also a continuous map, hence the right-hand side R(ψ)
in (5.7) depends continuously on ψ (here one also uses the Lipschitz property of φ).
For a sequence ψk → ψ in Qc we find via Lemma 5.4

‖T (ψ)− T (ψk)‖C(J×Ω) ≤ C
∥∥(∂t +A(φ(u(·) + ψ(·))ρ))−1R(ψ)

−(∂t +A(φ(u(·) + ψk(·))ρ))−1R(ψk)
∥∥
W 1,s

0 (J;W−1,q
D (Ω))∩Ls(J;W 1,q

D (Ω))
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and a simple triangle argument shows that this goes to 0 as k goes to infinity since
everything depends continuously on ψ. This is exactly the searched-for continuity
of T .

Finally, a fixed point v of T obviously solves (5.6) and is, thanks to Lemma 5.5,
in fact from W 1,s

0 (J ;W−1,q
D (Ω)) ∩ Ls(J ;W 1,q

D (Ω)), making w := u + v a solution
of (5.1) in the optimal space W 1,s(J ;W−1,q

D (Ω)) ∩ Ls(J ;W 1,q
D (Ω)). Concerning

uniqueness, one observes that both the right-hand side F and the operator w 7→
−∇ · φ(w)ρ∇w + w satisfy all assumptions in the theorem of Prüss [42, Thm. 3.1],
if F satisfies the Lipschitz assumption in Remark 5.2. The quoted theorem then
yields uniqueness of the solution.

Corollary 5.7. For fixed w0, consider the set of admissible data {ρ, φ,F} for the
problem (5.1) as in the assumptions of Theorem 5.3, where κ0, κ1, φ, φ and CF are
fixed. Then the set of associated solutions wρ,φ,F is contained in a ball in some
Hölder space Cα(J × Ω).

Proof. Inspecting the proof of Theorem 5.3, one observes that the set B is always
the same for all data {φ,F} when φ, φ and CF are fixed, and that the bound of B
in the Hölder space is also uniform in κ0, κ1 by Theorem 2.13. Hence, the size of
the set Qα is also uniform in κ0, κ1, φ, φ and CF .

If the forcing term F in fact does not depend on w, we still obtain the following
useful result from Theorem 5.3 and Corollary 5.7.

Corollary 5.8. Let the assumptions of Theorem 5.3 be satisfied, with F(t, ·) =
f(t) for some f ∈ Ls(J ;W−1,q

D (Ω). Then, for every such f ∈ Ls(J ;W−1,q
D (Ω)),

there exists a unique global solution w ∈W 1,s(J ;W−1,q
D (Ω))∩Ls(J ;W 1,q

D (Ω)) of the
equation

w′(t)−∇ · φ(w(t))ρ∇w(t) + w(t) = f(t), w(T0) = w0.

In particular, the (nonlinear) solution operator, mapping f to w, transports bounded
sets in Ls(J ;W−1,q

D (Ω)) into bounded sets in Cα(J × Ω) for some α > 0 and fixed
w0.

Remark 5.9. With Theorem 2.13 and essentially analogous techniques as displayed
in this chapter, one might show existence of global Hölder-continuous solutions to
semilinear equations with nonlinearities in the form as in Assumption 5.1, where
the coefficient functions in the divergence-operator are only measurable in time. We
omit the details.

6. Applications to Optimal Control. In this chapter we show that Hölder esti-
mates, as established in various forms in the previous chapters, are not only inter-
esting by their own right but may also put to good use in optimal control theory.
The crucial point here is, of course, the compactness of bounded sets of Hölder
functions in the space of continuous functions. We illustrate this in two ways, both
of which translate weak convergence of the forcing terms to strong convergence of
the associated solutions (or states) in the space of continuous functions. We do
this for both a non-autonomous linear equation and a quasilinear equation as in
Theorem 5.3. Applications in optimal control theory range from existence theory
by standard arguments (see also Proposition 6.4 below) to second order sufficient
conditions, see e.g. [10] or [13].
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Let X and X ⊂ L1(J ;X) be reflexive Banach spaces and consider a continuous
linear mapping E : X → Ls(J ;W−1,q

D (Ω)). The first result is an immediate conse-
quence of Theorem 2.13 by noting that the operators (∂t +A(µ))−1 are completely
continuous from Ls(J ;W−1,q

D (Ω)) to C(J × Ω).

Proposition 6.1. Adopt the assumptions of Theorem 2.13. Let f ∈ Ls(J ;W−1,q
D (Ω))

and uk ⇀ ū in X . Then the solutions wk := wuk of

w′(t)−∇µ(t, ·)∇w(t) + w(t) = (Euk)(t) + f(t), w(T0) = 0

converge strongly in C(J × Ω) to wū.

Note that affine-linear superposition operators for the control u are, in general,
the best one can hope for in order to preserve weak convergence, see e.g. [9, Ex. 4.20].

Remark 6.2. Proposition 6.1 may also be extended to nonconstant Dirichlet data
and/or initial data from W 1,q(Ω) as in Ch. 4 in a straightforward way. We did not
carry this out for the sake of simplicity.

Next, we add a control to the right-hand sides of the quasilinear problem in
Theorem 5.3 in the following way: Let F : J ×C(Ω)×X →W−1,q

D (Ω) be such that

i) for each u ∈ X , (t, w) 7→ F(t, w, u(t)) satisfies the assumptions in Assump-
tion 5.1 with the bound CF being uniform for u from bounded sets in X ,

ii) the mapping u 7→ F(·, w(·), u(·)) is affine-linear and continuous for each fixed
w ∈ C(J × Ω).

Theorem 6.3. Adopt the assumptions of Theorem 5.3 (the unique solutions case)
and assume that the right-hand side is of the form F as above. Let uk ⇀ ū be
a weakly convergent sequence in X and w0 ∈ (W 1,q

D (Ω),W−1,q
D (Ω)) 1

s ,s
. Then the

solutions wk := wuk of

w′(t)−∇ · φ(w(t))ρ∇w(t) + w(t) = F(t, w(t), uk(t)), w(T0) = w0, (6.1)

converge strongly in C(J × Ω) to wū.

Proof. Without loss of generality, we assume w0 = 0 in the proof. One arrives at
this situation by repeating the “split-off”-procedure done at the beginning of the
proof of Theorem 5.3 and the obvious modifications from thereon without changing
the fundamental properties of the problem, as seen there.
The sequence (uk)k is bounded in X . Due to the choice of s > 2(1 − n

q )−1

and Lemma 5.4, we have wk ∈ C(J × Ω) for each k. The assumptions on F
and Corollary 5.7 then yield that the solutions wk are from a bounded set in
Cα(J × Ω) for some α > 0. Hence, there is a subsequence (wkl)l of (wk)k such
that wkl → w̄ in C(J × Ω). We need to show that w̄ = wū. Re-inserting the
newly found convergence of wkl in the equations shows that the right-hand sides
F(·, wkl(·), ukl(·)) now in fact converge weakly to F(·, w̄(·), ū(·)) in Ls(J ;W−1,q

D (Ω)),
while (∂t + A(φ(wkl)ρ))−1 goes go (∂t + A(φ(w̄)ρ))−1 by virtue of Lemma 5.5.
However, the operators (∂t + A(φ(wkl)ρ))−1 are even completely continuous from
Ls(J ;W−1,q

D (Ω)) to C(J × Ω) – this is Theorem 2.13 via Remark 5.6 – and thus
translate weak convergence to strong convergence in those spaces, even “diagonally”,
that is:

wkl = (∂t+A(φ(wkl)ρ))−1F(·, wkl(·), ukl(·)) −→ (∂t+Aφ(w̄)ρ))−1F(·, w̄(·), ū(·)) = w̄.
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This limit implies that w̄ solves

w′(t)−∇ · φ(w(t))ρ∇w(t) + w(t) = F(t, w(t), ū(t)), w(T0) = 0,

which means exactly that w̄ = wū by uniqueness of solutions. Since this procedure
can be done for every subsequence with the same limit wū, the whole sequence (wk)
must converge.

Let us briefly show how the previous result may be put to use: Let Xad ⊆ X be
closed and convex and let J : C(J × Ω)× Xad → R be continuous in the separated
form J(w, u) = J1(w) + J2(u). Assume that J2 is coercive and convex on Xad and
consider the problem

min
u∈Xad

J(w, u) such that (6.1) holds. (QLOC)

We then obtain the following result by standard methods:

Proposition 6.4. Suppose the assumptions of Theorem 6.3 and assume that a
feasible point of (QLOC) exists. Then the problem (QLOC) has an optimal solution
ū ∈ Xad.

A usual choice for the objective functional J would be

J(w, u) = ‖w − wd‖2L2(J;L2(Ω)) +
β

2
‖u‖2U ,

where wd is a given temperature distribution to be reached and β > 0 is a regular-
ization parameter.

7. Concluding Remarks. It is not the intention of this paper to declare the
concept of Ladyzhenskaja et. al in [39] to be outdated or not adequate any more.
On the contrary, even nearly fifty years after it was first published, the results in [39]
are still highly relevant – if not in their original form, then at least in a guiding and
blue-print way, not accounting for the various hard facts it established. However,
in view of the modern techniques for negative Sobolev spaces and Hölder spaces, an
exposition of results in current, up-to-date mathematical “language” seems in order.
In this sense, the preceding results could be seen as an adaption and translation of
the classical results and deep insights in [39] to modern techniques.

We mention some open ends in the previous considerations:
The results presented may be transferred to complex spaces as long as the coef-

ficient functions in the equations are real. In this case, one may consider the real-
and imaginary parts in the considerations each on their own.

Moreover, the “next step” in the great scheme would surely be maximal parabolic
Lp-regularity for non-autonomous equations with coeffients which are only measure-
able in time. While it is already known that maximal regularity for operators A(·)
over an interval J implies maximal regularity for each of the autonomous operators
A(s) for s ∈ J , up to now mostly some sort of continuity of the time-dependence
is assumed additionally in order to conclude maximal regularity, see e.g. [3] for the
corresponding result (already used in Lemma 5.5) and an overview. There is also
a sequence of related, very recent work [5], [14], [30] and [41] which follows Lions’
Theorem 2.10 (see [12, Ch. XVIII.3]) in a slightly different direction (maximal reg-
ularity over the Hilbert space H). Also very recent is a positive result on maximal
Lp regularity without any continuity assumptions on the time-dependence in [21].
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Let us note that, in view of Ch. 6, maximal parabolic Lp-regularity for only measur-
ably time-dependent non-autonomous evolution equations would allow for a concise
treatment of optimal control problems subject to these equations.

Finally, it would certainly be interesting to know which degree of Hölder conti-
nuity one obtains in Theorem 2.13 in dependence on the coercivity-constant κ0 and
upper bound κ1 of the associated coefficient matrix. Based on [16, Ch. 4] for the
elliptic case and the lack of related results apart from [39], at least such known to
the authors, this seems like a difficult question which might be worth investigating.

8. Appendix. In this Appendix we give the proof of Proposition 3.9. We start
with the following

Lemma 8.1. i) Let f ∈ L2(J ;L2(Ξ; Rn+1)) be given, and N(u, ϑ, t) be defined as
in (3.2). Then, for every u ∈ V 1,0

2 (J ×Ξ), every ϑ ∈W 1,2

J×∂Ξ
(J ×Ξ), and every

t ∈ J , N(u, ϑ, t) is well-defined. Moreover, for every u ∈ V 1,0
2 (J×Ξ) and every

t ∈ J , the linear form W 1,2

J×∂Ξ
(J × Ξ) 3 ϑ 7→ N(u, ϑ, t) is continuous.

ii) The set C1(J ;W 1,2
0 (Ξ)) is dense in W 1,2

J×∂Ξ
(J × Ξ).

iii) For every Banach space X, the set C1(J) ⊗ X = {∑k
j=1 ηj ⊗ vj : ηj ∈

C1(J), vj ∈ X} is dense in C1(J ;X).

Proof. i) is straight forward, cf. also [39, Ch. III.1]. ii) It is known that W 1,2(J×Ξ)
is isomorphic to L2(J ;W 1,2(Ξ))∩W 1,2(J ;L2(Ξ)) – algebraically and topologically,
cf. [12, Ch. XVIII.1.3]. Restricting this isomorphism to the set C∞

J×∂Λ
(J × Ξ),

which is dense in W 1,2

J×∂Ξ
(J ×Ξ), one obtains that W 1,2

J×∂Ξ
(J × ∂Ξ) is isomorphic to

L2(J ;W 1,2
0 (Ξ)) ∩W 1,2(J ;L2(Ξ)). Moreover, it is also known that C1(J ;W 1,2

0 (Ξ))
is dense in L2(J ;W 1,2

0 (Ξ)) ∩W 1,2(J ;L2(Ξ)), cf. [12, Ch. XVIII.1.3]. iii) is again
straight forward.

It follows the proof of Proposition 3.9.

Proof. i) Each continuous linear form on W 1,q′

F (Ξ) may be extended by the Hahn-
Banach theorem to a continuous linear form on the whole W 1,q′(Ξ) = W 1,q′

∅ (Ξ)
under the preservation of its norm. In case of F = ∅ the representation (3.4) is
well-known, including the corresponding estimates, see [40, Ch. 1.1.14].
ii) By i) and the embedding Ls(J ;W−1,q

F (Ξ)) ↪→ L2(J ;W−1,2
F (Ξ)) the equation (2.4)

can be written as

〈u′, v〉 − 〈∇ · µ∇u+ u, v〉 =
d

dt

∫

Ξ

uv dx +
∫

Ξ

µ∇u · ∇v + uv dx

= 〈f, v〉 =
∫

Ξ

gk,0v −
n∑

j=1

gk,j
∂v

∂xj
dx,

(8.1)

for all v ∈ W 1,2
F (Ξ) ↪→ W 1,q′

F (Ξ) and then for almost all t ∈ Jk. In particular, the
test functions v may be chosen from W 1,2

0 (Ξ) – what we will do from now on. Take
now any function η ∈ C1(J), multiply (8.1) with η and integrate from T0 to T ∈ J ;
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one then obtains
∫ T

T0

d

dt

∫

Ξ

uv dx η dt+
∫ T

T0

(∫

Ξ

µ∇u · ∇v + uv dx
)
η dt

=
∫

Ξ

u(T, x)(η ⊗ v)(T, x)) dx−
∫ T

T0

∫

Ξ

u
∂

∂t
(η ⊗ v) dx dt

+
∫ T

T0

∫

Ξ

µ∇u · ∇(η ⊗ v) + u(η ⊗ v) dx dt

=
∫ T

T0

∫

Ξ

(∑

k

χJkgk,0

)
(η ⊗ v)−

∫ T

T0

n∑

j=1

(∑

k

χJkgk,j

)∂(η ⊗ v)
∂xj

dx dt.

Clearly, this equality extends to the linear span of functions from C1(J)⊗W 1,2
0 (Ξ)

and, by continuity of ϑ 7→ N(u, ϑ, t) on W 1,2

J×∂Ξ
(J × Ξ) and density of C1(J) ⊗

W 1,2
0 (Ξ) in the latter space, even to the whole W 1,2

J×∂Ξ
(J × Ξ).
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[29] K. Gröger, W 1,p-estimates of solutions to evolution equations corresponding to nonsmooth

second order elliptic differential operators, Nonlinear Anal. 18 (1992), 569–577.
[30] B. H. Haak, E. M. Ouhabaz, Maximal regularity for non-autonomous evolution equations,

arXiv:1402.1136.

[31] R. Haller-Dintelmann, H.-C. Kaiser, J. Rehberg, Elliptic model problems including mixed
boundary conditions and material heterogeneities, J. Math. Pures Appl. 89 (2008), 25–48.

[32] R. Haller-Dintelmann, C. Meyer, J. Rehberg and A. Schiela, Hölder continuity and optimal
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