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Abstract

We prove existence, uniqueness, regularity and separation properties for a nonlocal Cahn-
Hilliard equation with a reaction term. We deal here with the case of logarithmic potential and
degenerate mobility as well an uniformly lipschitz in u reaction term g(x, t, u).

1 Introduction

Our aim is to generalize existence, uniqueness, separation property and regularity results, proved by
Gajewski, Zacharias [GZ] and Londen and Petzeltova [LP2] for the nonlocal Cahn-Hilliard equation, to
the nonlocal Cahn-Hilliard equation with reaction. Hence, we aim to study the following initial boundary
value problem:

Ou—V - (uVv) = g(u) in Q, (1.1)
v=f"(u)+winQ, (1.2)

wlad) = [ Kl =a)(1 = 2un.)dy tor (2.1) € Q. (13
n-uVo=0onl, (1.4)

u(z,0) = ug(x), x € 0, (1.5)

where Q = Q x (0,7, Q2 C R%is a bounded domain, I' = 9 x (0,7), and n is the outer unit
normal to 0€). The functions f and p are definite by

f(u) =ulogu+ (1 —u)log(l — u), (1.6)
= f”tu) =u(l—u). (1.7)

The man novelty of the paper is that we can take into account in our analysis of the reaction term g in
(1.1), which can be taken as a Lipschitz continuous function of the unknown w.

Let us briefly recall here - for the readers’ convenience - the derivation of the nonlocal Cahn-
Hilliard equation and the comparison with the local one. System (1.1)—(1.5) describes the evolution
of a binary alloy with components A and B occupying a spatial domain 2. We denote by u the local
concentration of A. To describe phase separation in binary system one uses generally the standard
local Cahn-Hilliard equation, which is derived (cf. [CH]) from a free energy functional of this form of
the form

Ecp(u) = /Q (%2 IVu|* + F(u)) dx. (1.8)

Here F'(u) denotes the Helmholtz free energy density of A. It is defined as

F(u) =2KgT.u(l —u) + KgT f(u), (1.9)



where K g is the Boltzmann’s constant, 1 is the system temperature, T, is called critical temperature
and f is defined as
fu)=ulnu+ (1 —u)In (1 —u). (1.10)

Considering that the dynamics tends to minimize the energy E¢p, Cahn obtained ([Ca]) the following
equation for u:

u+V-J=0 (1.11)
where J is defined as
J = —p(u)Vo. (1.12)
The function p is named mobility and v denotes the first variation of Ecy with respect to u:
ok,
v = 5CH = F'(u) — 7*Au, (1.13)
U

known as chemical potential. For simplicity, in literature the mobility is often chosen constant although
its physical (degenerate) relevant form is

p=au(l —u),a>0 (1.14)

(see [Ca)), where a is a positive function possibly depending on u and Vu separated from 0 (in
literature a is often a positive constant). Equation (1.11) is, hence, a 4th order nonlinear PDE known
as Cahn-Hilliard equation:

u+ V- (p(u)V(F (u) — 7°Au)) =0, (1.15)

which is usually coupled with the following boundary conditions:

% =00n 0 and u(u)n - Vo = 0on 0. (1.16)

This last condition ensures the mass conservation. Indeed, thanks to (1.16), we have:

% Qu:/ﬂutz—/QV-(,u(u)Vv):/aQu(u)n-Vv:O.

Despite numerical results on the Cahn-Hilliard equation are in good agreement with experi-
ments, G. Giacomin and J. L. Lebowitz in [GL1] and [GL2] showed that Cahn-Hilliard equation cannot
be derived from microscopic phenomena. This motivation led G. Giacomin and J. L. Lebowitz to study
the problem of phase separation from the microscopic viewpoint using statistical mechanics. Then,
performing the hydrodynamic limit they deduced a continuum model. By proceeding in this way they
found a nonlocal version of the Cahn-Hilliard equation that is a second order nonlinear integrodiffer-
ential equation:

u+V-J=0 (1.17)

where J is defined as in (1.12), 1 denotes the mobility term (defined as in (1.14)), and v = ‘;—5. Here
the energy functional £ is given by

Bu) = % /Q /Q K(x — y)(u(z) — uly))2dedy + /Q Fu) 4 hu(l— w)de.  (1.18)

This leads to
U:f/(u)+w, where w = K * (1 — 2u), (1.19)



and where K is a symmetric positive convolution kernel, k(z) = |,

o K(z —y)dy and f is defined as
in (1.10).

Nonlocal Cahn-Hilliard equation is generally coupled with the boundary condition
p(u)n - Vo = 0on 052 (1.20)

Thus, the mass-conservation is still preserved. Notice that the nonlocal contribution % fQ fQ K(x —
y)(u(z) — u(y))*dady in (1.18), replacing the local one [, 2 |Vu
range interactions between points in 2. Moreover, let us note that the local term fQ e |Vu|2 could be

2
formally obtained from the nonlocal one (cf. [KRS]).

2, better describes the long-

Adding a reaction term to the Cahn-Hilliard equation is useful in several applications such as
biological models ([KS]), impainting algorithms ([BEG]), polymers ([BO]). Cahn-Hilliard equation with
reaction is

u + V- J=g(u), (1.21)
where J = —puVwv and v asin (1.13) orasin (1.19) and g(u) = g(x,t, u).

The main difficulties in studying Cahn-Hilliard equation with reaction are due to the non-
conservation of the mass. Indeed, thanks to the boundary condition (1.20), we have

d
7 Quz/gg;«é(). (1.22)

Some analytical results on the local Cahn-Hilliard equation with reaction term are [CMZ], [Mi].
Existence and uniqueness for nonlocal Cahn-Hilliard equation with constant mobility, polynomial po-
tential and reaction term are proved in [DP].

To the best of our knowledge no previous works on the nonlocal Cahn-Hilliard equation with
reaction and with singular potential and degenerate mobility have been proved. Furthermore, our
assumptions on the reaction term (see (G1)-(G3)) are more general then in [CMZ], [Mi] and [DP] and
they are satisfied in every application we know (cf., e.g., [KS], [BEG], [BQO]).

Plan of the paper. In Section 2 we set notation, describe assumptions on data and state the main
results. Existence and uniqueness are proved in Section 3. Regularity results are proved in Section 6.
Section 7 is devoted to the proofs of the separation properties. Some remarks are stated in Section 8.
Appendix (Section 9) contains example of convolution kernels and auxiliary theorems.

2 Assumptions on data and main results

2.1 Notation

Set Q) C R%, d € N, a bounded domain with a sufficiently smooth boundary (e.g., of class C''1).

If X is a real Banach space, X* will denote its dual. For every z € (H'(Q))* we denote
zZ= <z, ﬁ> Here (, ) denotes the pairing of H'(2) and (H'(£2))". Let us introduce also the space
HYQ) = {= € HY(Q): z = 0.

Set HY(0,T, X, X*) = { z € L*(0,T,X) : 2 € L*(0,T, X*)}.



If z € H'(0,T, X, X*) the symbols 2/, 9,2, %, and z, will denote the partial derivative of =
with respect to the t-variable (time). Let f € C*(R ) we use the symbol f’ to denote the derivative
of the function f. Finally, sety € H'([0,T] x §2), we indicate the partial derivative of y with respect
to the first variable (time) with the symbols O,y or 8y and the partial derivate of y with respect to the

x;—variable with the symbol 0;.

fa: R — Rand 3 : Q C R? — R are measurable functions o * (3 will denote the
convolution product definite by « * 3(z) = [, a( B(y)dy for z € RZ

2.2 Assumptions on data

The given functions I, uy and g will be assumed to fulfill the following conditions.

(K) The convolution kernel K : R — R satisfies the assumptions

K(z) = K(—x) fora.a. z € RY, (K1)
sup [ (o= )l dy <+ (k2)
e
Vp € [1,+00] Irp, > O such that [|K x pllyip0) < 7 10l 1oy - (K3)
3C > Osuchthat [[K * plly22iq) < C Hp||W1,2(Q); (K4)

(u0) The initial datum ug is supposed to satisfy

Ug IS measurable, (Uot)
0 <wup(x) <lforaa. .z €, (U02)
0<uy <1 (U03)

(G) The reaction term g : 2 x Rt x [0, 1] — R is such that

g(z,t, s) is continuous, (G1)

AL > Osuchthat |g(z,t,s1) — g(x,t,89)| < L|sy — 82| Vsy,80 € [0,1],Vz € Q, Vt € RT
(G2)

g(z,t,0) > 0> g(x,t,1) Vo e Q,VteR", (G3)

We remark that, as a consequence of (G1) for every T > 0, there exist C' > 0 depending on
T’ so that
lg(x,t,5)| < C Vsel0,1],t€[0,T],z € Q. (2.1)

Furthermore, as a consequence of (G2), we have
g is differentiable for a.a. s € [0,1] and |0sg(z,t,s)| < Lforaa. (z,t,5) € Q@ x RT x [0, 1],

where L as in (G2) (see [NZ]).



Remark 1. Some examples of convolution kernels K which satisfy the above conditions (K1)-(K4) are
given by Newton potentials:

K(|z]) = kg |z for d>2
K(|z|) = —koIn|z| for d=2

where ky = cost > 0, gaussian kernel I (|z|) = C'exp(— |z|* /\) and moliifiers (cf. Section 9.1 in
the Appendix).

Remark 2. Examples of functions g which satisfy the conditions (G1)-(G3) are given by both clas-
sical reactions terms as g(u) = =+(u® — u) and terms used in recent applications of the Cahn-
Hilliard equations as g(x,t,u) = a(z,t)u(l — u) ([KS]), g(z,t,u) = N x)(h(z) — u) (|BEG]) or
g(x,t,u) = —o(x,t)u ([BOJ) where \, h, « and o are continuous and positive functions, h < 1.

2.3 Main results

Before stating the main results of this work, let us introduce the definition of weak solution to system
(1.1)-(1.5).

Definition 3. Let ug, IX, g be such that conditions (U01)-(U03), (K1)-(K4), (G1)-(G3) are satisfied.
Then, given T € (0,400), u is a weak solution to (1.1)-(1.5) on [0, T'] if
uwe HY(0,T,H(Q), (H(Q))), 2.2)
0<u<1 aeinQ@, (2.3)
w=K=x(1-2u) aeinQ,
w e O([0,T], Whe(Q)),
u(0) = ug in L*(€2),

and the following variational formulation is satisfied almost everywhere in (0,T) and for every ¢ €
H(Q)
(ur, ) + (u(w)Vw, Vi) + (Vu, Vi) = (g(u), ). (2.4)

Remark 4. As consequence of (2.2), u € C([0,T], L?(Q2)). Hence, the initial condition (1.5) makes
sense. Moreover, let us note that this notion of solution turns out to be particularly useful since it does
not involve the potential f and so it can be stated for solutions u € [0, 1], not necessarily different
from 0 and 1 (cf. also [FGR]J for further comments on this point).

Here we state our first result whose proof is given in Section 3.
Theorem 5. Let (K1)-(K4), (U01)-(U03) and (G1)-(G3) be satisfied. Then there exists unique
we H'(0,T, H'(Q), (H'(Q)")(— C([0,T], L*(%)))
weak solution to (1.1) in the sense of Definition 3.

Furthermore, ifu; i € {1,2}, are two solutions to (1.1)-(1.4) in the sense of Definition 3 with
initial data uo;, i € {1,2}, then, for every t € [0, T], the following continuous dependence estimate:

[y — ual poc 04, 12(0)) < €xXP(CE) [luor — ozl 2 (2.5)

holds true, where C' > 0 does not depend ont nor on ugy; and ugs.



The proof is given in Section 3.

Under additional assumptions on the initial data ©y and the function g we obtain more regularity
on u, as stated in the following result proved in Section 6.

Theorem 6. Let the assumptions of Theorem 5 be satisfied. Let u be the weak solution to (1.1)-(1.5)
in the sense of Definition 3. Moreover, assume that g and v satisfy:

JL > O such that |g(x,t1,s) — g(x,t1,s)| < Lty —ta|, Viti,te € 0,T), Vo € Q, Vs € [0,1],

(G4)
ug € H*(Q), (2.6)

and
n - (V(ug) + pu(ug) VK * (1 — 2ug)) = 0 on 09. (2.7)

(

Thenu € L>(0,T, H*(Q)).
Remark 7. Sinceu € L>(0,T, H*(Q2)) N C([0,T], L*(Q2)), thanks to Lemma 32 in the Appendix,
we have u € C([0,T], H*(Y)) for every s < 2 and hence u € C([0,T], L>(R2)) ifd < 3.

I the initial data do not satisfy (2.6)-(2.7) the solution u is more regular only on the set |15, T']
for any Ty > 0.
Corollary 8. Letu be solution to (1.1)-(1.5) in the sense of Definition 3. Let the assumptions of Theo-
rem 5 be satisfied. Assume that g satisfies (G4). Then forevery Ty € (0,T) u € L*>(Ty, T, H*(Q2)).

More regularity on v can be obtained under an additional assumption on the initial datum.

Theorem 9. Let the assumption of Theorem 5 be satisfied and let ug such that

f'(up) € L*(Q). (2.8)
Then the weak solution u given by Theorem 5 fulfills
v e L>®0,T,L*) Vve L*0,T,L*(Q)). (2.9)

Remark 10. As a consequence of Theorem 9 the function v = f'(u) + w is well defined. Hence
u # 0andu # 1 a.e. in Q x [0,T]. Furthermore u also satisfies the weak formulation given by
Definition 3 with

(ur, ) + (W(u) Vo, V) = (g(u),¥), v = f(u) +w,
instead of (2.4).

Corollary 8 and Theorem 9 are proved in Section 6.

In [LP2, Theorem 2.1] Londen and Petzeltova obtained the separation properties for the solu-
tion to (1.1)-(1.5) with g = 0. We prove here the same results in the case g satisfies (G1)-(G3).

Theorem 11. Let the assumptions of Theorem 6 be satisfied and d < 3. Then
VTo € (0,T) 3k > 0 such thatk < u(z,t) <1 —kfora.a.x € Q,t € (Ty, T). (2.10)

Furthermore, if R 3 R
dk > 0suchthatk < wug < 1—k, (2.11)

then'Ty = 0.

Remark 12. /f uy do not satisfy (2.6) or (2.7), using Corollary 8 and applying Theorem 11 on the set
(t,T) wheret > 0 is small enough, we can anyway obtain (2.10).

Theorem 11 is proved in Section 7.



3 Existence and uniqueness

This section is devoted to the proof of Theorem 5. We first prove uniqueness of solutions by demon-
strating estimate (2.5), then we prove existence of solutions by approximating our problem with a
more regular problem P. and then passing to the limit as ¢ — 0 via suitable a-priori estimates and
compactness results.

4 Uniqueness

We now prove the uniqueness of the solution. In the following formulas the symbol C' denotes a
positive constant depending on 1", K, and g. It may vary even within the same line.

Proof of (2.5). Let u; and ug; be as in Theorem 5. Then

(Opui, V) = — (Vg + 1;Vwy, Vo) + (g(u;),v) Yo € H(Q), ae.in(0,T), (4.1)

where p; = pu(u;) = u;(1 — ;) and w; = K * (1 — 2u;). Computing the difference of (4.1) with
i = 1andi = 2, choosing ¢ = u := u; — uy and integrating on (0, ), ¢t € (0,7, we obtain

1 1 t
B ||U(t)||i2(9) 5 [[wor — U02||i2(9) = / (Oru, u) (4.2)
0

:_/Ot/ﬂwuﬁ
_/t/(mel — p2Vws)Vu
// (u1) — g (ug))u.

Using the bounds on wuy,us, 1 and ps (see (1.7) and (2.3)) and assumption (K3) we obtain the
following estimates

(1 Vwy — peVws)Vu| < /\Vu| + = /\mel uZVwQ\
Q

and
/mmmh—vaFs/nva—vwmﬁy/mn—mwmﬁ
Q Q Q
<C|Vw, - Vw?”i?(ﬂ)

+/ |(U1 — U,Q)(l — Uy — uQ)Vw2|2
Q

2 2 2

<O Vwr = Vsl 2 ) + C [ VWl oo g 1l 20
2

<O ||ullzaq +C7“OOHUHL2 < Ol

where 15 and 7, as in (K3). Furthermore, using (G2) we have
[ otu) = g < [ 102 <Ll

7



where L as in (G2). So, thanks to (4.2), for every t € (0,T"), we obtain

t
2 2 2
Ju)l ey < 2llon =t 2y + C / -

Using the Gronwall's Lemma, we get (2.5), and so also uniqueness of solutions is proved. O

5 Existence

In order to show the existence of the solution to (1.1)—(1.5) we study an approximate problem P.
depending on a parameter €. We prove the existence of the solution u, to P. and, finally, we obtain u
as limit (for e — 0) of u, in a proper functional space.

5.1 Approximate problem F.

We start extending the domain of the function g(x, ¢, s) to every s € R since we cannot prove that the
solution u, to the approximate problem satisfies the condition u. € [0, 1] for a.a. z € Q,t € [0, T].
Let us define the function ¢! : 2 x R™ x R — R:

gt (z,t,8) = g(x,t,0) Ve VieR" s<0
g'(z,t,s) = g(z,t,s) Ve VteR", sel0,1]
g'(z,t,s) =g(x,t,1) Ve eQ VteRT s>1

We remark that g1 satisfies (G1)-(G3). Furthermore

9" (z,t,5)| < C VseRV(z,t) €Q (5.1)

where C as in (2.1) and

g'(x,t,51) > 0> g'(n,t,s) VtERT VoeQ Vs <0, Vsy > 1. (5.2)

Let us consider the approximate problem F.: find a solution « (we do not use the symbol u,
for simplicity of notation) to

(O, ) + (1 V0, V) = (g'(u),¥) Vo € H'(Q), ae.in(0,7), (5.3)
v=fl(u)+w aein@ (5.4)
w=K=x(1—-2u) ae.in@Q, (5.5)
n-puVv=0 ae.onl, (5.6)
u(0,2) = ug(x), foraa.z €, (5.7)
where

pe = max{pu +¢,¢} (5.8)

and f. is the solution to the following Cauchy-problem:

- 1ol L1

f= (20 - f5) = £1(5). and £(5) = 1(;) 59)



/2_
where a. = %. Thanks to (1.7) and (5.8), we have
€ fors <0
pe(s) =< (s+a.)(l1+a.—s) forsel0,1] . (5.10)
€ fors >0

Hence, i is continuous. We remark that ,ua(s) is not decreasing for s < 1/2 and not increasing for

s > 1/2. This yields
1+4e

e < e < pe(1/2) = ——. (5.11)
From (5.9) and (5.10) it follows
Lize. fors < 0
1+2ac
f(s) = —(SME)TH%fs) for s € [0, 1] (5.12)
Lt2ee for s > 0
and, in particular,
14+ 2a
0< fl'(s) < = (5.13)
€

Furthermore f satisfies the symmetry property

" 1 _penr l_
I (§+S)—f€ (2 s) Vs € R. (5.14)

Thanks to (5.13), f! is increasing and, thanks to f/(1/2) = f(1/2) =0, fl(s) < 0fors < 1/2 and
fL(s) > 0for s > 1/2. Using (5.12) we now obtain

fl(s) <0 for s <0
fl(s) =1In (ﬁ“z—iJ for s€[0,1] (5.15)
fi(s) >0 for s> 1.
Furthermore f! satisfies
1 1
Il <§+s> =—f! (5—3) Vs € R. (5.16)

Since f! < 2% and f!(1/2) = 0, we have f!(s) < 2% (s—1/2)for s > 1/2. So, using (5.16),
we get

14 2a,
F(s)] < =% |5 — 1/2| Vs € R. (5.17)
5
As a consequence of (5.15) s = % minimizes f.(s). From (5.16) we have
1 1
fe (— + s) = f. (— - 5> Vs € R. (5.18)
2 2
Now, we show that )
fe(s) > 2—32 —c. Vs € R, (5.19)
€

where c. is a positive constant depending on €. We start showing

1+ a.
2e

fo(s) > (s—1/2* - VseR (5.20)



where c. is a positive constant depending on £. We prove (5.20) for s > 1/2;the proof for s < 1/2 can
be obtained using (5.18). As a consequence of (5.12) we have f!(s) = %(3 -1+ fl(1),s > 1.
Furthermore f/(s) > Ofors > 1/2 as a consequence of (5.15). Hence f/(s) > 2% g— 1420 g >
1/2 (the right term is negative for s € [1/2, 1]). From the last inequality follows by integration

14+2a. , 1+ 2a. 14+2a.1 14 2a.1
S_ —_—

5 - 512 2 - a
fe(s) = fe(1/2) 2e € s 2¢ 4 e 2
1+ 2a. , 2 1—i—2a51 14+2a.1 1+ 2a,
> " "t - Vo > 0.
=T T8 2% 4 22 41 ~

We take into account £2% > 2= ‘choose 4 suitably and get (5.20). Hence,

1+a. o l+4a., 4
-1 = —s—1/4
5 (s —1/2) 5 (s°—s—1/4)
1 1
> 0 () —1/d— —) V5> 0.

- 2 0]

Choosing ¢ suitably small and using 1+a5 > 5. we have (5.19).

5.2 Existence of the solution to the approximate problem

The following lemma states the existence of a solution to (5.3)-(5.7) for a fixed € > 0 small enough.

Lemma 13. Let € < 5 - (7"2 as in (K3)). Let (K1)-(K3), (G2), (G1) and (5.1) be satisfied. Then there
exists

we H'(0,T, H'(Q), (H'(Q))") N L¥(0,T, L*(2))
solution to (5.3)-(5.7) such that

HM |VU|HL2(OTL2 Q) =

where C' is a positive constant depending on ¢.

Proof. The argument is based on a Faedo-Galerkin’s approximation scheme. We introduce the family
{e;}ien of eigenfunctions of —A + Id : V — V* as a Galerkin base in V' = H'(Q2). We define the
orthogonal projector P, : H = L?(Q) — V,, = span({e;}"_,) and ug, = P, ug. We then look for

functions of the form . .
= ag(t)erand v, (t) = > Bu(t)e
k=1 k=1

which solve the following approximating problem

(uhy ¥) + (e () Vo, VIO) = (gL, 00) V) €V, (5.21)
Vp = Po(K * (1 = 2uy,) + fL(u,))
g =P (g"(un))

U, (0) = ugp. (5.22)

This approximating problem is equivalent to solve a Cauchy problem for a system of ODEs in the n
unknowns (cy;). As a consequence of (5.8), (G1), (G2) and (5.9), for every v € V,,, the functions
(m(u,)Vuy,, Vo) and (g, 1) are locally Lipschitz with respect to the variables «; uniformly in ¢.
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Hence there exists T}, € R such that system (5.21) has an unique solution avy, . . ., i, 1, .. ., B €
Cl([(), Tn)§ R)'

We now want to prove a-priori estimates for u,, uniformly in n. Henceforth we shall denote
by C' a positive constant which depend on &, but it is independent of n and ¢. The values of C' may
possibly vary even within the same line. We choose ) = v,, as test function and get

(u ) + (,Ua (Un)vvna an) (g,i, Un)-
Thus,

(ul,, vn) = (ul, fl(ug)) + (ul,, K % (1 — 2u,))

dt(/ffu" //Kx— un (@ )(1—un(y)))-

From this follows by integration on (0, ¢):

([ 2+ [ [ K- pu@a-un) o+ | [ty wn ez
= [+ ([ e+ [ [ K== uw)) o

Thanks to (5.17) we have | f/(s)| < C'|s| 4+ C. Due to (5.1), we have
(9 f2(un)) < O+ C [l (5.24)

Using (5.19) and (K3), we obtain, for 6 > 0 to be announced,

//Kx—'%)ﬂ—%@) (5.25)
[ ) 2 o [ e (K (1= ) )
1

> % ||un||H —C — T2 ||un||H 1 — unHH

1 2
(52 =) By = €. = el

1
> (2— - 5) uallZ = s

where (5. denotes a constant depending on both ¢ and d. Since 2—15 > 19, We choose ¢ such that
(£ — 72— 6) = C > 0. From (5.1) and (K3) follows

v

(g K % (1 = 2u,)) < C||K = (1 —2u,)| 5 (5.26)
< C+ D unlly < C+ Dl

Using (5.23), (5.24), (5.25) and (5.26) we get

[[un(t) HH //Hs Up,) |an‘ <O+D/ ||Un”H (5.27)

We now use Gronwall’s Lemma and get the estimates

[tnll oo 0,711y < € (5.28)
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and

V2(u,,) \an]HLQ <C. (5.29)

H“ (0,T,H)

Furthermore, as consequence of (5.11) and (K3), we obtain, for every 0 > 0 and some C's > 0,

/ o) [V > / Vo
Q Q

B (1+ 2a.) Vuy,
B 6/(2 fhe (Un)

Zc/ ]Vun\Q—l—C/ VK * (1 —2u,)|?
Q 0

2
+ VK (1 —2u,)

+ C/ Vu, VK (1 —2u,)
Q
> (= 0) [ [Vual* = (€ + o)z (Jenlloy + 1)
Q
where 75 as in (K3) and c is a positive constant depending on ¢. If § is small enough, then
2 2 2
| et 190, 2 ¢ [ [V = C ey = C.

Hence, from (5.27) we get

[l L2070y < C (5.30)
HVUTLHB(QT,H) <C. (5.31)

‘@ /fun /K*l—Qun)

< Cflnllyy +C + 1K+ (1= 2u,) |3y < Cllually +C < C.

Furthermore, (K3), (5.17) and (5.28) yield

[on] =

Using the Poincaré-Wirtinger inequality we get
HUHHLQ(O,T,V) <C. (5.32)

Moreover, thanks to (5.1), we obtain
1
HgnHLQ(Q) <C. (5.33)

In order to estimate u/,, from (5.21), using (5.11), we obtain

(U, ¥) = = (e () VU, V) + (g, ) < CIV0all g VOl + [ gnll 7 19017
< (CIVuallg + llgnll ) 121l -

So, the estimates (5.31) and (5.33) yield
Hu/nHL?(O,T,V*) <C.
Using compactness results, we obtain for a not relabeled subsequence

u, — u weakly in L*(0,T, V), (5.34)

12



u, — u weakly*in L>(0,7T, H), (5.35)

ul, — u' weakly in L*(0,T,V*), (5.36)
fl(uy) — fF weakly*in L=(0,T, H), (5.37)
v, — v weakly in L*(0, T, V). (5.38)

Taking into account Theorem 28 in the Appendix, we have
u, — u strongly in L*(0,T, H) and a.e. in Q. (5.39)

Functions 1. and g* are continuous, so, using (5.1) and (5.11), we have (thanks to dominated conver-
gence Theorem)

pe(un) = pie(u) a.e.in @, (5.40)
g'(un) = g'(u) in L*(0, T, H). (5.41)

Hence
phe (U ) Vv, — pz(u) Vo weakly in L*(Q). (5.42)

Indeed, let ) € L*(0,T,H),i € {1,...,d}. From

! (e (1) Byvn, 1) = ' (050, pie(un)1))
/ /

we get

A @m&u%wozl @u%wwwﬁé<wm—wuuww+[:@%x%ww—mw»w.

Thanks to (5.11), (5.32) and (5.40), using dominated convergence Theorem we obtain

T
/0 (Dsvn, (e (un) — ME(U)W)‘ < 10l 20,7,y 1(tte (un) = e () Dl p2o 1)

< C [ (p1e(wn) = pe(w) 201,y = O

for n — +o0. Furthermore, as consequence of (5.11), u.(u)y € L*(0,T, H) and so, thanks to
(5.38), we have fOT (Ojv — Ojvp, pe(u)p) — 0 for n — +o0. This yields (5.42).

Finally, using (5.37), (5.39) and continuity of f/, we have f* = f/(u). The convergences
(5.34)-(5.38), (5.39), (5.40)-(5.42) are enough to pass to the limit (n — 400) in (5.21)-(5.22) and to
deduce that u is solution to (5.3).

Furthermore, thanks to Fatou Lemma and (5.29), we get
”1“2/2(“) Vo HL2(0,T,L2(Q)) < lim ,}L{O H/‘;/Z(un) Vo] HL2(0,T,L2(Q)) <C.

Lemma 13 is now proved. O

13



5.3 Passing to the limitas ¢ — 0

In order to show Theorem 5 it is necessary to pass to the limit ¢ — 0 in (5.3)-(5.7). Hence, we
need to perform here uniform - with respect to ¢ - estimates on the solution (u., ve, w;) to (5.3)-(5.7).
Henceforth we shall denote by C' a positive constant which doesn’t depend on ¢ and t. The values of
C may possibly vary even within the same line.

Let us choose now ¢ = u,. as test function in (5.3). We get (using (5.11) and assumptions
(K3) and (5.1))

1d 2 1
LA ] :<u',u>:—/Nuw+/ug<u>
2 dt ellL2(Q) ey Ue o € € € N € €

IN

—/Q|Vu5|2—/QuaVuanaJrC|lua||2Lz<n)+C

IN

2
- / Vel + C 1Vl gy 1+ (1= 20)
+ O luclfagq) +C
<(5-1) / Vul? + Cs el 2oy + C

Q

for every 6 > 0 and some Cjs depending on §. Moving (6 — 1) fQ ]VuE\Q on the left side of the
inequality, choosing 0 < 1 and using Gronwall's Lemma we get

[tell poo o, 2200)) T VUl 20,1, p2(0)) < € (5.43)

and therefore
Hus HL2(07T7H1(Q)) <C. (5.44)

Using 1) = v, as test function in (5.3), we have

%{/ﬂfs(ua)—k/g[}(*(l—ue)] u5}+/ﬂua|wg|2 (5.45)

— () + / b [V = / ) f2ue) + [ g w

Q
Thanks to (5.1), (K3) and (5.43), we infer

/Q g1 () < Cllwe oy < C el oy < C

and

JALEYETaT

Moreover, (5.2) and (5.15) yield the following estimate

f s = [ PRAIACE 5.46)
-/ ) + [ g

us€(0,1)

< ||Ua||L2(Q) [ (1 — QUE)”LQ(Q) <C.

< / 9" (ue) In(ue + az)
us€(0,1)

— / gl(ue) In(1 — ue + a.).
us€(0,1)

14



Since a. \, 0 as ¢ — 0, we may assume - without loss of generality - that 0 < a. < 1/2 for €
small enough. So In(s + a.) < 0fors € (0,1/2) and In(1 — s +a.) < Ofors € (1/2,1).
Hence, thanks to (G3), we have —g'(0) In(s + a.) > 0 for s € (0,1/2). Furthermore, (5.1) yields
lg'(s)In(s + a.)| < Cfor s € (1/2,1). Finally, thanks to (G2), we obtain

/ gl (Ua) ln(ua + aa) < / gl (ue) hl(ue + ae) (5.47)
ue€(0,1) ue€(0,1/2)
+ / |g1(u€) In(u. + as)‘
uee(1/2,1)
<[ () =g O) I +a) +C
uc€(0,1/2)
< — / Lu:In(u: +a.) + C
u-€(0,1/2)
§—/ L(u.+a:)In(u. +a.)+C <C
uc€(0,1/2)
where L is the lipschitz constant for g. The proof of
—/ g (us) In(1 —u, +a.) <C (5.48)
us€(0,1)
is analogous. Integrating (5.45) in time, we obtain
<C

) 1/2 Vo.
H(M) gy =

/Q fo(w)

||u;||L2(0,T,(H1(Q))*) <C.

<C. (5.49)

Therefore (see (5.3))

Using compactness results as in Lemma 13 we obtain (for a not relabeled subsequence) that
there exists w € H'(0, T, H*(Q), (H*(2))*) N L>=(0, T, L*(Q)) such that

u, — u weakly in L*(0, T, H' (1)),
u. — u weakly* in L>°(0, T, L*(Q2)),
ue. — u strongly in L?(0, T, L*(Q)) and a.e. in Q, (5.50)
u. — o' weakly in L*(0, T, (H'(Q2))"),
g'(u.) — g*(u) pointwise a.e. in Q.
Furthermore, (K3) yields
w, — w = K * (1 —2u)in L*(0, T, H*(Q)). (5.51)

Thanks to (5.10) we get
pe(ue) — p(u) a.e.in @, (5.52)

therefore
pe(ue) Vwe — p(u)Vw in L(Q).

15



Indeed

[ e (ue) Vo — N(u)vw”L?(Q) < [(pe(ue) — puu)) vPLU&”L?(Q)
+lp(u) (Vwe = V)l p2q) < llpe(ue) = ()| 20y Ve 20
(Wl 20y [[Vwe = V| 2 -

Using (5.11), (5.51), (5.52) and dominated convergence Theorem we have
[[1e (ue) = p(u) | 2@ [IVwel 2y — 0 and [[p(w) | 2 [[Vwe — V|| 12y — 0 fore — 0.

Now, we can pass to the limit ¢ — 0 in (5.3)-(5.7) and obtain u solution to (1.1)-(1.5) with g1 instead
of g. In order to prove Theorem 5, we are only left to show that

0<u<l

holds. From (5.8) we have that p.(s) = ¢ for every s < 0 and s > 1. Hence, as consequence of
(5.12), fI'(s) = % for every s < 0 and s > 1. Therefore

1+ 2a, 1+ 2a,
Fils) > T (s — 1) 4 1) 2 (s - ),
Finally
1+ 2a,

Jols) 2 =5 (s = 17 + (1),

Likewise, we can prove
1+ 2a.
fuls) > 7“32 + 2(0).

So, thanks to (5.49),

s 2e() 2011
| e L [ -
pe(1)
< 0 (o-2f o).

Using (1.6) and taking into account that % = o(1), f-(1) = o(1) fore — 0 we get

/u>1(u—1)2:().

Hence u < 1 a.e. in (). The proof of u > 0 a.e. in () is analogous.

This yields g'(u) = g(u), so w is solution to (1.1)-(1.5) for every g that satisfies (G1)-(G3).

6 Regularity

Section 6 is devoted to the proofs of Theorem 6, Corollary 8 and Theorem 9. Our proofs of Theorem
6 and Corollary 8 follows the guide-line of proof of Theorem 2.2 in [LP2], where the same results are
proved in the case g = 0.
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6.1 Proof of Theorem 6

The following Lemmas 14-17 are preliminary results needed in order to prove Theorem 6.

Lemma 14. Let the assumption of Theorem 6 be satisfied. Then the solution u to (1.1)-(1.5) in the
sense of Definition 3 satisfies

u, € L=(0,T, (H'(2))") N L*(0, T, L*(Q2)). (6.1)
Proof. First we observe that, thanks to (2.6), u;(0) € (H'(2))". From (7.3), we have
Uy :/g(x,t,u(x,t))dx fora.a. t € [0,7].
Q

Hence, as consequence of (2.1), since (2 is bounded, we have
ur € L(0,T) and [|tt]| oo o 1) < C- (6.2)
Denote H, ' (2) = (HZ(2))". In order to show (6.1) we only have to prove
Up =uy — iy € L0, T, Hy'(2)) N L*(0, T, L*(2)).

It is not hard to show that U, € Hy'(Q) for a.a. t € [0,T]. Let Ay : H(Q) — Hy () be the
realization of the Laplacian with the Neumann boundary conditions. Henceforth we will proceed for-
mally: the proof can be made exact by approximation of the ¢-derivative by the corresponding quotient.
Differentiating equation (2.4) with respect to ¢ and taking the scalar product with A;[l U; we can prove
the following

d
7 U171 @) = 2(Us, Ud) g1 0 (6.3)
2(VAL Uy, VANlUt)H(Q) =2 (Utta ANIUt)

and, using (1.4) and (2.7),

<V(,va)t, A;\,lUt> _ ( t ’ VAT 1Ut) (Vut, VAjlet) L2() (64)
= — (1Y), , VAR 12y — (VUL VAR 12
= — ((uVw),, VAL 1Ut) + ||Ut||22(9)

Hence, adding together (6.3) and (6.4), we obtain

2dt HUtHH o T HUtHi?(Q) = — (Uu, AX/lUt)Lz(Q) (6.5)
+ ((uVuw),, VA;Ut)LQ(Q) +(V(Vu+ pVw), Ay U .

Starting from (1.1) and differentiating with respect to t we obtain Uy, = uy—1Uy = utt—fQ O (g (u) =

Vg + (uVw), + 9i(g (u)) — [, 0: (9 (u)). So, thanks to (6.5), we have
1d 2 -1
2 dt ||Ut||H ot ||Ut||L2(Q) = ((va)tavAN Ut) (6.6)

— (0 (g (0), AN T) + (/at lUt).
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Using (K3), (1.7) and (2.3) we estimate

[ Vw + uNVwi[ 20y < fue(l = 20) Vol 2q) + [V * (1 = 2u))il| 12(q)
< well r2 gy VWil poe @y + IV * w120
< Cugl| oy

Hence, using (6.2), we get

(1:Vw + pNw, VAR U) < Cllug| 12 HVAJ‘VlUtHLQ(Q) (6.7)
< CA A+ Ul p20) Ul 10
1 2
<3 ||Ut||i2(9) + CllU g=10) + DNVl 1) -
Assumptions (G2) and (G4) together with (6.2) yield
’ LQ(Q) u ) N LQ(Q)
+ (gt (u>7 Ajivl Ut) L2(Q)
=L “utHL2(Q) ”AJ_VlUtHB(Q) +C HAJ_VIU’?HB(Q)
1 _ 2
<17 ||Ut||22(9) +C HANlUtHLZ(Q)
+C ||A1_\71UtHL2(Q) +C.
Since Ay'U; € H} (), thanks to Poincaré’s inequality, we have HAJ’VlUtHH( < C||vAy 1UtHL2
C U] (o From (6.8) it follows
|(09(), ART0) gy < 5 10y 69
2
+ C 10Ul =10y + D N Ul -1
Similarly we get
-1 1 2
dhg(u), Ay Uy < S HUtHLQ(Q) (6.10)
Q 2(Q)

+ QOO 10y + D [oly HUtH?'{Jl(Q)
Finally, (6.6), (6.7), (6.9) and (6.10) yield

1d

2
5 N0 0y + 5 100y < C IO oy + C 10N

2
< C+C Uy

Integrating in time and using Gronwall's Lemma we get [|Ut[| (o 77110y + 1Utl r2 (07, 12(0)) < C
and so (recalling (6.2)) that

||Ut||Loo(o,T,(H1(Q))*) + ||Ut||L2(o,T,L2(Q)) <C.

This concludes the proof of the lemma. O
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Lemma 15. Let the assumptions of Theorem 6 be satisfied. Then the solution u to (1.1)-(1.5) in the
sense of Definition 3 satisfies

wp € L0, T, L*()) N L2(0, T, H' ().

Proof. Thanks to (6.2) and to the fact that Vii; = 0, we need only to prove that U; € L°°(0,T', L*(2))N
L2(0,T, H' (2)). We proceed as in Lemma 14, but after differentiating in time we multiply by U (in-
stead of AJ_VI U,). After integrating by parts with respect to ¢ we obtain

1d
5 77 1UllZa@) = = (Ve + i Vw, + VU, VU 12y
+ (0rg(w), Up) o) — (/ drg(u), Ut)
0 L2(@)
< Clluel o) VUl 29y — HVUtHiQ(Q) + D ||Ut| 120
1
< CUl 20 + D ||Ut||i2(9) 3 HVUtHi%Q) :

Integrating with respect to ¢, we get

t t
1O z2@) + | IVUlIz2g0) < N0 O0) 22y + C [ MUl 720y -
0 ( () 0 )

We remark that HUt(O)HiQ(Q) is bounded (thanks to (2.6)). This, coupled with Lemma 14 and Gron-
wall’s Lemma, yields

[well oo 0.7, 22¢02)) + Nt 207,112 (02)) < €

This concludes the proof of the lemma. O

Lemma 16. Let the assumptions of Theorem 6 be satisfied. Then the solution u to (1.1)-(1.5) in the
sense of Definition 3 satisfies
Vu € L>*(0,T, L*(Q)). (6.11)

Proof. Thanks to (2.2) and Lemma 15 we have Vu € H'(0, T, L*(Q2)) and hence (6.11) follows. [

Lemma 17. Let the assumptions of Theorem 6 be satisfied. Then the solution u to (1.1)-(1.5) in the
sense of Definition 3 satisfies u € L>(0,T, H*(2)).

Proof. We rewrite equation (2.4) in the form:

(ug, ) = (Au, ) + (1 — 2u)VuVw + pAw + g(u), )
Vi € HY(Q) anda.a.t € (0,7).

We remark that u; € L>(0, T, L*(Q2)) thanks to Lemma 15; (1 — 2u)VuVw € L>(0,T, L*(Q))
as a consequence of Lemma 16; pAw € L°°(0,T, L*(€2)) because of (K4) and Lemma 16. From
(2.1) follows g(u) € L>(0,T, L*(2)). So

(Au, vy = (£,9) Y € H(Q) fora.a.t € (0,T) (6.12)

where

¢ =up + (1 — 2u)VuVw + pAw + g(u) € L=(0,T, L*(Q)). (6.13)
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Thanks to (2.3) and Lemma 16, we have
u€ L0, T, H'(Q)) N L®(Q).
So, through (K83) and (K4) we get
w e L>(0,T, H*()) N L= (0,7, W">(Q)) and Vw € L=(0,T, H(Q)) N L™ (Q).

Furthermore, since 0S) € Lip, then n € L*>(02), where n denotes the outer unit normal on 0f).
Hence (see [BG], Theorem 2.7.4), we have

g—:f: e L= (0,7, H'*(09)) N L™ (0,T, L= (9)) . (6.14)
Thanks to (2.3) and Lemma 16, V(u) = (1 — 2u)Vu € L>=(0,T, L* (Q)). Thus
w(u) € L0, T, HY? (Q)). (6.15)

Recalling that 0 < u < land 0 < u(s) < 1 forevery s € [0,1] we can extend p so that
0 < pu(s) <1forevery s € R.Hence,

p(u) € L*(0,T, L (09)) . (6.16)
Combining (6.14), (6.15) and (6.16) we obtain
ow

,u(u)% € L= (0,T,H'?(09)) . (6.17)

From (1.4) follows

ou ow
o= uNVw = u(u)a—n a.e. on 012,
and so, thanks to (6.17),
% € L= (0,7, H'/?(0%)) . (6.18)

Finally, using an elliptic regularity theorem (Theorem 31 in the Appendix), we get
u € H*(Q)fora.a.t € (0,7)

and
@
on

Combining u € L>=(0, T, L*(f2)), (6.13) and (6.18) we obtain
u € L0, T, H* (Q)).

HUHH2(Q) <C (”UHL?(Q) + H5||L2(Q) + ' ) fora.a.t € [0,T].

H/2(59)

This concludes the proof of the lemma. O

Theorem 6 follows directly from Lemma 17.
In order to prove Corollary 8 we proceed as follows. Since
u € L*(0,T, H(Q)),

we have that for a.a. Ty € (0,T), u(Ty) € H'(Q). Hence, we can prove Lemma 14 for the solution
to (1.1)-(1.4) on [Ty — &, T] where 0 < & < Ty/2. Therefore, there exists s € [Ty — &, Tp] such
that [|u:(s) | 12(q) is finite. We now proceed as in Lemma 15, 16 and 17 working on the set [s, 7’| and
choosing u(s) as initial data and we get u € L>=(s, T, H*(Q2)) and so u € L>®(Ty, T, H*(2)).
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6.2 Proof of Theorem 9

We now prove Theorem 9. Let the assumption of Theorem 9 be satisfied. Let u. be the solution of the
approximate problem FP..

We first prove, by applying an Alikakos’ iteration argument as in [BH2, Theorem 2.1], that the
family of approximate solutions u. is uniformly bounded in L (£2). To see this, let us take ¢ =
|u.|P~1u, as test function in (5.3), where p > 1. Then we get the following differential identity:

1
p+1ﬁ

+p/ﬂe(us)vwevus|ua|p_l:/g(us)u6|us|p_1‘
Q Q

HuEHW(m +p / e (ue) 2 (ue) [ Ve [*uc P~ (6.19)

Actually, the above choice of test function would not be generally admissible. Nevertheless, the argu-
ment can be made rigorous by means of a density procedure, e.g., by first truncating the test function
|ug|7‘""1u8 and then passing to the limit with respect to the truncation parameter. By using (5.8), (5.9)
we obtain

(6.20)

(ue 5” U vua 2 U p—l / ‘ U, p+1
R T e e ML

where ¢ > 0 not depending on €. Therefore, by comblnlng (6.19) with (6.20) we deduce

1 d 1 4p p+1
p+1dt el o) + 12 / ‘W“a'

< [ stwudu < [ jup.
Q Q

Starting from (6.21) and using the fact that |- (u.)| < C, we can argue exactly as in [BH2, Proof of
Theorem 2.1] in order to conclude that

/ ug(ug)VMEVU€|ua|p_1 (6.21)
Q

[tte]| poo oy < C- (6.22)
Hence we can choose 1 = f (u.) f.(u.) as test function in (5.3) and get
3 e+ [ peVo sV + [ peVos ) )V = [ 6 f2 ) 1)
0 Q 0
(6.23)

We now observe that, thanks to (5.12) and (5.15), f”(s) f.(s) < 0ifs < 1/2and f/(s)f.(s) > Oif
s > 1/2. Thus, recalling (5.2), we have

/@fwmmmm%hwmy/ g (u2) (1) () < 0.

ue>1

Furthermore, as a consequence of assumptions (G2) and (G3) and of (5.12), we get

/ gl(us)f!(ue)fé(ue) < / (gl(us) - 91(0)) fs//(uf-:)fé(UE)
0<uc<1/2 0<u-<1/2

g/ Lue f"(ue) £ (ue)
0<us<1/2

go/' F(u) < C N2 | e
0<u<1/2
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and
/1 o g' (ue) £ (ue) fL(ue) < C 1 fL(ue) |l 2 -

These inequalities yield

/Q 0 () () £ (1) < C I () g - (6.24
Recalling (K3) and (5.44) we obtain
/Q V0 f(02) ¥ (f 1)) = / e () [V (£L(u)? 6.25)

+/QuEVwaf!(ua)v(fé(us))
> 1/2 / IV (f(u)? = C.

We now observe that
Mef!/(ua)vue = %V(fé(ua))

1
" 2 " 2
= — = 1+ .
Ve fs (Us)ﬂe Msfé,(us) fs (us):us ( 0<€>>
It is not hard to show that |y.| < C'. Hence, by using (6.22), (K3) and the fact that y.(s) f.(s) > 0 for

every s € R, we obtain

/ 1V S ) 1) Vi, = / IV () S ) (6.26)
Q Q

where

+ [ ) ) v,
Q
> 1/4 / V() — C / () [V,
> 1/4 / V) — C / (s

Hence, combining (6.24)-(6.26) together with (6.23), we obtain
331 ey + 5 [ IV < O+ C IR
Using Gronwall’'s Lemma, (2.8) and the fact that
[F2()l < [f(s), Vs € [0, 1], > 0,
we finally get
||fe/(u8)||L2(0,T,H1(Q)) < Cand ||f£<ua)||Loo(o,T,L2(Q)) <C

Thus, recalling w; is bounded in L>=(0, T, L*(Q)) N L*(0, T, H'(2)) independently of &, we obtain
(2.9) and complete the proof of Theorem 9.

Remark 18. Since u. — wu a.e. in Q x [0, T, thanks to [Ro, Theorem 8.3], v. — v = f'(u) +
w weakly in L?(0,T, H*(Q)). Hence f'(u) € L*(Q) and, thus, u € (0,1) a.e. in Q x [0,T].
Furthermore, u also satisfies the weak formulation given by Definition 3 with

(ur, ¥) + (u(w) Vo, Vip) = (g(u), ¥), v = f'(u) +w,
instead of (2.4).

22



7 Separation properties

This section is devoted to the study of separation from singularities of the solution u to (1.1)-(1.5):
we show that the solution of our problem separates from the pure phases 0 and 1 after an arbitrary
short time Tp; more precisely we prove that for every 1, € (0,7") there exists & > 0 such that
E < u(x,t) <1—kforaa x € Q,t € [Ty, T]. Moreover, if u, separates from 0 and 1 then
Tg = 0

In [LP2] Londen and Petzeltova proved these results in case g = 0. Our proof follows the
guide line of [LP2, Theorem 2.1]. The main difference is due to the non-conservation of the quantity
u(t) = ﬁ Jq, u(z, t). We focus only on the parts of the proof which differ from [LP2, Theorem 2.1].

Remark 19. Since 0 < u < 1, a necessary condition to u being separated from 0 and 1 is

0 < a(t) = ﬁ/gu(m,t)dx <1Vt e0,T). 7.1)

The following Lemmas 20 and 21 show that 0 < @(t) < 1Vt € [0, T]. Moreover they estimate
the measure of a level set of u uniformly in ¢. These estimates will be used in proving Theorem 11.

Lemma 20. Let u be the weak solution to (1.1)-(1.5) in the sense of Definition 3, let (U03) and (G2)
be satisfied. Then, there exist by > 0 and ¢y > 0 not depending ont such that,

12| = ¢ >0 (7.2)
where QY = {z € Q : u(x,t) > by}

Proof. Let us assume |Q2| = 1 for simplicity. We observe @(t) — @y = [y La(s)ds = [ (u/,1) =

fot(gvl) = fot o, g- Therefore
t
t) :730-1-/ /g(u) (7.3)
o Ja

Thanks to (2.2) we have v € C([0, T, L*(f2)). Hence, the function @ : t € [0,T] — u(t) € [0, 1]
is continuous. We first prove that there exists ¢ > 0 not depending on ¢ such that

u(t) > cVt € [0,7T]. (7.4)

Suppose, by contradiction, that there exists t' € (0, 7| such that ' = min{t € [0,T] : u(t) = 0}.
Sou(t') = 0 a.a. x € Q. Due to (G3), g(u(t')) > 0. As a consequence of (G2) there exists L > 0
such that |g(z,t,s1) — g(z,t,52)| < L|sy —so| V(z,t,s) € Q x[0,7] x [0,1], 7 € {1,2}.
Hence, from (7.3), it follows

_u0+// ) > ag // g(u(t))) ds
> G — // s—ug—L/O a(s)ds Vit e [0,7)

Then @(t) is bounded below by @(t) > ugexp(—Lt) > 0Vt € [0, T]. This contradicts @(t') = 0.
Hence, (7.4) holds.

Set by = 3c. Then
1
’Qﬂ > 5¢="¢o > 0.

o t 1 N
Indeed, suppose, by contradiction, [Q2{| < ¢, then ¢ < u(t) = fﬂg u + fQ\Q3 u < fﬂi 1+
Jowar § <5+ 5192~ Qi Hence |\ Qf| > 1 which is a contradiction. O
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Lemma 21. Letu be a weak solution to (1.1)-(1.5) in the sense of Definition 3, let (U03) and (G2) be
satisfied. Then there exist by > 0 and ¢y > 0 not depending ont such that

|| > ¢ >0

where Q5 = {z € Q 1 u(z,t) <1—1by}.
Proof. The proof is analogous to the proof of Lemma 20. O

The main result of this section is the following propositions.

Proposition 22. Let assumption of Theorem 11 be satisfied. Then, for every Ty, € (0,T), there exists
k > 0 depending on Ty and u, such that

k <u(x,t)fora.a.ze€Q,te[TyT]. (7.5)
Furthermore, if there exists k > 0 such that
k < wuga.e. inQ, (7.6)

then'Tyy = 0.

Proof. In order to prove Proposition 22 we follow the guide line of [LP2, Theorem 2.1] . We show only
the parts of the proof which differ from [LP2, Theorem 2.1]. It is enough to show that In(u(-,t)) is
bounded in L>°(£2) by a constant depending on Ty and i for every t € [Ty, T).

We prove first Proposition 22 assuming (7.6). Without loss of generality, thanks to Remark 7,
we may assume that 0 < u(t) a.e. in Q2 for every t € [0, 7.

Denote
M, () = [n(u(-, )]l g forr € N.

We first derive a differential inequality for Mr(t). Setting 7 = 1 and using (2.3) and (2.4) we get

%Ml(t) _ %/Q(—ln(u)) __ <u %>

:/Qv (%) (Vu—k,qu)—/Q%Q(U)-

From ¢g(0) > 0 (see (G3)) and g(x, t, s) Lipschitz continuous in s (see (G2)) follows the estimate

_ow) 9w 90 g(w) —9(0) _ Lu _ .7)
u u u u Uu

where L denotes the Lipschitz constant of g. So

1
—/ —g(u) < C. (7.8)

QU

Using
1
IV In(u)]> = =VuV (E) , (7.9)
Vinfu) = -V (1> (7.10)
Uu u
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and (1.7), (2.2), (2.3), (K3) we prove the following estimate

iMl(t) < —/ |V1n(u)|2—/ vm(u)/NerC (7.11)
dt Q Q u
= —/ IV In(u)|” —/(1—u)V1n(u)Vw+C’
Q Q
< —1/ ]Vln(u)]2+0/ Vul? +C
2 Q Q

1
—-/ |V1n(u)|2+0/ uf? +C
2 Q Q
1 )
s——/|v1n(u)| )
2 Q

IA

Let by, 2% and ¢q be as in Lemma 20. Using Poincaré’s inequality (9.9) (cf. Theorem 29 in the Ap-
pendix), (2.3) and (7.2), we obtain

/|V1n(u)|220\93\2/
Q Q
> clotf’ | [ P+ [
Q o |€]

2

1
In(u) — g In(u) (7.12)

[ m@f

> C (My(t)* = CMu(t)
> C (M (1)) - C.
Combining together (7.11) and (7.12), we get

%Ml(t) < —Ci (Mi(1))” + Co.

Proceeding as in [LP2, Lemma 3.1], it is possible to prove that for every Ty € [0, T'] there exists m4
depending on g and T such that

Ml(t) S mq Vt € [TQ,T] (713)

We remark that 1m; does not depend on M (0). We now derive a differential inequality for M. Using
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(2.4) we get

We focus on the last term only. Using Hélder’s inequality with Hélder conjugates Ti—l and 7 we obtain

M= =/<—1nu)’“-1 < (/ 1)T (/(—mu)(*—”ril) T (7.14)
Q Q L

= |Q[F ML,
Hence )
M, < |Q"¢=D M,. (7.15)
So
r—1
- (Mr)l_r/ g (u) (W)~ <C (Mr)l_r/ (—In(u)) " (7.16)
Q u Q
_ C (Mr)l—r (Mrflyj_l
<97 C ()T (M) < C

where C' does not depend on r. Using (7.16) and proceeding as in [LP2, Lemma 3.1], it is possible to
prove the differential inequality

d 1
EMT S —Cgﬁ (Mr)z + C’4m1Mr + 057‘,

where m; as in (7.13) and, hence, the following inequality for every T' € (0,7

sup M,.(t) < By(T)r® Vr € [1,400), (7.17)

t>T

where B;(T) is decreasing on (0, +00) and such that 7B (T) is increasing for T" large enough.
Furthermore B;(1") does not depend on the initial M/,.(0) and on 7. Proceeding as in [LP2, Lemma
3.2 and Lemma 3.3], we can show that

V1o > 03B > 0such that M,.(t) < BVt > Ty,

where B depends on T and g, but not on pointwise values of 1. Passing to the limit r — oo we
obtain
(w0 poo ) < BVE € [10,T] (7.18)

and so (7.5).

The Proposition 22 is proved when (7.6) holds. If (7.6) is not satisfied, we prove Proposition 22
by approximation: we approximate 1 with v satisfying (7.6) and employ the continuous dependence
(see Remark 7) of solutions to get (7.18) even for uy which does not satisfy (7.6) (see [LPZ2]). O
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Proposition 23. Let assumption of Theorem 6 be satisfied. Then for every Ty € (0,T") there exists
k > 0 depending on T, and ug such that

u(z,t) <1—kfora.a.x € Qandt € [T, T). (7.19)
Furthermore, if there exists k such that R
up <1—k% (7.20)
then'Ty = 0.
Proof. We obtain Proposition 23 from Proposition 22 with U = 1 — w. O

Combining Proposition 22 and Proposition 23 we conclude the proof of Theorem 11.

8 Remarks and generalizations

Remark 24. If the solution to (1.1)-(1.5) is defined on [0, +00) Londen and Petzeltova proved in
[LP2] that (under the assumptions of Theorem 11 with g = () u separates from 0 and 1 (after
Ty > 0) uniformly in time, i.e. for every Ty, > 0 there exists k > 0 such that for every t > 1}
E < u(t) < 1— k. We remark that, if g # 0, the separation properties are not uniform in time

even if g satisfies assumptions of Theorem 11. Indeed, set g(u) = —u. Assumptions (G1), (G2),
(G3) are satisfied. So, for every T' > 0, there exists an unique u solution to (1.1)-(1.5) definite over
the whole set [0,T]. We have already noticed that i, = [, g(u) = — [,u = —u. So, we have

u(t) = ugexp(—t) and
u(t) — 0 fort — +oo. (8.1)

Hence, it is not possible to estimate k < u(t) for every t > Ty with k > 0 not depending on t.
Remark 25. It is not hard to prove that our theorems can be obtained also for functions g that satisfy
g(x,t,s) is continuous with respect to t and s and measurable with respect to =

and
3C > 0 such that |g(x,t,s)| < C Vt,s€[0,T] x [0,1] and fora.a. x € S,

instead of (G1). Indeed, continuity with respect to x is used only to ensure (2.1).

Remark 26. We now remark that assumption (G3) is natural. To the best of the authors’ knowledge,
our assumptions on g are satisfied in every work in which Cahn-Hilliard equation with reaction is
studied (see, e. g., [KS], [BEG], [BOJ or [DP]). Furthermore, suppose that there exists ¢ < 0 such that
g(x,t,8) < c<O0fora.a. (z,t,s) € Qx[0,T] x[0,1], then it is possible to prove that doesn’t exist
u solution to (1.1)-(1.5) on [0, T'] for T' large enough. Indeed, suppose, by contradiction that such a u
exists. Then i, = [, g(u) < c|Q| <0, sou(t) < g+ ¢|Q|t. Hence, u(t) < 0 ift is large enough.
Furthermore it is possible to show that such at can be chosen arbitrary small (if ug is small enough).
This argument doesn’t prove that our assumptions are sharp, but shows that they can be considered
natural.

Remark 27. Theorem 5 can be also extended to the nonlocal convective Cahn-Hilliard equation with
convection
w+V - -Vu+V-J=gu

where V' denotes the flow speed and J as in (1.12) (see [FGR, Section 6]).
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9 Appendix

9.1 Examples of convolution kernels

In this Section we provide examples of convolution kernels satisfying assumptions (K1)-(K4). We prove
that
K (z) = Cexp(—|z[* /),

C’exp(%) se |x| < h
0

K. =
2(2) se|z| > h

and
Ky(|z]) = kalz[*"  per d>2
—kyIn|x| per d=2"

Z
8
!

where h, A, kg > 0, satisfy (K1)-(K4).

We start considering K and K. They satisfy (K1) trivially. It is not hard to show that /; and
Ky are C> (RY) N W27 (RY) for every 1 < p < co. As consequence we have the estimates (for
i=1,2)

/ Ki(x — y)ldy < / Koz — )|y < / Ke()ldy = 1Kl o g
0 Rd R4

which yields (K2). Set p € W1P(2), 1 < p < co. Then

/|K >|<p|p—/ /K x —y)p(y)dyPdr = (9.1)

S/I(/ |Kz~(:v—y)lppldy) (/ Ip(y)lpdy> [Pd
Q Q Q

<plIF K; p‘}, d

S N

1
= Pz 117 221 gy U S C il

where C'is a positive constant depending on p. Since K; and K> are C* (R?) N W27 (R?) we
have

0;(K; * p) = 0;K; * pand
Ojl(Ki * p) = Glei xpVy,l e {1, ,d} 1=1,2.

Proceeding as above we get
[iostis ol = [ oske ol < ol 157 2, 190 02)
Q Q (R?)
= C”PHIEP(Q) vjiedl, ..., d}
and
[ outicx P = [1ouin ol < Ul 10201E, 190 03)

d
)
= CHPHLI’(Q) Vi€ {l,...d},
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where C' > 0 depends on p. From estimates (9.1) and (9.2) follows (K3), and, from (9.3), follows (K4).
We now prove that K3 satisfies (K1)-(K4). (K1) holds trivially. Property (K2) holds thanks to

/1n|x—y|dy < / ln|$—y|dy+/ In|z —yldy (9.4)
Q By (x) Q~B1(z)

< C + |9 In(max{diam(),1}) ford = 2

/|:6—y|“dy S/ Ix—yl“der/ |z — y|*dy
Q B (x) QB (z)

< C+|Qford > 2.

In order to prove (K3) and (K4) we proceed as follows. Since {2 is bounded, there exists i > 0 such
that Br D ), where By = {x € R? : |z| < R}. Let A C R be a measurable set and denote

1 forzec A
La(z) _{ forz ¢ A °

I ol = [ | [ st = ot

< [ neto)| [ Kol = o) a(o)dy

< [ | e = sl = o) oty
Rd |JR4
= |15 * p'l| 70 (gay
where K = K3 - I, and p' = p - Io. Using Young's inequality we get, for every p € [1, 4+00],
155 % 0| oy < 13111 gy 1071 oy - (9.5)

Proceeding as in (9.4) we obtain

H@Mm@—/lﬁwwwﬁa
Bogp

We have

d:c

p

dx

p

dx

Hence, from (9.5), we have
[ 5 = p”LP(Q) <C ||p/||LP(Rd) =C ||p||LP(Q) : (9.6)

Similar computations show
IVEs * pll oy = IVEs|l 11y ol o) - (9.7)

We remark that, for every d > 2, [VKj3(x)| < Cy4lz|'~? where C; denotes a positive constant
depending on d. Hence, we get

/ Wwa—wMyS/k)WKxx—wwy+/i V(e — y)| dy
Br Bi(x

BR\B1 (:U)

<C lz —y|"dy +C < C.
Bi(z)

So, (9.6) and (9.7) yield
1Ks % pllroey < € (IVEs * pll oy + 11K % ol ooy 08)
<C Hp”LP(Q) :
This proves (K3). Property (K4) is proved thanks to (9.8) and [GT, Theorem 9.9].
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9.2 Auxiliary theorems

Theorem 28. LetV C H C V* be an Hilbert tern. Let {u,, } be a sequence such that u,, : [0,T] —
V and
*) S C

Hun”LZ(o,T,V) <C,

where p > 1 and C' > 0 not depending on n.. Then there exists a subsequence {unk} such that

Uy, — u in L*(0,T, H).

Proof. This Theorem is proved in [Ro], Theorem 8.1. O

Theorem 29. Let() C R?, d € N, be a bounded domain with boundary of class C1''. Letz € H*(Q)
and 2y C ) such that |€21| > 0. Then there exists C' > 0 depending on () and )y such that

Z_—
|91’A1

Proof. This inequality follows from [Zi], Lemma 4.3.1. O

£ ‘Q | HVZHLQ(Q) (9'9)

Theorem 30. Let ) C RY d € N, be a bounded domain with boundary of class C*'. Let z €
H'(Q). Then there exists C' > 0 depending on ) such that

12/l — CO 2 Izl ) < 811V 2l 72y W0 € (0,1/2). (9.10)

Proof. This inequality is consequence of Gagliardo-Nierenberg interpolation inequality. A proof can be
found in [Ni], lecture II. O

Theorem 31. Let() C Rd, d € N, be a bounded domain with boundary of class C' L1 Denote with n
the outer unit normal on 9). Let & € L*(Q) andn € HY2(0S2). If z € H'(2) is weak solution to

Az=¢ in{)
‘3—2:77 on 052

Then z € H?(). Furthermore there exists C' > 0 not depending onn and & such that

HZHH2(Q) <C (HZHL2(Q) + Hf”m(g) + H77HH1/2(69)> :

Proof. This theorem follows from [BG], Theorem 3.1.5. O

Lemma 32. LetV, B, Y be Banach spaces such that V' is compact embedded in B and B continuous
embeddedinY . Letp € L>(0,T,V)NC([0,T],Y). Then

¢ € C([0,T],B). (9.11)

Proof. Let {s,}nen C [0,7T] such that s,, — S for n — 0. Then ¢(s,) — ¢(ss) in Y and
{¢(sn)} is bounded in V. Thus there exists a subsequence s, such that ¢(s,, ) is convergentin B
and thus in Y. Thanks to the uniqueness of the limit, we have ¢(s,, ) — ¢(s«) in B. Thanks to the
arbitrariness of {$,,, Soo }nen We have (9.11). O
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